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Abstract
With the rapid advancement of cyber-physical systems, Digital Twin (DT) is gaining ever-increasing attention owing to its 
great capabilities to realize Industry 4.0. Enterprises from different fields are taking advantage of its ability to simulate real-
time working conditions and perform intelligent decision-making, where a cost-effective solution can be readily delivered to 
meet individual stakeholder demands. As a hot topic, many approaches have been designed and implemented to date. How-
ever, most approaches today lack a comprehensive review to examine DT benefits by considering both engineering product 
lifecycle management and business innovation as a whole. To fill this gap, this work conducts a state-of-the art survey of 
DT by selecting 123 representative items together with 22 supplementary works to address those two perspectives, while 
considering technical aspects as a fundamental. The systematic review further identifies eight future perspectives for DT, 
including modular DT, modeling consistency and accuracy, incorporation of Big Data analytics in DT models, DT simula-
tion improvements, VR integration into DT, expansion of DT domains, efficient mapping of cyber-physical data and cloud/
edge computing integration. This work sets out to be a guide to the status of DT development and application in today’s 
academic and industrial environment.
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Introduction

With industries advancing into the Industry 4.0 era, factories 
are shifting towards a smart manufacturing paradigm with 
multi-scale dynamic modeling, simulation and intelligent 
decision making to enhance production capabilities (Davis 
et al. 2012). DT technology is an effective tool to fulfill the 
requirements of smart manufacturing by reflecting the physi-
cal status of systems in a virtual space (Tao et al. 2018c; 
Zheng et al. 2018d). Under the broad spectrum of CPS, the 
DT paradigm aligns well with a lifecycle-centered perspec-
tive (Schneider et al. 2019). DT technology is increasingly 
prominent as the focal point of the enhancement and evolu-
tion of global manufacturing.

As DT technology becomes more sophisticated, Liu et al. 
(2019b) described it as one of the strategic directions for 
manufacturing enterprises to progress. Designed to improve 
manufacturing efficiency, DT is a digital duplications of 
entities with real-time two-way communication enabled 
between the cyber and physical spaces (I-Scoop 2017). By 
providing a means to monitor, optimize and forecast pro-
cesses, DT is envisioned by El Saddik (2018) as an approach 
for continuous improvement towards human well-being and 
quality of life. The maturity of this technology has also 
attracted attention from a wide range of industries, includ-
ing healthcare and urban planning. City planners, assisted 
by DT technology, are able to interact with a data-rich city 
simulation, laying the foundation for a smart city as seen in 
the case of Singapore (Dassault Systèmes 2018). Gartner, a 
prominent global research and advisory firm describes DT 
as one of the top ten strategic technology trends in 2019 
(Gartner 2019). Meanwhile, Grand View Research forecasts 
the DT market to grow to USD $27.06 billion by 2025, an 
approximate tenfold increase from USD $2.26 billion back 
in 2017 (Research 2018). With DT technology’s ability to 
provide new possibilities for the emergence of new services 
and BMs, Industry 4.0 is no longer a “future trend” and 
many leading organizations have made it the center of their 
strategic agenda. For instance, with DT simulations and 
optimized decision-making, new insights can be obtained 
to produce smart products with self-awareness (Posada 
et al. 2015). Enterprises that are able to capitalize on this 
will benefit from the competitive advantages that are avail-
able to early adopters (Ghobakhloo 2018). Mabkhot et al. 
(2018) described an enormous range of benefits ranging 
from product design and verification, product lifecycle 
monitoring to shop–floor design, optimizing manufactur-
ing processes and maintenance. Xu (2017) pointed out the 
role of DT technology in making smart machine tools via 
optimal decision support and machine health awareness 
analysis. The versatility of DT technology allows it to form 
the bedrock of future technologies, for example, it has the 

potential to be provisioned as a cloud service in support of 
cloud manufacturing.

In this review paper, past and present contributions to 
DT are analyzed by systematically examining the state-of-
the-art research articles from their engineering PLM and 
business innovation perspectives. The different industries 
and stakeholders involved with DT technology as well as 
tools and models utilized are investigated to provide a clear 
understanding on the various trends and directions this tech-
nology is heading towards. The rest of the paper is organ-
ized as follows: Sect. 2 outlines a literature review of DT 
concepts and related works including the systematic search 
process for relevant journal articles. Section 3 highlights 
the key technological tools and models used in DT creation. 
Section 4 describes the role of DT technology along stages 
of engineering PLM, while Sect. 5 discusses the business 
advantages of DT. Section 6 explores future perspectives of 
DT technology advancement and lastly, Sect. 7 summarizes 
the contributions of the work done.

Literature review

This systematic literature review specifically focuses on 
works related to business and engineering aspects of DT 
technology. According to (Cook et al. 1997), a systematic 
review differs from traditional general review in that a dupli-
cation of the distinct and objective process is possible. As 
DT technologies are progressively developed for a wider 
range of industries to tackle extensive corporate functions 
such as strategic planning, it is essential that the technical, 
engineering PLM and business aspects of DT technology be 
reviewed to investigate the collective insights on theoretical 
analysis of existing studies.

Methodology in research selection

A systematic literature search was conducted in the Scopus 
database, covering most of the peer-reviewed interdiscipli-
nary research papers, where a broad sum of studies on DT 
and other related literature can be identified using the sys-
tematic review methodology. Articles collected were further 
refined through a three-step approach (Reim et al. 2015), as 
depicted in Fig. 1.

Step 1 Publications identification and screening.

The first step serves to obtain quality publications via 
practical screening criteria during the past 5 years. Con-
ference articles, working papers and commentaries are 
excluded to derive quality publications (Seuring and Mül-
ler 2008). Meanwhile, several keywords closely related to 
DT were identified. In addition to “Digital Twin”, search 
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terms such as “cyber twin” and “virtual twin” were used, 
as Oracle (2017) indicated that DT is made up of Virtual, 
Predictive and Projective twins. Although the differentia-
tion represented different technological levels of DT, the 
purpose of these papers fit the scope of the study. The 
search phrase can be duplicated with the following search-
ing sentence: “Topic = (Digital Twin OR “Virtual Twin” OR 
“Cyber Twin); Time Span: 2015–2019; Language: English; 
Type = “Article” (searched on 15/09/2019). This inclusive 
search yielded 256 relevant articles for further analysis.

Step 2 Theoretical screening process.

To emphasize both engineering PLM and business per-
spectives, articles advancing and applying DT technology 
are included, regardless of present or future considerations. 
More specifically, the selection benchmark is shown below:

•	 DT applications and scenarios are selected, includ-
ing using DT for situation optimizations. These stud-
ies involve conceptual and empirical discussion on DT 
implementations, allowing key technical aspects to be 
highlighted.

•	 DT reviews and frameworks were examined to provide 
a comprehensive overview of trends, business functions 
and technologies involved. The insights gained from 
these studies will aid in identifying challenges faced for 
the evolution of DT.

•	 Studies directly and indirectly involving DT concepts and 
challenges were examined, even those without mention-
ing DT in the title, keywords or abstract. This allows 
identification of future DT perspectives for new industrial 
developments.

Although various definitions exist, the core of DT 
remains the same. Therefore, in order to conduct a survey 
without any bias, DT is regarded consistently as a high fidel-
ity virtual replica of the physical asset with real-time two-
way communication for simulation purposes and decision-
aiding features for product service enhancement, as depicted 
in Fig. 2 concurring with the contrast between DT and CPS 
as analyzed by Tao et al. (2018a, 2019).

