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Abstract
In this research, a hybrid constrained permutation algorithm and genetic algorithm approach is proposed to solve the process
planning problem and to facilitate the optimisation process. In this approach, the process planning problem is represented
as a graph in which operations are clustered corresponding to their machine, tool, and tool access direction similarities. A
constrained permutation algorithm (CPA) developed to generate a set of optimised feasible operations sequences based on
the principles of minimising the number of setup changes and the number of tool changes. Due to its strong capability in
global search through multiple optima, genetic algorithm (GA) is used to search for an optimal or near optimal process
plan, in which the population is initialised according to the operations sequences generated by CPA. Furthermore, to prevent
premature convergence to local optima, a mixed crossover operator is designed and equipped into GA. Four comparative case
studies are carried out to evidence the feasibility and robustness of the proposed CPAGA approach against GA, simulated
annealing, tabu search, ant colony optimisation, and particle swarm optimisation based approaches reported in the literature,
and the results are promising.

Keywords Process planning · Genetic algorithm · Constrained permutation algorithm · Operation sequencing

Introduction

Computer-aided process planning (CAPP) is substantial link-
age between computer-aided design (CAD) and computer-
aided manufacturing (CAM). It aims to transform acquired
part design specification from CAD into a sequence of
machining operations that are used by CAM to manufac-
ture a part economically and competitively. Although much
effort has been exerted to evolve CAPP systems, they are
still lagging behind in comparison with CAD and CAM sys-
tems. One of the reasons CAPP is falling behind is due to the
tremendously complex nature of its tasks (Al-wswasi et al.
2018). Generally, CAPP is concerned with maintaining three
main tasks, namely, feature recognition, operation selection,
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and operation sequencing. Feature recognition is the act of
recognising the machining features from a CAD file that a
part is comprisedof.Operation selection is the act of selecting
the necessary operations needed to produce a part. Operation
sequencing is the act of determining the sequence of oper-
ations by which a part should be produced while satisfying
the precedence constraints among operations.

It is well-known that operation sequencing is regarded as
an NP-hard problem, which is very difficult to solve using
conventional techniques. Even though many metaheuristic-
based approaches have been proposed to solve the operation
sequencing optimisation problem, it is difficult to handle
the precedence constraints among operations efficiently. In
general, precedence constraints handlingmethods and strate-
gies can be categorized into additional adjustment strategies
and repairing strategies. The additional adjustment strate-
gies, such as edge selection strategy (Su et al. 2018) and
intelligent search strategy (Salehi and Bahreininejad 2011),
evades infeasible solutions in initialisation. Premature con-
vergence in some complicated precedence constraints cases
is considered its main drawback (Su et al. 2018; Li et al.
2004). On the other hand, the repairing strategies, such as a
penalty matrix strategy (Liu et al. 2013; Nallakumarasamy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-019-01496-7&domain=pdf
http://orcid.org/0000-0003-3957-2009


1080 Journal of Intelligent Manufacturing (2020) 31:1079–1099

et al. 2011) and a topological storing and encoding strategy
(Huang et al. 2012; Yun and Moon 2011), tries to rectify
the infeasible solutions that conflict with the precedence
constraints. Unreliability and low efficiency are its main
drawbacks (Yun and Moon 2011; Moon et al. 2002). In
this research, a novel constrained permutation algorithm has
been established and combined with Genetic algorithm (GA)
to solve the operations sequencing and operation selections
problems simultaneously. GA effectiveness has been prac-
tically demonstrated in solving sophisticated combinatorial
optimization problems. As opposite to other meta-heuristics,
GA has the ability to direct the search toward relatively
promising regions in the problem’s search space (Zacharia
et al. 2015). The contribution of this research is as follows:

1. A new graph-based representation of the process plan-
ning problem has been developed. In which, operations
are clustered corresponding to their machine, tool, and
tool access direction (TAD) similarities. The graph con-
sists of a set of operations that can be machined in
one setup (OSS) nodes, a set of operations that can be
machinedbyone tool in one setup (OTS) nodes, operation
(O) nodes, directed arcs, and undirected arcs. Undirected
arcs represent the inclusion relationship between OSS,
OTS, and O nodes, on the other hand, directed arcs rep-
resent precedence constraints between OSS nodes, OTS
nodes, and O nodes.

2. A novel constrained permutation algorithm has been
established to generate an initial set of operations
sequences. First, the algorithm is used to initiate theOSS,
OTS, and O nodes. Second, several graphs depending on
the part complexity are generated by applying the part
precedence constraints among OSS nodes, OTS nodes,
and O nodes. Finally, for each graph, a constrained per-
mutation is performed amongOSSnodes andOTSnodes,
and the operations sequences are acquired by replacing
OTS nodes by O nodes.

3. A mixed crossover operator that comprises an order
crossover operator and a new designed three strings
crossover operator is developed to avoid premature con-
vergence to local optima and to enhance the performance
of GA in searching for an optimal or near optimal process
plan.

The rest of this article is organised as follows. Section in “Pre-
vious related work” gives an overview of previous related
work about metaheuristic-based approaches applied to the
process planning problem. Section in “Problem modelling”
elaborates on the process planning problem representation.
Details of the proposed CPAGA approach is presented in
“Hybrid CPA and GA Approach” section. Section in “Com-
parative case studies” illustrates the effectiveness of the

proposed CPAGA approach through four comparative case
studies. Section in “Conclusions” concludes the article.

Previous related work

In thepast twodecades,manymetaheuristic-based approaches
proposed to solve the process planning problem, which can
be categorised as genetic algorithm (GA) based approach
(Salehi and Bahreininejad 2011; Huang et al. 2012; Zhang
et al. 1997; Reddy et al. 1999; Dou et al. 2018b; Salehi and
Tavakkoli-Moghaddam 2009; Musharavati and Hamouda
2011; Su et al. 2015), simulated annealing (SA) based
approach (Ma et al. 2000; Nallakumarasamy et al. 2011),
GA-SA based approach (Li et al. 2002; Huang et al. 2017; Xu
et al. 2014) , ant colony optimisation (ACO) based approach
(Liu et al. 2013; Krishna and Mallikarjuna Rao 2006; Hu
et al. 2017; Wang et al. 2015), particle swarm optimisation
(PSO) based approach (Dou et al. 2018a; Petrović et al. 2016;
Wang et al. 2012; Guo et al. 2006; Li et al. 2013), and tabu
search (TS) based approach (Li et al. 2004).

Zhang et al. (1997) presented a novel GA based approach
to handle the operations sequencing and the operation
resources selection of the process planning problem simulta-
neously.Optimal or near optimal process planswere achieved
through specially designed crossover andmutation operators.
Reddy et al. (1999) used GA as a global search by devel-
oping a novel chromosome representation schema for the
process plan. In their approach, operation sequences were
obtained quickly, and a special crossover operator to main-
tain them in the chromosomes was well-intended. Salehi
and Tavakkoli-Moghaddam (2009) proposed an approach
in which the process planning problem was handled in two
stages: preliminary and secondary. In the preliminary stage,
a set of feasible operation sequences was generated, while
in the secondary stage, the manufacturing resources selected
for each specific operation were handled. GA was used as an
optimisation technique in the two stages. In the same man-
ner, but instead, usingGA in the preliminary stage, Salehi and
Bahreininejad (2011) developed an intelligent search algo-
rithm to generate a set of feasible operation sequences. The
results show better computation time in comparison with
the two stages of GA. Su et al. (2015) presented a hybrid
approach that incorporated GA with a local search to min-
imise the machining cost and maximise the utilisation of the
machine tools, based on a 0–1 mixed integer model. First,
the feasible initial process plans were generated by using
an operation precedence graph (OPG), then the hybrid GA
and the local search were used to find the optimal process
plan.

