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Abstract
Motivated by the increasing demand and highly customized products, accurate and up-to-date information about the manu-
facturing process become essential to meet these requirements. In manual assembly activities, performing theoretical plan-
ning in simulation environments is a crucial procedure to detect and avoid unreasonable assembly operations. However, 
the deviations between theoretical and actual assembly actions would result in the failure of the manual assembly planning. 
Therefore, the verification for the manual assembly planning is significant to ensure the correctness of the actual assembly 
operations, performing a convergence between the cyber and physical world. The challenges involved in retrieving and 
utilizing the actual data about the manual activities on a shop floor. In this paper, a self-contained wearable tracking system 
is proposed and applied to collect the shop-floor data during the manual assembly operations. And then, an unsupervised 
classification method is applied to empower semantic knowledge to the shop-floor data derived from the workplace. Thus, 
an automatic spatial–temporal verification for manual assembly planning is carried out, providing indicators to optimize the 
current manual assembly planning. Experimental results illustrate that the proposed work can perform the spatial–temporal 
verification for manual assembly task and indicate evidence to improve the manual assembly planning objectively.

Keywords Spatial–temporal verification · Manual assembly planning · Data-driven · Shop floor · Wearable system

Introduction

In assembly activities, many manual operations in the shop 
floor are involved, and which is a critical and time-consum-
ing section for product development. Research indicates that 
assembly costs 50% of the production developing time while 
nearly takes up 20% of the total manufacturing time (Pan 
2005). Especially in manual assembly, many types of work 
are manually done by operators repetitively. If the assembly 
planning process is not well-designed, it causes not only the 
lack of productivity but also the occupational diseases of 
workers. In order to ensure the correctness of manual opera-
tions, assembly planning is an essential procedure before 
the execution of the actual assembly task. What is more, 

market demand for individualization leads to a continuously 
increasing number of product variants (Lasi et al. 2014), 
and different assembly tasks are expected to fulfill personal-
ized requirements, making assembly planning facing various 
challenges.

Therefore, a reasonable process planning verification 
for manual assembly activities is of significant, leading the 
planned worker to an optimum cost without negative con-
sequence. Traditionally, assembly planning verifications 
are mainly based on experienced workers who carried out 
the predefined activities in simulation environments, and 
then various planning aspect assessments for their actions 
are evaluated by experts (Lassalle et al. 2007). During this 
verification period, the manual assembly process is planned 
empirically at the beginning, and then engineers with the 
assistance of digital planning tools to evaluate the planning 
process by a set of metrics (such as costs, time and so on). 
Workers should perform the same planning process while 
changing planning parameters repeatedly until a good solu-
tion is obtained. For manual assembly, these approaches 
require prohibitive efforts for a broad adoption or they 
restrict process verification to few common variants, which 
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is regarded as a suboptimal solution because of arising 
insecurity of what the common variant is expected (Meulen 
and Seidl 2007). In addition, since the assembly planning is 
optimized by means of iterative improvements, it is consid-
ered costly and desired to be shortened as much as possible 
(Manns et al. 2018). Thus, a more efficient verification for 
manual assembly planning is expected to improve the intel-
ligent performance of the manual assembly operations.

Process planning verification for manual assembly with 
classical digital human modelling (DHM) is an attractive 
approach, which makes full process coverage economically 
in a virtual environment. Nevertheless, the inconsistencies 
between the virtual and real assembly process are inevitable 
(Agethen et al. 2016). In addition, to make the DHM act 
in a virtual environment, it is necessary to deduce realistic 
motion data at the shop floor. The motion capture system can 
record workers’ operations at the shop floor (Qiu et al. 2013) 
instead of data from virtual models, enabling data-driven 
verifications for manual assembly planning in smart manu-
facturing (Tao et al. 2018). However, due to the complex 
and dynamic scene in manual assembly, the current data 
collection technologies are not ready for collecting reliable 
and detailed data about the assembly process in the shop 
floor. Existing work measurement techniques are still rely-
ing on stopwatch measurements or manual video analysis, 
making them time-consuming and inadaptability to differ-
ent manual assembly scenarios (Bauters et al. 2018). What 
is more, large amounts of shop-floor data about the manual 
assembly process are discrete and messy, and there is an 
urgent demand to understand and extract valuable informa-
tion from the collected data, enabling semantic knowledge 
to the manual assembly operations.

In this paper, a self-contained tracking method to collect 
worker’s shop-floor data during the manual assembly pro-
cess is proposed, providing essential material for subsequent 
assembly planning verifications. Besides, due to the uncer-
tain movements of the operator when performing manual 
assembly task on the shop floor, the collected shop-floor 
data is disordered and confused. The machine learning based 
automated segmentation method is applied, empowering the 
shop-floor data with corresponding semantic knowledge. 
Then, a spatial–temporal verification for manual assembly 
planning is carried out, which can illustrate the deviation 
between the ideal assembly planning with the actual one. 
Thus, potential improvements about the current manual 
assembly planning can be deduced, providing indicators for 
the optimization of the existing manual assembly planning. 
Thus, the contributions of this paper are as followings:

1. Instead of the dependence on large amounts of sensors 
arranged on the shop floor, a portable self-contained 
tracking system is proposed to collect shop-floor data 
about workers’ manual assembly activities.