Step 3 Reference analysis.

In this last stage, cited references from the original 110 
articles that met the selection benchmark were further lever-
aged as a secondary source for literature analysis, resulting 
in an identification of 13 additional articles. Hence, this sys-
tematic literature review consists of 123 articles in total. For 
article analysis, DT categories were created based on their 
association with the research focus allowing easy reference 
and the categories were collated to form discussion themes. 
Additionally, 22 supplementary references were added to the 
reference section to make the survey concrete.

Evolution of DT

DT was first introduced by Grieves (2014) during his pres-
entation of PLM in 2003. Although the initial concept was 
vague, a preliminary form of DT included both physical and 
virtual products and their interconnections. First serving as 
an inexpensive means to simulate varying conditions for 
NASA rockets, DT has since advanced technologically and 
expanded its scope of utilization. From the literature to date, 
DT-related enabling techniques have experienced exponen-
tial growth over time and its core idea has been transformed 
into distinctive concepts outlined in Table 1.

Descriptive analysis

As sensors become cheaper to procure and communication 
technology advances, DT provides a means to simulate and 

Fig. 1   Systematic review flow diagram

Fig. 2   Definition of Digital Twin
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investigate scenarios that are otherwise too costly to explore. 
Figure 3 illustrates an exponential increase in DT utilization 
over the last 5 years with an expected increase in potential 
DT applications.

Table 2 shows the top journal names published in this 
area. IEEE Access is the most dominant source, accounting 
for 10% of articles reviewed, followed by other journals, 
especially in the manufacturing or industrial engineering 

Table 1   Definitions of DT

References Definition of digital twin

Grieves (2014) “Virtual representation of what has been produced”
Stark et al. (2017) “Digital representation of a unique asset that compromises its properties, condition and behavior by means of 

models, information and data”
Söderberg et al. (2017) “Using a digital copy of the physical system to perform real-time optimization”
El Saddik (2018) “Digital replications of living as well as non-living entities that enable data to be seamlessly transmitted 

between the physical and virtual worlds”
Zhuang et al. (2018) “Virtual, dynamic model in the virtual world that is fully consistent with its corresponding physical entity in 

the real world and can simulate its physical counterpart’s characteristics, behavior, life and performance in 
a timely fashion”

Qi and Tao (2018) “Virtual models of physical objects are created in a digital way to simulate their behaviors in real-world 
environments”

Xu et al. (2019) “Simulates, records and improves the production process from design to retirement, including the content of 
virtual space, physical space and the interaction between them”

Kannan and Arunachalam (2019) “Digital representation of the physical asset which can communicate, coordinate and cooperate the manufac-
turing process for an improved productivity and efficiency through knowledge sharing”

Fig. 3   Number of publications 
over past 5 years (2015–2019)

Table 2   Top journals presented 
in the review

Journal Article Count

IEEE Access 12
CIRP Annals Manufacturing Technology 9
Journal of Ambient Intelligence and Humanized Computing 7
International Journal of Advanced Manufacturing Technology 6
Robotics and Computer Integrated Manufacturing 6
Journal of Manufacturing Systems 5
International Journal of Production Research 5
IEEE Transactions on Industrial Informatics 3
International Journal of Computer Integrated Manufacturing 4
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field. Nevertheless, a total of 61 different journals are 
investigated after the systematic review process conducted 
in Sect. 2.1, proving DT’s versatility and hotness in many 
fields.

Many countries have proposed national strategies (Kim 
et al. 2016) towards Smart Manufacturing. The policies and 
research trends of advanced manufacturing countries such 
as China, USA and Germany can be summarized with head-
lines such as Made in China 2025, CPS-based manufacturing 
and Industrie 4.0 (Cheng et al. 2018). DT categorizes under 
Industry 4.0 and Fig. 4 shows the number of DT related 
research to highlight the enthusiasm of nations embarking 
on the DT trend.

DT techniques

As new industries acquire DT in a bid to boost productiv-
ity, efficiency and competitiveness, a diverse mix of tools 
and methodologies are used. This section provides a com-
prehensive analysis on tools and models used to create DT. 
Figure 5 shows the technology stack for DT establishment. 
Starting with data management and connectivity, models 
for DT communication are discussed. Subsequently, data 
representation and storage tools, machine learning tools and 
analytical methodologies are summarized. Lastly, microser-
vices used to fulfill specific DT tasks such as virtual reality 
shop–floor are examined. Microservices are vulnerable to 
cyber-attacks, which could jeopardize the safety and qual-
ity of manufacturing systems. To raise awareness to these 
threats, (Elhabashy et al. 2019) analyzed cyber security 
issues in CPS, identifying attack methods and their impacts 
to operations.

Communication

Data acquisition and transmission are crucial in DT for real-
time information flow and connectivity. This section empha-
sizes on key network architectures, data exchange protocols, 
as well as middleware platforms used in studies to facilitate 
information exchange and streaming processing. Network 
architecture involves integration of protocols and layered 
network interface through function blocks. Table 3 high-
lights the prominent architectures discussed such as multi-
tier architecture and others. The OSI model, consisting of 
7 layers (physical, data-link, network, transport, session, 
presentation, application), then establishes the concept of 
layered network architecture with the use of abstraction lay-
ers. These communication protocols are crucial rule sets for 
machine-to-machine connectivity between communicating 
entities. Table 4 highlights data exchange protocols in manu-
facturing environments used by data acquisition systems for 
high level DT communication. For ease of reference, the 
protocols are classified according to their nearest OSI model 
layers after which middleware platforms manage diverse 
software components for further development and streaming 
processing. Freeman (2016) described data stream process-
ing system as analytics and continuous queries on real-time 
data. Table 5 summarizes key middleware platforms to ena-
ble seamless connectivity without altering infrastructures, 
allowing easier DT adoption into the current manufacturing 
ecosystem. These data acquisition systems are crucial for DT 
implementation in production environments with data col-
lected via volatile (equipment specification, bill of materials 
etc.) and non-volatile data capturing processes (real-time 
sensor-based processing systems) (Uhlemann et al. 2017).

Fig. 4   DT publication count 
categorized by countries
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Representation

Heterogeneous data and domain knowledge gathered from 
shop–floor processes need to be modeled and integrated into 
manufacturing systems. Highlighted in Table 6, knowledge 
representation tools for DT creation such as ontologies and 
NoSQL databases are potential choices for achieving knowl-
edge-based systems. Ontologies are favored as they address 
integration and domain-specific modeling concerns as well 
as reusing and sharing of knowledge. Knowledge represen-
tation languages such as OWL and knowledge management 
models such as RDF form the bedrock for DT creation while 
semantic integration of sensor data is explored to create tax-
onomies, ontologies and standards. Table 7 shows prominent 
data formats used in the research articles.

