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Abstract
Induced by flexibility of the industrial robot, cutting tool or the workpiece, chatter in robotic machining process has det-
rimental effects on the surface quality, tool life and machining productivity. Consequently, accurate detection and timely 
suppression for such undesirable vibration is desperately needed to achieve high performance robotic machining. This 
paper presents a novel approach combining the notch filter and local maximum synchrosqueezing transform for the timely 
chatter identification in robotic drilling. The proposed approach is accomplished through the following steps. In the first 
step, the optimal matrix notch filter is designed to eliminate the interference of the spindle frequency and corresponding 
harmonic components to the measured acceleration signal. Subsequently, the high-resolution time–frequency information 
of the non-stationary filtered acceleration signal is acquired by employing local maximum synchrosqueezing transform 
(LMSST). On this basis, the filtered acceleration signal is divided into a finite number of equal-width frequency bands, and 
the corresponding sub-signal for each frequency band is obtained by summing the corresponding coefficient of the LMSST. 
Finally, to accurately depict the non-uniformity of energy distribution during the chatter incubation process, the statistical 
energy entropy is calculated and utilized as the indicator to detect chatter online. The effectiveness of the proposed approach 
is validated by a large number of robot drilling experiments with different cutting tools, workpiece materials and machining 
parameters. The results show that the presented local maximum synchrosqueezing-based approach can effectively recognize 
the chatter at an early stage during its incubation and development process.

Keywords  Robotic drilling · Chatter identification · Optimal matrix notch filter · Local maximum synchrosqueezing-based 
method · Time–frequency information · Energy entropy

Introduction

Industrial robots equipped with customized drilling and 
riveting end effectors can significantly improve the qual-
ity and efficiency of aviation manufacturing and assembly 
(Zeng et al. 2017; Bi and Liang 2011; Frommknecht et al. 
2017; Mei et al. 2015). However, compared with the tradi-
tional machine tools, high-performance robotic drilling is 
still a challenging task due to the various types of errors 
affecting pose accuracy as well as the relatively low stiffness 
of robotic joints and the end effector (Iglesias et al. 2015; 
Chen and Dong 2013; Lin et al. 2017). Robotic drilling sys-
tem is more prone to chatter during the machining process, 
which will result in poor surface finish, shortened tool life 
and decreased machining productivity (Yuan et al. 2018; 
Munoa et al. 2016; Bu et al. 2017). To reduce and eliminate 
the negative effects on the machining system, many efforts 
have been devoted to the modelling, predicting, detecting 

 *	 Chengjin Qin 
	 qinchengjin@sjtu.edu.cn

	 Jianfeng Tao 
	 jftao@sjtu.edu.cn

	 Dengyu Xiao 
	 xiaodengyu@sjtu.edu.cn

	 Haotian Shi 
	 sht_015020910058@sjtu.edu.cn

	 Xiao Ling 
	 lingxiao@sjtu.edu.cn

	 Bingchu Li 
	 bclicsu@sina.com

	 Chengliang Liu 
	 chlliu@sjtu.edu.cn

1	 State Key Laboratory of Mechanical System and Vibration, 
School of Mechanical Engineering, Shanghai Jiao Tong 
University, Shanghai 200240, China

2	 School of Mechanical Engineering, University of Shanghai 
for Science and Technology, Shanghai 200093, China

http://orcid.org/0000-0002-5200-3241
http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-019-01509-5&domain=pdf


1244	 Journal of Intelligent Manufacturing (2020) 31:1243–1255

1 3

and controlling such undesirable instability (Mousavi et al. 
2017; Wang et al. 2017; Lu et al. 2015; Pour and Torabiza-
deh 2016; Cordes et al. 2019; Qin et al. 2017a, b, 2018; Tong 
et al. 2019; Somkiat 2011; Yuan et al. 2019).