2. Based on the retrieved shop-floor data, an unsupervised 
machine learning method is applied to understand the 
worker-walking assembly actions by empowering the 
walking trajectory with semantic knowledge.

3. The data-driven spatial–temporal verification for existed 
manual assembly planning is carried out, revealing feed-
backs to confirm and improve the predefined assembly 
planning quantitatively.

This paper is structured as follows: “Related work” sec-
tion briefly reviewed the related work. In “Data collection 
and understanding” section described the proposed shop-
floor data collection and the corresponding semantic seg-
mentation method. In “Data-driven spatial-temporal verifi-
cation” section, the spatial and temporal verification for the 
current manual assembly planning are depicted. In “Experi-
ments” section, experiments for spatial–temporal verifica-
tion of the manual assembly planning are discussed. Finally, 
conclusions and future work of the research are presented.

Related work

In order to ensure rationality and efficiency for manual 
assembly planning, spatial and temporal parameters during 
the assembly process have to be planned before performing 
the actual assembly actions. Thus, the verification of the 
assembly planning process with shop-floor data is of signifi-
cance, which allows workers to evaluate assembly processes 
and address assembly issues. To cope with this issue, the 
methods about shop-floor data collection and verification 
about manual assembly task are two essential components, 
and we will present a literature review about the two aspects.

Shop‑floor data acquisition

Performing manual assembly planning in virtual environ-
ments is an economical method, where users at different 
locations can do manual assembly operations collabora-
tively, conducting the component verification and assembly 
process evaluation at the same time (Jayaram et al. 1997; 
Dan et al. 2009; Wu et al. 2012; Gao et al. 2016). Never-
theless, these collected data in simulation environments is 
not in-production facilities, and the assumptions for on-site 
assembly conditions based on virtual planning are not reli-
able. Previous research work also indicates that the spatial 
(Agethen et al. 2016) and temporal (Baines et al. 2003) 
parameters of real assembly operators deviate significantly 
from their ideal planning, and the inconsistencies between 
the virtual and real assembly process may cause the failure 
of the assembly execution for product development.

Therefore, in order to improve the reliability of the assem-
bly planning verification and enhance the human-centered 
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assembly workplace, the collected data about the assembly 
process on the shop floor is thus a necessity. RFID based 
method (Huang et al. 2008) is applied to collect and syn-
chronize the manufacturing data, and assembly parts can 
be tracked and traced in the shop floor. Based on advanced 
techniques such as sensor network and radio frequency iden-
tification, Liu et al. (2017) proposed internet of things ena-
bled intelligent assembly system for mechanical products. 
However, these methods pay more attention to the assembled 
products instead of workers during the manual assembly pro-
cess. To access the field data about workers’ operations in 
workplace, INTERACT (2016) is a representative project by 
arranging lots of low-cost and non-intrusive sensors in the 
workspace, the faster ramp-ups and first-time-right assembly 
process of the worker can be retrieved from the shop floor. 
The project indicated that the shop-floor sensing architec-
tures incorporated low-cost sensor systems for retrieving 
real-time data about human-based assembly activities are 
the foundation for assembly planning verifications.

Currently, the optical motion capture technology is 
widely applied to retrieve shop-floor data about the worker 
within the actual workplace. Usually, special markers are 
needed to be attached on the operators for these achieve-
ments (Du and Duffy 2007; Yang et al. 2013; Puthenveetil 
et al. 2015; Wang et al. 2016), and these methods can usu-
ally provide a good measurement accuracy. Nevertheless, the 
drawbacks are obvious: it is time-consuming to stick mark-
ers on the tracked operator, and the attached markers may 
be occluded with the movement of the worker (Ming et al. 
2013). With the rapid fall in the cost of computer vision, the 
marker-less motion capture method becomes a more attrac-
tive alternative to perform the shop floor data acquisition. 
Especially, when Microsoft releases the product Kinect, 
low-cost and friendly RGB-D sensors (acquiring RGB and 
depth image simultaneously) are widely used to track the 
assembly activities for the assembly planning verification. 
To collect and recognize worker activities in the assembly 
process, lots of RGB-D sensors are arranged in shop floor 
to acquire live data from an operational manufacturing cell 
without any guided or scripted work (Rude et al. 2015). To 
take into consideration the possible occlusions occur in 
the workplace, the arrangement of multi RGB-D sensor is 
expedient. Agethen et al. (2018) investigated walk paths of 
a worker in the shop floor by multi RGB-D sensors, and 
then spatial parameter verification by comparing the ideal 
trajectory to the real one is implemented. In order to ensure 
an overall measurement accuracy on the shop floor, Prabhu 
et al. (2015) deployed multiple RGB-D sensors by dividing 
the motion capture process into far and near motion-sensing 
zones. Nevertheless, these methods for shop-floor data col-
lection in the assembly process are classified as an outside-
in capturing style. As the name suggested, lots of optical 
sensors must be deployed reasonably within the shop floor 

in advance. Besides, many optical sensors should be rear-
ranged to avoid occlusions according to different manual 
assembly tasks. In addition, these methods are inadaptability 
to the varying assembly tasks, and all the existing arranged 
sensors should be redeployed when the manual assembly 
tasks change.

