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Abstract
In industry 4.0, machines generate a lot of data about several kinds of events that occur in the production process. This huge
quantity of information contains valuable patterns that allow prediction of important events in the appropriate instant. In this
paper, we are interested in mining frequent chronicles in the context of industrial data. We introduce a general approach to
preprocess, mine, and use frequent chronicles to predict a special event; the failure of a machine. Our approach aims not only
to predict the failure, but also the time of its appearance. Our approach is validated through a set of experiments performed
on the chronicle mining phase as well as the prediction phase. Experiments were achieved on synthetic data in addition to a
real industrial data set.

Keywords Chronicle mining · Predictive maintenance · Industry 4.0

Introduction

The connected factory, also known as Industry 4.0 (Lasi et al.
2014;Oztemel andGursev 2018) is a project initiated byGer-
man industrialists and supported by the government to make
machines connected and intelligent. The term “Industry 4.0”
refers to a 4th industrial revolution. The first revolution began
with the use of steam power and the first machines. The
second introduced electrical energy and the mass produc-
tion, while the third one started with the use of electronics
and computers to automate production. Industry 4.0 uses the
concepts of Internet of Things (IoT) (Xia et al. 2012) that
offers ubiquitous computing through advanced connectiv-
ity of products, systems and services. Due to the ubiquitous
nature of objects, a remarkable number of systems will be
connected to the Internet. The main aspect of IoT is the
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use of these connected objects in manufacturing processes.
This means that smart sensors and smart tools in general will
be available in the factory. These technologies will improve
performance of the manufacturing processes in real time by
acting in a pro-active manner.

The analysis of collected data allows to model the
behaviour of a machine, be it normal or abnormal. When
these models are confronted with real-time data, monitoring
systems can detect anomalies at appropriate time, and send
an alert to humans for a timely intervention (Mobley 1990).
This is the principle of predictive maintenance (Hashemian
and Bean 2011).

Intelligent systems that allow this kind of maintenance
are based on analyzing collected signals, that are generally
a set of timestamped events. For this aim, data mining tech-
niques are used, particularly sequential datamining (Agrawal
and Srikant 1995) and frequent sequential pattern mining
(Borgelt 2012).

However, sequential patterns have a main shortcoming
(Cram et al. 2011); they inform about the sequentiality of
events but nothing about the gap time between events.

Let the data set shown in Table 1 where events are accom-
panied by instants of occurrence in each tuple.

We can note that sequence 〈A, B,C〉 is redundant. It
shows that events A, B and C occurred frequently in a
sequencemanner, but without providing any additional infor-
mation about the gap between them. A richer pattern where
time constraints are considered is the chronicle, initially
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Table 1 Data set of sequences (pairs of event/instant)

Sequence id Events

1 (A,0), (B,5), (C,7)

2 (A,2), (B,3), (C,7)

Fig. 1 A chroncile extracted
from Table 1

C

B

A

[1,
5] [2,4]

introduced in Dousson and Duong (1999) and developed in
Huang et al. (2012) and Cram et al. (2011). In our data set
example, we can deduce that A, B and C occur sequentially,
and that B occurs after A at least after one instant and at
most after 5 instants, while C occurs after B in the interval
[2, 4] of instants.We represent our chronicle as A[1, 5]B and
B[2, 4]C . It is a direct graph where nodes are events and ver-
tices are the instant intervals, denoted by time constraints as
shown in Fig. 1.

To optimisemachines’ performance, critical events should
be anticipated. Predictive maintenance is based on this prin-
ciple. Predictive maintenance is of paramount importance
and offers considerable potential for innovation to over-
come the limitations of traditional maintenance policies
(Cho et al. 2018). It consists of collecting and analysing
the data of industrial equipments. Then, an alert system
learn from previous event sequences and prevent from immi-
nent failures. In opposite to preventive maintenance (Rivera
Torres et al. 2018), predictive maintenance avoid a failure
before it occurs. To the best of our Knowledge, no research
work has been interested in applying frequent chronicle
mining to predictive maintenance. This paper introduces a
complete data mining approach based on the extraction of
frequent chronicles to predict machine failures. In opposite
to classic prediction techniques, the aim of our approach
is to predict not only the failure event, but also the time
interval of its occurrence as time dimension is crucial in
predictive maintenance. As chronicle mining algorithms are
resource greedy, we are obliged to improve existing works to
scale with manufacturing requirements (i.e. large number of
sequences, real-time prediction, etc). Thus, we introduce a
new algorithm for the extraction of frequent chronicles called
Clasp-CPM. This algorithm generates only closed failure
chronicles in an effective manner. in addition, to handle the
huge volume of sequences, several optimizationmethods and
multi-threading coding are brought up. Then, extracted fail-
ure chronicles serve as input to a classification algorithm that
predict machine failures. Our general approach is validated
on a real industrial data set denoted by SECOM (McCann
et al. 2008) as well as on synthetic data sets. Performance
of our algorithms and quality of failures’ predictions were
investigated against the aforementioned kind of data. To

summarize, this paper introduces three contributions: (i) a
new approach for mining failure chronicles from a set of
sequences that report a machine activity; (ii) a new effi-
cient algorithm called Clasp-CPM introduced to mine failure
chronicles; and finally (iii), a new algorithm called FADE
that uses the mined chronicles to predict if a new sequence
of parameters values will lead to a machine failure, and if
yes, in which time interval the crash will occur.

Related works

The literature is plentiful of works that have dealt with the
subject of temporal data mining in order to discover inter-
esting patterns (Zhao and Bhowmick 2003; Masseglia et al.
2005; Laxman and Sastry 2006). Sequential Pattern Min-
ing (Srikant and Agrawal 1995) (commonly called SPM)
is the discovery of sequences that are frequent in a set of
sequences. The process is similar to the frequent itemset
mining (Goethals 2003), except that the data set events are
ordered and time-stamped. Similarly to the frequent pattern
mining problem, SPM algorithms extract frequent sub-
sequences according to a user-defined threshold commonly
called minimum support. The pioneering SPM algorithm,
called AprioriAll, is introduced in Agrawal and Srikant
(1995). It generates the set of frequent sequential pattern in
a level-wise manner as does Apriori (Agrawal et al. 1993).

Several algorithms have been introduced to discover
sequential patterns from sequences, such as GSP (Srikant
and Agrawal 1996), SPADE (Zaki 2001), PrefixSpan (Pei
et al. 2001) for frequent sequential patterns based on Apri-
ori, and CloSpan (Yan et al. 2003) and ClaSP (Antonio et al.
2013) for frequent closed sequential patterns. SPM tech-
niques have many uses in several fields of application such
as DNA sequence analysis (D’Addona et al. 2017; Zerin and
Jeong2011),Web accessmodels (Fournier-Viger et al. 2012),
etc.