Moreover, Huang et al. (2012) embedded the graph the-
ory escort with the matrix theory into GA to deal with
precedence constraints and generate initial feasible opera-
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tion sequences. A special crossover operator and two types
of mutation operators were developed and a heuristic algo-
rithm to modify the infeasible solutions generated by the
mutation was also introduced. Furthermore, a modified GA
based on a cyclic crossover operator and a neighbourhood
search mutation operator were developed by Musharavati
and Hamouda (2011) to obtain a near optimal process plan
of multiple parts manufacturing lines. Su et al. (2018) pro-
posed an edge selection strategy to produce feasible operation
sequences in the initialisation of GA for the purpose of
improving GA convergence. The operation sequences kept
up through a special crossover, furthermore, a mutation oper-
ator was designed to optimise the resources selection. Dou
et al. (2018b) presented an improved genetic algorithm (IGA)
to minimise the cost of process plans. The feasible opera-
tion sequences were encoded by permutation. Furthermore,
fragment crossover and fragment mutations were designed
to maintain the operation sequences in the chromosomes. A
comparison of IGA against GA, ACO, and PSO was car-
ried out through two case studies, and a better solution was
reported.

In regard to SA, Ma et al. (2000) developed SA based
approach to find the optimal process plan by exploring the
entire solution space. Tool cost, machine cost, tool change
cost, machine change cost, and setup change cost were
regarded as objective functions. Nallakumarasamy et al.
(2011) used the SA algorithm to minimise machine, tool,
and setup costs as an objective. A reward penalty matrix and
a cost matrix were used to generate the feasible operation
sequences. Their experiments showed lesser computational
time and better generated operation sequences. In addition
to the use of SA, Li et al. (2002) proposed a hybrid GA-SA
approach to produce a set of optimal or near optimal process
plans, with consideration of a dynamic job shop environ-
ment such as the unavailability of machines and tools. The
GA was used as a global search, initially to explore bet-
ter process plans, while SA was used as a local search to
find optimal or near optimal process plans. Furthermore, Xu
et al. (2014) developed genetic simulated annealing (GSA)
algorithm tofind a near optimal process planwith a high com-
plexity precedence constraint cylinder block. Huang et al.
(2017) proposed a hybrid GA-SA approach, in which a graph
search algorithm was embedded and the precedence con-
straints formulated as an OPG directed graph. GA with a
stochastic topologic sort algorithm was used as a global
search to generate the initial feasible operation sequences,
and then SA was used as a local search to find the optimal
process plan.

With respect to ACO, Krishna and Mallikarjuna Rao
(2006) modelled the process planning problem as a con-
strained travelling salesman problem (TSP) and adopted
ACO for the first time to solve it. An ACO algorithm was
used as a global search for finding the optimal operations

sequence by considering various feasibility constraints. In
a similar manner, Liu et al. (2013) used an ACO algorithm
to search for the lowest cost sequence of operations. They
embedded a constraintmatrix and a statematrix into theACO
algorithm to show the operations state. Two study cases were
investigated to show the advantage of this approach over GA,
SA, and TS, and the results were promising. Hu et al. (2017)
developed a novel modified ACO to solve the combinatorial
optimisation problem of operation sequencing. An adaptive
updating method and a local search mechanism are embed-
ded into ACO to enhance the global search capability and to
avoid the local optima. A comparison with GA, SA, TS and
PSO was carried out to ensure feasibility and robustness, as
well as to show the advantages of their proposed approach. In
addition, Wang et al. (2015) proposed two-stage ACO algo-
rithms (TSACO) to find the minimum total production cost.
The process planning problem was modelled as a directed
AND/OR graph, and one of the ACOs was used to optimise
the nodes in the first stage, while the other was used to opti-
mise the weighted arcs in the second stage.

In regard to PSO, Guo et al. (2006) developed a PSO
algorithm to solve the combinatorial optimisation problem of
operation sequencing.Newdesigned crossover,mutation and
shift operators were employed to avoid the local optima, and
the result was satisfactory in comparison with GA and SA.
Wang et al. (2012) developed a PSOwith a local search strat-
egy to avoid any unnecessary convergence that may occur in
early generations. A solution scheme was offered to decode
the discrete nature of the process planning problem in order
to remedy the obstacle that PSO is designed for the continu-
ous optimisation problem. Petrović et al. (2016) introduced
chaos theory into PSO to prevent premature convergence and
to enlarge the solution space of the AND/OR process plans
network. Their approach was extensively verified through a
comparison with GA, SA, GA-SA, and PSO in four experi-
mental studies. Dou et al. (2018a) presented a novel feasible
sequence discrete PSO (FSDPSO) to search for feasible oper-
ation sequences. Updating mechanism crossover, fragment
mutation, and uniform greedy mutations were developed to
enhance FSDPSO performance. Finally, the results showed
an advantage of their approach against GA and two-stage
ACO. Furthermore, efficient encoding, updating, and ran-
dom search methods were developed and incorporated into
PSO by Li et al. (2013). A comparison of their approach with
GA and SA in seven cases was reported, and the results were
satisfactory.

In addition to GA, SA, ACO, and PSO based approaches,
Wen et al. (2014) proposed honey bees mating optimi-
sation (HBMO) for the first time to solve the process
planning problem. Three experiments were reported and
HBMO showed better performance in comparison with well-
known metaheuristic algorithms. Li et al. (2004) modelled
the process planning problem as a constraint-based opti-
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misation problem, in which the resources selection and
operation sequences were treated simultaneously. A hybrid
constraint-handling method is developed and embedded in
a TS algorithm to handle the operation sequencing problem
and conduct the search efficiently in a large-sized constraint-
based space. Lian et al. (2012) utilised a novel metaheuristic-
inspired imperialist competitive algorithm (ICA) to obtain a
near optimal process plan. The process planning problem
was modelled considering various flexibilities, i.e., machine,
tool, TAD, process, and sequence flexibilities. The proposed
algorithm emphasises its efficiency in comparison with other
metaheuristic algorithms. Ding et al. (2005) developed a
hybrid approach that incorporates an artificial neural net-
work (ANN), an analytical hierarchical process (AHP), and
GA for optimising operation sequences. A multi-objective
function was established that incorporates minimising man-
ufacturing time and cost to evaluate candidates’ process
plans.

Through the above analysis, it could be deduced that each
approach has its own advantages and disadvantages. Nev-
ertheless, two issues are still ongoing and necessitate more
attention. The first issue is that the flexibility of machines,
tools, and TADs produces a large solution space for the
process planning problem. The second issue is the prece-
dence constraints handling strategies. Repairing strategies
are unreliable, inefficient, and time consuming since they try
to modify infeasible solutions after the process of generat-
ing them. In comparison to repairing strategies, additional
adjustment strategies try to initiate a feasible solution before
the process of searching for an optimal or near optimal
one. In addition to suffering from the premature conver-
gence problem, the initiated solutions are feasible, but they
are not the best in the solution space, which could result
in much time spent searching for the optimal or near opti-
mal process plan. Much effort is required to design a model
for the process planning problem that minifies the initial
solution space to be restricted to good solution candidates
only. Furthermore, there is a critical need for a new method
to handle precedence constraints more effectively and effi-
ciently.

Problemmodelling

In CAPP, a process plan is described as a set of machining
features that can be machined in a specific features sequence
using specificmanufacturing resources. First, machining fea-
tures are recognised by the topological and geometrical
information gained from a CAD file, such as dimension,
surface finish, and position. Then an operation (O) or sev-
eral operations are assigned to each machining feature,
depending on its information. An operation is comprised
of a set of candidate operations (CO), which is the use of

a specific tool (T) on a specific machine (M) with a spe-
cific tool access direction (TAD) to produce a feature or
sub-feature. Therefore, a process plan can be presented as
follows:

PP = {O1, O2, . . . , Oi } (1)

where PP is the process plan, Oi is the ith operation of the
process plan, which is defined as:

Oi = {COi,M,T ,T AD} (2)

Where COi,M,T ,T AD is the Mth, T th, and TADth alter-
native operation of the ith operation of the process plan.
M, T, and TAD are the indices of the machine, tool, and
TAD, respectively, by which COi is formed by its machine
flexibility list (M []), tool flexibility list (T []), and TAD
flexibility list (TAD []). on other hand, a setup defined as
a set of operation that can be machined continuously on
same machine with the same TAD (Li et al. 2004). That’s
it:

PP = {OSS1, OSS2, . . . , OSSs} (3)

Where OSSs is the sth set of operations of the process plan
that can be machined in one setup, s is the index of setup that
indicate M and TAD similarities of operations. OSS can be
defined as:

OSS = {CO1,s,CO2,s, . . . ,COi,s} (4)

Furthermore, within OSS there are operations that may be
machined using same tool, therefore:

OSS = {OT S1, OT S2, . . . , OT ST } (5)

Where OT S is the T th set of operations of OSS that can be
machined using one tool which is defined as:

OT S = {O1,s,T , O2,s,T , . . . , Oi,s,T } (6)

Finally, according Eq. (3), Eq. (5), and Eq. (6) a process plan
can be represented as follows:

PP = {OSSs(OT ST (Oi ))} (7)

In order to implement the proposed approach, the process
planning problem has to be represented as a graph, as shown
in Fig. 1. The graph is denoted as G = (N , R), where N is
a set of OSS, OT S, and O nodes and R is a set of directed
and undirected arcs.Undirected arcs represent the inclusion
relationships between OSS, OT S, and O nodes. For exam-
ple, OSS1 is a parent of OT S1 and OT S2, OT S1 is a parent
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OTS1

O5O3 O4O1

OTS2

O14O11 O13O10 O6

OTS1 OTS2 OTS1

OSS1 OSS2 OSS3

O12O7 O9O1 O8

OTS2 OTS1

OSS4

Fig. 1 Graphical representation of the process planning problem

Table 1 Production rules for
OSS and OTS construction and
precedence constraints analysis

Rule Description

Rule 1 IF There is an operation with more one TAD in its TAD [ ]

AND One of the TADs doesn’t match any one TAD operations

THEN Remove that TAD from the operation TAD [ ]

Rule 2 IF There are operations with one TAD in its TAD [ ]

AND These TADs similar

AND There is a similar M in its M [ ]

THEN Create an OSS for these operations

Rule 3 IF There is an operation with one TAD in its TAD [ ]

THEN Create an OSS for this operation

Rule 4 IF There is an operation with more than one TAD in its TAD flexibility list

AND These TADs match the TAD of the OSSs constructed in Rule 2 and Rule 3

THEN Permute the operation into OSSs, and create permuted OSS (POSS) sets

Rule 5 IF There are operations within OSS with one similar tool in its T [ ]

AND There is a similar machine in their M [ ]

THEN Create an OTS for these operations

Rule 6 IF There is a bidirectional precedence constraint between any OSS nodes

AND One the operation that cause the bidirectional precedence constraint between
the OSS permuted by Rule 4

THEN Remove that POSS set

ELSE Decompose OSS with minimum number of conflicting operations, and create
a new OSS of these conflicting operations

Rule 7 IF There is a bidirectional precedence constraint between two OTS nodes

THEN Decompose OTS with minimum number of conflicting operations, and create
a new OTS of these conflicting operations

Rule 8 IF A node is a predecessor of two other nodes and there is a precedence
constraint between these two nodes

THEN Remove the precedence constraint between the node that are successor of the
two nodes and the node that are predecessor of the two nodes

of O1, and OT S2 is a parent of O3, O4, and O5, and so
on. On the other hand, directed arcs represent the prece-
dence constraints between OSS nodes, OT S nodes, and O
nodes. For example, the directed arc between O3 and O4

represents a part precedence constraint between these two
operations, and the directed arc between OT S1 and OT S2
of OSS2 represents a part precedence constraint between
one (or more) of the OT S1 child nodes and O14, a child of
OT S2.

Knowledge-based production rules established to con-
struct OSS and OT S nodes and to analyse the precedence
constraints are placed in Table 1. Rules 1 to 4 are used to
maintain different cases that may occur in OSS nodes con-
struction, while Rule 5 is used to construct the OT S nodes.
Regarding the precedence constraints analysis, Rules 6 and
7 are used to handle the problem of bidirectional precedence
constraints that may occur when generalising the part prece-
dence constraints from operation level into OT S or OSS
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level. Finally, Rule 8 is used to handle complex precedence
constraints between the OSS nodes or OT S nodes.

Hybrid CPA and GA approach

GA starts with an initial set of random solutions called
population (chromosomes). Each chromosome in the pop-
ulation representing a solution to the problem that satisfies
the problem constraints. During each iterative procedure, the
chromosomes are evaluated according to the problem objec-
tive or objectives. The best chromosomes are selected from
the current population to form the population of the next
generation by the crossover process. A mutation process is
also performed on the chromosomes to prevent premature
convergence through slight deformation that is to be con-
ducted of the chromosome structure (Zacharia et al. 2018).
Generally, the GA after number of iterations converges to
the best chromosome, which represents the best solution to
the problem. The proposed approach is comprised of CPA
and GA As shown in Fig. 2. First, CPA is used to reduce
the solution space through generating an optimised feasible
operation sequence based on the part database and the prin-
ciples of minimising the number of machine changes, the
number of setup changes, and the number of tool changes.
Then GA is used to optimise the manufacturing resources for
these generated sequences, with the objective of finding the
optimal process plan.

Constrained permutation algorithm (CPA)

In CPA, the production rules, established “Problem mod-
elling” in section were used to construct OSS and OT S
nodes and to analyse the precedence constraints between
them. Furthermore, constrained permutation was performed
for both OSS and OT S nodes to explore all the opera-
tion sequences alternatives. The idea is to generate an OSS
sequence (OSSS), then each OSS node in OSSS is replaced
by OT S sequences (OT SS). Finally, by replacing the OT S
nodes by CO , the operation sequences are obtained. The
CPA algorithm steps are as follows:

Step 1: Initialize OSS nodes using Rule 1, Rule 2, Rule 3,
and Rule 4 respectively, and generate a POSS.

Step 2: For POSSi , (i = 1, . . . , n), if i > n stop, otherwise
go to Step 3.

Step 3: Apply the part precedence constraints between OSS
nodes.

Step 4: Apply Rule 6, if Rule 6 two conditions achieved go
to Step 2 otherwise go to Step 3.

Step 5: Apply Rule 5 to create OT S nodes, and create OT S
node for each operation that doesn’t follow Rule 5.

Generation of 
process planning 

graph

Generation of 
operation sequences

Process plans 
initialization

Process plans 
evaluation

Process plans 
optimization

Optimal / near 
optimal process plan

KB. Production 
rules

Part DB

CPA

GA

Fig. 2 Block diagram of the proposed CPAGA

Step 6: Apply thepart designprecedence constraints between
OT S nodes.

Step 7: Apply Rule 7, and go to Step 6.
Step 8: Apply Rule 8.
Step 9: Initialize

Step 9.1: G(OSS, R) graph.
Step 9.2: Computation matrix Ai j = [OSSs, s], ( OSSs

is the vector of OSS nodes in G(OSS, R), s is
the number of OSS nodes).

Step 9.3: Permitted nodes vector OSSp (OSSp is the set
of OSS predecessors’ nodes in G(OSS, R)).

Step 10: Generate OSS sequences (OSSSk) in co-factor
expression, OSSSk = OSSp + Ai j , for each
matched node between OSSp and the first row of
Ai j .

Step 11: For OSSSk , update G(OSS, R) by removing the
matched nodes between OSSp and Ai j , and update
OSSp and Ai j .

Step 12: Set OSSSk = OSSSk + OSSp.
Step 13: If Ai j is empty store OSSSk and go to Step 14,

otherwise go to Step 11.
Step 14: For OSSi , (i = 1, . . . , s), if i > s go to Step 22.
Step 15: Initialize
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Z

X Y

F1

F2
F6

F4 F3
F7

F5

F13

F14 F10

F11
F12

F9

F8

F

Fig. 3 Part 1 with 14 manufacturing feature (Li et al. 2004)

Step 15.1: G(OT S, R) graph.
Step 15.2: Computationmatrix Bi j = [OT ST , T ], (OT ST

is the vector of OT S nodes in G(OT S, R)), T
is the number of OT S nodes).

Step 15.3: Permitted nodes vector OT Sp (OT Sp is the set
of OT S predecessors’ nodes in G(OT S, R))

Step 16: Generate OT S sequences (OT SSh) in co-factor
expression, OT SSh = OT Sp + Bi j , for each
matched node between OT Sp and the first row of
Bi j .

Step 17: For OT SSh , updateG(OT S, R) by removing the
matched nodes between OT Sp and Bi j , and update
OT Sp.