Therefore, a self-contained motion capture method, is 
more suitable and promising for worker-based field data 
retrieval in an actual workplace (Fang et al. 2017). As an 
inside-out motion capture method, it can determine the 
position and orientation of the operator in an unprepared 
industrial environment. Given portable and lightweight 
traits, the combination of an optical and inertial sensor is 
used in this paper for data retrieval on the shop floor. As an 
industrial wearable system to empower the human-centric 
ability (Kong et al. 2018), the portable device can percept 
workers’ movement for assembly activities in the shop floor. 
Moreover, to improve the wearing comfort of the portable 
devices for workers, the light-weight and low-power con-
sumption of the monocular visual-inertial system is given 
prior consideration in the paper.

Assembly planning verification

Generally speaking, the collected shop-floor data about 
worker operations from the manual assembly is discrete, 
noisy and disordered, and it is confusing to the decision-
maker. Thus, reasonable data process and usage are indis-
pensable for smart applications in manufacturing (Kusiak 
2017). Besides, as opposed to conventional manufacturing 
systems, the cognitive capabilities of highly skilled assembly 
workers are still a keystone to provide flexibility and reli-
ability in a modern production environment (Stoessel et al. 
2008). In order to cope with varying worker assembly tasks 
occurred in a real-world setting, the data-driven verification 
for manual assembly planning can supports decision-makers 
to perform a more reasonable improvement (Claeys et al. 
2015).

Therefore, automatic recognition and classification of 
the assembly operations from shop-floor data is worth 
studying for assembly planning verifications. Manns 
et al. (2016) summarized and compared different motion 
capture methods, and then a data-driven motion synthe-
sis approaches are proposed with the high-quality input 
data. Moreover, the principal component analysis (PCA) 
and a shannon-entropy-based quality measure were tested. 
Given the walk paths for assembly operators in a manual 
assembly varied widely from each other, Huikari et al. 
(2011) compared feature selection on collected data on 
an industrial assembly line, and PCA is applied to address 
the shop floor data. Agethen et al. (2018) introduced a 
probabilistic two-dimensional motion planner incorporat-
ing fine-grained information on human gait. Then, these 
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data were drawn from a multivariate Gaussian mixture 
model base on the real captured data, contributing to a 
better prediction quality of planning models by enabling 
production planning departments. Bauters et al. (2018) 
proposed a video-based system to analyze the manual line 
work, and then a work cycle classification method was 
applied to detect a problematic situation in the workflow, 
generating performance indicators for the operator dur-
ing the manual assembly. In summary, these methods are 
mainly focused on analyzing spatial parameters of the 
operator in the shop floor, providing effective verification 
for assembly planning according to the real shop-floor 
data. Besides, the time analysis of collected shop-floor 
data in manual operations is also important for the veri-
fication of manual assembly (Sahin and Kellegoz 2019). 
Hedman and Almstrom (2017) addressed the importance 
of updated and valid time data in planning and controlling 
production, and considered how they related to manufac-
turing system performance and improvement. For a walk-
ing-worker assembly system, Cevikcan (2014) developed 
a mathematical programming approach in assembly pro-
cesses, and the study can add value to industrial assembly 
systems in terms of raising engineering control for alloca-
tion activities. In summary, these researches mainly focus 
on the spatial or temporal analysis about the shop-floor 

data in manual assembly, lacking quantitative and seman-
tic feedback to perform spatial–temporal verification for 
the planned assembly planning.

Given the shop-floor data derived from the actual 
workplace, an unsupervised learning method is applied to 
empower semantic knowledge for manual assembly opera-
tions. And then, a spatial–temporal verification for manual 
assembly planning is proposed, declaring the deviation 
between the ideal assembly planning with the actual one. 
This assembly planning verification can be used to evaluate 
the manual assembly planning and result in a more reason-
able human-centered manual assembly environment.

Data collection and understanding

In order to perform the verification of the manual assem-
bly planning, the schematic of the proposed method is 
depicted in Fig. 1. Traditionally, before the execution of 
manual assembly task, some planning items of the assem-
bly task should be carried out in a simulation environ-
ment, such as predefined assembly time and assembly 
path, and so on [as “(1) assembly planning” shown in 
Fig. 1]. Then, according to the planning items [as “(2) 
Perform actual manual assembly” depicted shown in 

Predefined time

Predefined trajectory

Predefined layout

Walking
trajectory

Assembly    
time

Assembly 
process

K-means clustering 

Trajectory 
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verification
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Perform actual manual assembly

Assembly planning

Ideal planning 
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Workstation 2 Workstation 1
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assembly planning
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Fig. 1  The schematic of the proposed spatial–temporal verification for manual assembly planning
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Fig. 1], the actual assembly task is carried out in the 
shop floor, and workers are supposed to perform the 
same planning process repeatedly while changing plan-
ning parameters until a convergent solution is obtained. 
Lack of objective shop-floor feedbacks related the actual 
assembly task to adjust the predefined assembly planning 
reasonably, and this would neglect the unreasonable plan-
ning items regardless of the actual assembly operations.

Thus, a spatial–temporal verification for the assembly 
planning based on the shop-floor data is proposed, estab-
lishing a closed-loop and data-driven feedback mecha-
nism to improve the current manual assembly planning [as 
“(3) Verification for manual assembly planning” depicted 
shown in Fig. 1], which are also the contributions and 
contents of the research. Firstly, a self-contained tracking 
system is proposed to retrieve the shop-floor data dur-
ing the actual assembly operations, enabling the founda-
tion for subsequent assembly planning analyses. Then, an 
unsupervised clustering method is applied to address the 
worker’s walking operations, empowering the collected 
shop-floor data with semantic knowledge. Finally, given 
the semantic knowledge about the shop-floor trajectory, 
automatic spatial and temporal analyses about the actual 
assembly are carried out, enabling a spatial–temporal 
verification for the predefined manual assembly planning. 
The verified results can provide reasonable indicators to 
improve the current assembly planning, resulting in a 
more reasonable manual assembly operation.