Computation

After selecting a storage engine, computational models are 
employed for batch-oriented and real-time data processing. 
Extracting practical knowledge from heterogeneous data is 
challenging and thus, determining the right methodologies 
and tools for querying and aggregating sensor data is crucial 
to DT construction. Machine learning and data processing 
tools provide a wide range of solutions ranging from analyt-
ics to automation and these provide DT with decision-aid-
ing capabilities via enabling tools such as computer vision. 
Table 8 summarizes the computational processing tools used 
in this review. In Table 9, machine learning and analytics 
methodologies, including statistical kits for optimization are 
presented. Due to the overlapping nature of DT applications 

Fig. 5   Technology stack for DT 
creation

Table 3   Network architectures for DT creation

References Architecture Description

Hao Zhang et al. (2017), Leng 
et al. (2018), and Liu et al. 
(2018d)

J2EE SSH programming architecture Platform providing functionality for developing multi-tiered and 
distributed Web based applications

Arafsha et al. (2019) Master–slave architecture Communication model where a device has unidirectional control
Lee et al. (2018) RESTFul Software architectural style for creating web services
Park et al. (2019) Service Oriented architecture Software design style where services are provided via application 

components, through communication protocol
Zheng et al. (2018a) Server-Client architecture Computing model in which server manages resources consumed
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in manufacturing, some of the techniques involved are biased 
towards manufacturing operations.

Microservices

Microservices are software development tools constructed 
as a set of loosely coupled services. Thönes (2015) describes 
this architectural style as an enabling feature for an appli-
cation to be built as a suite of relative small, consistent, 
isolated and autonomous services performing specific tasks.

Based on RAMI 4.0 (Rojko 2017), Table 10 provides a 
list of virtualization tools in modern production systems, to 
allow monitoring and tracing services of shop–floor assets 
for automated conflict resolution and performance enhance-
ment through decision-aiding support and control. Table 11 
highlights tools used in model creation and DT simulation 
of high fidelity asset replicas while Table 12 highlights 

validation tools provide support for task verification to 
ensure data accuracy and integrity.

DT perspectives on engineering PLM

DT perspectives in PLM stages are analyzed with the adop-
tion of a generic competitive process framework proposed 
by Casadesus-Masanell and Ricart (2010) that outlined 
DT’s implementation structure and process. By adopting 
this framework, companies can focus on relevant PLM 
aspects for product enhancement. The review highlights 
relevant industry applications and provides an overview of 
DT capabilities.

In engineering, Nasir et al. (2016) described PLM as a 
process of managing the product lifecycle from inception 
till disposal. PLM integrates people, data, processes and 

Table 4   Data exchange protocols for DT creation

OSI Layers References Rule Description

Application 
Presenta-
tion

Session

Ardanza et al. (2019), Gilchrist (2016), Bao et al. 
(2018), Liu et al. (2019a), Luo et al. (2018), and 
Zheng et al. (2018c)

OPC UA Machine-to-machine communication protocol for indus-
trial automation

Hao Zhang et al. (2017), Liu et al. (2019b), Lee et al. 
(2018), and Liu et al. (2018d)

OPC Predecessor of OPC UA, OPC is a series of standards 
and specifications for industrial telecommunication

Haag and Anderl (2018) MQTT ISO standard publish-subscribe-based messaging 
protocol

Liu et al. (2018a), Coronado et al. (2018), Bao et al. 
(2018), andHelu et al. (2018)

MTConnect MTConnect is a protocol designed for data exchange 
between shop–floor equipment and software applica-
tions for monitoring and data analysis

Leng et al. (2018) CoAP Specialized internet application protocol for constrained 
devices

Park et al. (2019) SOAP Messaging protocol specification for exchanging 
structured information in the implementation of web 
services in networks

Lovas et al. (2018), Damjanovic-Behrendt and 
Behrendt (2019)

AMQP Open standard application layer protocol for message-
oriented middleware

Nikolakis et al. (2019) NTP Networking protocol for clock synchronization between 
systems

Kim et al. (2018) PTP Nanosecond/Picosecond time synchronization between 
systems

Zhang et al. (2018) Profinet Industry technical standard for data communication 
over industrial Ethernet in data collection and equip-
ment control

Zhang et al. (2018) Wireless-HART​ Used in wireless sensor networking technology
Transport Laaki et al. (2019), and Senthilnathan and Annapoo-

rani (2018)
TCP Main protocol for enabling two hosts to exchange data

Liu et al. (2018a), and Ardanza et al. (2019) TCP/IP Communication protocol suite to interconnect network 
devices

Laaki et al. (2019) UDP Protocol for creating low-latency and loss-tolerating 
connections

Data Link Moreno et al. (2017) Ethernet/IP Industrial network protocol widely used in industries 
including factory, hybrid and process

Kim et al. (2018) OpenFlow Protocol to give access to forwarding plane of network 
switch
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Table 5   Middleware platforms for software development

References Tool Description

Zheng et al. (2018a) Amazon EC2 Cloud-based environment for cloud deployable web 
application

Lovas et al. (2018), and Damjanovic-Behrendt and 
Behrendt (2019)

Docker Saas and Paas products that use operation system level 
virtualization to develop and deliver software in con-
tainers

Damjanovic-Behrendt and Behrendt (2019) Kubernetes Open source container orchestration system for automat-
ing application deployment, scaling and management

Liu et al. (2018a), and Senthilnathan and Annapoorani 
(2018)

LabVIEW System-design platform and development environment

Zheng et al. (2018a) MetaEnv sensor platform Metawear sensor for real-time communication
Zheng et al. (2018c) MWorks software Suite of open source applications and libraries for design-

ing and running real-time experiments
Lovas et al. (2018) OpenNebula Cloud computing platform for managing heterogeneous 

distributed data centre infrastructures
He et al. (2018) Pavatar Real-time monitoring, decision-aiding of entire operation 

process
GE (2016) Predix Platform to ingest and analyse data
Damjanovic-Behrendt and Behrendt (2019) RabbitMQ Open source message-broker software
Lee et al. (2018) Spark General-purpose distributed data processing engine
MacDonald et al. (2017), and Choi et al. (2017) Thingworx Industrial innovation platform for rapid delivery of IoT 

applications and AR experiences

Table 6   Databases and data management for DT creation

References Tool Description

Lu and Xu (2019) AWS DynamoDB Fully managed proprietary NoSQL cloud database service from 
AWS S3

Rodič (2017), and Liu et al. (2018c) MS SQL Relational database management system
Lovas et al. (2018) MySQL Open source relational database management system
Nikolakis et al. (2019), and Lovas et al. (2018) Apache Cassandra Open source NoSQL database management system
Coronado et al. (2018), and Helu et al. (2018) MTConnect database Database for all MTConnect product information
Yuqian Lu and Xu (2018) OntoSTEP Plug-in of Protégé, an open source ontology editor
Schluse et al. (2018) Versatile Simulation database Real-time database able to store any UML data structure
Angrish et al. (2017), and Arafsha et al. (2019) MongoDB Cross-platform document-oriented NoSQL database program
Abramovici et al. (2016) Neo4j ACID-compliant transactional graph database
Schneider et al. (2019) Ontotext Semantic graph database with text mining, for unstructured data
Zheng et al. (2018a) SQLite 3 Relational database management system fitted in end programs
Abramovici et al. (2016) SciGraph Open source project to represent ontological data in Neo4j
Damjanovic-Behrendt and Behrendt (2019) InfluxDB Database supporting data transformation and prediction queries

Table 7   Data format and 
representation for DT creation

References Approach/language Description

Bao et al. (2018) and 
(Sierla et al. (2018)

AutomationML An open, XML-based and standardized data format

Liu et al. (2018a) SHDR Data format containing timestamp, identifier and item value
Liu et al. (2018d) STEP Open format for systems to exchange design information
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systems to provide product information support. Figure 6 
provides a breakdown on the 54 DT papers identified to 
involve engineering PLM phases. Generally, an engineer-
ing PLM has 5 sequential stages (Stark 2016) and Table 13 
outlines the various stages involved.