Step 18: Set OT SSh = OT SSh + OT Sp.
Step 19: If Bi j is empty go to Step 20, otherwise go to Step

17.
Step 20: Update OSSSk via permutation of OT SSh into

OSSi of OSSSk .
Step 21: Clear OT SSh , and go to Step 14.
Step 22: Replace OT S nodes in OSSSk by its comprising

operations randomly with consideration of prece-
dence constraints.

Step 23: Generate operation sequences (OSi ), set OSi =
OSi + OSSSk , clear OSSSk , and go to 2.

The prismatic Part 1 in Fig. 3 reported by Li et al. (2004)
is used as an example to clarify some CPA steps. The part
manufacturing information and the precedence constraints
are listed in Table 2. The part was reported with two types of
precedence constraints: hard and soft. Hard constraints influ-
ence the manufacturing feasibility, and a process plan should
be consistent with these constraints. On the other hand, soft
constraints influence only the cost, quality, or efficiency of a
process plan. To attain the lowest production cost, soft con-
straints can be violated in case they conflict with hard
constraints (Li et al. 2004). In Part 1, the soft constraints 8
→ 9 and 10 → 12 conflict with the hard constraints 9 →
8 and 12 → 10 respectively, and, since soft constraints can
be violated, four possibilities occur for applying soft con- Ta
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Table 3 POSS of Part 1 generated by Step 1 of CPA

POSS OSS TAD O

POSS1 OSS1 + y O3, O4, O5, O2

OSS2 −y O10, O11, O13, O14

OSS3 −z O1, O6, O7, O9, O12

OSS4 + x O8

POSS2 OSS1 + y O3, O4, O5

OSS2 −y O10, O11, O13, O14, O2

OSS3 −z O1, O6, O7, O9, O12

OSS4 + x O8

POSS3 OSS1 + y O3, O4, O5

OSS2 −y O10, O11, O13, O14

OSS3 −z O1, O6, O7, O9, O12, O2

OSS4 + x O8

POSS4 OSS1 + y O3, O4, O2

OSS2 −y O10, O11, O13, O14

OSS3 −z O1, O6, O7, O9, O12, O5

OSS4 + x O8

POSS5 OSS1 + y O3, O4

OSS2 −y O10, O11, O13, O14, O2

OSS3 −z O1, O6, O7, O9, O12, O5

OSS4 + x O8

POSS6 OSS1 + y O3, O4

OSS2 −y O10, O11, O13, O14

OSS3 −z O1, O6, O7, O9, O12, O5, O2

OSS4 + x O8

straints to each other. The possibilities for applying the soft
constraints are 9 → 8 and 10 → 12, 8 → 9 and 10 → 12, 9
→ 8 and 12 → 10, or 8 → 9 and 12 → 10. The clarification
of CPA confines the first possibility that implies applying
constraints 9 → 8 and 10 → 12 and neglecting constraints 8
→ 9 and 12 → 10.

In Step 1, Rule 1 removes TADs + z and −x from the
TAD [] of operations O1, O6, O7, and O12 and the operations
O2, O13 respectively. Rule 2 constructs the operation setup
sets OSS1, OSS2, and OSS3 while OSS4 is constructed by
Rule 3. Two operations did not follow Rules 2 and 3 (O2

and O3) because the TADs in their TAD [] already exist in
the constructed OSS nodes. Therefore, Rule 4 generates a
permuted OSS set (POSS) by the permutation of O2 into
OSS1, OSS2, and OSS3, and the permutation of O5 into
OSS1 and OSS3. The result is six POSS, as shown in Table 3.

In regard to POSS1, Fig. 1 represents the alternative pro-
cess plans graph by applying Step 3 to 8. As shown in Fig. 1,
some of the part precedence constraints between operations
are generalised to be between OT S nodes or OSS nodes,
for example, the precedence constraints between OSS3 and
OSS1 caused by the part precedence constraints between O1

and O2. Furthermore, a constrained permutation of POSS1

Step 9:

G(OSS,R)= , Aij = ,OSSp= [2]

Step 10:

OSSS1: 2+

Step 11:
G(OSS,R)= , OSSp = [3]

Step 12:
OSSS1: 2+3+

Step 3: Aij is not empty
STEP11:

G(OSS,R)= , OSSp = [1 4]
Step 12:

OSSS1: 2+3+1+
OSSS2: 2+3+4+

Step 13: Aij is not empty
Step 11:

G(OSS,R)= , OSSp = [4]

G(OSS,R)= , OSSp = [1]
Step 12:

OSSS1: 2+3+1+4
OSSS2: 2+3+4+1

Step 13: Aij is empty

1

3 4

2

1

3 4

1 4

1

4

1   2   3   4
1   2   3   4

1   2   3   4
1   2   3   4

1   3   4
1   3   4
1   3   4

1   4
1   4

4
1

Fig. 4 The constrained permutation illustration of POSS1

to generate OSSS is performed through Step 9 to 13, as
shown in Fig. 4. The same procedure is repeated on OT S
nodes through Step 15 to 19 to generate OT SS. Finally, four
operation sequences, as shown in Table 4, are obtained by the
permutation of OT SS into the OSS of OSSS and replacing
the OT S nodes by their comprising O operations. As shown
in Table 4, CPA generates 36 operation sequences. POSS2
and POSS5 are neglected because the two conditions of Rule
6 are achieved. The reason is that O2, which caused the bidi-
rectional constraints betweenOSS2 and OSS3, has already
permuted into other OSS nodes, so generating additional
OSS is not considered worthwhile, since it will increase the
number of setups.

Process plans initialization

The chromosome presented as four strings of integers in
which each gen indicates a Oi,M,T ,T AD . Usually, the popu-
lation initialised randomly in GA, in CPAGA, the population
size and the i string are obtained by CPA, and the M string,
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Table 4 The generated operations sequences of the first possibility of Part 1

POSS Operations sequences

POSS1 O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O3 → O4 → O5 → O2 → O8

O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O8 → O3 → O4 → O5 → O2

O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O2 → O3 → O4 → O5 → O8

O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O8 → O2 → O3 → O4 → O5

POSS3 O3 → O4 → O5 → O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O2 → O8

O10 → O11 → O13 → O14 → O3 → O4 → O5 → O6 → O1 → O7 → O9 → O12 → O2 → O8

O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O2 → O3 → O4 → O5 → O8

O10 → O11 → O13 → O14 → O6 → O1 → O7 → O9 → O12 → O2 → O8 → O3 → O4 → O5

POSS4 O13 → O10 → O11 → O14 → O6 → O1 → O7 → O9 → O12 → O5 → O3 → O4 → O2 → O8

O13 → O10 → O11 → O14 → O6 → O1 → O7 → O9 → O12 → O5 → O8 → O3 → O4 → O2

O13 → O10 → O11 → O14 → O6 → O5 → O1 → O7 → O9 → O12 → O3 → O4 → O2 → O8

O13 → O10 → O11 → O14 → O6 → O5 → O1 → O7 → O9 → O12 → O8 → O3 → O4 → O2

O13 → O10 → O11 → O14 → O5 → O6 → O1 → O7 → O9 → O12 → O3 → O4 → O2 → O8

O13 → O10 → O11 → O14 → O5 → O6 → O1 → O7 → O9 → O12 → O8 → O3 → O4 → O2

O13 → O10 → O11 → O14 → O6 → O1 → O7 → O9 → O12 → O5 → O2 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O6 → O1 → O7 → O9 → O12 → O5 → O8 → O2 → O3 → O4

O13 → O10 → O11 → O14 → O6 → O5 → O1 → O7 → O9 → O12 → O2 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O6 → O5 → O1 → O7 → O9 → O12 → O8 → O2 → O3 → O4

O13 → O10 → O11 → O14 → O5 → O6 → O1 → O7 → O9 → O12 → O2 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O5 → O6 → O1 → O7 → O9 → O12 → O8 → O2 → O3 → O4

POSS6 O3 → O4 → O13 → O10 → O11 → O14 → O6 → O7 → O9 → O12 → O1 → O2 → O5 → O8

O13 → O10 → O11 → O14 → O3 → O4 → O6 → O7 → O9 → O12 → O1 → O2 → O5 → O8

O13 → O10 → O11 → O14 → O6 → O7 → O9 → O12 → O1 → O2 → O5 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O6 → O7 → O9 → O12 → O1 → O2 → O5 → O8 → O3 → O4