Data collection in manual assembly

In the actual workplace, workers should perform lots of 
manual operations to fulfill the assembly task. Instead of 
arranging a series of cameras within a shop floor in advance, 
the proposed motion capture system is a portable and self-
contained one by combining a monocular camera and an 
IMU. The prototype experimental platform can be used to 
perceive workers’ walking actions when performing manual 
assembly operations. As shown in Fig. 2, which includes the 
following steps:

(1) Self-contained data acquiring system.
(a) Sensor data The data streams come from a sensor mod-

ule, where the optical sensor can acquire 640 × 480 
pixel image at about 30 Hz, and the internal sensor 
can output the linear acceleration and angular velocity 
at 250 Hz. Generally speaking, a larger field of view 
of the monocular camera results in a more robust and 
accurate optical tracking. The data from the optical and 
inertial sensor module is ported to the mobile device 
[Samsung S6, CPU: Exynos 7420 (1.5 GHz)] for post-
processing.

(b) Preprocessing Given sequential IMU measurements 
and synchronized images derived from the sensor 
module, a real-time pre-processing is performed to 
address these data. On one hand, based on the acceler-
ated velocity and angular velocity from IMU sensor, 
the relative motion constraints between adjacent frames 
is achieved by pre-integrating inertial measurements, 
which can be seamlessly integrated into visual-iner-
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@=250Hz
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@=250Hz

Image @=30Hz

IMU

Cameras

Feature extraction

Feature matching

Triangulation

IMU pose prediction
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Mappinging 
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Optimization
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Ideal assembly 
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Self-contained data acquiring system

Fig. 2  The flowchart for the shop-floor data collection
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tial fusion pipeline (Forster et al. 2017). Based on the 
time integration for inertial measurements, the corre-
sponding translation and orientation are obtained. On 
the other hand, feature extraction is executed with the 
coming image, establishing a specific mathematical 
description. Followed by the feature matching with 
sequential image, triangulation is performed to recover 
the visual-based pose estimation.

(c) Optimization In order to bound the motion capture 
drift, visibility constraints between the node and edge 
according to the tracking and mapping module are 
established. The nonlinear optimization can be applied 
to bound the drift of the motion tracking, and which is 
also called the back-end for the proposed portable vis-
ual-inertial system. What is more, the relocated strat-
egy is running in a parallel thread, and it can ensure 
the perception accuracy when the camera revisits the 
scene which has been seen before. Especially in the 
actual assembly site, which is helpful to ensure the data 
accuracy due to the repetitive operations in the actual 
workplace.

(2) Data accuracy evaluation.

To verify the reliability of shop-floor data derived from 
the portable tracking system, the measurement accuracy 
of the optical tracking system (MotionAnalysis Co. Ltd) is 
about 0.1 mm in room-scale space, and which can be used 
as a benchmark to evaluate the proposed portable tracking 
system. Thus, the quantitative accuracy evaluation is con-
ducted to ensure the reliability of the shop-floor data. The 
detailed introduction of the proposed self-contained tracking 
system can be referred to our previous works (Fang et al. 
2017). Given quantitative error evaluations of the contrast 
experiments above, the translational errors are calculated 
and the average error is about 3 cm, while the mean rota-
tional error is below 1 degree. More detailed statistics about 
the quantitative comparisons are illustrated in Table 1, the 
results indicate that the shop-floor data derived from the 
assembly workplace is credible for the subsequent verifica-
tion of assembly planning.

(3) Shop floor data collection.

Given the portable system mounted on the worker while 
doing manual assembly operations, the workers’ walking 

path and sparse 3D map of the field scene can be recov-
ered, which can be applied to verify the predefined assembly 
planning logically. In order to address the human-centered 
activities in manual assembly, only the recovered trajectory 
related to the worker walking in shop floor is discussed, and 
which provide the basis for the subsequent spatial–temporal 
verification for manual assembly planning.

Semantic segmentation

Workstation detection

In the walking-worker manual assembly process, the 
shop-floor data about operator activity is collected by the 
proposed tracking system in “Data collection in manual 
assembly” section (as shown in Fig.  3a). Nevertheless, 
there collected shop-floor data is messy and discrete due to 
worker’s irregular movement in the workplace (as shown in 
Fig. 3b), and it is hard to perform automatic verification for 
the predefined assembly planning according to the confusing 
information. In order to perform detailed spatial–temporal 
analysis for the manual assembly, the shop-floor trajectory is 
empowered with semantic information in our study. Gener-
ally speaking, the recovered spatial trajectory is centralized 
around the workstation, and this prior knowledge about the 
worker-walking manual assembly can divide the shop-floor 
trajectory into “workstation point” and “walking point”. The 
“workstation point” denote locations where a worker has 
done the manual assembly operations, as the points within 
a certain circle shown in Fig. 3b. The other type “walking 
point” represents the places where the operator walks around 
within the shop floor to fulfill the manual assembly task.