It has been proven that sequential patterns are not suf-
ficiently informative in several application fields such as
network alarm (Mannila et al. 1997) or analysis of human
activity (Mannila et al. 1997). Therefore, the chronicle pat-
tern model, that is an extension of sequential patterns, has
been introduced Dousson et al. (1993). Chronicles are rich
of information because they add the exact time interval where
a sequence events occur. However, this richness raises sev-
eral drawbacks such as memory consumption and execution
time. In Dousson and Duong (1999), made the foundation of
what has been later known as chronicle mining. They pro-
posed the first algorithm for chronicle extraction from journal
logs of telecommunication alarms. Unfortunately, it has been
pointed out that this algorithm also known as FrequencyAna-
lyzer for Chronicle Extraction (FACE) is not complete (i.e.,
does not generate all patterns).
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In Cram et al. (2011) introduced the HCDA algorithm, to
mine the complete set of chronicles. Frequent chronicles of
size 2 aremined and thosewith the same items are grouped in
a tree. Chronicles with the largest interval are located in the
root and the tightest are placed in leaves. The CCP-Miner
algorithm (Huang et al. 2012), is an extension of HCDA
algorithm that searches for chronicles in a set of sequences.
It has been applied to extract sequences corresponding to
patient pathways in a hospital center. InDauxais et al. (2017),
Dauxais et al. proposed a new approach to extract discrimi-
nant chronicles in to the context of pharmaco-epidemiology.
The proposed DCM algorithm allows to mine chronicles in a
labelled sequential data set that more representative of a sin-
gle phenomena. Finally, Sellami et al. (2018) introduced a
new approach, known as CPM, to mine chronicles from a set
of sequential patterns extracted using the CloSpan algorithm
(Yan et al. 2003).

Chronicle mining: the basic notions

Extracting frequent chronicles requires discovering sequen-
tial patterns taking into consideration temporal information,
which is the time of occurrence of the events in the sequences.
In this section, we introduce all definitions of the concepts
necessary for the task of chronicle mining.

Definition 1 (Event) According to Cram et al. (2011), an
event is a couple (e, t) where e ∈ E is the type of the event
and t ∈ T is its time.

These events appear together in their order of occur-
rence, called timestamped events, which allows us to form a
sequence.

Definition 2 (Sequence) Let E be a set of event types,
and T a time domain such that T ⊆ R. E is assumed
totally ordered and is denoted ≤E. A sequence is a couple
〈SI D, 〈(e1, t1), (e2, t2), . . . , (en, tn)〉〉 such that SID is the
index of the sequence and 〈(e1, t1), (e2, t2), . . . , (en, tn)〉 is
a sequence of events. For all i, j ∈ [1, n], i < j ⇒ ti ≤ t j .
If ti = t j then ei <E e j .

The appearance of timestamped events in a sequence
allows us to define temporal constraints between them.

Definition 3 (Temporal constraint) A time constraint is
a quadruplet (e1, e2, t−, t+), denoted e1[t−, t+]e2, where
e1, e2 ∈ E, e1 ≤E e2 and t−, t+ ∈ T.

A time constraint e1[t−, t+]e2 is said satisfied by a couple
of events ((e, t), (e′, t ′)), e ≤E e′ iff e = e1, e′ = e2 and
t ′ − t ∈ [t−, t+].

We say that e1[a, b]e2 ⊆ e′
1[a′, b′]e′

2 iff [a, b] ⊆ [a′, b′].

C

B

A

[2,5]

[6,7] [1
,4
]

Fig. 2 Example of a chronicle

The extraction of temporal constraints between the events
of a sequence leads us to define the concept of chronicles
(Dousson and Duong 1999).

Definition 4 (Chronicle) A chronicle is a pair C = (E, T )

such that:

1. E = {e1 . . . en}, where ∀i, ei ∈ E and ei ≤E ei+1,
2. T = {ti j }1≤i< j≤|E | is a set of temporal constraints on E

such that for all pairs (i, j) satisfying i < j , ti j is denoted
by ei [t−i j , t+i j ]e j .

E is called the episode of C, according to the definition of
episode’s discovery in sequences (Mannila et al. 1997).

The relevance of a chronicle is based essentially on the
value of its support. The support of a chronicle refers to the
number of its occurrences in a sequence. It can therefore be
formalized by the definition below.

Definition 5 (Chronicle support) An occurrence of a chron-
icle C in a sequence S is a set (e1, t1)...(en, tn) of events of
the sequence S that satisfies all temporal constraints defined
in C. The support of a chronicle C in the sequence S is the
number of its occurrences in S.

Example 1 Let us illustrate all these basic definitions.Assum-
ing a sequence S of three events 〈A, B,C〉 represented as
follows:

Time constraints that describe the pattern {A, B, C} are
noted by A[2,5]B, B[1,4]C and A[6,7]C.

After the generation of temporal constraints, these events
can be represented as a graph, as shown in Fig. 2.

0 1 2 3 4 5 6 7 8

A B B C C

Chronicle mining for predictive maintenance

In this work, we seek to develop an approach to detect
machine anomalies in advance. Previous works such as Car-
rault et al. (2003), Fradkin andMörchen (2015), Vautier et al.
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(2005) and Huang et al. (2012), treated the extraction of
frequent chronicles, but none put it in the context of pre-
dictive maintenance. Our contribution is developed to solve
this problem and aims to answer the question, i.e. how can
we use temporal constraints between events, and therefore
chronicles, to predict anomalies before they occur?

Approach overview

The aim of our approach is to predict anomalies of machines
in an industrial context. Our goal is not only to predict the
failure, but also the time interval of the occurrence of this
failure. For this purpose, we rely onmining themost frequent
chronicles describing the events that lead to amachine failure.
Our interest in this kind of temporal pattern lies not only in
predicting an event, but especially in the time interval in
which that event will occur (in our case a machine failure).

Like any knowledge discovery process, our approach
starts with a preprocessing step, a mining step and a third
step for the interpretation of extracted knowledge. The over-
all approach is described in Fig. 3.

The data preprocessing step

Chronicle mining algorithms handle data that are discrete
and sequential as mentioned in Definition 2. However, the
generated data from industrial machines are not necessarily
in that format. Raw industrial data are often continuous and
not sequential in the sense of Definition 2. Consequently, we
discretize continuous values to obtain nominal ones, i.e., the
events. Then, we use sequentialization to transform data in
a set of sequences in the form of pairs (event, instant) where
each sequence finishes with the failure event.

Furthermore, the number of measures in an industrial data
set could be tremendous. Analysis of such huge number of
data dimensions is on the one hand costly and on the other
useless, since not all feature attributes are necessarily relevant
to predict the failure event. Therefore, before the discretiza-
tion and sequentialization steps, we apply a feature selection
method, that computes themost relevant attributes in predict-
ing the breakdown1 event.

At this point, the resulting data set is ready to mine.

The failure chronicle mining step

In this step, we aim at discovering chronicles that represent
breakdown. This type of chronicles is called failure chronicle
and is introduced in Definition 6.

Definition 6 (Failure chronicle) Assuming a chronicle CF =
(E, T ). We say that CF is a failure chronicle if and only if the

1 In this paper, we mean by “breakdown” a failure.

events that describe it are set according to their order of occur-
rence in the sequence, and that the end of the chronicle is the
event that represents the failure, i.e. for E = {e1 · · · en|ei ≤E

ei+1, i ∈ [1, n]}, en is the failure event.