O3 → O4 → O13 → O10 → O11 → O14 → O6 → O7 → O9 → O12 → O1 → O5 → O2 → O8

O13 → O10 → O11 → O14 → O3 → O4 → O6 → O7 → O9 → O12 → O1 → O5 → O2 → O8

O13 → O10 → O11 → O14 → O6 → O7 → O9 → O12 → O1 → O5 → O2 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O6 → O7 → O9 → O12 → O1 → O5 → O2 → O8 → O3 → O4

O3 → O4 → O13 → O10 → O11 → O14 → O6 → O5 → O7 → O9 → O12 → O1 → O2 → O8

O13 → O10 → O11 → O14 → O3 → O4 → O6 → O5 → O7 → O9 → O12 → O1 → O2 → O8

O13 → O10 → O11 → O14 → O6 → O5 → O7 → O9 → O12 → O1 → O2 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O6 → O5 → O7 → O9 → O12 → O1 → O2 → O8 → O3 → O4

O3 → O4 → O13 → O10 → O11 → O14 → O5 → O6 → O7 → O9 → O12 → O1 → O2 → O8

O13 → O10 → O11 → O14 → O3 → O4 → O5 → O6 → O7 → O9 → O12 → O1 → O2 → O8

O13 → O10 → O11 → O14 → O5 → O6 → O7 → O9 → O12 → O1 → O2 → O3 → O4 → O8

O13 → O10 → O11 → O14 → O5 → O6 → O7 → O9 → O12 → O1 → O2 → O8 → O3 → O4

the T string, and T AD are generated randomly. The proce-
dure of initialising theM , T , and T AD strings are as follows:

Step 1: For Si , (i = 1 . . . ,m), if i > m stop.
Step 2: For Oi , (i = 1 . . . , n), if i > n go to 1.
Step 3: Randomly select M from the operation M[].
Step 4: Randomly select T from the operation T [].
Step 5: Randomly select T AD from the operation T AD[],

and go to 1

Process plans evaluation

Total production cost and total processing time are the com-
mon evaluation criteria reported in the literature. In this
research, a total weighted production cost (TWPC) that is
comprised of six cost factors is used to evaluate the pro-
cess plan. The cost factors are: the cost of machines (CM)
(obtained from theM string), the cost of tools (CT) (obtained
from the T string), the cost of machine changes (CMC)
(obtained from the M string), the cost of tool changes (CTC)
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Fig. 5 An example of: a 3SX
crossover operator, b OX
crossover operator
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(obtained from theMand T strings), the cost of setup changes
(CSC) (obtained from theMand TAD strings), and the cost of
precedence constraints violation (CPV) (obtained from the i
string). The computation of each cost factor is as follows:

1. Cost of machines (CM)

CM =
n∑

i=1

C IMi (8)

Where n is the total number of operations, C IM is the
cost index of using machine i , which is a constant value
for a specific machine.

2. Cost of tools (CT)

CT =
n∑

i=1

C ITi (9)

Where C IT is the cost index of using tool i , which is a
constant value for a specific tool.

3. Cost of machine changes (CMC)

CMC = C IMC ×
n−1∑

i=1

σ1(Mi+1 − Mi ) (10)

Where C IMC is the cost index of machine changes,
which is a constant value, Mi is the machine i used in
operation i, σ1 is a comparison factor and it is computed
as follows:

σ1(X − Y ) =
{
0 i f X �= Y

1 i f X ≡ Y
(11)

4. Cost of tool changes (CTC)

CTC = C ITC ×
n−1∑

i=1

σ2(σ1(Mi+1 − Mi ))

−(σ1(Ti+1 − Ti )) (12)
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Fig. 6 An example of the proposed mutation operator process
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Fig. 7 Part 2 with 9 manufacturing features Ma et al. (2000)

Where C ITC is the cost index of tool changes, which is
a constant value, Ti is the tool i used in operation i , σ2 is
a comparison factor and it is computed as follows:

σ1(X − Y ) =
{
0 i f X = Y = 0

1 otherwise
(13)

F3 F1
F14

F6

F13

F12

F4

F5

F8

a

F7

F9

F2 F10 F11

z
xy

Fig. 8 Part 3 with 14 manufacturing features Li et al. (2004)

5. Cost of setup changes (CSC)

CSC = C I SC

×
(
1 +

n−1∑

i=1

σ2(σ1(Mi+1 − Mi ))

−(σ1(T ADi+1 − T ADi )))

(14)

Where C I SC is the cost index of setup change, which is
a constant value, T ADi is the TAD i used in operation i .

6. Cost of precedence constraints violation (CPV)

CPV = C I PV ×
n−1∑

i=1

n∑

j=i+1

σ3(Oi − Oj ) (15)

WhereC I PV is the cost index of precedence constraints
violation, σ3 is a comparison factor and it is computed as
follows:

σ3(X − Y )

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 The sequence of x and y operations

violates constraints

0 The sequence of x and y operations

meets constraints

(16)

Finally, based on above cost factors, TWPC is computed as
follow:

TW PC = w1CM + w2CT + w3CMC + w4CTC

+ w5CSC + w6CPV
(17)

Where w1 to w6 are weights.
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Fig. 9 Part 4 with 28 manufacturing features Huang et al. (2017)

Table 5 Features, operations, manufacturing resources flexibilities, and precedence constraints of Part 2 (Ma et al. 2000)

Features Oi TAD [ ] M [ ] T [ ] Prior Oi

F1 Milling (O1) + z M01, M02 T01, T03 O2, O13

+ z M04, M05 T05, T015

F2 Milling (O2) + z M01, M02 T01, T02, T03, T04

+ y, −y M04, M05 T05

F3 Milling (O3) −z, + x M01, M02 T04

−z M04, M05 T011

F4 Milling (O4) −z M01, M02 T01, T02, T04

F5 Milling (O5) −z M01, M02 T15 O4

Centre drilling (O6) −z M01, M02, M03, M04, M05 T10 O4

F6 Drilling (O7) −z M01, M02, M03, M05 T14 O1, O4

Milling (O8) −z M01, M02 T03 O1, O4

Centre drilling (O9) −z M01, M02, M03, M04, M05 T10 O1, O4

F7 Drilling (O10) −z M01, M02, M04, M05 T14

Milling (O11) −z M01, M02 T03

F8 Milling (O12) −z M01, M02 T01, T02, T03, T04 O7, O8, O9

F9 Milling (O13) + z M01, M02 T01, T02, T03, T04

+ z M04, M05 T05

Process plans optimization

Selection, crossover, andmutation operators are the key char-
acteristics of reproducing the next generation in GA. During
selection, two chromosomes are selected in order to perform
the crossover process between them. A stochastic selection
operator, which is an extension of a roulette wheel, is used
in this research. The difference is that instead of selecting
one chromosome in each wheel spinning, two chromosomes
are selected in one-wheel spinning, which, in turn, increases
the probability of selecting better chromosomes. On the
other hand, the crossover operator performs the information

exchanging process between the two selected chromosomes,
with the objective of obtaining better offspring. The most
used crossover operator in the operation sequencing problem
is the order crossover (OX) since it maintains the prece-
dence constraints unviolated (Dou et al. 2018b; Salehi and
Tavakkoli-Moghaddam2009;Dou et al. 2018a; Petrović et al.
2016). In this research, a mixed crossover operator involving
three-string crossover (3SX) and OX is used to enhance and
explore the solution space. The new developed 3SX aim to
exchange the resources strings information of different CO
whilemaintaining the operations sequence string of the chro-
mosome as it is. Whereas, the aim of OX is to exchange the
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Table 6 Features, operations, manufacturing resources flexibilities, and precedence constraints of Part 3 (Li et al. 2004)