Given the previous trajectory segmentation, the shop-
floor time stamped points P can be divided into a sequence 
of meaningful locations S.

Trajectory segmentation

In order to distinguish the assembly operations from the 
assisted walking trajectory within the workspace, we need to 
divide a trajectory into segments for a further process. The seg-
mentation does not only reduce the computational complexity 
but also enable us a richer knowledge (Zheng 2015). During 

(1)
P =

{
p1 → p2 → ⋯ → pn

}
⇒S =

{
s1 → s2 → ⋯ → sn

}

Table 1  Tracking accuracy 
evaluation of the proposed 
tracking system

Translational error (cm) Rotational error (deg)

Tx Ty Tz Rx Ry Rz

Mean error 2.97 3.01 1.37 0.82 0.72 0.59
SD 1.83 1.65 0.89 0.36 0.35 0.26
Maximum error 6.63 6.05 3.09 1.27 1.39 1.12
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the manual assembly process, operators should perform cer-
tain assembly tasks among different workstations. These 
discrete spatial–temporal data 

{
ti, pi, qi

}
 from the shop floor 

can be obtained and are represented by a series of chronologi-
cally order point, e.g. p1 → p2 → ⋯ → pn , where each point 
pi =

(
ti, xi, yi

)
 consists of a geospatial coordinate set and the 

corresponding timestamp.
To empower the recovered trajectory with semantic knowl-

edge, the collected shop-floor data must be subdivided logi-
cally with respect to the real manual assembly task. In this 
research, an semantic segmentation based on the workstation 
layout in the actual workplace is proposed. A new cycle occurs 
when the operator leaves the assembly zone and moves to the 
next workstation. To entitle the semantic meaning about the 
shop-floor data, the clustering approach is usually applied to 
represent a trajectory with the feature vector. However, it is dif-
ficult to generate a feature vector with the uniform representa-
tion for these shop-floor trajectories because of their complex 
properties, such as sampling rate, different shapes and numbers 
of points. Fortunately, some prior knowledge about the manual 
assembly planning can be approached, such as the number 
of workstations within the shop floor. Thus, the hierarchical 
clustering method, such as K-means (Kanungo et al. 2002, 
Hu et al. 2006), can be widely used for the classification and 
clustering of the timestamped shop-floor data. K-means aims 
to group N observations into K clusters for the minimization 
of squared errors criterion:

(2)J =

N∑
i=1

K∑
j=1

‖‖‖x
(j)

i
− cj

‖‖‖2

where ‖‖‖x
(j)

i
− cj

‖‖‖2 represents the distance between an obser-
vation x(j)

i
 and its cluster center cj . Given the value of clusters 

K are specified beforehand by the number of the worksta-
tions, the segmentation for the shop-floor walking trajectory 
is carried out automatically. Table 2 illustrates the procedure 
of K-means based semantic segmentation for shop-floor data 
derived from the manual assembly workplace.

According to the K-means clustering method, the worker’s 
shop-floor walking trajectory can be divided into workstation 
points and walking points within the shop floor, such as:

where TrajT represents the total trajectory, TrajW and TrajA 
illustrate the workstation points and the walking points, 
respectively. Thus, a further study on the pre-determined 
manual assembly planning is available, and we would per-
form the spatial–temporal verification about the shop-floor 
trajectory. As shown in Fig. 4, given the total trajectory dur-
ing performing the manual assembly in the actual workplace, 
the corresponding walking points 

{
TrajW1, TrajW2, TrajW3

}
 

and workstation points 
{
TrajA1, TrajA2

}
 are segmented auto-

matically with semantic knowledge. Detailed spatial and 
temporal analyses of the actual manual assembly are per-
formed for the subsequent assembly planning verification.

Data‑driven spatial–temporal verification

For every assembly cycle acquired by the segmentation 
procedure, the corresponding event list is generated based 
on the predefined layout of the workstation. In worker 
walking manual assembly operations, two different events 

(3)TrajT = TrajW + TrajA

1

Workstation 1

2

Plan walking 
trajectory

Actual walking 
trajectory

Workstation 
point

Walking point

Trajectory in the shop floor                                                 (a) (b) Segmentation for trajectory

Fig. 3  The schematic diagram for the walking trajectory derived from the shop floor
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have been defined: workstation operation (WOROP) and 
walking operation (WALOP) in the shop floor. Where 
WOROP takes place when the worker performs assembly 
actions at a certain workstation, and WALOP illustrates 
the worker moves from one workstation to another one 
on the shop floor. According to the segmented shop-floor 
trajectory, the spatial–temporal analysis is performed to 
verify the predefined manual assembly planning, and the 
detailed schematic of the verification process is shown in 
Fig. 5.