To discover the frequent failure chronicles, we proceed in
two steps, namely:

1. Extraction of the frequent closed sequential patterns
fromour set of sequences.We recall here that in our pre-
processed data set, all sequences end with a breakdown
event. We chose in this step to extract the closed frequent
sequential patterns to produce efficiently a minimal set
of patterns that describe our sequences. Among the two
methods presented in “Related works” section, namely
ClosPan and ClaSP, we retained the second one because
of its confirmed efficiency (Antonio et al. 2013).

2. Extraction of the frequent chronicles. In this step, we
scan again the data set to extract the time constraints
related to the sequential patterns mined in the previous
step. This operation is performed by a new chroniclemin-
ing algorithm we introduce in “Clasp-CPM” section.

The failure prediction step

The generated failure chronicles is a set of sequential patterns
that describe the most frequent sequence of events that lead
to a failure machine. Chronicles provide not only the order of
occurrence of those events, but also the interval of time they
occur in. Therefore, when a new sequence of timestamped
events arrive, we can predict if it favours a breakdown or not
by comparing it to the set ofmined frequent failure chronicles
as well as the time interval it will probably happen. This step
is detailed in “Failure detection with chronicles” section.

Clasp-CPM

The first implementation of chronicle mining for predictive
maintenance (Sellami et al. 2018) handled few cases of time
constraints extraction. It was dependent on the length of the
patterns and treated these on a case-by-case basis. Moreover,
chronicle extraction needed two steps of time constraints
extraction: one for the events on the patterns, and another to
extract constraints between regular events and the breakdown
event. To overcome these two major setbacks, two notions
were used: subsequence graphs and suffix data sets.

First, we introduce a sample data set which will be used
for examples in this section.

Definition 7 (Closed Frequent sequential patterns) Let D be
a sequence data set, i.e. D = {si }Ni=1 where ∀i ∈ �1, N�, si
is a sequence.
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DB Feature Selection Discretization Sequentiali-zation

Pre-processing

Sequential
Pattern Mining

Time Constraints
Extraction

Failure Chronicle
Generation

Failure Chronicle Mining

Failure
Detection

Predictive
Maintenance

Fig. 3 The different steps describing our approach

Table 2 Sample data set Seq. id Events

1 ({A, C, E}, 1), ({B, D, F}, 3), ({A, C, F}, 4), ({A, C, E},8), ({B, D, E}, 10)

2 ({A, C, F}, 2), ({A, D, F}, 6), ({A, C, E},7), ({B, D, F}, 9)

3 ({A, D, F}, 0), ({A, C, F}, 3), ({A, C, F},7), ({B, D, F}, 8),({B, C, E}, 12)

4 ({A, C, F}, 1), ({A, D, F}, 3), ({A, C, E},4), ({B, D, F}, 7), ({A, D, E}, 9)

5 ({A, D, F}, 2), ({A, C, F}, 4), ({B, D, E}, 7)

Let FS be the set of frequent sequential patterns for a
given minimum support minsupp, i.e.

FS := {s|s ⊆ si ∈ D ∧ supp(s) ≥ minsupp}

Then, we define CS, the set of frequent closed sequences
as:

CS := {s|s ∈ FS ∧ (�β ∈ FS|s ⊆ β ∧ supp(s) = supp(β))}

One can easily notice that CS is a subset of FS.

Example 2 (Closed frequent sequences examples) Referring
to Table 2, with a relative minsupp of 0.8, one can see that
the sequences 〈A〉, 〈A, A, B〉 and 〈A, A, A, B〉 are frequent
sequences (they all appear in at least 4 of the sequences).
However, 〈A〉 is not closed, as it has a support of 1 and is
included in 〈A, A, B〉, which also has a support of 1. On the
contrary, 〈A, A, B〉 is a closed frequent sequence, since, even

if it is included in 〈A, A, A, B〉, the support of the latter is
0.8.

Thus, we see that by keeping closed patterns only, we filter
simpler, less informative patterns, but we retain those which
are more frequent than other, more complex patterns.

Definition 8 (Concatenation operators) Let s = 〈α1, . . . ,

αp〉 and s′ = 〈β1, . . . , βl〉, where αi and βi are sets. Let ♦•
be the concatenation operator. We define two kind of con-
catenations (Yin et al. 2012):

– ♦i : s ♦i s′ = 〈α1, . . . , αp−1, (αp
⋃

β1), β2, . . . , βl〉.
Here, the first element of s′ merges with the last ele-
ment of s, and then we just append the rest of the second
sequence.

– ♦s : s♦s s′ = 〈α1, . . . , αp−1, αp, β1, β2, . . . , βl〉. This is
usual concatenation.
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Table 3 Sample suffix database:
P is the failure event,
s-concatenated at the end of
each sequence

Seq. id Events

1 ({A, C, E}, 1), ({B, D, F}, 3), ({A, C, F}, 4), ({A, C, E},8), ({B, D, E}, 10), ({P}, 10)

2 ({A, C, F}, 2), ({A, D, F}, 6), ({A, C, E},7), ({B, D, F}, 9), ({P}, 9)

3 ({A, D, F}, 0), ({A, C, F}, 3), ({A, C, F},7), ({B, D, F}, 8), ({B, C, E}, 12), ({P}, 12)

4 ({A, C, F}, 1), ({A, D, F}, 3), ({A, C, E},4), ({B, D, F}, 7), ({A, D, E}, 9), ({P}, 9)

5 ({A, D, F}, 2), ({A, C, F}, 4), ({B, D, E},7), ({P}, 7)

Definition 9 (Suffix database) Let ω be a sequence. Dω is
said to be the suffix database associated to D if:

∀s ∈ Dω, ∃s′ ∈ D, s = s′ ♦s w

that is if ω is a suffix for all sequences in Dω. We will note
FSω and CSω the set of frequent sequences and the set of
closed frequent sequences associated to the suffix database
Dω, respectively.

Remark 1 – We have defined the suffix database with the
s-concatenation operator as i-concatenation doesnot pre-
serve the closeness property we need. See B for further
details.

– In our application, we will use a sequence of length 1 for
ω.

– #D = #Dω, i.e. D and Dω have both the same number
of sequences.

– FS ⊆ FSω, more precisely FSω = FS ∪ {s ♦s ω|s ∈
FS}. This tells us that if a sequence is frequent in D,
then it is also frequent in Dω, but the converse does not
hold.

– sω ∈ FSω ∧ sω = s ♦s ω ⇒ s ∈ FS.

Example 3 (Suffix database) In Table 3, we have built a suffix
database, by s-appending the failure itemset {P} at the end of
each sequence. One can choose the timestamp to be different
to that of the last element, but the added time should be
constant to keep a coherent analysis later.

Proposition 1

CSω = {s ♦s ω|s ∈ CS}

Lemma 1 Let ω be the sequence associated to the suffix
database Dω built from the database D. Then

∀s ∈ FS, ∃s′ ∈ FSω, s′ = s ♦s ω : supp(s) = supp(s′)

Proof Reader may refer to 8 for the detailed proof. ��
This proposition is useful to prove that every closed fre-

quent sequence of a suffix database ends with the sequence
ω. We use this fact to improve the previous algorithm given,
as there will be only one ExtractTimeConstraints procedure
and there will be no union of chronicles at the end.