Features Feature describtions Oi TAD [] M [] T [] Prior Oi

F1 A planar surface Milling (O1) + z M02, M03 T06, T07, T08

F2 A planar surface Milling (O2) −z M02, M03 T06, T07, T08 O1

F3 Two pockets
arranged as a
replicated feature

Milling (O3) + x M02, M03 T06, T07, T08 O1

F4 Four holes arranged
as a replicated
feature

Drilling (O4) + z, −z M01, M02, M03 T02 O1, O5, O18

F5 A step Milling (O5) + x, −z M02, M03 T06, T07 O1

F6 A protrusion (rib) Milling (O6) + y, −z M02, M03 T07, T08 O1

F7 A boss Milling (O7) −a M02, M03 T07, T08 O1, O5

F8 A compound hole Drilling (O8) −a M01, M02, M03 T02, T03, T04 O1, O7

Reaming (O9) −a M01, M02, M03 T09 O1, O7, O8

Boring (O10) −a M03, M04 T10 O1, O7, O8, O9

F9 A protrusion (rib) Milling (O11) −y, −z M02, M03 T07, T08 O1

F10 A compound hole Drilling (O12) −z M01, M02, M03 T02, T03, T04 O1, O2, O6, O11

Reaming (O13) −z M01, M02, M03 T09 O1, O2, O6, O11, O12

Boring (O14) −z M03, M04 T010 O1, O2, O6, O11, O12, O13

F11 Nine holes arranged
in a replicated
feature

Drilling (O15) −z M01, M02, M03 T01 O1, O2, O12, O13, O14

Tapping (O16) −z M01, M02, M03 T05 O1, O2, O12, O13, O14, O15

F12 A pocket Milling (O17) −x M02, M03 T07, T08 O1, O18

F13 A step Milling (O18) −x, −z M02, M03 T06, T07 O1

F14 A compound hole Reaming (O19) + z M01, M02, M03 T09 O1, O12

Boring (O20) + z M03, M04 T10 O1, O12, O19

information of both the operations sequence string and the
resources strings to generate chromosomes that have new
operations sequence. Figure 5 is an illustration of the two
crossover operators process of a 6-bit chromosome length.
The mixed crossover procedure is as follows:

Step 1: Select two parents’ chromosomes according to
stochastic selection operator.

Step 2: If the generation number is ≤ n/2 (n is the total
number of generations).

Step 2.1: Generate two child’s chromosomes with same
operation sequences and operation resources of
the parents.

Step 2.2: Randomly generate a cutting point.
Step 2.3: Replace M, T, and TAD of the operations in the

right side of child 1 by M, T, and TAD of the
same operations from parent 2.

Step 2.4: Replace M, T, and TAD of the operations in the
right side of child 2 by M, T, and TAD of the
same operations from parent 1.

Step 3: Else

Step 3.1: Generate two child’s chromosomes with same
operation sequences and operation resources of
the parents.

Step 3.2: Randomly generate two cutting points.
Step 3.3: Reorder the gens between the two crossover

points of child 1 according to the samegens order
of parent 2.

Step 3.4: Replace M, T, and TAD of the operations
between the two crossover points of child 1 byM,
T, and TAD of the same operations from parent
2.

Step 3.5: Reorder the gens between the two crossover
points of child 2 according to the samegens order
of parent 1.

Step 3.6: Replace M, T, and TAD of the operations
between the two crossover points of child 2 byM,
T, and TAD of the same operations from parent
1.

Step 4: End.
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Table 7 Features, operations, manufacturing resources flexibilities, and precedence constraints of Part 4 (Huang et al. 2017)

Features Feature describtions Oi TAD [] M [] T [] Prior Oi

F1 A flat surface (O1) + z M01, M02 T01, T02, T03

(O2) + z M02 T01, T02, T03 O1,O22

(O3) + z M02 T01, T02, T03 O1,O22,O2

F2 Bearing hole (O4) −y,+ y M07, M08 T04 O1,O22,O2,O3,O27

(O5) −y,+ y M06, M07, M08 T05 O1,O22,O2,O3,O27,O4

(O6) −y,+ y M06, M07, M08 T05 O1,O22,O2,O3,O27,O4,O5

F3 Angular surface (O7) −a M05, M07, M08 T07, T08, T09 O1,O22,O2,O3,O27,O4

(O6) −y,+ y M06, M07, M08 T05 O1,O22,O2,O3,O28

(O8) −a M03, M04, M06 T07, T08, T09 O1,O22,O2,O3,O28,O31,O32,O33

F4 Four bosses (O9) + z M03, M04, M05 T08, T09 O1,O22

F5 Plane 1 (O10) −z M03, M04, M05 T08, T09 O1

F6 Top boss (O11) −z M03, M04, M05 T08, T09 O1

(O12) −z M04, M05 T08, T09 O1,O22,O2,O3,O11

F7 Six bosses (O13) −z M03, M04, M05 T08, T09 O1

F8 Plane 2 (O14) −z M03, M04, M05 T08, T09 O1

F9 Top window surface (O15) −z M03, M04, M05 T07, T08 O1,O22,O2,O3

(O16) −z M03, M04, M05 T07, T08 O1,O22,O2,O3, O15

F10 Inclined plane 1 (O17) −b M03, M04, M05, M07 T07, T08 O1,O22,O2,O3

(O18) −b M03, M04, M05, M07 T07, T08 O1,O22,O2,O3, O17

F11 Inclined plane 2 (O19) −b M03, M04, M05, M07 T07, T08 O1,O22,O2,O3

(O20) −b M03, M04, M05, M07 T07, T08 O1,O22,O2,O3, O19

F12 The top holes (O21) −z, + z M09, M10 T10 O1,O22,O2,O3, O12, O9

F13 Top plane (O22) −z M04, M5 T07, T08, T09 O1

F14 Counter-bore hole (O23) −z M09, M10 T20 O1,O22,O2,O3, O27

F15 18H7 hole (O24) + z M09, M10 T11 O1,O22,O2,O3

(O25) + z M09, M10 T22 O1,O22,O2,O3, O34

F16 2-12.5 hole (O26) + z M09, M10 T12 O1,O22,O2,O3

F17 12-21 hole (O27) + z M09, M10 T13 O1,O22,O2,O3

F18 18-17 hole (O28) + z M09, M10 T14 O1,O22,O2,O3

F19 Side hole (O29) −y M07, M08 T06 O1,O22,O2,O3

(O30) −y M06,M07, M08 T06 O1,O22,O2,O3, O29

F20 15-20 holes (O31) −a M07, M08, M09, M10 T15 O1,O22,O2,O3, O7, O28

F21 24-8 holes (O32) −a M07, M08, M09, M10 T16 O1,O22,O2,O3, O7, O28

(O33) −a M07, M08, M09, M10 T23 O1,O22,O2,O3, O7, O28, O33

F22 Oil passage hole 1 (O34) −c M06, M07, M08 T28 O1,O22

(O35) −c M06, M07, M08 T24 O1,O22, O34

F23 Oil passage hole 2 (O36) −c M06, M07, M08 T17 O1,O22

(O37) −c M06, M07, M08 T25 O1,O22, O36

F24 Counter-bore (O38) −z M03, M04, M09, M10 T21 O1,O22,O2,O3, O24, O25

F25 Holes in inclined plane 1 (O39) −b M09, M10 T18 O1,O22,O2,O3, O17, O18 ,O27, O4

(O40) −b M09, M10 T26 O1,O22,O2,O3, O17, O18 ,O27, O4,
O39

F26 Holes in inclined plane 2 (O41) −b M09, M10 T18 O1,O22,O2,O3, O29, O19 ,O20

(O42) −b M09, M10 T26 O1,O22,O2,O3, O29, O19 ,O20, O41

F27 Top holes (O43) −z M03, M04, M09, M10 T18 O1,O22,O2,O3, O15, O16

(O44) −z M03, M04, M09, M10 T26 O1,O22,O2,O3, O15, O16, O43

F28 Oil passage hole 3 (O45) −x M06, M07, M080 T19 O1,O22,O2,O3, O28

(O46) −x M06, M07, M080 T27 O1,O22,O2,O3, O28, O45
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Table 8 The cost indices of Part 1, Part 2, Part 3, and Part 4 (Li et al.
2004; Ma et al. 2000; Huang et al. 2017)