Data‑driven spatial analysis

Given the worker walking manual assembly within the work-
place, excessive motions would not only induce the risk of 

injuries but also lead to the loss of productivity. Thus, the 
reduction of the unnecessary movement in the shop floor has 
an immediate and positive effect for the manual assembly. 
When the worker performs manual assembly operations, the 
shop-floor data is perceived automatically through the pro-
posed portable tracking system. The spatial–temporal data 
related to the shop-floor performance is represented as:

where ti is the timestamp of the trajectory point, and (
xi, yi, zi

)
 is the location of the worker within the actual work-

place. Thus, according to the actual worker’s movements 
on the shop floor, the real-time trajectory derived from the 
actual manual assembly operations is acquired. Based on 
the hypothesis that the walking trajectory deduced from the 
planar scene, the length of the shop-floor trajectory SRealTraj 
is obtained as follows:

The walking distance through different workstations to per-
form manual assembly task depends on the actual workplace. 
Thus, assembly efficiency can be quantized to unveil the poten-
tial improvement in the workstations’ layout. According to the 
predefined manual assembly planning in a simulation environ-
ment, such as the assembly simulation in Delmia, the length 
of the predefined ideal trajectory SIdealTraj is available easily. 
Thus, the spatial verification of the shop-floor trajectory can 
be compared, and the relative deviation SerrorRatio is defined as:

(4)Pointi =
{
ti, xi, yi, zi

}

(5)SRealTraj =

ti∑
t0

(√(
xi − xi−1

)2
+
(
yi − yi−1

)2)

Table 2  Segmentation procedure for the shop-floor trajectory

Fig. 4  Shop-floor trajectory segmentation with the clustering method
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In addition, lots of other motion information within the 
shop floor can be learned when the worker moves through 
different workstations. When a worker is somehow hindered 
in his movement, this would show up in the observed traveling 
speed. Usually, a decrease in pace may have many causes: 
other workers or objects crossing the worker’s path, a worker 
carrying the heavy load during walking and rough or slippery 
floor conditions. The instantaneous and average speeds are 
depicted as follows:

Data‑driven temporal analysis

The last “Data-driven spatial analysis” section is mainly 
focused on the spatial analysis for the manual assembly with 
the shop-floor data. Besides, the study for the temporal analy-
sis with the shop-floor trajectory is also important to verify and 
improve the current assembly planning. Based on the detailed 
study on different workstations, the operating time for cer-
tain assembly task on each workstation is acquired, and the 
assembly productivity of the current task can be improved by 
shorting the bottleneck workstation.

(6)SerrorRatio =
SRealTraj − SIdearlTraj

SIdearlTraj

(7)

⎧⎪⎨⎪⎩

vi =

√
(xi−xi−1)

2
+(yi−yi−1)

2

ti−ti−1

v̄i =
SiRealTraj

ti

Given the clustering method depicted in “Semantic seg-
mentation” section, the time sample trajectory belongs to the 
corresponding workstation is distinguished. Thus, the operat-
ing time is determined by the accumulation of the discrete 
timestamp belong to the ith workstation:

where Ti is the total assembly time at the ith workstation, 
and tij is the time of the jth assembly unit within the ith 
workstation.

In this research, besides the time occurs at each worksta-
tion, the worker’s walking time between different workstations 
is also acquired. Based on the clustering centroid derived from 
K-means segmentation method, the circular with a radius of 
0.5 m is given to distinguish the workstation area from the 
shop-floor data. Thus, the total operating time T for the work-
walking manual assembly task is available by accumulating 
the workstation-based operating time and auxiliary walking 
time:

where TiA the auxiliary walking time from the (i − 1) th 
workstation to the ith workstation, and m is the number of 
workstations. In addition, in order to realize the continuous 

(8)Ti =

n∑
j=1

tij

(9)T =

m∑
i=1

Ti +

m∑
i=1

TiA

Fig. 5  The schematic of the 
spatial–temporal verification for 
assembly planning
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trajectory

Noise filtering Clustering
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detection
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Workstation trajectory Walking trajectory

Temporal 
verification

Spatial verification
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evaluation of the existing assembly process planning, 
the balance ratio of the manual assembly process can be 
acquired:

where p denotes the balance ratio of the manual assembly 
task, and Tmax represents the maximum operating time 
within all the workstations. Thus, the variable p can illus-
trate the balance performance of the manual assembly rea-
sonably. A bigger p means a better balance performance of 
the current manual assembly planning.

Moreover, the smooth index SI of the predefined manual 
assembly can illustrate the time deviations of different work-
stations. A smaller SI illustrates that the time distribution of 
each workstation is relatively uniform, and better balance per-
formance of the current manual assembly task. The equation 
SI is depicted as follows:

Experiments

Workers’ activity data perception

To demonstrate the feasibility of the proposed method, 
the worker-walking assembly experiment for a model 
car is carried out. As shown in Fig. 6, the target of this 

(10)p =

∑m

i
Ti

Tmax × m

(11)SI =

�∑m

i=1

�
Tmax − Ti

�
m

assembly task is to accomplish the model car where 3 
modules are located at different workstations, they are: 
(1) attachments, (2) pedestal and (3) main body. To real-
ize the assembly task, the worker needs to carry the read-
to assembly parts from different positions to the main 
assembly table, and then achieve the final assembly tar-
get. During the manual assembly process, the walking 
trajectory of the worker is perceived by the proposed 
tracking system, as the red dotted line shown in Fig. 6, 
while the predefined ideal trajectory is shown as the pur-
ple line.

Before the actual assembly task, a manual assem-
bly planning in a simulation environment is performed 
within the software Delmia, as shown in Fig. 7. In order 
to accomplish the assembly task for the model car, three 
workstations are designed within the workspace in a 
simulation environment, and the ideal walking paths are 
generated during the assembly process between adjacent 
workstations (as the red line shown in Fig. 7a). Thus, the 
accomplishment of the manual assembly task requires the 
worker to do lots of assembly activities at each worksta-
tion (as Fig. 7b), and Fig. 7c shows that the operator is 
walking on the shop floor according to the predefined 
assembly planning.