Design stage

In engineering PLM, DT frameworks and technologies 
enhance the design stage in a responsive, dynamic and 

Table 8   Computational processing for DT creation

References Tool Description

Yuqian Lu and Xu (2019) AWS Elastic MapReduce AWS tools for big data processing and analysis across Hadoop
Damjanovic-Behrendt and Behrendt (2019) Elastic Stack

ELK Stack
Tool for searching, analysing and visualizing data in real-time. 

Comprises of Elasticsearch, Logstash and Kibana
Lee et al. (2018) HBase Open source, non-relational distributed database
MacDonald et al. (2017) IoT EL20 Edge Computing Analytics system developed by Hewlett-Packard Enterprise
Denos et al. (2018), and Schluse et al. (2018) MatLAB/simulink Data processing system
Tan et al. (2019) MS Excel VBA Application for editing custom scripts and automating actions
Sierla et al. (2018) OMPL Software for computing motion plans via sampling algorithms
Alam and El Saddik (2017) QFSM Graphical tool for designing finite state machines
Lee et al. (2018) Reduce Extract feature vectors from time-series data
Damjanovic-Behrendt and Behrendt (2019) TensorFlow Open source software library for dataflow and differentiable 

programming for machine learning applications

Table 9   Machine learning and analytics for DT creation

References Method/algorithm Description

Lee et al. (2018), Park et al. (2019), and Luo et al. 
(2018)

Artificial Neural Network Computing systems based on examples without task-
specific rules

Zhuang et al. (2018) Boundary Element Method Simulate physical functions and performance of elements
Madni et al. (2019) DFMEA Identify design functions, failure modes and severity 

effects
Ding et al. (2019), and Xu et al. (2019) Deep Neural Network Part of broader machine learning methods based on 

Artificial Neural Networks
Rodič (2017) Discrete Event Simulation Models system operation as a sequence of events in time
Zheng et al. (2018a) Discrete Fourier Transform Calculate frequency information from periodic summa-

tion of continuous Fourier transform
Li et al. (2017), and Alam and El Saddik (2017) Dynamic Bayesian Network Bayesian network relating variables over adjacent time 

steps
Li et al. (2017), Zhuang et al. (2018), Söderberg et al. 

(2017), Haag and Anderl (2018), and Tao and Zhang 
(2017)

FEM analysis Numerical method to fix engineering and mathematical 
physics

Denos et al. (2018), and Zhao et al. (2019) Gaussian Filtering Suppress and reduce noise data for data accuracy
Ding et al. (2019), and Petković et al. (2019) Hidden Markov Model Statistical Markov model whereby system is assumed to 

be a Markov process with unobservable states
Söderberg et al. (2017) Monte Carlo Simulation Technique for accessing risk and uncertainty impact for 

visualization potential outcomes
Liu et al. (2018c), Ding et al. (2019), Park et al. (2019), 

and Wang et al. (2020)
NSGA-II Algorithm Fast sorting and multi objective genetic algorithm for 

optimizing machine performance
Oyekan et al. (2018) Savitzky-Golay Filtering Method to reduce noise and data smoothing for sensor 

noise
Tao and Zhang (2017) VV&A Set of processes to determine accuracy of a model or 

simulation
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comprehensive manner. This section analyzes DT capabili-
ties for product improvement.

DT-based design and production integration DT 
approaches were used to integrate product design with 
production. Guo et al. (2018b) used a modular approach to 

Table 10   Virtualization microservices for DT creation (RAMI 4.0)

References Virtualization Tool Description

Rodič (2017), Zhuang et al. (2018), Gilchrist (2016), Oracle 
(2017), and Choi et al. (2017)

ERP
Layer 4

Integrated real-time management of main business processes

Rodič (2017), Coronado et al. (2018), Zhuang et al. (2018), 
Gilchrist (2016), Zhang et al. (2018), Zhang et al. (2017), 
Lee et al. (2018), Liu et al. (2018d), Stark et al. (2017), 
and Choi et al. (2017)

MES
Layer 3

Real-time control of multiple elements of production pro-
cesses

GE (2016), Zhang et al. (2018), Bao et al. (2018), Love and 
Matthews (2019), and Stark et al. (2017)

SCADA
Layer 2

Control system architecture involving devices, networked 
data communications and GUI for process supervisory 
management

Lee et al. (2018), Liu et al. (2018d), Stark et al. (2017), 
Schneider et al. (2019), and Xu et al. (2019)

PLC
Layer 1

Hardware architecture for monitoring and control of produc-
tion processes

Table 11   Modeling and simulation microservices for DT creation

References Tool Description

Popa et al. (2018) ANSYS Simplorer Simplify multi-domain simulations within a design 
environment

Lu and Brilakis (2019) Autodesk Revit Building information modeling software
Datta (2017) Avatar software Simulation application used for mimicking operation 

scenarios
Schneider et al. (2019) Dymola Tool for modelling and simulation by Dassault 

Systems
Lovas et al. (2018) EasySim Simulation software for designing and simulating 

operations
Sierla et al. (2018) JMonkeyEngine 3.0 Community-centric open source 3D modelling engine
Moreno et al. (2017) Lantek Expert Punch CAD/CAM nesting simulation software designed for 

automation of CNC punching machines
Luo et al. (2018) MWorks Open source tool for designing and running real-time 

experiments
Lee et al. (2018), and Ding et al. (2019) Plant Simulation Modelling, simulating, process and system optimiza-

tion application
Ferguson et al. (2017) Siemens’ STAR-CCM + software Multidisciplinary platform for simulation of designs 

and products
Rodič (2017) SIMIO Generic flow-shop simulation model maker
Laaki et al. (2019), Oyekan et al. (2018), Lee et al. 

(2018), Liu et al. (2018d), Omer et al. (2019), and 
Xie et al. (2019)

Unity3D engine Cross-platform engine for model and simulation 
creation

Popa et al. (2018) WITNESS Horizon Flexible process simulation software

Table 12   Validation microservices for DT creation

References Validation tool Description

Iglesias et al. (2017) ANSYS Software using finite element method to solve discretized models
GE (2016) GE OpFlex Suite of solutions for analyzing and mitigating unplanned scenes
Caputo et al. (2019) and Bilberg and Malik 

(2019)
Tecnomatix process simulate Process management and PLM software tool by Siemens
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assist designers in constructing a flexible DT with the pur-
pose of design evaluation in the context of factory design. 
To assess product effectiveness, process and servicing deci-
sions, Schleich et al. (2017) proposed a comprehensive refer-
ence model hinged on the Skin Model Shapes concept while 
Tao et al. (2018d) presented a DT-driven product design 
method with a bicycle design case study to assist in iterative 
redesign of existing products. Schluse et al. (2018) combined 
DT with model-based systems engineering and simulation 
technology in the form of Experimental DT, introducing 
an agile environment process encompassing the entire life 
cycle. Dias-Ferreira et al. (2018) introduced a bio-inspired 
design framework for dynamic production environments, in 
which DT can be used to visualize the effectiveness of vari-
ous interaction patterns.