Proof Reader may refer to A for the detailed proof of
Proposition 1. ��

Subsequence graph

A subsequence graph is a data structure built to represent all
occurrences of a sequence within another sequence. It was
designed in the image of the Knuth–Morris–Pratt algorithm
for word matching.

Definition 10 (Subsequence graph) Let s = 〈s1, . . . , sn〉 be
a sequence and p = 〈p1, . . . , pm〉, a pattern. A susbequence
graph is a couple (X ,U ) where X are the vertices andU are
the (directed) edges. Vertices vi, j correspond to elements of
the pattern pi , indexed by their position on s, j . There is an
edge from vi, j to vk,l iff:

– k = i (both pattern elements are the same) and vk,l , l > j ,
is the first next occurrence (of such pattern element) in s.

– k = i + 1 and there is no edge from vi, j to vk,m with
m < l (vk,l is the first occurrence of pi+1 after vi, j ).

Algorithm 1 Subsequence Graph Construction
Require: S : Sequence, P : Pattern
Ensure: G : Subsequence Graph
1: minQ ← 0,maxQ ← 1
2: for (i ← 0; i < length(P); i ← i + 1) do
3: G[i] ← ∅
4: for (i ← 0; i < length(S); i ← i + 1) do
5: current ← S[i]
6: for ( j ← minQ; j < maxQ; j ← j + 1) do
7: if P ⊆ current then
8: insertedNode ← addNode(G, i, j)
9: if j > 0 then
10: linkLayer( j − 1, insertedNode)
11: if maxQ < length(P) then
12: maxQ ← maxQ + 1
13: if length(P) + i + 1 > length(S) then
14: minQ ← minQ + 1

Example 4 (Graph construction) Let us take the pattern
〈A, B, B,C〉 and the sequence 〈B, A,C, B, B, A,C, A, B,

C, B, A, B,C〉. Table 4 includes the enumerated sequence:
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Table 4 Sequence enumeration

B A C B B A C A B C B A B C

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A2

B1

C3

(a) After three steps

A2

B1 B4

B4

C3

(b) After four steps

Fig. 4 Subsequence graph: third and fourth steps

1. First, we initialize an empty list of lists, such that the
first element correspond to the occurrences of A, the sec-
ond one to the occurrences of B, the third one to the
occurrences of B following a B and the fourth one to the
occurrences of C .

2. Next, in the first step, B is placed in the second list. Then,
A is placed in the first list. In step three, C is placed in
the fourth list (Fig. 4a). Notice there are no links yet as
the elements, while they are individually in the pattern,
have not occurred in the order of the pattern.

3. During the fourth iteration, we find a second B. We pro-
ceed in four steps: B is placed in the third list, we add
links from the second list elements, without links to a
third list element, to this B element, then we add B to the
second list and we add links from the first list elements,
without links to a second list element, to this B (Fig. 4b).

4. We continue the process. During step seven, the graph
allows to extract the first occurrence of the pattern in the
sequence: 〈(A, 2), (B, 4), (B, 5), (C, 7)〉 (Fig. 5a).

5. Last, when the whole sequence has been treated, one
can perform pruning steps to remove the nodes with-
out links or that do not allow to extract a whole pattern
(Fig. 5b).

We devised this structure to be able to extract all the infor-
mation needed, namely timestamps and precedence relations
for each element of a pattern in a sequence. It is not consum-
ing in space, as each element is only referenced.

Multi-threading

The first step of CPM is frequent closed sequences mining,
which we found hard (if possible) to parallelize. Thus, we
enchanced the following steps, time constraint extraction and
chronicle building, with multi-threading.

Using aProducer–Consumer approach,wedefined the fol-
lowing schema :

1. Initialize a certain number of workers, a pool of extracted
closed patterns, a pool of time constraints sets and a pool
of chronicles.

2. (Time constraint extraction) For half the workers:

(a) Take a pattern from the pool.
(b) Extract the time constraints associated with it, i.e.

build a subsequence graph for each sequence inwhich
the pattern is found and use it to extract the con-
straints.

(c) Put the time constraints in the corresponding pool.
(d) Repeat until the pattern pool is empty.

3. (Chronicle Building) For half the workers:

– Take the constraints from the pool.
– Build a chronicle using the time constraints.
– Put the chronicle in the corresponding pool.
– Repeat until the constraint pool is empty.

An improvement would be to switch workers tasks when
one of the pools is empty, e.g. if the time constraint pool is
empty, then all workers are extracting time constraints, and
vice versa.

There is no race conditions when accessing the data set as
the sequences are not modified but only read. Our implemen-
tationuses blockingqueues and linkedblockingqueues (java)
for the pools. Here again, each element is a reference only, so
we do not significantly increase memory usage beyond the
extraction step.

Failure detection with chronicles

Clasp-CPM allows to mine failure chronicle. Semantically, it
mines events and indicators of failure. This kind of informa-
tion is useful to monitor machines and predict the failure.
Therefore, we intend to use these mined chronicles for
classification and prediction problems. We introduce the
algorithm FADE shown in Algorithm 2. The latter uses
the set of extracted failure chronicles as input. FADE tries
to match failure chronicle to a single sequence. To define
chronicle sequence match, we introduce the following defi-
nitions.
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A2 A6

B1 B4 B5

B4 B5

C3 C7

1

2

3

(a) Subsequence graph : seventh
step

A2 A6 A8 A12

B1 B4 B5 B9 B11 B13

B4 B5 B9 B11 B13

C3 C7 C10 C14

(b) Subsequence graph : useless nodes are marked to be
pruned

Fig. 5 Subsequence graph: final steps

Table 5 Sequences’ data set

Seq. id Events

1 (A,5), (B,7), (Failure, 9)

2 (A,5) (C,6) (B,7) (Failure, 9)

3 (A,2), (B,6), (Failure, 17)

Definition 11 (Chronicle cover) Assuming a sequence S =
〈(e1, t1), (e2, t2), . . . , (en, tn)〉 and a failure chronicle c. We
say that c covers the sequence SI D if and only if the events
represented by the chronicle belong to the sequence as well
as the time intervals between these events in the sequence
belong to the temporal constraints extracted by the chronicle,
i.e.,

C < ·S ⇔ ∀ei [t−, t+]e j ∈ C,

∃((e, t), (e′, t ′)) ∈ S ∧ e = ei , e
′ = e j ∧ t ′ − t ∈ [t−, t+].

Definition 12 (Supported failure chronicle) Assuming a
sequence S and the set of failure covering chronicle ,i.e.,
C = {c ∈ C, c < ·S}. We say that C f is the supported
failure chronicle if and only if it has the maximal support
among all chronicles of the set C, i.e., C f = c ∈ C ∧ �c′ ∈
C ∧ supp(c′) > supp(c).

Let explain this principle in the following example.

Example 5 Assuming the following chronicle: A[0,3]B,
B[0,7]Failure and the three sequences depicted in Table 5.