Part. M CIM T CIT Indices Indices cost

1 M01 10 T01 3 CIMC 300

M02 35 T02 3 CISC 120

M03 60 T03 8 CITC 15

T04 15 CIPV 100

T05 10

T06 15

T07 10

T08 10

2 M01 70 T01 10 CIMC 150

M02 35 T02 10 CISC 90

M03 10 T03 10 CITC 20

M04 40 T04 12

M05 85 T05 8

T10 2

T11 10

T14 3

T15 6

3 M01 10 T01 7 CIMC 160

M02 40 T02 5 CISC 100

M03 100 T03 3 CITC 20

M04 60 T04 8 CIPV 100

T05 7

T06 10

T07 15

T08 30

T09 15

T10 20

4 M01 20 T01 5 CIMC 120

M02 45 T02 6 CISC 90

M03 50 T03 7 CITC 15

M04 55 T04 12

M05 20 T05 13

M06 80 T06 9

M07 45 T07 8

M08 48 T08 9

M09 16 T09 10

M10 18 T10 4

T11 4

T12 3

T13 4

T14 3

T15 4

T16 3

T17 4

T18 2

T19 2

T20 4

Table 8 continued

Part. M CIM T CIT Indices Indices cost

T21 3

T22 5

T23 3

T24 4

T25 4

T26 3

T27 4

T28 3

Mutation process aims to increase the population diversity
with a view of avoiding premature convergence. In this
research, the mutation operator is designed to replace the
operation resources randomly according to the given oper-
ation resources flexibilities. Figure 6 is an illustration of a
mutation process of a 6-bit chromosome length. The pro-
posed mutation procedure is as follows:

Step 1: Select a chromosome randomly.
Step 2: Select two operations randomly.
Step 3: Randomly select M from the operation M [].
Step 4: Randomly select T from the operation T [].
Step 5: Randomly select TAD from the operation TAD [].
Step 6: End.

Comparative case studies

To appraise the performance of CPAGA, four comparative
case studies are carried out through Part 1 (Fig. 3), Part 2
(Fig. 7), Part 3 (Fig. 8), and Part 4 (Fig. 9). The relevant
manufacturing information, including features, operations,
manufacturing resource flexibilities, and precedence con-
straints, are placed in Tables 2, 5, 6, 7 respectively, while
the cost indices of the four parts are placed in Table 8. The
main GA parameters are population size, generation num-
ber, crossover probability (PC), and mutation probability
(PM). The population size is predetermined by the number of
operation sequences generated for the given part by CPA. A
comprehensive test for the four parts is carried out to obtain
the best value of the remaining parameters, and the best per-
formance of GA in the CPAGA is gained by setting PC to
0.7 and PM to 0.3. Since the convergence of all tests occurs
in the early stages, the number of generations is set as 100
generations. The CPAGAwas programmed inMATLAB and
executed on a Windows 10 platform by a 2.6 GHz Core i7
CPU with a 16 GB RAM computer.

In Part 1, which is reported by Li et al. (2004), CPA gen-
erated 360 sequences of operations for the four possibilities
of applying the soft constraints. GA was executed 20 times
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Table 9 The best obtained
process plans of Part 1 Condition (1)

O 6 9 1 12 7 3 5 4 8 10 13 11 2 14

M 2 2 2 2 2 2 2 2 2 2 2 2 2 2

T 2 1 1 1 1 5 5 5 5 5 5 5 8 1

TAD −z −z −z −z −z + y + y + y + x −y −y −y −y −y

CM: 490, CT: 98, CMC: 0, CTC: 60, CSC: 480, PC:200, TWPC: 1328

Condition (2)

O 8 10 13 11 14 6 7 1 12 9 2 5 3 4

M 2 2 2 2 2 2 2 2 2 2 2 2 2 2

T 5 6 6 5 1 2 1 1 1 1 8 5 6 5

TAD + x −y −y −y −y −z −z −z −z −z + y + y + y + y

CM: 490, CT: 0, CMC: 0, CTC: 0, CSC: 480, PC:200, TWPC: 1170

Table 10 A comparison of the three parts results obtained by CPAGA with those of other approaches

Approach Condition (1) Condition (2) Condition (3)
Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean

Part 1

CPAGA 1328 1328 1328 1170 1170 1170 – – –

TSACO (Wang et al. 2015) 1328 1348 1329 1170 1170 1170 – – –

ACO (Liu et al. 2013) 1328 1343 1329.5 1170 1170 1170 – – –

TS (Li et al. 2004) 1328 1378 1342 1170 1290 1194 – – –

SA (Li et al. 2004) 1328 1518 1373.5 1170 1345 1217 – – –

GA (Li et al. 2004) 1478 1778 1611 1410 1650 1482 – – –

Part 2

CPAGA 743 743 743 1198 1198 1198 – – –

SA (Ma et al. 2000) 853 – – 1288 1310 1295 – – –

GA (Ma et al. 2000) 853 – 835.9 – – – – – –

Part 3

CPAGA 2530 2535 2530.5 2090 2090 2090 2500 2500 2500

FSDPSO (Dou et al. 2018a) 2530 – 2532.5 2090 – 2090 – – –

DDPSO (Dou et al. 2018a) 2535 – 2575.7 2090 – 2115 – – –

IGA (Dou et al. 2018b) 2530 2547 2538.7 2090 2120 2111 – – –

ACO (Hu et al. 2017) 2530 – 2666 2090 – 2115 – – –

ESGA (Su et al. 2018) 2530 2562 2539.1 2090 – – 2590 – –

TSGA (Su et al. 2018) 2582 2669 2595.7 – – – – – –

PSO (Guo et al. 2006) 2535 – 2680.5 – – – – – –

HGGA (Huang et al. 2012) 2527 – – 2120 – – 2590 – –

TSACO (Wang et al. 2015) 2525 2557 2552 2090 2380 2120.5 2590 2740 2600.8

TS (Li et al. 2004) 2527 2690 2609 2120 2390 2208 2580 2740 2630

SA (Li et al. 2004) 2535 2829 2668.5 2120 2380 2287 2590 2740 2630

GA (Li et al. 2004) 2667 2885 2796 2220 2580 2370 2600 2840 2705

Part 4

CPAGA 4299 4315 4302 4503 4503 4503 – – –

GA-SA (Huang et al. 2017) 4683 – – 5024 – – – – –

for the two conditions: (1) All resources are available, and
w1 − w6 in Eq. (17) are set equal to 1. (2) All resources are
available, and w2 = w4 = 0, w1 = w3 = w5 = w6 = 1.

The best obtained process plans for the two conditions are
shown in Table 9. Results were compared against GA, SA,
and TS based approaches by Li et al. (2004), the TSACO by
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Table 11 The best obtained
process plans of Part 2 Condition (1)

O 3 2 13 1 4 5 6 9 10 7 11 8 12

M 2 2 2 2 2 2 2 2 2 2 2 2 2

T 4 1 1 1 1 15 10 10 14 14 3 3 3

TAD + z + z + z + z −z −z −z −z −z −z −z −z −z

CM: 455, CT: 98, CMC: 0, CTC: 100, CSC: 90 PC:0, TWPC: 743

Condition (2)

O 3 2 13 1 4 5 9 6 7 10 11 8 12

M 1 1 1 1 1 1 1 1 1 1 1 1 1

T 4 1 1 1 1 15 10 10 14 14 3 3 3

TAD + z + z + z + z −z −z −z −z −z −z −z −z −z

CM: 910, CT: 98, CMC: 0, CTC: 100, CSC: 90, PC:0, TWPC: 1198

Table 12 The best obtained process plans of Part 3

Condition (1)

O 1 3 5 2 18 11 6 12 13 19 17 7 8 9 14 10 20 15 4 16

M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1

T 6 6 6 6 6 7 7 3 9 9 7 7 3 9 10 10 10 1 2 5

TAD + z + x −z −z −z −z −z −z −z + z −x −a −a −a −z −a + z −z −z −z

CM: 770 CT: 240 CMC: 320 CTC: 200 CSC: 1000 PC:0, TWPC: 2530

Condition (2)

O 1 18 17 11 6 2 12 13 5 3 7 8 9 19 20 14 10 15 16 4

M 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1

T 6 6 8 7 7 8 4 9 7 7 7 4 9 9 10 10 10 1 5 2

TAD + z −x −x −z −z −z −z −z + x + x −a −a −a + z + z −z −a −z −z −z

CM: 770 CT: 0 CMC: 320 CTC: 0 CSC: 1000, PC:0, TWPC: 2090

Condition (3)