Description of DT tools Constructing DT for product 
design requires communication and computation tools. 
These technology building blocks reduce the design cost 
of new products and enable interoperability. Damjanovic-
Behrendt and Behrendt (2019) adopted the open source 
approach for the design of a DT demonstrator and while 
Alam and El Saddik (2017) identified basic and hybrid com-
putation-interaction modes with a DT architecture reference 
model in a telematics-based prototype driving assistance 
application.

Service innovation Service innovation is demonstrated 
by Zheng et al. (2018a) with a personalized smart wear-
able design via Smart PSS and DT to achieve user satisfac-
tion with minimal environmental impact. Driven by smart 

connected devices, users can take part in the co-development 
of future products via cloud computing (Zheng et al. 2018b).

Analysis and validation through DT To deal with geo-
metric reconstruction problems, Biancolini and Cella (2018) 
presented a mesh morphing workflow based on radial basis 
functions for model validation via DT.

Manufacturing stage

DT wields large influence in the Manufacturing stage with a 
wide range of novel and innovative studies aiming to make 
production process efficient, reliable and adaptable.

Production digitalization To react better to shifting con-
sumer trends, DT is used to digitalize process models. Lu 
and Xu (2019) introduced a cloud-based manufacturing 
system architecture to achieve on-demand production, thus 
achieving better business flexibility. Modeling techniques 
were studied for DT construction as Liu et al. (2018a) cre-
ated a machine tool cyber twin, achieving better connectivity 
and flexibility. Bao et al. (2018) proposed a DT modeling 
and operating construction approach in an aircraft struc-
tural parts machining cell case study while Tan et al. (2019) 
proposed a DT construction framework which models IoT 
data into a simulation. For DT application in shop–floors, 
Ding et al. (2019) used DT technologies to enhance inter-
connection and interoperability between cyber and physical 
shop–floors whereas Zhang et al. (2018) presented a novel 
production system architecture that also supported job 
scheduling in an aircraft engine manufacturing case study.

Fig. 6   Overview of engineering 
PLM phases addressed

Table 13   Engineering product 
lifecycle stages

Engineering PLM stages Description

Design stage Integrate, describe, innovate, analyse, validate
Manufacturing stage Production, modelling, optimization, individualization
Distribution stage Collaboration, delivery, location tracking
Usage stage Evaluate, operate, reconfiguration, maintain, support
End-of-life stage Phase-out, recover, recycle, disposal
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Modeling strategies To enhance output, DT modeling 
methodologies are built to suit diverse conditions. Luo et al. 
(2018) proposed a multi-domain unified modeling method as 
a cyber-physical mapping strategy also used for fault predic-
tion and diagnosis. Zheng et al. (2018c) introduced paramet-
ric virtual modeling and construction flow of DT application 
subsystems to fulfilled the case of a welding production line. 
In an aircraft assembly context, (Guo et al. 2018a) improved 
competitiveness with digital coordination model, utilizing 
DT to accomplish better flexible assembly accuracy and 
efficiency. Sharif Ullah (2019) created a semantic modeling 
methodology to compute virtual abstractions for material 
removal processes.

Production optimization Optimization of production 
aspects such as manufacturing speed and machine control 
were studied. In the dyeing and finishing industry, Park et al. 
(2019) proposed a service-oriented platform to enhance per-
formance measures and achieve cost reduction through opti-
mization algorithms. Moreno et al. (2017) showcased a DT 
for a sheet metal punching machine to optimize NC machin-
ing programs while, Zhao et al. (2019) demonstrated a joint 
optimization DT model for coordinating micro punching 
processes to boost punching speed. Using geometric assur-
ance DT, Tabar et al. (2019) reduced computation speed 
for weld points. Liu et al. (2019b) described a DT-based 
machining process evaluation method for a marine diesel 
engine manufacturing process. Liu et al. (2018d) researched 
on a DT hot rolling production scheduling model and pro-
vide decision-aiding support. Coronado et al. (2018) pre-
sented manufacturing execution system as a core DT tech-
nology for production control and optimization, allowing 
easy implementation and lowering costs. Söderberg et al. 
(2018) applied real-time geometrical quality control for 
welded components through DT to enhance production qual-
ity for a range of welding processes.

Individualized production Besides enhancing manufac-
turing processes, DT allows the shift towards individual-
ized production. Zhang et al. (2017) presented a DT-based 
approach to provide decision-aiding support and analytics 
for rapid individualized designing of a hollow glass produc-
tion line. Söderberg et al. (2017) utilized DT in the shift 
towards individualized production by leveraging simulations 
to control and optimize manufacturing systems. Liu et al. 
(2018d) introduced the rapid individualized designing of 
automated flow-shop system through DT to provide design 
validation. Leng et al. (2018) presented a mass individuali-
zation paradigm using DT to conduct parallel controlling, 
providing proactive decision support.

DT-enabled situational adjustments DT allows adjust-
ments towards practical situations and simulations to deal 
with production process irregularities. Sierla et al. (2018) 
introduced a DT concept for automated assembly planning 
and asset coordination in a manufacturing cell. Lu and Xu 

(2018) encouraged DT adoption with a test-driven resource 
virtualization framework to virtualize complicated factory 
setups.

Monitoring production process Operation monitoring 
and virtualization require vast amount of data. Angrish et al. 
(2017) described an architecture based on NoSQL to store 
and handle streaming data in a scalable and flexible database 
in order to control virtualized production assets. Morgan and 
O’Donnell (2018) demonstrated a cyber-physical monitoring 
process of a CNC machine using a range of real-time sensor 
input that serves as a platform for future DT development.

Distribution stage

In logistics, DT uses real-time tracking and other solutions 
to facilitate operations. As industry players shift towards 
smart warehouses with industrial robots, DT is utilized to 
enhance warehouse safety and efficiency.

Robot–human collaboration Industrial robots are high-
risk entities from a safety standpoint and DT assists in 
understanding and managing these robots to reduce health 
risks and reassure employees. For instance, Petković et al. 
(2019) proposed a Theory of Mind-based algorithm to 
perceive human reactions to robot assistants operating in 
changing environments via virtual reality DT. Nikolakis 
et al. (2019) implemented a DT approach to enhance plan-
ning and control using simulations to analyze productivity 
in logistics operations. Bilberg and Malik (2019) presented a 
DT-driven assembly system to demonstrate robotic automa-
tion with human flexibility.

Warehouse management DT can optimize warehouse 
management systems by providing decision-aiding support 
and comprehensive outcome analytics. Bottani et al. (2017) 
constructed a DT for job-shop production system involv-
ing scheduling for automated guided vehicles to transit in 
a logistics environment. Baruffaldi et al. (2019) illustrated 
a novel warehouse management decision-support tool by 
addressing factors such as clients’ data, cost and returns on 
investment uncertainty.

Supply chain optimization Defraeye et al. (2019) slashed 
perishable losses with the aid of DT by improving the refrig-
eration process and logistics during distribution.

Usage stage

DT’s capability in the usage stage involves predicting and 
designing next generation products, product upgrading and 
supporting the upkeep of manufacturing assets. By utilizing 
data and analytics from sensors embedded in smart products 
and tools, operations, reconfigurations and maintenance pro-
cesses can be improved.