For the first sequence, the duration between events A and
B is 2 instants,2 that belongs to [0,3], and between B and the

2 In this paper, we mean by “instant” a given unit of time.

failure is 2 instants belongs to [0,7]. So the occurrence’s time
of the failure is in the interval illustrated by the chronicle,
so we have classified this sequence correctly, likewise for
the second sequence. Whereas for the third sequence, the
interval between A and B is 4 does not belong to [0,3], and
between B and the failure 11 does not belong [0,7]. In this
sequence, the failure that has appeared but is not validated
by this chronicle. So this failure will not be predicted and
the duration of the sequence will be misclassified. Suppose
we have two chronicles: C1 = A[0,3]B, B[0,7]Failure, C2 =
C[0,9]Failure. The second sequence in the Table 5 {(A,5)
(C,6) (B,7) (Failure, 9)} is covered by these two chronicles,
so to have a relevant prediction, we must choose one of the
two chronicles. The chronicle that has the highest support in
the data set will be kept.

In this example, the first chronicle covers the first two
sequences, so supp(C1) = 2, and the chronicle C2 only cov-
ers the second sequence, so supp(C2) = 1, subsequently the
supported failure chronicle for this sequence is the chronicle
C1.

Definitions 11 and 12 are implemented in Algorithm 2.
First, the algorithm uses the coverage procedure to check
whether the processed sequencematches at least one element
from the set of chronicles. This procedure takes as parameter
a sequence and a set of chronicles. This process ensure that
for a single chronicle, only the covering chronicle with the
highest support is retained.

Experimentation and results

To validate our approach, we have performed a large set of
experiments. Two aspects were subjected to evaluation; the
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Algorithm 2 Failure Detection with Chronicles
Require: S: Sequence, C: Chronicles set
Ensure: C f
1: C f ← ∅, Struct Tab[]
2: if (COV ERAGE(S, C) �= 0) then
3: for (i=0; i<Tab.length, i++)
4: for (j=0; j< C.length, j++)
5: Tab[i] ← C[j]
6: end for
7: end for
8: C f ← Tab[0]
9: for (i=1; i<Tab.length, i++)
10: if supp(Tab[i]) > supp(C f ) then

C f ← Tab[i]
11: if C f �= ∅ then
12: return C f

performance in term of resources’ cost, as well as the predic-
tion quality of the machine failures. As the costly part of our
approach is mining the frequent chronicles, we experimented
Clasp-CPM on both synthetic data and a real industrial data
set. Then,we experiment the quality of failure prediction, i.e.,
the FADE algorithm on the real data set only. To this aim, we
used the cross validation principle (Stone 1974) as it is the
most used in literature. We compared FADE with the state-
of-the-art chronicle mining based approaches. Our approach
not only predicts failure, but also its time interval. Classi-
cal classification approaches like K-Nearest Neighbours or
Long Short Term Memory (LSTM) (Malhotra et al. 2015)
to cite a few are unable to consider the time dimension nei-
ther mined pattern for training, that’s why they are ignored
in this experimental study. All experiments were performed
on a personal computer equipped with a 2.5GHz processor
and 16 GB main memory under the Microsoft Windows OS.

Experimental data sets

As mentioned above, synthetic data sets were generated to
evaluate the scalability of Clasp-CPM according to several
parameters we identified. These parameters are the num-
ber of sequences in the data set (denoted DB), the size
of a single sequence (denoted seq_si ze), the maximum
number of items (also called the dictionary size, denoted
dic_si ze) and the maximum number of items per event
(denoted max_i tems/event). Our generator produces ran-
domly a set of time-stamped sequences according to the
parameters above. The experiments presented in the next
subsection consists in comparing the performance of Clasp-
CPM to existing algorithms over several generated data sets
where the parameters in question were varied.

In addition, our experiments were performed on a real
industrial data set; the SECOM data set (McCann et al.
2008). It consists on a set of measurement data captured from
senors installed on the machines of a manufacturing produc-

tion line. Each row contains a set of measures and signals
produced by the machine, its status (1 for normal running
and −1 for a failure) and a time-stamp (the instant where the
machine measures and status were observed). The SECOM
data set includes 590 attributes and 1567 records. To mon-
itor the semi-conductor manufacturing process, these data
are mined. However, to benefit from the concept of chroni-
cles, data have to be pre-processed, hence the discretization
and the sequentialisation performed of the raw SECOMdata.
Feature selection is also achieved to reduce dimensionality
of data, and to keep only the relevant measures that affect at
most the machine status.

Evaluation of the chronicle mining phase

In this first part, we confrontClasp-CPM to other algorithms
of the state-of-the-art using synthetic data sets.We compared
it to a previous brute-force algorithm called CPM (Sellami
et al. 2018), as well as DCM (Dauxais et al. 2015) and FACE
(Dousson and Duong 1999). In our experiments, we used
different synthetic data sets to test the effect of several param-
eters on the results. Table 6 shows the number of generated
chronicles by the aforementioned algorithms for a range of
support threshold that goes from 0.4 to 1 for three different
synthetic data sets where we change seq_si ze, dic_si ze and
max_i tems/event .

As Clasp and Clospan extract the same number of closed
patterns (Antonio et al. 2013), the experiments show that
both Clasp-CPM and CPM generate the same number of
frequent chronicles. This number depends on the different
parameters used when generating the data set. Obviously,
it increases considerably while increasing the parameters’
values. These same experiments done on FACE algorithm
(Dousson and Duong 1999) show that this algorithm gener-
ates the highest number of chronicles, since it is based on
Apriori algorithm. In fact, Apriori extracts all the frequent
patterns, not only the closed frequent ones. In our introduced
approach, we bypassed the Apriori-like methods to avoid
redundant chronicles, and to optimise the performance of
our chronicle mining step. On the other hand, DCM (Daux-
ais et al. 2015) was designed to consider discriminancy in
data, so the comparison with our algorithm is not straightfor-
ward.

Extracting chronicles was only possible for threshold val-
ues greater than 0.7 as shown in Table 6. One hypothesis for
these results is, as alreadymentioned, the use of the discrimi-
nance constraint. This parameter is used in the epidemiology
algorithm to distinguish two populations (positive and nega-
tive) and to extract patterns that are frequently present in the
positive base, which is not really the case in our approach
since we only process a single data set (population) at a time.