For the sake of chatter avoidance, researchers have pro-
posed many stability analysis methods to construct the 
stability lobe diagrams, including numerical methods, ana-
lytical methods, and semi-analytical methods (Li and Liu 
2008; Insperger and Stepan 2004; Altintas et al. 2008; Qin 
et al. 2019). However, the accuracy of stability lobe dia-
grams mainly depends on the dynamics model of machin-
ing process, for which errors are always inevitable. Chatter 
may still occur with the selected stable cutting parameters 
according to the stability analysis. Meanwhile, it is quite 
complicated for workshop workers to fully understand and 
grasp the cutting dynamics. Alternatively, it is practical and 
essential to detect and recognize chatter as early as possible 
during the transition stage, so as to adopt appropriate sup-
pression method.

To accurately identify the chatter, it is of vital impor-
tance to select the most appropriate and sensitive signals, 
employ effective processing methods, and extract sensitive 
chatter indicators. It has been well recognized that vibra-
tion signals can most fully reflect the chatter transition 
process, and have the advantages of low cost and easy 
measurement (Kuljanic et al. 2009; Tao et al. 2019b). For 
these reasons, vibration signals are applicable under indus-
trial conditions, and thus commonly used in machining 
chatter monitoring (Tao et al. 2019a; Ye et al. 2018; Lam-
raoui et al. 2014a; Fu et al. 2016, 2019; Sun and Xiong 
2016; Ji et al. 2017). Besides, scholars have also utilized 
other sensor signals to monitor and detect chatter, includ-
ing cutting force signals (Wang et al. 2018; Huang et al. 
2013; Tangjitsitcharoen et al. 2015; Liu et al. 2017), motor 
current signals (Liu et al. 2011, 2016; Aslan and Altintas 
2018), angular speed signals (Lamraoui et al. 2014b), and 
sound signals (Thaler et al. 2014; Cao et al. 2017). Due to 
the regenerative mechanism, the occurrence of chatter is 
commonly accompanied by changes in frequency compo-
nents and energy distribution (Tao et al. 2019a; Ye et al. 
2018; Lamraoui et al. 2014a, b; Fu et al. 2016, 2019; Sun 
and Xiong 2016; Ji et al. 2017; Wang et al. 2018; Huang 
et al. 2013; Tangjitsitcharoen et al. 2015; Liu et al. 2011, 
2016, 2017; Aslan and Altintas 2018; Thaler et al. 2014; 
Cao et al. 2017). To keenly capture the chatter character-
istics, many time–frequency analysis methods have been 
utilized for cutting status monitoring, including short-time 
Fourier transform (STFT) (Thaler et al. 2014), wavelet 
transform (WT) (Sun and Xiong 2016; Tangjitsitcharoen 
et al. 2015; Liu et al. 2017), empirical mode decomposi-
tion (EMD) (Fu et al. 2016; Ji et al. 2017; Liu et al. 2017; 
Ji et al. 2018) and variational mode decomposition (VMD) 
(Zhang et al. 2016; Liu et al. 2018; Yang et al. 2019). 

However, restricted by the Heisenberg uncertainty princi-
ple, the classical processing methods suffer from relatively 
low time–frequency resolution (Yu et al. 2017). In addi-
tion, a review of the literature shows that the measured 
signals during machining processes are usually nonlinear 
and non-stationary. Therefore, they cannot be competent 
to characterize the nonstationary behavior of the measured 
signals accurately.

Recently, some researchers have tried to employ more 
powerful time–frequency processing methods with higher 
energy concentration to detect chatter. For instance, Cao 
et al. (Lamraoui et al. 2014b) presented a chatter detection 
method for high-speed milling process, in which time–fre-
quency representation of the sound signals was obtained 
by the synchrosqueezing transform (SST). However, in 
the synchrosqueezing processing of time–frequency coef-
ficients, the unexpected noise has to be gathered into the 
SST result. Also, Tao et al. (2019a) proposed a synchro-
extracting-based method for the early chatter detection of 
robotic drilling operations. Due to lack of perfect signal 
reconstruction, the synchroextracting transform (SET) may 
suffer large reconstruction errors when processing strong 
non-stationary signals. On the other hand, it has been 
found that during the early stage of chatter, although the 
spindle frequency component and its corresponding har-
monics still plays a major role, chatter components have 
appeared and are distributed in a wide frequency band 
(Liu et al. 2016; Wan et al. 2018). Therefore, it is nec-
essary to eliminate the disturbance of spindle frequency 
and corresponding harmonic components to the measured 
acceleration signal. To realize accurate and timely chatter 
identification, this paper develops a novel identification 
method combining the notch filter and local maximum 
synchrosqueezing transform for robotic drilling pro-
cess, in which weak chatter features during early stage of 
inoculation can be keenly captured. The rest of this paper 
is organized as follows. In second section, the optimal 
matrix notch filter is designed to eliminate the interfer-
ence of the spindle frequency and corresponding harmonic 
components to the measured signal. Then, the LMSST is 
employed to obtain high-resolution time–frequency infor-
mation of the non-stationary filtered acceleration signal. 
On this basis, the proposed identification algorithm is pro-
posed in detail. In third section, the experimental setup is 
presented, and the effectiveness of the proposed approach 
is validated by a large number of robot drilling experi-
ments with different drilling parameters and workpiece 
materials. The conclusion is drawn in the last section.
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Local maximum synchrosqueezing‑based 
method