Knowledge reuse and evaluation DT provides decision-
making support for multi-dimensional processes, strategy 
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improvisation and process forecasting via knowledge recy-
cling and awareness. Liu et al. (2018b) proposed a DT pro-
cess reusability evaluation approach to prototype diesel 
engine models. Arafsha et al. (2019) introduced a modular 
framework for DT creation through action monitoring and 
data analytics.

Workflow improvement DT enhances conventional engi-
neering analytics with information integration for a digi-
talized product life cycle. Iglesias et al. (2017) aimed to 
enhance engineering analysis workflows to enhance JET 
divertor operations with the DT approach. Haag and Anderl 
(2018) demonstrated a concept in which a DT will be devel-
oped alongside the product and remain its virtual counter-
part throughout the entire product life cycle. Schneider et al. 
(2019) presented a virtual engineering method, integrating 
DT paradigm with lifecycle approach in a desalination plant 
case study.

Shop–floor enhancement Shop–floors are commonly 
associated as hives of activity in which DT can serve to 
improve the assembly layout, manage asset flow and inte-
grate data to enhance production. Tao and Zhang (2017) 
constructed a shop–floor DT and discussed key components 
towards a trend of new paradigm directed towards smart 
and connected shop–floors. Zhuang et al. (2018) proposed 
a smart production management and control approach of 
product assembly shop–floors with a satellite assembly case 
study.

Digitalization of plant management Digitizing plant infra-
structure provides a comprehensive overview of the various 
inefficiencies plaguing the system whereby DT analytics and 
solutions can ensure operational reliability. GE (2016) used 
DT to monitor and optimize power plant performance and 
showcased the capability to balance and optimize trade-offs 
between uncertain factors. He et al. (2018) demonstrated 
a cross-technology communication application to provide 
monitoring and decision-making support for an ultra-high 
voltage converter station case study.

Increasing energy and resource efficiency Reducing 
consumption is a key concern and DT is able to develop 
smart analytics models to enhance operational efficiency. 
Kannan and Arunachalam (2019) developed a predictive 
model for redress life identification and computation with 
a DT grinding wheel case study. To improve fuel efficiency, 
Coraddu et al. (2019) proposed a DT method to measure 
the influence of fouling on ships. MacDonald et al. (2017) 
leveraged simulation from sensor data to predict failures and 
diagnose inefficiencies in an operating pump demonstration 
while Ferguson et al. (2017) used a Siemens PLM software 
to simulate digital performance of water pumps, employing 
DT technologies to improve existing and next-generation 
products.

DT-driven PHM As real-time monitoring and simula-
tions pave way for predictive maintenance, Xu et al. (2019) 

presented a DT fault diagnosis method using deep transfer 
learning in development and maintenance for a car body-
side production case study. Tao et al. (2018b) demonstrated 
a PHM method with an equipment DT, making use of sys-
tem interaction and data fusion in a wind turbine case study. 
Wang et al. (2015) combined high-performance fatigue 
mechanics with filtering theories for aircraft diagnostics and 
prognostics while Tao et al. (2018a) conducted a review, 
focusing on DT-driven PHM techniques and applications as 
an enabling technology for smart manufacturing. Xia and 
Xi (2019) explored PHM methodologies for cyber-physical 
systems involving monitoring, data representation and com-
putations, setting the stage for future DT applications.

End‑of‑life stage

Termed reverse logistics by Govindan and Soleimani (2017), 
this stage aims to reduce harmful repercussions on human 
and environment by emphasizing on disposal, remaining 
lifetime prediction, smart recycling and material recovery. 
Lu et al. (2019) proposed a DT approach for engine remanu-
facturing suited for small scale operations while Wang and 
Wang (2019) developed DT product models to facilitate the 
recycling of electronic equipment. Using DT, Popa et al. 
(2018) presented a novel approach to design a glass panel 
recycling flow and establish a process installation architec-
ture which achieved a higher glass recovery rate.

Figure 7 shows a summary of DT benefits for each life 
cycle stage. With DT technology bolstering life cycles of 
products (Lee et al. 2016), control systems and resources can 
be put in place to intervene at the right moment on the right 
assets. The next section shows how DT is able to influence 
business aspects to increase profitability.

Business innovation perspectives

A growing number of industries are looking to improve 
profitability from cyber-physical technologies. Baden-Fuller 
and Morgan (2010) defined BMs as the value developed and 
delivered to clients. Adrodegari et al. (2017) explained about 
value monetization using BMs, describing it as a manage-
ment method that bolsters critical decision-making. This 
section highlights the benefits received from DT adoption. 
Figure 8 adopts a combined set of BMs proposed by Wirtz 
et al. (2016). In reality, such rigid configuration is not always 
achievable and therefore, only considered as interrelated.

BMs affect different stakeholders when employed, which 
in this review, refer to the main beneficiaries upon successful 
implementation of DT. Identified stakeholder categories are 
shown in Table 14, representing DT stakeholders in manu-
facturing ecosystems. In this review, no articles were found 
to involve the network model and procurement model, since 
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Fig. 7   Summary of PLM advantages by DT

Fig. 8   Components of the combined business model
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DT technologies do not aid external interactions to influ-
ence joint value creation and achieve cost-effective procure-
ments. Although there is a growing trend of DT usage in 
construction, healthcare and other unconnected fields, DT 
remain predominantly applied in the manufacturing indus-
try currently. Thus, this section strives to shed light on the 
versatility of DT and highlight its potential to value add to 
manufacturers and enterprises via BMs.

Strategic components

Strategic components create value for the businesses via 
internal input factors and set the directions for optimal 
resource allocation in order to maximize profitability. The 
strategy model acts as a guide to influence development of 
BMs and comprises of policy making to capitalize on DT 
trends, thus maintaining the industries’ relevance. Table 15 
shows strategies undertaken by the various industries to 
incorporate DT into policymaking. Another part of strategic 
components is the resource model. DT optimizes resource 
allocation, enhance operational efficiency and increase 
product output. The same table shows DT’s influence in the 
resource model with benefits including cost reduction, pro-
cess monitoring and decision-making support for machine 
PHM. The industrial popularity of DT technologies proves 
that DT is versatile in many fields and the potential to value 
add to a large proportion of the stakeholder ecosystem.

Customer and market components

This component focuses on consumer experiences and 
convenience through better-suited products and satisfac-
tion while exploring alternatives to increase competitive-
ness through DT. The customer model focuses on attaining 
customer satisfaction through better quality products and 
services, while enlarging client bases via new market access 
and co-creation initiatives as shown in Table 16. Another 
aspect of the component is the market offer model. Known 
as value proposition, the market-offering model’s objective 
is to increase product value by taking into account com-
petitors and the entire market structure. Lastly, with existing 
forms of revenue streams (markup, licensing, subscription 

etc.), DT’s role in designing revenue stream and structure 
is presented.

Value creation components

Value creation components emphasizes on creating customer 
value through better quality products, cost effective procure-
ments and detailed financial planning to attain a friction-
less capital flow. In addition, value creation for stakeholders 
insures the future availability of investment capital for opera-
tions. The manufacturing model aims to improve product 
quality via internal company processes with Table 17 show-
ing DT providing positive value creation to existing products 
and services. The financial model in the same table shows 
how DT supports budgetary management through cost struc-
ture analysis and detailed financial outlines.