Table 6 shows that the maximum size of a sequence is the
parameter that affects themost the number of obtained chron-
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Table 6 Number of chronicles
of Clasp-CPM, CPM, DCM and
FACE w.r.t data set size,
sequence’s size, dictionary size,
maximum events/item and
support threshold

Threshold Clasp-CPM CPM DCM FACE

DB 500 ; seq_size = 10 ; dic_size = 5 ; max_items/event = 3

0.4 70,103 70,103 N/A 74,531

0.5 61,403 61,403 N/A 65,312

0.6 8156 8156 N/A 9703

0.7 7180 7180 8336 8854

0.8 471 471 514 630

0.9 380 380 483 520

DB 500 ; seq_size = 10 ; dic_size = 25 ; max_items/event = 7

0.4 86,723 86,723 N/A 89,641

0.5 81,641 81,641 N/A 85,644

0.6 71,187 71,187 N/A 74,290

0.7 11,280 11,280 13,002 13,383

0.8 6521 6521 6701 6824

0.9 4236 4236 4812 5148

DB 500 ; seq_size = 15 ; dic_size = 30 ; max_items/event = 7

0.4 135,681 135,681 N/A 140,023

0.5 126,550 126,550 N/A 127,670

0.6 27,930 27,930 N/A 28,354

0.7 20,998 20,998 22,601 21,564

0.8 930 930 941 950

0.9 784 784 846 897

icles.On the other hand, increasing the dictionary size and the
maximumnumber of items per event leads to a small increase
of the number of chronicles. This behaviour is explained
by the fact that small sequences generate fewer closed pat-
terns. A larger sequence size induces more frequent closed
sequential patterns, which increases the number of gener-
ated frequent chronicles. This experiment result supports
our choice to use an attribute selection method in the pre-
processing step of our approach. Indeed, the more attributes
(measures) we consider, the more our sequences are long.
That’s why we consider only relevant attributes, avoiding a
huge number of “irrelevant” chronicles that would make our
approach more costly, without a significant impact on the
prediction step.

The results shown in Tables 7 and 8 confirm the effect
of the sequence sizes on the performance of the tested algo-
rithms. Indeed, this parameter increases the number of mined
patterns which increases time execution and memory con-
sumption to compute the temporal constraints between the
different pairs of events in each chronicle. We can see that
varying parameters DB, dic_si ze andmax_i tems/event do
not change considerably the performance of the algorithms,
in opposite to the variation of seq_si ze. Another main obser-
vation, Clasp-CPM outperforms all its competitors in term of
time execution, especially CPM and FACE (where compari-
son is fair in term of resulted chronicles). About the memory
consumption, Clasp-CPM uses clearly less memory espe-

cially when the support threshold exceeds 0.7. We note that
FACE consumes more memory than the other algorithms
since it generates more chronicles than the other approaches.
We note also that used memory increases lightly each time
the frequency threshold decreases for all approaches. This is
explained by the fact that a lower frequency threshold gen-
erates more frequent sequences and thus all algorithms need
more memory space to store them.

The performance evaluationwas also done on the SECOM
data set. The interpretations done on the synthetic data sets
are confirmed with our real data set as shown in Figs. 6
and 7.

Tables 9 and 10 show the number of generated chronicles
with respect to the variation of the support threshold. As
remarked with the synthetic data experiments, the number
of chronicles extracted by FACE is huge. This is explained
by the kind of patterns mined by FACE that considers all
frequent ones while Clasp-CPM and CPM consider only the
close ferquent chronicles.

From Table 10, we notice that CPM, Clasp-CPM and
FACE generate chronicles with the same maximum size.
Clasp-CPM outperforms FACE in the sense that it decreases
the number of extracted chronicles as well as the execution
time, but it generates the same larger patterns, also extracted
by the FACE algorithm.

Choosing a high frequency threshold may be interesting
in the sense that it extracts the patterns that have a higher
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Table 7 Time consumption of
Clasp-CPM, CPM, DCM and
FACE w.r.t data set size,
sequence’s size, dictionary size
and threshold

Threshold Time (s)

DB 1000 ; seq_size 15 ; dic_size 20 ; max_items/event = 10

Clasp-CPM CPM DCM FACE

0.4 52.325 0.24978 × 105 N/A 0.25645 × 105

0.5 10.876 0.228 × 105 N/A 0.2361 × 105

0.6 3.298 0.185 × 105 N/A 0.22284 × 105

0.7 1.388 0.16 × 105 10.89 0.1836 × 105

0.8 0.575 0.4 × 104 2.154 0.432 × 104

0.9 0.194 0.3516 × 104 1.36 0.3684 × 104

DB 5000 ; seq_size20 ; dic_size 40 ; max_items/event = 20

Clasp-CPM CPM DCM FACE

0.4 91.421 0.30456 × 105 N/A 0.30888 × 105

0.5 16.191 0.29268 × 105 N/A 0.30096 × 105

0.6 5.294 0.21475 × 105 N/A 0.2264 × 105

0.7 2.3 0.19348 × 105 18.297 0.21636 × 105

0.8 0.94 0.41032 × 104 7.486 0.5113 × 104

0.9 0.297 0.41068 × 104 5.31 0.43 × 104

DB 5000 ; seq_size 30 ; dic_size 40 ; max_items/event = 20

Clasp-CPM CPM DCM FACE

0.4 194.4 0.32154 × 105 N/A 0.3316 × 105

0.5 42.567 0.30741 × 105 N/A 0.31145 × 105

0.6 15.478 0.24156 × 105 N/A 0.2548 × 105

0.7 3.567 0.21735 × 105 35.64 0.224 × 105

0.8 2.731 0.588 × 104 16.751 0.67 × 104

0.9 0.935 0.496 × 104 8.241 0.549 × 104

relevance in the data set, but on the other hand it extracts a
smaller number of chronicles with a small size, which does
not help to evaluate the performance of our approach. In addi-
tion, in predictive maintenance, we need to have a sufficient
number of chronicles with an interesting size to be able to
efficiently predict the failures caused by the occurrence of a
long sequence of events.

Evaluation of the prediction phase

To evaluate the quality of prediction, we used four mea-
sures. The first is to compute the True Positive Rate of the
extracted chronicles. It is used tomeasure the number of posi-
tive sequences that are correctly classified, i.e., the sequences
for which there is at least one chronicle allowing to predict
the appearance of the failure without taking into considera-
tion the temporal constraints. Indeed, for each sequence, if
its events are described by the chronicle, we have correctly
classified the sequence’s failure and the chronicle could have
predicted what are the events which caused this breakdown.
Otherwise, if there is no chronicle that could describe the

failure for a given sequence, therefore there is no prediction
of failure so the sequence was misclassified. The idea is to
bring the approach to a classification problem to apply the
cross-validation method (Stone 1974).

For each value of f qmin , the chronicles are extracted
from the training sequences. Then, for the test set, we check
for each sequence, its membership in at least one chronicle
among those extracted. The number of sequences validated
by the chronicles is computed to estimate its percentage with
respect to the sequence set. This procedure is repeated 10
times to validate all the sequences of the data set. This is
the same principle used to compute the recall rate (Davis
and Goadrich 2006), which is defined by the number of rel-
evant instances found in relation to the number of relevant
instances in the data set.