Optimal matrix notch filter

As mentioned above, it is of vital importance to accurately 
remove the spindle frequency and corresponding harmonic 
components from the measured signals for chatter monitoring. 
Compared with finite impulse response (FIR) filter, the order 
of infinite impulse response (IIR) filter is much lower under 
the same frequency requirement. Notch filter belongs to the 
IIR filter, and is an effective means of eliminating narrowband 
or sinusoidal interference (Tseng and Pei 2001). Denote ωN as 
be the notch frequency, then the transfer function H(z) of the 
traditional notch filter is defined as:

where η denotes the pole radius. The notch bandwidth Bw is 
defined by Bw = π(1 − η). When the pole radius η approaches 
1, the notch filter is close to the ideal one.

However, the traditional notch filter suffers a long transition 
stage, making it difficult to obtain good filtering performance 
when processing short data. Consequently, researchers were 
trying to suppress the transition stage to optimize the con-
ventional notch filter (Piskorowski 2010, 2012). The key to 
designing the notch filter is obtaining the transfer function with 
frequency response as close as possible to the ideal notch filter 
(Vaccaro and Harrison 1996; Han and Zhang 2010). Define the 
signal of length N to be filtered as si = [si(1), si(2), …, si(N)], 
the output signal of the notch filter as so = [so(1), so(2), …, 
so(N)], then the designed optimal notch matrix F

N
 obtained via 

certain optimal criterion should satisfy:

In order to solve the notch matrix F
N
 , we define a complex 

column vector as q(ω) = [1, ejω, ej2ω, …, ej(N−1)ω]T. Obviously, 
the designed optimal notch matrix should approximate the fre-
quency response as close as possible to the ideal notch filter, 
that is

Introduce a small enough positive number ξ, the band-pass 
of the designed notch filter will be Bp = [0, ωN-ξ]∪[0, ωN + ξ]. 
The first step to solve the notch matrix F

N
 is discretizing the 

band-pass Bp into M frequency points of equal distance, i.e.,

(1)H(z) =
1 − 2 cos(�N)z

−1 + z−2

1 − 2� cos(�N)z
−1 + �2z−2

(2)�o = ��N
�i

(3)��N
�(�) =

{
�, � = �N

�(�), � ≠ �N

(4)�k = k(� − 2�)∕M, k = 1, 2,… ,M

Substituting the above discrete frequency points and the 
notch frequency ωN into the complex column vector q(ω), the 
following matrices can be obtained:

where the subscripts R and I denote real and imaginary 
parts of the complex number, respectively. According to the 
frequency response of ideal notch filter, i.e., Eq. (3), the 
matrices Q with size N × 2 M, P and F

N
 should satisfy the 

following relationship:

Define qi and fi as the i-th column vector of QT and ( F�N
)T, 

i = 1, 2, …, N. Then, by utilizing the least squares method, the 
following optimization model can be established:

To simplify the derivation, define a new matrix as G = QQT. 
Solving Eq. (7) by employing Lagrangian multiplier method, 
the column vector fi can be obtained:

On this basis, the designed optimal notch matrix F
N
 can be 

finally obtained as:

Local maximum synchrosqueezing transform

The synchroextracting transform (SET) has been proved to be 
a highly concentrated time–frequency analysis method (Yu 
et al. 2017). However, due to lack of perfect signal reconstruc-
tion, it may suffer large reconstruction errors when process-
ing strong non-stationary signals. Recently, Yu et al. (2019) 
developed the local maximum synchrosqueezing transform 
(LMSST), which can be utilized to effectively extract high-
precision time–frequency information from signals with heavy 
noise and perfectly reconstruct the signals.