Based on the simulation-based planning for the 
manual assembly task, the actual assembly operations 
are performed at different workstations on the shop 
floor, as shown in Fig. 8a. In order to fulfill the total 
manual assembly task, worker’s walking operation on 
the shop floor is necessary between different worksta-
tions on the shop f loor. With the proposed portable 

Fig. 6  The schematic diagram 
for the verification of manual 
assembly operation

Actual 
trajectory

Ideal planning 
trjectory

Portable tracking system

The model car to be assembled
(1) (2) (3)
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tracking system mounted on the head, the real-time 
data of the actual assembly process in an actual work-
place is collected.

Given the shop-floor data derived from actual manual 
assembly operations, quantitative comparisons are avail-
able to verify current assembly planning. As shown in 
Fig. 8b, the blue trajectory illustrates the actual assembly 
trajectory of a worker when performing manual assembly 
task. The red dotted line is the ideal planning path pre-
defined in a simulation environment, and the total length 
of the ideal trajectory is about 26.2 m. A conclusion can 
be inferred from Fig. 8b that the actual assembly opera-
tions exist obvious deviations with the ideal planning, 
which also demonstrates that the verification is essential 
to improve the reliability and efficiency of the manual 
assembly planning.

Spatial–temporal verification for assembly planning

To address individual variation for the same manual assem-
bly task, the same manual assembly task with different work-
ers is carried out, which would reveal a more credible con-
clusion to verify the manual assembly planning. As shown 
in Fig. 9, it denotes four different operators to carry out the 
same assembly task on the floor (shown from Fig. 9a–d), the 
experimental results show that all the actual walking paths 
(as the solid line in blue) deviate from the ideal one (as the 
dashed line in red).

Thus, in order to empower semantic knowledge for the 
shop-floor trajectory, the clustering method in “Semantic 
segmentation” section is applied to segment the assembly 
trajectory. Based on the prior knowledge about workstation 
layout on the shop floor, the number of the clustering cen-
troid is determined. Thus, the clustering centroids can be 

Ideal planning 
trajectory

Workstation 2 Workstation 1

Workstation 3 Start point

(a) Ideal manual assembly planning              (b) Manual operations at the workstation   (c) Walking on the shop floor

Fig. 7  Manual assembly planning in a simulation environment

Portable tracking 
system

Assembly objects

Start point

Ideal assembly 
trajectory

Actual assembly 
trajectory

Workstation 1Workstation 2

Workstation 

Snapshots of the actual manual assembly                      (a) (b) Comparisons between ideal and actual trajectory

Fig. 8  The comparisons between the assembly planning and the actual performance
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estimated from the shop-floor trajectory, as the red triangle 
shown along with each workstation. We can see that all the 
estimated centroids are close to the corresponding worksta-
tions, which also indicates that the clustering method can 
estimate the correct locations of the workstations.

Based on the semantic segmentation for the shop-floor 
data, the total trajectory is divided into walking-based and 
workstation-based one. Then, the length of walking trajec-
tory, assembly time and the movement velocity derived from 
actual manual assembly operations are acquired, and which 
can be applied to the verification of the current manual 

assembly planning. The results of spatial analysis about the 
actual assembly operations are illustrated in Table 3, we can 
find that the actual length of the shop-floor trajectory var-
ies from the ideal planning trajectory significantly (about 
50.69%), which demonstrate that the spatial verification of 
manual assembly planning is essential to quantify the current 
assembly planning. What is more, although the deviations 
existed between different workers, the actual results tend to 
be uniform and are more convincing to verify the manual 
assembly planning.

Ideal path

Actual path 1#

Start

Workstation 2 Workstation 1

Workstation 3

Clustering 
Centroid 2

Clustering 
Centroid 1

Clustering 
Centroid 3

Ideal path

Actual path 2#

Start

Workstation 2 Workstation 1

Workstation 3

Clustering 
Centroid 2

Clustering 
Centroid 1

Clustering 
Centroid 3

(a) Actual trajectory by 1# operator                   (b)Actual trajectory by 2# operator

Ideal path

Actual path 3#

Start

Workstation 2 Workstation 1

Workstation 3

Clustering 
Centroid 2

Clustering 
Centroid 1

Clustering 
Centroid 3

Ideal path

Actual path 4#

Start

Workstation 2 Workstation 1

Workstation 3

Clustering 
Centroid 2

Clustering 
Centroid 1

Clustering 
Centroid 3

(c) Actual trajectory by 3# operator             (d) Actual trajectory by 4# operator

Fig. 9  The recovered trajectories derived from different workers (Color figure online)
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Besides the spatial verification for the manual assembly 
task, the operating time verification for assembly opera-
tions at each workstation can also be approached by means 
of timestamped shop-floor data, and which can provide an 
indicator to evaluate the balance performance of the current 
assembly task. Based on the temporal and balance analysis 
in “Data-driven temporal analysis” section, the temporal 
verification for the above four manual assembly tasks is 
depicted in Table 4. We can find that the mean balance ratio 
of the current manual assembly task is 84.4%. Besides, the 
mean operating times at workstation 1 and 2 are 43.22 s and 

61.19 s, respectively, and which also mean the maximum 
and minimum time in the current manual assembly. Thus, 
apart from the temporal verification of the current assem-
bly planning, the statistical result also provides evidence to 
improve the balance performance of the current assembly 
planning. E.g. we can transform partial assembly tasks from 
the workstation 2 to workstation 1, and the assembly balance 
and productivity would enhance logically.