By highlighting the application benefits of this technology 
from a management standpoint, this review offers guidance 
for future DT adopters to capitalize on the advantages and 
stand out from the competition. With the consumer market 
expecting highly personalized smart products to be offered 
as services, it is apparent that as Industry 4.0 revolutionizes 
the rules of business, conventional business and marketing 
strategies will become unproductive (Ghobakhloo 2018). 
Thus, in order to develop new strategies, the current levels 
of digital capabilities have to be evaluated so that enterprises 
can capitalize on the opportunities offered by DT.

Discussion and future directions

Discussion

When Michael Grieves first introduced DT in 2003, it was 
a concept for product monitoring throughout the lifecycle. 
From the articles reviewed in 2017, developments on DT 
were directed towards establishing a real-time 2-way com-
munication before evolving into a dynamic virtual entity 
with model simulations in 2018. Today, digital cooperation 
is emphasized with decision-aiding support to optimize pro-
duction performance and maximize profitability. DT security 
and privacy concerns are envisaged to be a key discussion 

Table 14   Definitions of the various stakeholders

Stakeholders Description Examples

System Government agencies and systems Land transport authorities
Planners People creating/implementing Digital Twin products Designers, engineers, programmers, researchers
Users End-product recipients Customers, elderly, disabled, athletes
Enterprises Companies/organizations that manufacture products Siemens, Hewlett-Packard
Operators Personnel in-charge of handing operations and production Managers, shop–floor workers, executives
Maintenance Personnel in-charge of maintaining the system Troubleshooting team, support staff
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Table 15   DT’s influence on strategy components

BMs References Industry Stakeholders Benefits

Strategy model Zobel-Roos et al. (2019) Biologics manu-
facturing

Enterprises Impacts of DT and its shifts towards new BMs

Bruynseels et al. (2018) Healthcare System Privacy and ethical issues as a result of DT
Cheng et al. (2018), and Tao and Zhang 

(2017)
Manufacturing Enterprises Transformation of digital factories into smart 

manufacturing and production
Resource model Biancolini and Cella (2018), Bao et al. 

(2018), Guo et al. (2018a), Flumerfelt 
(2017), and Zhang et al. (2018)

Aerospace Enterprises
Operators

DT approach to optimize production efficiency 
while lower cost and time for testing

Xu et al. (2019) Automotive Enterprises
Maintenance

Fault diagnosis in development and mainte-
nance stages

Guo et al. (2018b) Consumer goods Planners Expand production efficiency through produc-
tion re-designing

Love and Matthews (2019) Construction Enterprises Increase productivity and cost improvements in 
facility management

He et al. (2018), and Tao et al. (2018b) Energy & Power Maintenance Monitor and provide decision-aid for fault 
diagnosis, maintenance

GE (2016) Energy & Power Operators Optimize plant performance and business 
objectives

Liu et al. (2018b), Raman and Hassanaly 
(2019), and Wang et al. (2019)

Engine Enterprises
Planners

Lower production costs, reduce emissions via 
PHM optimization

Popa et al. (2018) Glass recycling Enterprises Design processing architecture

Sharif Ullah (2019), Kannan and 
Arunachalam (2019), and Moreno et al. 
(2017)

Industrial process Enterprises
Planners

DT construction and process simulation via 
semantic modeling for energy efficiency

Nikolakis et al. (2019), and Bottani et al. 
(2017)

Logistics Enterprises
Operators

Improve employees efficiency in warehouse 
and optimize production

Sierla et al. (2018), Sun et al. (2020), and 
Zhuang et al. (2018)

Manufacturing 
assembly

Enterprises
Operators

Automatic assembly planning and orchestrate 
production resources

Ding et al. (2019), Tan et al. (2019), 
Wang et al. (2020), and Dupláková 
et al. (2019)

Manufacturing Enterprises
Operators

Boosts productivity and flexibility with 
decision-aiding support via predictions and 
simulations

Coraddu et al. (2019) Maritime Enterprises Reduce the significance of fouling on ships

Denos et al. (2018) Materials manu-
facturing

Enterprises DT simulations for non-destructive assessment 
of fiber orientation

Yuqian Lu and Xu (2018) Mechanical seal 
systems

Enterprises
Operators

Test-drive resource virtualization

Coronado et al. (2018) OEM Operators MES shop–floor DT allows easy implementa-
tion and lowers costs for production run of 
titanium parts

MacDonald et al. (2017) Pump Maintenance DT techniques to verify maintenance schedule

Liu et al. (2018c) Steel Enterprises Meet product quality and costs, aids resource 
and man-hour efficiency

Haag and Anderl (2018) Test bench Operators Simulate continuous system health monitoring

Park et al. (2019) Textile Enterprises Improve productivity and reduce energy costs 
via analytical techniques and IIoT data

Ferguson et al. (2017) Water pump Planners Simulate product performance and accelerate 
product development process
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point for future DT and the maturity of DT technologies 
demonstrates its potential to hold a strong presence in Indus-
trial 4.0 and automation of manufacturing facilities.

The technical aspect reveals DT tools used in smart 
manufacturing featuring overlapping DT methodologies 
and manufacturing procedures such as the NSGA-II algo-
rithm and MES. These manufacturing perspectives reveal 
the various types of DT such as partial, clone and augmented 
DT to be created for different applications (Kucera et al. 
2016), providing a road map for developers addressing 

specific issues. The engineering PLM aspect reflects a lack 
of focus on the end-of-life stage. Hence, further studies are 
required to transform the product lifecycle into a continuous 
cycle as part of smart manufacturing paradigm (Flumerfelt 
2017). Remanufacturing DT hold a probable approach in 
reducing and reusing obsolete products due to environ-
mental concerns. Technology-business integration displays 
different strategies and forecast for upper management to 
conduct sales effectively. With revenue models, quality 
products and co-creation, consumer satisfaction is achieved 

Table 15   (continued)

BMs References Industry Stakeholders Benefits

Mishra et al. (2018) Welding Enterprises
Operators

Lower maintenance, manpower and manufac-
turing costs and increase productivity

Schleich et al. (2017) – Enterprises Evaluate consequences via virtual models using 
skin model shapes for virtual representation

Angrish et al. (2017) 3D printing Planners Enhance connectivity and data management

Table 16   DT’s influence on customer and market components

BMs References Industry Stakeholders Benefits

Customer model Alam and El Saddik (2017) Automotive Enterprises DT used in a driving assistance applica-
tion

Tao et al. (2018d) Bicycle Planners DT to redesign bicycle for customer 
satisfaction

Kim et al. (2018) Education Users Driver training service via DT to improve 
experience quality of users

Hao Zhang et al. (2017) Glass production Planners Provide individualized designing of pro-
duction lines

Laaki et al. (2019) Healthcare Operators
Users

DT to facilitate remote surgery, thus 
enlarging customer base

Liu et al. (2018d), and 
Zhao et al. (2019)

Industrial process Planners
Users

DT methodology to allow rapid designing 
of individualized requirements

Leng et al. (2018) Manufacturing board-type product Enterprises DT aids smart workshops with mass indi-
vidualization paradigm

Söderberg et al. (2017) Sheet metal welding assembly Planners Higher quality individualized production 
based on geometry assurance concept

Arafsha et al. (2019) Wearable Users Enable seamless adaptability between 
wearable and networks via data manage-
ment