LMSST belongs to a post-processing technique of the 
STFT. The STFT of the signal s(u) with respect to the real 
and even window g(u) is defined as:

(5)

⎧
⎪⎪⎨⎪⎪⎩

�R = [�R(�1), �R(�2),… , �R(�M)]

�I = [�I(�1), �I(�2),… , �I(�M)]

� = [�R,�I]

� = [�R(�N), �I(�N)]

(6)

{
� = ��N

�

� = ��N
�

(7)
min Ji =

‖‖‖�
T �i − �i

‖‖‖
2

2

s.t. �T �i = �

(8)�i = �−1�i�i −�−1�T (��−1�T )−1��−1�i�i

(9)��N
= � − �(�T��)�T�T
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where g denotes the time-domain compactly supported win-
dow, and is often chosen as a real couple function whose 
energy is concentrated at low frequencies. As time t changes 
continuously, the window g moves on the time axis. As a 
consequence, the signal s(u) is gradually analyzed.

Define s(u) as a multi-component signal with a certain 
frequency separation, namely

where Ak(u) and ϕk(u) represent the instantaneous amplitude 
and the instantaneous angular position of sk(u), respectively.

Mathematically, the STFT is to calculate the Fourier 
transform of s(u)g(u −  t) in a short time. Based on the 
assumption that A�

k
(t) and ���

k
(t) are small enough (Yu et al. 

2019), we can expand Ak(u) and ϕk(u) at time t using the 
Taylor expansion, which is written as Ak(u) = Ak(t) and 
�k(u) = �k(t) + ��

k
(t)(u − t) . Consequently, the signal s(u) 

can be rewritten as s(u) =
∑n

k=1
Ak(t)e

j�k(t)+j�
�
k
(t)(u−t) . Substi-

tute it into STFT, i.e., Eq. (10), one can obtain:

where ĝ denotes the Fourier transform of window function g.
In-depth analysis of Eq. (12) reveals that the spectro-

gram concentrates on the time–frequency trajectories with 
a smeared energy distribution, i.e.,

By searching for the local maximum of the spectrogram 
in the frequency direction, a novel frequency-reassignment 
operator based on Eq. (13) is defined as

where Δ denotes the frequency support of the window func-
tion g.

Since the Fourier transform of the window function 
reaches the maximum at zero, Eq. (14) can be further sim-
plified as

(10)STFTs(t,�) = ∫
∞

−∞

s(u)g(u − t)e−j�(u−t)du

(11)s(u) =

n∑
k=1

sk(u) =

n∑
k=1

Ak(u)e
j�k(u)

(12)STFTs(t,𝜔) =
∑n

k=1
Ak(t)e

j𝜙k(t)ĝ(𝜔 − 𝜙�
k
(t))

(13)||STFTs(t,𝜔)|| =
n∑

k=1

Ak(t)ĝ(𝜔 − 𝜙�
k
(t))

(14)�m(t,�)

⎧⎪⎨⎪⎩

argmax
�

��STFTs(t,�)��, � ∈ [� − Δ,� + Δ], if ��STFTs(t,�)�� ≠ 0

0, if ��STFTs(t,�)��=0

(15)�m(t,�)

{
��
k
(t), if� ∈ [� − Δ,� + Δ]

0, otherwise

To obtain the ideal time–frequency analysis representa-
tion and retain the perfect reconstruction ability, all of the 
smeared time–frequency coefficients should be reassigned 
into the time–frequency trajectories along the frequency 
direction. Consequently, the local maximum synchrosqueez-
ing transform that can generate a more highly concentrated 
time–frequency representation can be expressed as

where δ represents the Dirac function.
Equation (16) ensures that the time–frequency represen-

tation generated by LMSST can be well approximated to 
ideal time–frequency analysis representation. By integrating 
function LMSSTs(t, �) , one can get the following expression