The True Positive Rate is computed according to this for-
mula:

T P

T P + FN
(1)
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Table 8 Memory consumption
of Clasp-CPM, CPM, DCM and
FACE w.r.t data set size,
sequence’s size, dictionary size
and threshold

Threshold Memory usage (GB)

DB 1000 ; seq_size 15 ; dic_size 20 ; max_items/event = 10

Clasp-CPM CPM DCM FACE

0.4 1.102 1.34 N/A 1.41

0.5 0.6 0.7 N/A 0.81

0.6 0.23 0.64 N/A 0.72

0.7 0.06 0.4 0.16 0.68

0.8 0.026 0.05 0.053 0.07

0.9 0.0055 0.03 0.0071 0.05

DB 5000 ; seq_size 20 ; dic_size 40 ; max_items/event = 20

Clasp-CPM CPM DCM FACE

0.4 2.24 2.67 N/A 2.89

0.5 0.62 0.8 N/A 0.95

0.6 0.45 0.72 N/A 0.83

0.7 0.068 0.65 0.086 0.78

0.8 0.041 0.07 0.0541 0.087

0.9 0.012 0.07 0.046 0.084

DB 5000 ; seq_size 30 ; dic_size 40 ; max_items/event = 20

Clasp-CPM CPM DCM FACE

0.4 2.86 3.01 N/A 3.24

0.5 1.8 2.1 N/A 2.56

0.6 1.26 1.54 N/A 2.04

0.7 0.16 0.89 0.23 0.93

0.8 0.11 0.36 0.184 0.38

0.9 0.052 0.31 0.078 0.35
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Fig. 6 Memory consumption of Clasp-CPM, CPM, DCM and FACE

where TP (the true positive results) is the number of validated
sequences, for which we found at least one chronicle that
could have predicts the failure, and FN (the false negative
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Fig. 7 Execution Time of Clasp-CPM, CPM, DCM and FACE

results) is the number of sequences for which no chronicle
could predict the failure.

Indeed, if there is no chronicle that describe a sequence
S, then we cannot classify the sequence as a “failure”, and
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Table 9 Comparison of the three algorithms according to the number of generated chronicles

minsup Clasp-CPM CPM (Sellami et al. 2018) DCM (Dauxais et al. 2015) FACE (Dousson and Duong 1999)

0.4 3429 3429 N/A 400,147

0.5 911 911 N/A 2605

0.6 206 206 N/A 348

0.7 81 81 154 94

0.8 37 37 68 41

0.9 11 11 31 11

1.0 3 3 13 3

Table 10 Maximum size of chronicles according to f qmin

minsup Clasp-CPM CPM (Sellami et al. 2018) DCM (Dauxais et al. 2015) FACE (Dousson and Duong 1999)

0.4 6 6 N/A 6

0.5 4 4 N/A 4

0.6 4 4 N/A 4

0.7 3 3 16 3

0.8 2 2 13 2

0.9 2 2 12 2

1.0 2 2 4 2

F

B

A

[1,3]

[3,7] [2
,4
]

Fig. 8 Example of a chronicle

we state the “normal” case. However, all the sequences of
our data set lead to a machine failure, that’s why we consider
such a sequence classified as false negative.

Example 6 Let’s take the chronicle shown in Fig. 8 and the
four sequences depicted in Table 11.

In this example, the first three sequences are described
by the given chronicle, since according to this chronicle an
event A followed by a B causes a failure, whereas this is
not the case for the fourth sequence since the event D is not
described by the chronicle. So the true positive rate for this

example is:
3

3 + 1
= 75%.

The secondmeasurewe used evaluates the precision of the
results with consideration of the failure time, i.e., it estimates
the percentage of sequences for which time constraints are
extracted correctly. Indeed for each sequence, if the moment
predicted by the extracted chronicles is outside the failure

Table 11 Sequences’ data set Seq. id Events

1 (A,1), (B,2), (F,4)

2 (A,0), (B,3), (F,7)

3 (A,2), (B,6), (F,17)

4 (A,3), (D,5), (F,5)

appearance interval in the sequence, so the chronicle could
not extract the temporal constraints of this failure, and the
failure is classified as false positive. These interpretations
allow us to apply the following precision formula:

T P

T P + FP
(2)

Example 7 With the same data from the Example 6, the first
two sequences are classified as TP since the temporal con-
straints between events belong to those extracted by the
chronicle, whereas the third sequence is classified as FP
since the events are described by the chronicle but the tem-
poral constraints are not checked. So the precision rate is:
2

2 + 1
= 66.66%.

These two previous measurements allow to compute the
F-measure as follows:

2T P

2T P + FP + FN
(3)
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Table 12 True positive rate of FADE and FACE approaches

f qmin FADE FACE

1 83.63% ± 6.43% 84.6% ± 6.1%

0.9 85.45% ± 4.98% 87.81% ± 3.48%

0.8 87.27% ± 7.50% 89.22% ± 5.25%

0.7 89.09% ± 6.68% 89.89% ± 6.3%

0.6 90.82% ± 7.93% 90.90% ± 7.2%

0.5 90.82% ± 7.93% 90.90% ± 7.2%

0.4 90.94 ± 5.12% 91.2 ± 6.04%

Table 13 Precision of FADE and FACE approaches

f qmin FADE FACE

1 84.58% ± 6.55% 78.53% ± 5.41%

0.9 84.62% ± 6.16% 79.49% ± 6.18%

0.8 86.22% ± 6.55% 80.15% ± 7.23%

0.7 86.83% ± 6.43% 83.49% ± 6.25%

0.6 87.49% ± 5.26% 84.5% ± 6.31%

0.5 88.71% ± 4.41% 84.9% ± 5.46%

0.4 89.61% ± 3.71% 86.52 ± 4.12%

Table 14 F-measure of FADE and FACE approaches

f qmin FADE FACE

1 84.1% ± 6.48% 81.45% ± 5.73%

0.9 85.03% ± 5.5% 83.44% ± 4.45%

0.8 86.74% ± 6.9% 84.44% ± 6.08%

0.7 87.95% ± 6.55% 86.57% ± 6.27%

0.6 89.12% ± 6.32% 87.58% ± 6.73%

0.5 89.75% ± 5.66% 87.79% ± 6.21%

0.4 90.27% ± 4.3% 88.8 ± 4.9%

Taking always the same example, the F-measure value will

be equal to:
2 × 2

2 × 2 + 1 + 1
= 66.6%.

The literature is plentiful of other measures that use the
number of true negatives such as specificity measure (also
called the true negative rate). It measures the proportion of
negatives that are correctly identified. In our application case,
we can not apply them because a sequence is classified as a
true negative if the chronicles are able to predict normal cases
for a sequence where there is no failure. This class can not
be used in our case since all the available sequences lead to
failures. Furthermore, a chronicle is made to predict a failure
and not the normal operation of a machine.

Tables 12, 13 and 14 show the results obtained for the
three aforementioned measures. The computed values vary
between 80 and 90% which are encouraging results for our
approach. We also note that the values decrease by increas-
ing theminimum frequency threshold. Indeed, increasing the
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Fig. 9 Precision of results of Clasp-CPM according to the number of
selected attributes for f qmin = 0.8

frequency threshold will produce a set of the most relevant
patterns, but on the other hand, it affects our measures since
the number of chronicles will decrease, so the test sequences
will have less chance of being validated by extracted chron-
icles. Therefore, we can use small values of the frequency
threshold. It will produce a best quality of prediction. How-
ever, as shown in the previous section, small values of the
frequency threshold will decrease the performance of the
system in term of running time and memory consumption.
That’s why, we should look for a trade-off between perfor-
mance and quality by decreasing the frequency threshold
until our mining algorithm finds scaling difficulties.