O 1 19 20 3 5 7 8 9 10 18 6 2 11 4 12 13 14 15 16 17

M 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

T 8 9 10 8 6 8 4 9 10 6 8 6 8 2 4 9 10 1 5 8

TAD + z + z + z + x + x −a −a −a −a −z −z −z −z −z −z −z −z −z −z −x

CM: 2000 CT: 0 CMC: 0 CTC: 0 CSC: 500, PC:0, TWPC: 2500

Wang et al. (2015), and the ACO by Liu et al. (2013), and are
presented in Table 10. Under condition (1), among 20 trials,
the result TWPC (1328) occurs 20 times. The mean TWPC
(1328) is the best result among all the six algorithms. Under
condition (2), the TWPC (1170.0) occurs 20 times in 20 tri-
als, which is better than the performances of TS, SA, and GA
and is the same as the performance of ACO and TSACO. In
Part 2, which is reported by Ma et al. (2000), CPA generated
208 sequences of operations, and GA was executed 60 times
for the two conditions: (1) All resources are available, and
w1 − w6 in Eq. (17) are set equal to 1. (2) M02 is down, and
w1 − w6 are set equal to 1. The best obtained process plans
for the two conditions are shown in Table 11. Comparison of
the results with those of GA and SA based approaches byMa
et al. (2000) are presented in Table 9. For this part, Eq. (14)
modified to be the same as Ma evaluation model, as follows:

(1) All resources are available, and w1 − w6 in Eq. (17) are
set equal to 1. (2) M02 is down, and and w1 −w6 in Eq. (17)
are set equal to 1.

CSC = C I SC ×
n−1∑

i=1

σ2(σ1(Mi+1 − Mi ))

− (σ1(T ADi+1 − T ADi ))

(18)

Under condition (1), among 60 trial results, TWPC (743)
occurred 60 times. The mean and minimum TWPC (743)
was better than the other two algorithms.Under condition (2),
TWPC (1198) occurred 60 times in 60 trials,whichwas better
than the performances of SA for both mean and minimum
TWPC values.
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Table 14 CPU time of the best results obtained by CPAGA, ESGA, and TSGA

Approach Part 1 CPU time(s) Part 2 CPU time(s) Part 3 CPU time(s) Part 4 CPU time(s)
Cond.(1) Cond.(2) Cond.(1) Cond.(2) Cond.(1) Cond.(2) Cond.(3) Cond.(1) Cond.(2)

CPAGA 1.32 0.84 0.96 0.63 1.94 1.24 1.3 3.26 5.41

ESGA (Su et al. 2018) – – – – 3.46 – – – –

TSGA (Su et al. 2018) – – – – 2.54 – – – –

In addition to the two conditions of Part 1, third condition
is used inPart 3 that is reported thefirst timebyLi et al. (2004)
to test CPAGA, which is: (3) M02 and T07 are down, and
w2 = w4 = 0, w1 = w3 = w5 = w6 = 1. CPA generated
470 sequence of operations, and GA was executed 20 times
for the three conditions. The best obtained process plans for
the three conditions are shown in Table 12. Comparison of
the results was carried out against FSDPSO and DDPSO by
Dou et al. (2018a), IGA by Dou et al. (2018b), ACO by Hu
et al. (2017), ESGA and TSGA by Su et al. (2018), PSO by
Guo et al. (2006), HGGA by Huang et al. (2012), TSACO
by Wang et al. (2015), and the TS, SA, and GA by Li et al.
(2004), as shown in Table 9. Under condition (1), among
20 trial results, the TWPC (2530) occurred 18 times and the
TWPC (2535) occurred two times. The minimum TWPC
(2530) was better than the TWPC of DPPSO, TSGA, PSO,
SA, andGA, equal to the TWPCof FSDPSO, IGA,ACO, and
ESGA, and less than the TWPC of HGGA, TSACO, and TS.
The reason that those approaches obtained less TWPC value
thanCPAGATWPCvalue is due to the additional T06 in T [],
which gives different optimal solutions. (The reader may be
referred to Table 11 of Li et al. (2004), Table 9 of Wang et al.
(2015), andTable 7 of Huang et al. (2012).) ThemeanTWPC
(2530.5) is the best result among all the 13 approaches.Under
condition (2), the TWPC (2090) occurred 20 times in 20
trials. The minimum TWPC (2090) is better than those of
some approaches and the same as others, while the mean
TWPC (2090) was the same as the mean of FSDPSO and
better than all other approaches. Under condition (3), the
TWPC (2500) occurred 20 times in 20 trials, which is the
best result obtained among the 13 approaches in terms of
minimum and mean TWPC values.

Finally, Part 4 that is reported by Huang et al. (2017) con-
sist of 28 features that comprise of 46 operations with 213
precedence constraints among the operations. For this com-
plex part, CPA generates 1618 sequences of operations. GA
was executed 20 times for the following two conditions: (1)
All resources are available, and w1 − w6 in Eq. (17) are set
equal to 1. (2) M03, M07, and T08 are down, and w1 − w6

in Eq. (17) are set equal to 1. The best obtained process
plans under the two conditions accompanied by those that
are obtained by GA-SA (Huang et al. 2017) are placed in
Table 13. Note that the process plan generated by GA-SA
under condition (1) is unfeasible because some of the prece-

dence constraints are violated such as O8 came before O30,
O31, and O32. Furthermore, O12 assigned to M03 which it is
not given in the O12’ M[]. Although the process plans gen-
erated by GA-SA are unfeasible, CPAGA generated better
process plans under the two conditions. Where under con-
dition (1) the TWPC (4299) occurred 16 times, the TWPC
(4314) occurred 3 times, and the TWPC (4315) occurred 1
time, which are all better than the best TWPC value that is
obtained by GA-SA. Under condition (2) the TWPC (4503)
is obtained 20 times, which is better than the TWPC value
that is obtained by GA-SA.

Unfortunately, all researchers mentioned in the above
comparisons except Su et al. (2018) have not been taken CPU
time into consideration. Therefore, the efficiency verification
of the proposed approach is carried out against ESGA, and
TSGA by Su et al. (2018). Table 14 shows the CPU time
of the best obtained TWPC values of CPAGA for the four
parts under different conditions, as well as the ESGA and
TSGA CPU time when they are performed under condition
(1) of Part 3. Generally, CPAGA is able to generate optimal
or near-optimal solutions with reasonable CPU time. Com-
pared with ESGA and TSGA, the proposed CPAGA is able
to find a competitive solution with a lower CPU time. where,
with the same TWPC values CPAGA dominates ESGA in
term of the CPU time, on the other hand, CPAGA dominates
TSGA in term of TWPC value and CPU time.

Conclusions

A CPAGA approach was proposed to solve the process plan-
ningproblem.Theprocess planningproblemwas represented
as a graph of OSS, OT S, and O nodes and the CPAwas used
to generate an initial set of optimised operation sequences
based on the principles of minimising the number of setup
changes, tool changes, and machine changes, and supply-
ing it to GA. GA, in turn, was used to obtain an optimal
or near optimal process plan. Mixed OX and 3SX crossover
were developed to generate better offspring to subsequently
enhance the performance of GA. 3SXwas used first to search
within the operations sequences generated by CPA, then
OX was used to explore alternative operation sequences to
be evaluated. In comparing the CPAGA approach to differ-
ent approaches reported in the literature for the four parts,
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CPAGA proved its efficiency and effectiveness. From a gen-
erated solutions quality perspective, CPAGA obtained better
TWPC values for the two conditions of Part 2, the third con-
dition of Part 3, and the two conditions of Part 4. Since the
solution space was reduced by the CPA to be limited to only
the optimised operation sequences. This, in turn, gives the
advantage to GA in searching for an optimal or near optimal
process plan. From the perspective of the repeatability of
good quality of generated solutions, CPAGA obtained better
TWPC means for all the conditions of the four parts, due to
the good quality of operations sequences obtained by CPA,
and the effectiveness of the proposed crossover operator.
From the perspective of the CPAGA efficiency, a better CPU
time has been accomplished against ESGA and TSGA for
the first condition of Part 3. Although the proposed approach
has demonstrated a good performance compared to other
approaches, some issues need to be considered in future stud-
ies: first, incorporating more knowledge-based production
rules to maintain different cases that may occur in OSS and
OTS nodes construction; second, investigating more com-
plex parts with difficult precedence constraints among their
features, to show the effectiveness of the proposed approach;
and, finally, incorporating CPA with different meta-heuristic
algorithms instead of GA.
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