Consequently, the original signal can be perfectly recov-
ered by

The proposed identification method

Chatter vibration in machining processes arises from a self-
excitation mechanism between the tool and the workpiece. 
Due to the regenerative mechanism, the occurrence of chat-
ter will cause changes in frequency components and energy 
distribution. With the development of chatter, new dominant 
frequency component will appear near the natural frequency 
of the system, and the energy is gradually absorbed by the 
chatter frequency. During the early stage of chatter, the chat-
ter characteristic is extremely weak. Although the spindle 
frequency component and its corresponding harmonics still 
plays a major role, chatter components have appeared and 
distributed in a wide frequency band at this stage. Therefore, 
to achieve accurate and timely chatter identification, it is 
of vital importance to fully remove the spindle frequency 
and corresponding harmonic components from the vibration 

(16)LMSSTs(t, �) = ∫
∞

−∞

STFTs(t,�)�(� − �m(t,�))d�

(17)

∫
+∞

−∞

LMSSTs(t, �)d� = ∫
+∞

−∞ ∫
+∞

−∞

STFTs(t,�)�(�

− �m(t,�))d�d�

= ∫
+∞

−∞

STFTs(t,�)∫
+∞

−∞

�(�

− �m(t,�))d�d�

= ∫
+∞

−∞

STFTs(t,�)d�

= 2� ∫
+∞

−∞

s(u)g(u − t)�(u − t)du

= (2�g(0))s(t)

(18)s(t) = (2�g(0))−1 ∫
+∞

−∞

LMSSTs(t, �)d�
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signal, obtain high-resolution time–frequency representation 
and keenly capture the change of energy distribution of the 
filtered vibration signal.

Inspired by the above analysis, we present a novel robotic 
drilling chatter identification algorithm based on the matrix 
notch filter and LMSST. The optimal matrix notch filter is 
designed to eliminate the disturbance of spindle frequency 
and corresponding harmonic components to the vibration 
signal. Then, the LMSST is employed to obtain high-reso-
lution time–frequency information of the non-stationary fil-
tered acceleration signal. On this basis, the filtered vibration 
signal is divided into finite equal-width frequency bands, 
and the corresponding sub-signal for each frequency band 
is obtained by summing the corresponding coefficient of the 
LMSST. Finally, the energy entropy is calculated and uti-
lized as the indicator to accurately depict the non-uniformity 
of energy distribution during the chatter incubation process.

The detailed implementation steps of the proposed 
robotic drilling chatter identification method are specifically 
explained below. First, the signal length N is determined 
according to the signal sampling period T and the time inter-
val τ of the chatter identification:

Let ui be the measured acceleration signal, and ωs1, ωs2, 
…, ωsk be the spindle frequency and corresponding har-
monics. Subsequently, the corresponding notch matrices 
��s1

,��s2
,… ,��sk

 are designed by the method presented in 
“Optimal matrix notch filter” section. By fully removing 
the spindle frequency and its corresponding harmonics, the 
filtered vibration signal uo can be acquired as follows:

Then, the accurate time–frequency information of the 
non-stationary filtered acceleration signal is obtained by 
employing the LMSST, namely

To make full use of the time–frequency information of 
the filtered acceleration signal and keenly capture its energy 
distribution changes, it is divided into a finite number of 
equidistant frequency bands, i.e., fb = (1/T)/2/m, where m 
denotes the number of bandwidth. Since all of the smeared 
time–frequency coefficients have been reassigned into their 
time–frequency regions, the corresponding sub-signal for 
each frequency band can be reconstructed by summing the 
corresponding coefficient of the LMSST, that is

(19)N = 2�∕T

(20)�o = ��i = (��sk
⋯��s2

��s1
)�i

(21)LMSSTu(t,�) = ∫
∞

−∞

STFTu(t,�)�(� − �m(t,�))d�

(22)

uh(t)=(2�g(0))
−1 ∫

hfb

(h−1)fb

LMSSTu(t,�)d�, h = 1, 2,… ,m

Finally, to accurately depict the non-uniformity of energy 
distribution during the chatter incubation process, the statis-
tical energy entropy is calculated and utilized as the indica-
tor to detect chatter online. The energy contained in each 
reconstructed sub-signal is defined as