These same experiments are performed on the FACE algo-
rithm. Note that the TPR values are slightly larger than those
found by the FADE algorithm. This is due to the fact that
FACE is based on Apriori so it extracts more frequent chron-
icles. But on the other hand, the precisionwill decrease, since
the time constraints computed by FACE are as close as pos-
sible to 0, so some chronicles will not be extracted. Unlike
our approach, where Clasp-CPM generates the largest time
constraints, and therefore the test sequences are more likely
to be validated, which increases the precision of the results.
We performed another experiment to evaluate the impact of
the feature selectionprocessingon theprecisionof the results.
As shown in Fig. 9, the number of attributes that lead to an
optimum value of the precision is 10 (86.22%). This fact
argue our choice to perform such a pre-processing method
before applying Clasp-CPM. With a such small number of
attributes, we can produce a “precise” classifier and ensure at
the same time avery acceptable performanceof our approach,
which is affected by the number of attributes we consider.
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Conclusion

This article extends an existing work (Sellami et al. 2018),
where we dealt with the problem of frequent chronicle
mining for predictive maintenance. We have discussed the
techniques of frequent chronicle mining whose purpose is
to extract from frequent sequences, the events that trigger
machine failures. This process considers the time constraints
between the different events, which allow the prediction of
the failure event. In this article we improved our approach.
Weapplied theClasp principle (Antonio et al. 2013) to extract
closed patterns from which we mine the frequent chronicles
using a new algorithm we called Clasp-CPM. We imple-
mented it using a multi-thread environment. These improve-
ments have considerably impacted the performance of our
method as shown in the experiments. We also improved the
evaluation of our approach especially by using configurable
synthetic data sets. The main finding is that performance is
greatly impacted by sequences length in the mined data set.
When dealing with the real data set, whose attributes number
is huge, we applied an attribute selection method to reduce
the number of measures to consider. This pre-processing task
has reduced the length of sequences, which impacts the per-
formance of the mining phase, without affecting the quality
of prediction as shown in the experiments.

In future work, we will focus on the probability of occur-
rence of a failure in given temporal constraints using specific
techniques of datamining, i.e. uncertain data,which allows to
evaluate the trust of the data and subsequently use uncertain
ones along with the techniques of chronicle mining. We are
investigating extending deep learning algorithm like LSTM
to predict failure and time to failure as well.
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Appendix A Proofs

Proof of Lemma 1 Let us prove supp(s′) ≤ supp(s) and
supp(s′) ≥ supp(s):

– Since s is contained within s′, any sequence containing
s′ also contains s. Thus, supp(s′) ≤ supp(s).

– We are to prove that concatenation withω as a suffix does
not reduce the support of a given sequence in FSω, i.e.
supp(s′) ≥ supp(s).
Let γ = {

γ1, γ2, . . . , γsupp(s)
}
be the set of sequences of

Dω containing s. Then, we can write any γi as follows:

γk = α1 ♦i 〈s1〉 ♦i α2 ♦i · · · ♦i 〈sp〉 ♦i αp+1 ♦i ω

where αi , i ∈ �1, p + 1� are the remaining sequences
needed to build γk .
One can easily notice that s′ is contained within γk .
Thus,∀k ∈ �1, supp(s)�, s′ ⊆ γk . Ultimately, supp(s′) ≥
supp(s).

��
Proof of proposition 1 Let us prove CSω ⊆ {s ♦s ω|s ∈ CS}
and {s ♦s ω|s ∈ CS} ⊆ CSω.

– Let us use a reduction ad absurd argument.
Assume ∃sω ∈ CSω, �s ∈ CS, sω = s ♦ ω. Let sω =
〈sω,1, sω,2, . . . , sω,p〉. Let us consider γ = {γi }supp(sω)

i=1
the set of sequences of Dω containing sω. Then, as ∀i ∈
�1, supp(sω)�, γi ∈ Dω, we can write γi as follows:

γi = α1 ♦ 〈s1〉 ♦ α2 ♦ . . . ♦ 〈sp〉 ♦ αp+1 ♦ ω

where αi , i ∈ �1, p + 1� are the remaining sequences
needed to build γi .
Then, let s′

ω = sω ♦ ω. This sequence contains sω, i.e.
s′
ω is a super-sequence of sω. Moreover, as per Lemma
1, supp(sω) = supp(sω ♦ ω). Thus, sω is not closed, so
sω /∈ CSω, which is absurd. Therefore, ∀sω ∈ CSω, ∃s ∈
CS, sω = s ♦ ω.

– Let us consider sω = s ♦ ω with s ∈ CS. Let us show
that sω ∈ CSω.

– s ∈ CS ⇒ s ∈ FS, so from lemma 1, supp(sω) =
supp(s). Moreover, let {γi } be the sequences of D
where s occurs, then sω occurs in every sequence of
{γi ♦ ω} ⊆ Dω. So sω ∈ FSω.

– Let us use a reductio ad absurdum argument. Let us
assume ∃βω ∈ FSω, supp(sω) = supp(βω) ∧ sω ⊆
βω. Let βω be of the form β ♦s ω, so β ∈ FS,
without loss of generality. Lemma 1 gives us that
supp(sω) = supp(s) and supp(βω) = supp(β), so
supp(s) = supp(β). In addition, we have s ⊆ β.
Therefore, s /∈ CS, which is absurd. Hence, there
exist no βω in FSω with same support as and which
contains sω. ��

Appendix B Suffix database with
i-concatenation

In Table 15, we consider a version of the suffix database
presented in Table 3 but with i-concatenation.

Let us recall the motivation to build a suffix database is
to always extract the last event of a sequence (corresponding
to a failure in our application), so that we do not have to
re-check the database to extract such event or do case-based
approaches for each sequence. Moreover, we would like to
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Table 15 Sample suffix
database with i-concatenation:
P is the failure event, s-append
at the end of each sequence

Seq. id Events

1 ({A, C, E}, 1), ({B, D, F}, 3), ({A, C, F}, 4), ({A, C, E}, 8), ({B, D, E, P}, 10)

2 ({A, C, F}, 2), ({A, D, F}, 6), ({A, C, E}, 7), ({B, D, F, P}, 9)

3 ({A, D, F}, 0), ({A, C, F}, 3), ({A, C, F}, 7), ({B, D,F}, 8), ({B, C, E, P}, 12)

4 ({A, C, F}, 1), ({A, D, F}, 3), ({A, C, E}, 4), ({B, D,F}, 7), ({A, D, E, P}, 9)

5 ({A, D, F}, 2), ({A, C, F}, 4), ({B, D, E, P}, 7)

keep the same number of closed frequent sequences, as this
number is an important part of their discrimination role.

The problem with i-concatenation is that the resulting
suffix database can produce a closed frequent sequences
set with P missing from some patterns, and can eventually
produce more sequences. Using the i-concatenation suffix
database, and still considering a relative threshold of 0.8,
we can see that 〈A, A, A, B〉 is closed (support of 0.8). It
is contained within 〈A, A, A, {B, P}〉 (support of 0.6) and
〈A, A, A, {A, P}〉 (support of 0.2), but support of both of
these sequences fall short to the one of 〈A, A, A, B〉. Thus,
equality of Proposition 1 does not hold, and one cannot
ensure we will have the same number of closed frequent
sequences, nor that the failure event will be contained within
every extracted pattern.
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