Bolton et al. (2018) – Operators DT conceptual framework creates 
customer experiences for b2b and b2c 
markets

Market Offer model Zheng et al. (2018a) Wearable
Consumer goods

Users DT-Smart PSS for customer satisfaction 
and generate e-services as a bundle

Revenue model Leng et al. (2019) 3D Manufacturing Designers
Users

Social manufacturing utilizing blockchain 
allows economic gains

Yuqian Lu and Xu (2019) OEM Enterprises
Users

Pay-as-you-go model allows users to pay 
based on the amount of service used
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with paradigms such as mass individualization. In addition, 
product-service bundle offerings are gaining popularity, low-
ering principal costs and optimizing output by offering auto-
mated real-time situational recommendations. In combining 
and deploying relevant BMs, enterprises can enhance their 
unique industry forte with DT to stay competitive. For exam-
ple, small businesses as highlighted by Lu and Xu (2019) 
and Park et al. (2019) were able to adopt new revenue and 
resource models with the aid of DT, proving that DT-enabled 
BMs are viable. While DT is not only low cost solution to 
increase business competitiveness, they also benefit stake-
holders ranging from customers to management while allow-
ing employees to adopt a supervisory role.

Vast expansion in application potential ensures the con-
tinuous evolution of the DT concept. Hence, it is important 
to understand and identify the areas of research that authors 
are embarking on. From the eight key DT future directions, 
improvement on DT quality such as mappings and simu-
lations before embarking on novel industry applications is 
crucial as only with refined DT features can further utiliza-
tion such as incorporating virtual reality, quality decision 
support be more effective.

Future directions

As DT technology advances, researchers have highlighted 
the future directions to encourage mass adoption by enter-
prises. Table 18 identifies eight major aspects in which DT 
has room for further development. With increasing research 
done on combining DT with emerging technologies such as 
blockchain and virtual reality, applications in new fields such 
as infrastructure, education and healthcare are imminent. 
DT enables automation, accessibility and transparency while 
lowering principle costs such as resources and man-hours. 
While majority of the studies view application to other 

domains as potential future work, DT technical aspects are 
not well established enough to ensure success in other fields.

To better comprehend researchers’ views regarding DT 
future perspectives, the significance of each perspectives 
is described in the following. A modular approach allows 
the construction of flexible DT, resulting in new application 
modes while reducing development time. Realizing mod-
eling consistency and accuracy will improve the quality 
of DT, enhancing the benefits of DT applications. Incor-
poration of Big Data analytics into DT will provide more 
insights, resulting in better decision-making support while 
improvements in DT simulations allows better monitoring 
and transparency during processes. Virtual Reality integra-
tion unlocks further advancements into relevant fields such 
as education while extending DT to other domains allow 
better assimilation with the company’s strategic objectives 
and production process. Efficient mapping of cyber-physical 
entities enable effective mechanisms to support situational 
adjustments and reduce uncertainty. Lastly, cloud and edge 
computing integration allows DT to process at a faster pace 
while processing vast amounts of heterogeneous and seman-
tic data.

The 8 future perspectives are summed up into the 3 essen-
tial DT perspectives to improve the comprehensiveness of 
this section. Technical aspect. Most authors believe that 
improving modeling and simulation accuracy in a stand-
ardized manner is a key direction towards a higher quality 
DT. Engineering PLM aspect. The PLM paradigm allows 
a broader application of DT as enterprises push towards 
green manufacturing with DT optimizing quality produc-
tion throughout a full loop cycle. Business aspect. DT with 
Big Data capabilities allows management to make informed 
decisions via its decision-aiding functionalities.

Table 17   DT’s influence on value creation components

BMs References Industry Stakeholders Benefits

Manufacturing model Schluse et al. (2018) Automotive Enterprises Experimental DT creates dependable sys-
tems with cheaper development process 
and better designs

Abramovici et al. (2016) Automotive Operators Cross-enterprise semantic data manage-
ment for smart devices and DT

Senthilnathan and Annapoorani (2018) Electronics circuits Planners DT approach alleviates steady-state-error
Luo et al. (2018), and Guerra et al. 

(2019)
OEM Enterprises

Operators
Reduces sudden failure probability and 

improve stability of CNCMT
Zheng et al. (2018c), and Söderberg 

et al. (2018)
OEM
Welding

Enterprises Improves welding quality of product 
and ensures operation efficiency in the 
production line

Financial model Baruffaldi et al. (2019) Logistics Enterprises Simulate financial statistics and efficiency 
of warehouse management
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Conclusion

In recent times, awareness on DT technology as an enabling 
tool for bridging physical and cyber world has been growing 
exponentially. DT has been exploited for a wide range of 
applications, resulting in various interpretations and devel-
opments without a unified concept. To bridge this gap, this 
paper presents a systematic survey of existing DT research 
published in the last 5 years. Findings on the key benefits 
of DT are outlined below and categorized into three broad 
areas. It is hoped that this will provide insights on its future 
applications for a wider range of stakeholders and industries.

Technical aspect DT creation and development requires 
extensive knowledge on different technologies to ensure 
seamless integration between heterogeneous components. 
To overcome this challenge, four essential categories of 
communication, representation, computation and microser-
vices were identified, forming a technology stack to ensure 
a coherent and consistent DT implementation. Tools and 
models used by researchers to add value towards productiv-
ity and adaptability of DT systems are classified accordingly, 
to serve as a reference model for academics and industries in 
their exploration and applications of DT in the near future.

Engineering PLM aspect As DT technology is primar-
ily applied in the manufacturing industry, the analysis of 
engineering PLM aspects aims to reflect the effectiveness 
of DT towards the handling of products as it moves through 
typical lifespan stages. The PLM stages are subdivided into 
specific advantages that DT brings to facilitate innovation 
and growth towards smart manufacturing. As green, social, 
individual, intelligent, service-oriented and other manufac-
turing characteristics have become the development require-
ments and trends of the future manufacturing industry, this 
engineering perspective brings forth a vision of sustain-
able product development by utilizing DT technologies to 
extend the cradle to grave process into a full loop cycle. 
By promoting awareness on the benefits of DT to enhance 
the effectiveness of production operations via quantitative 
methods, comprehensive analysis and application case stud-
ies such as robot-human collaboration, knowledge reuse etc., 
it becomes clear that realizing DT interactions between 
human, machine, objects and environment in simulation 
models and manufacturing processes will gradually become 
vital for production systems.

Business aspect DT brings forth a wide variety of benefits 
from a business perspective for both small and large enter-
prises. Three essential components, strategic, customer and 
market, and value creation were identified, encompassing 
BMs achieving value monetization when incorporated with 
DT. Industries and stakeholders are determined to provide a 
comprehensive analysis towards the benefits of DT, allowing 
upper management to envision a future, where DT plays an 

essential role in delivering value to consumers and maximiz-
ing profits.

Furthermore, this study analysed the trends and view-
points of existing research and established eight objectives 
to improve current DT. In the near future, the standards for 
real-time two-way mapping between physical and virtual 
models are essential towards the development of an updated 
and transparent DT system, in order to achieve successful 
decision-making outcomes and increase users’ trust. The 
authors hope that this research can be regarded as a guide-
line for more research and discussion on DT aspects towards 
smart manufacturing and Industry 4.0.
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