On this basis, the statistical energy entropy LMSSTE can 
be calculated as

It is noted that the energy entropy of the measured 
acceleration signal is calculated online during the robotic 
drilling process by utilizing the proposed identification 
algorithm, and simultaneously compared with the selected 
chatter threshold. When the energy entropy exceeds the 
threshold, chatter is thought to occur in the robotic drilling 
process and the subsequent chatter suppression should be 
conducted as soon as possible. Moreover, the determina-
tion of chatter threshold is also extremely vital for chatter 
identification. Therefore, it is determined based on plenty 
of robotic drilling experiments with different cutting tools, 
workpiece materials and cutting parameters, ensuring the 
selected threshold is applicable for different robotic drilling 
condition.

Validation and analysis

Experimental setup

As illustrated in Fig. 1, the robotic drilling experiments were 
conducted to verify the proposed method on a self-designed 
robotic drilling system. It contains a KUKA KR 270 indus-
trial, a sliding guide, a measurement control system, a self-
designed drilling end effector, workpiece and corresponding 
holding fixture. The dedicated end effector mainly consists 
of a robot flange interface, a feed unit, a spindle unit, a nor-
mal detection unit, a visual measurement unit, and a pres-
sure foot unit. The drilling motion is achieved by the feed 
unit and the spindle unit. The normal detection unit includes 
four laser displacement sensors uniformly arranged on the 
circumference, and is utilized for accurately obtaining the 
normal of the workpiece. The exact position of the reference 
hole is determined by the visual measurement unit. In order 
to increase the stiffness of the system as much as possible, 
the pressure foot is designed to provide a large pressing force 
during the robot drilling process. Figure 2 illustrates two 

(23)Eh =

N∑
j=1

uh(tj)
2, h = 1, 2,… ,m

(24)LMSSTE =

m∑
h=1

Eh ln(Eh)
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uncoated hard alloy steel drilling-countersinking tools with 
different geometric parameters that used in the robotic drill-
ing tests. The tool I has 5 mm diameter and 130° point angle, 
and the tool II has 6 mm diameter, and 120° point angle. 
Meanwhile, both the countersink angle of tool I and tool 
II are 100°. In order to automatically identify robotic drill-
ing chatter online, the vibration signals were measured and 
acquired by the PCB 356A24 accelerometer and the Crystal 
Instruments CoCo-80. Besides, the sampling frequency was 
set as 10,240 Hz.

Results and analysis

The effectiveness of the proposed identification method are 
validated by robotic drilling experiments with different drill-
ing parameters and workpiece materials. It should be noted 
that to better observe the experimental process and evalu-
ate the experimental results, the robotic drilling tests were 
conducted without lubrication and cooling. Actually, in the 
experiments, it is found that whether or not there is cooling 
and lubrication, the vibration signal has a similar trend when 
the chatter occurs. Therefore, the proposed method can be 
used for both with and without lubrication and cooling. The 
workpiece was aluminum alloy 7075 and 6061. During the 
robotic drilling tests, the spindle speed varied from 1800 
to 4500 rpm and the feed rate from 0.9 to 9.6 mm/s. At the 
same time, the drilling depth was set as 6 mm and the press-
ing force was set as 0.12 MPa.

To realize timely and accurate detection of robotic drilling 
chatter, we present a novel identification method combining 
the matrix notch filter and local maximum synchrosqueez-
ing transform. First, the matrix notch filter is designed to 
accurately remove the spindle frequency and its correspond-
ing harmonic components from the measured vibration sig-
nals. Subsequently, the local maximum synchrosqueezing 
transform (LMSST) is employed to obtain high-resolution 
time–frequency information of the non-stationary filtered 
acceleration signal. Then, the filtered vibration signal is 
divided into finite equal-width frequency bands, and the cor-
responding sub-signal for each frequency band is obtained 
by summing the corresponding coefficient of the LMSST. 
Finally, to accurately depict the non-uniformity of energy 
distribution during the chatter incubation process, the statis-
tical energy entropy is calculated and utilized as the indica-
tor to detect robotic drilling chatter online. During the chat-
ter identification, the measured vibration signal within 50 ms 
is processed every 25 ms. Since the sampling frequency was 
set as 10,240 Hz, the length of the sliding window is selected 
as 512 sample data with overlapping.