In addition to the spatial and temporal verification of 
the manual assembly task, the walking time in the work-
place can be distinguished from total operating time. As 

Table 3  Automatic spatial 
verification for the manual 
assembly planning

No. Length of the 
trajectory (m)

Spatial length 
deviation (%)

Total time (s) Mean velocity 
(m/s)

Maximum 
velocity 
(m/s)

1# 38.45 46.76 175.30 0.22 2.07
2# 36.83 40.57 162.71 0.23 2.16
3# 43.16 64.73 190.68 0.23 1.86
4# 39.70 51.53 186.49 0.21 1.76
Mean 39.48 50.69 178.83 0.22 1.96

Table 4  Automatic temporal 
verification of the manual 
assembly planning

No. Total 
assembly 
time (s)

Time distributions (s) Balance ratio (%) Smooth index

Workstation 1 Workstation 2 Workstation 3

1# 150.23 42.52 58.17 49.54 86.09 10.32
2# 141.74 39.08 56.35 46.31 83.81 11.53
3# 168.29 47.36 66.55 54.38 84.29 13.12
4# 159.54 43.92 63.7 51.92 83.49 13.29
Mean 154.95 43.22 61.19 50.54 84.42 12.07

(a) Time segmentation for manual assembly (b) Workstation -based time for manual assembly
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shown in Fig. 10a, during performing manual assembly 
in the workplace, the manual assembly operations around 
the workstations occupy the majority time with about 87%, 
while the auxiliary walking time on the shop floor is about 
13% of the total assembly time. Thus, more attention should 
be paid on the workstation-based time analysis to improve 
assembly efficiency. We find that the operating time within 
workstation 2 is significantly more than other workstations 
(as shown in Fig. 10b), which also means a uniform time 
distribution is expected to rearrange the predefined manual 
assembly planning.

Discussion

Spatial–temporal verification for manual assembly planning 
is to perform a convergence between the cyber and physical 
world, and convert data derived from the assembly opera-
tions into manufacturing intelligence by systematic analysis. 
To address this issue, the data-driven spatial–temporal veri-
fication for manual assembly planning is carried out. At the 
beginning, data collection within the workplace is the basis 
for the subsequent improvement. A self-contained motion 
capture method is proposed in the research, and which is 
adaptability and low-cost to retrieve shop floor data com-
pared to the traditional motion capture methods.

The study shows that the portable self-contained track-
ing system can be applied to collect the worker’s manual 
assembly data in the workplace. However, this shop-floor 
data is confusing and difficult to use unless it is translated 
into concrete meaning and context. In order to entitle 
semantic knowledge to the time sample shop-floor data, the 
K-means method is used in our research, which can classify 
the shop-floor data into walking-based and workstation-
based trajectory, ensuring spatial and temporal analysis for 
the predefined manual assembly planning in the simulation 
environment. Based on the shop-floor data about human-
based assembly activities, the ramp-ups and first-time-right 
data-driven assembly process verification are achieved. In 
addition, according to the shop-floor data derived from the 
portable tracking system, experimental results also show that 
the real assembly operations exist significant deviation with 
the ideal planning one, illustrating the necessity to perform 
assembly planning verification.

However, the above contrast experiments are only con-
ducted spatial and temporal verification with the shop-floor 
data during the manual assembly task. Due to the limita-
tion of the number of the experimental equipment, only un-
paced manual assembly experiments are carried out, thus 
the pace based manual assembly task is expected for the 
future. Moreover, given the prior knowledge about the num-
ber of workstations in the workplace, a K-means clustering 
method is applied directly to classify the total trajectory, 

and a more adaptive semantic segmentation method is 
worthwhile to be given further. Besides, during the motion 
trajectory acquired in the proposed motion capture system, 
every minimal change in trajectory and each tiny step of the 
worker can be acquired. Although it seems too restrictive for 
human-based assembly operation, the more convincing spa-
tial–temporal verifications are approach according to these 
collected shop-floor data. In addition, the tracking method is 
appropriate for the work such as the human-robotic collabo-
ration, ergonomic analysis and augmented reality, which will 
become important components for human-centered digital 
factory and intelligent manufacturing, and we will do further 
research among these aspects.

Conclusions

In this study, based on the combination of the optical/
inertial sensor, a self-contained portable tracking system 
is proposed for the shop-data collection during the actual 
manual assembly. The motion capture system can perform 
accurate and robust motion capture for workers’ walking 
activities on the shop floor. Then, with the time sample 
trajectory from the actual assembly operation, an auto-
matic and unsupervised segmentation method is applied 
to process the shop-floor data. It can divide the current 
trajectory logically, enabling the sub-trajectory with the 
corresponding semantic information. Thus, the systematic 
statistics for the workstation-based and walking-based tra-
jectory is available. Based on the data-driven strategy, the 
spatial and temporal verification for the predefined manual 
assembly can be performed, providing critical feedback to 
improve the human-centered assembly planning. Experi-
mental results about the actual manual assembly dem-
onstrate the feasibility and applicability of the proposed 
method.
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