To begin with, we conducted robotic drilling tests with 
tool I and aluminum alloy 7075 under different drilling 
parameters. Figure 3 illustrates the time-domain diagram, 
the identification result and the time–frequency spectrogram 

Fig. 1   The experimental setup: a the self-designed robotic drilling 
system and b the drilling tool with a PCB 356A24 accelerometer and 
the Crystal Instruments CoCo-80

120 100

12                10                                                             32

90

φ6
φ13

φ6.5                      

80

130 100

20                                                                           40

φ8

φ11φ5                      

(a)

(b)

Fig. 2   Geometric parameters of the drilling-countersinking tools: a 
tool I with 5 mm and 130° point angle and b tool II with 6 mm diam-
eter and 120° point angle



1249Journal of Intelligent Manufacturing (2020) 31:1243–1255	

1 3

for the vibration signal. The spindle speed was 3000 rpm, 
and feed rate was 1.0 mm/s. According to Fig. 3a, it is seen 
that the amplitude of the vibration signal increases rapidly 
after t = 0.263  s. Robotic drilling chatter occurs during 

the drilling process under this cutting parameters, and the 
amplitude of the vibration signal even reached 185 m/s2 after 
the chatter was fully developed. At the beginning, energy 
entropy is relatively small and grows slowly. However, it can 

Fig. 3   The monitoring result 
and SET spectrogram for 
vibration signal with spindle 
speed 3000 rpm and feed rate 
1.0 mm/s

(a)

(b)

(c)
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be seen from Fig. 3b that the energy entropy of the vibra-
tion signal increases rapidly after t = 0.128 s. Look closely 
at the corresponding time interval in Fig. 3a, it is found 
that the amplitude of the vibration signal begins to increase 

after t = 0.128 s. Therefore, the selected statistical energy 
entropy is very sensitive to the change of energy distribution. 
According to Fig. 3b, the chatter is recognized at around 
t1 = 0.220 s by the proposed method. As shown in Fig. 3c, 

Fig. 4   The monitoring result 
and time–frequency spectro-
gram for the vibration signals 
with spindle speed 4500 rpm 
and feed rate 3.2 mm/s

(a)

(b)

(c)
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obvious chatter frequency appeared around t = 0.270 s in the 
high-resolution time–frequency spectrogram. Comparison 
between the time when chatter is detected and the time when 
obvious chatter frequency occurs shows that the proposed 

identification algorithm can effectively recognize the chat-
ter before it is fully developed, which leaves valuable time 
for the subsequent chatter suppression measures. Moreo-
ver, Fig. 3b demonstrates that the proposed identification 

Fig. 5   The time-domain dia-
grams and SET spectrogram of 
vibration signals with spindle 
speed 3600 rpm and feed rate 
3.6 mm/s

(a)

(b)

(c)
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algorithm recognize the chatter 14 ms earlier than the syn-
chroextracting-based method in reference Tao et al. (2019a).

Then, experimental results with different spindle speed 
and feed rate combinations were analyzed. The time-domain 

diagram, the identification result and the time–frequency 
spectrogram for the vibration signal with spindle speed 
4500 rpm and feed rate 3.2 mm/s is presented in Fig. 4. The 
workpiece was aluminum alloy AL7075 as well. It can be 

Fig. 6   The detection result 
and SET spectrogram for the 
vibration signals with spindle 
speed 3000 rpm and feed rate 
6.0 mm/s

(a)

(b)

(c)
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seen from Fig. 4a that the amplitude of the vibration signal 
increases rapidly after t = 0.281 s, and the robotic drilling 
chatter occurs. With a short period time of chatter develop-
ment, the amplitude of the vibration signal has exceeded 
70 m/s2. According to the identification result Fig. 4b, the 
proposed method recognizes the occurrence of chatter near 
t1 = 0.242 s. At the same time, the corresponding time–fre-
quency spectrum Fig. 4c shows the obvious chatter fre-
quency appears at t = 0.293 s. Consequently, it demonstrates 
that the vibration state of the robotic drilling system can 
be well recognized by the proposed chatter identification 
method. In addition, the result shows that the proposed iden-
tification algorithm detects the chatter 17 ms earlier than the 
synchroextracting-based method, which further verify the 
effectiveness of the proposed identification method.

Also, for the sake of further verifying the proposed 
LMSST-based chatter identification algorithm, robotic drill-
ing tests with tool II and aluminum alloy 6061 under dif-
ferent drilling parameters were conducted. Figure 5 shows 
the time-domain diagram, the identification result and the 
time–frequency spectrogram for the vibration signal with 
spindle speed 3600 rpm and feed rate 3.6 mm/s. According 
to Fig. 5a, the amplitude of the vibration signal increases 
substantially after t = 0.257 s, and the chatter occurs during 
the robotic drilling process. As illustrated in Fig. 5b, the 
energy entropy is relatively small and grows slightly at the 
beginning stage. The energy entropy increases faster after 
t = 0.101 s, but then starts to decrease at t = 0.152 s. A closer 
look at Fig. 5a, b reveals that the energy entropy is very 
sensitive to changes in the amplitude of the vibration sig-
nal. Then, the energy entropy increases rapidly again after 
t = 0.202 s. Finally, the chatter is recognized at t1 = 0.215 s 
by the proposed identification algorithm, and t2 = 0.239 s 
by method in Tao et al. (2019a). The result demonstrates 
that the proposed identification algorithm detects the chat-
ter earlier than the synchroextracting-based method. Mean-
while, the corresponding high-resolution time–frequency 
spectrum Fig.  5c shows the obvious chatter frequency 
appears near t = 0.295 s. Therefore, the proposed identifica-
tion method can effectively recognize the chatter at its early 
transition stage, which is practical for the subsequent chatter 
suppression.

Figure 6 illustrates the time-domain diagram, the iden-
tification result and the high-resolution time–frequency 
spectrogram for the vibration signals with spindle speed 
3000 rpm and feed rate 6.0 mm/s. The workpiece was also 
aluminum alloy AL6061. As shown in Fig. 6a, the ampli-
tude of the vibration signal increases substantially after 
t = 0.282 s, and the chatter occurs during the robotic drill-
ing process. After a short period time of rapid development, 
the amplitude of the vibration signal has exceeded 100 m/
s2. It is seen from Fig. 6b that the energy entropy decreases 
slowly in the beginning, and then remains essentially 

constant. After t = 0.175 s, it increases rapidly. According 
to Fig. 6b, the chatter is recognized near t1 = 0.226 s by the 
proposed identification algorithm. Meanwhile, the obvious 
chatter frequency appears at t = 0.308 s in the corresponding 
time–frequency spectrum Fig. 6c. Consequently, it demon-
strates that the vibration state of the robotic drilling system 
can be well recognized by the proposed chatter identification 
method. In addition, it can be seen that the proposed identi-
fication algorithm detects the chatter 27 ms earlier than the 
synchroextracting-based method.

Conclusion

In this study, a novel method based on the matrix notch 
filter and local maximum synchrosqueezing transform has 
been proposed for the timely and accurate chatter identi-
fication of robotic drilling. The optimal matrix notch fil-
ter is designed to fully remove the spindle frequency and 
corresponding harmonic components from the measured 
vibration signal. The local maximum synchrosqueezing 
transform (LMSST) that achieves highly concentrated 
time–frequency representation and allows for perfect sig-
nal reconstruction is employed to obtain high-resolution 
time–frequency information of the non-stationary filtered 
acceleration signal. Then, the vibration signal is divided 
into finite equal-width frequency bands, and the corre-
sponding sub-signal for each frequency band is obtained 
by summing the corresponding coefficient of the LMSST. 
Finally, the statistical energy entropy is calculated and 
utilized to accurately depict the non-uniformity of energy 
distribution during the chatter incubation process. Robotic 
drilling experiments with different drilling parameters and 
workpiece materials have been conducted to verify the 
effectiveness of the proposed method. The results demon-
strate that the proposed method can effectively detect chat-
ter at an early stage, and can detects chatter earlier than 
the synchroextracting-based method. In conclusion, the 
proposed robotic drilling chatter identification algorithm 
has a high potential for industrial applications.
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