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Abstract
A non-dominated sorting modified teaching–learning-based optimization (NSMTLBO) is proposed to obtain the optimum 
solution for a multi-objective problem related to machining Polytetrafluoroethylene. Firstly, an experimental design is done 
and the L27 orthogonal array with three-level of cutting speed 

(

V
c

)

 , feed rate (f), depth of cut (ap) and nose radius 
(

N
r

)

 is 
formulated. A CNC turning machine is used to perform experiments with cemented carbide tool at an insert angle of 80° and 
the response variables known as surface finish and material removal rate are measured. A response surface model is rendered 
from the experimental results to derive the minimization function of surface roughness 

(

R
a

)

 and maximization function of 
material removal rate (MRR). Both optimization functions are solved simultaneously using NSMTLBO. A fuzzy decision 
maker is also integrated with NSMTLBO to determine the preferred optimum machining parameters from Pareto-front based 
on the relative importance level of each objective function. The best responses Ra = 2.2347 µm and MRR = 96.835 cm3/min 
are predicted at the optimum machining parameters of Vc = 160 mm/min, f = 0.5 mm/rev, ap = 0.98 mm and Nr = 0.8 mm. 
The proposed NSMTLBO is reported to outperform other six peer algorithms due to its excellent capability in generating the 
Pareto-fronts which are more uniformly distributed and resulted higher percentage of non-dominated solutions. Furthermore, 
the prediction results of NSMTLBO are validated experimentally and it is reported that the performance deviations between 
the predicted and actual results are lower than 3.7%, implying the applicability of proposed work in real-world machining 
applications.

Keywords  Design of experiments · Multi-response · Non-dominated sorting modified teaching–learning-based 
optimization · Response surface model · Surface roughness

List of symbols

Acronyms
CFRP	� Carbon fibre reinforced polymer
DOE	� Design of experiment
ECM	� Electrochemical machining

EDM	� Electric discharge machining
EMOTLBO	� Enhanced multi-objective teaching–learn-

ing-based optimization
FIB	� Focused ion beam
ICA	� Imperialist competitive algorithm
microEDM	� Micro-electric discharge machining
MOEA	� Multi-objective evolutionary algorithms
MOGWO	� Multi-objective grey wolf optimizer
MO-ITLBO	� Multi-objective improved teaching–learning 

based optimization
MOP	� Multi-objective optimization problem
MOPSO	� Multi-objective particle swarm optimization
MOTLBO	� Multi-objective teaching–learning-based 

optimization
NSGA-II	� Non-dominated sorting genetic algorithm II
NSMTLBO	� Non-dominated sorting modified teaching–

learning-based optimization

 *	 Elango Natarajan 
	 cad.elango.n@gmail.com

1	 Faculty of Engineering, Technology and Built Environment, 
UCSI University, 56000 Kuala Lumpur, Malaysia

2	 Department of Mechanical Engineering, Sona College 
of Technology, Salem, Tamil Nadu 636005, India

3	 School of Engineering (Mechatronics), Monash University, 
Subang Jaya, Malaysia

4	 FTMS College, Cyber Jaya, Malaysia

http://orcid.org/0000-0003-1215-0789
http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-019-01486-9&domain=pdf


912	 Journal of Intelligent Manufacturing (2020) 31:911–935

1 3

NSTLBO	� Non-dominated sorting teaching–learning-
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PTFE	� Polytetrafluoroethylene
RSM	� Response surface model
TLBO	� Teaching-learning-based optimization
WEDM	� Wire-electric discharge machining

Indices and sets
d	� Index of each dimension component of 

learner
m	� Index of objective function
n	� Index of learner
r	� Index to indicate the rank of a given front
s	� Index of learner that is randomly selected 

for comparison
Fr	� Set containing all learners with the r-th 

rank value
Lm,r	� Set containing all sorted members of the 

r-th front for the m-th objective
Q	� Set containing all learners to create the next 

front
Sn	� Set containing all solutions dominated by 

the n-th learner
����	� Set containing all non-domination rank 

values of N learners
�	� Set containing all members from R fronts
�	� Set containing the crowding distances of all 

N learners
�	� Set containing all population members
����	� Set containing all offspring members
�����	� Set containing the combination of both 

population and offspring members
�

�	� Set containing the utopia point of a multi-
objective optimization problem with M 
objective functions

�
��	� Set containing the pseudo nadir point of a 

multi-objective optimization problem with 
M objective functions

RP	� Set containing the Pareto non-dominated 
solution set of NSMTLBO

SP	� Set containing the Pareto non-dominated 
solution set of MOPSO

TP	� Set containing the Pareto non-dominated 
solution set of NSGA-II

UP	� Set containing the Pareto non-dominated 
solution set of MOGWO

VP	� Set containing the Pareto non-dominated 
solution set of MOTLBO

WP	� Set containing the Pareto non-dominated 
solution set of MO-ITLBO

XP	� Set containing the Pareto non-dominated 
solution set of NSTLBO

Operators
�(⋅, ⋅, ⋅, ⋅)	� An operator that returns the response 

variable value based on the given control 
variables

�m(⋅)	� An operator that returns the value of the 
m-th objective function based on the given 
individual solution

Trunc(⋅, ⋅)	� An operator that returns the best N mem-
bers with the lowest ranking and highest 
crowding distance values

C(⋅, ⋅)	� An operator that returns the percentage 
of solution set from one Pareto front that 
is dominated by solution set from another 
Pareto front

≺cco	� Crowding-comparison operator to compare 
the superiority of two solutions

Parameters and variables
Vc	� Cutting speed
f	� Feed rate
ap	� Depth of cut
Nr	� Nose radius
Ra	� Surface roughness
ΔRa	� Error rate of surface roughness
MRR	� Material removal rate
ΔMRR	� Error rate of material removal rate
Dinitial	� Initial diameter of PTFE sample before 

machining process
Dfinal	� Final diameter of PTFE sample after 

machining process
L	� Length of cut of PTFE sample
T	� Time taken to cut PTFE sample
Y	� Response term of regression equation
�0	� Free term of regression equation
Xi	� Control variable term of regression 

equation
�i	� Linear coefficient term of regression 

equation
�ii	� Quadratic coefficient term of regression 

equation
�ij	� Interacting coefficient term of regression 

equation
D	� Number of decision variables to be 

optimized
N	� Population size
Tf 	� Teaching factor that can be set as either 1 or 

2
Tf1, Tf2	� Teaching factors with the range of 1 to 2 

generated from uniform distribution
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Cn	� Domination count to indicate the number of 
solutions dominate the n-th learner

Rankn	� Non-domination rank value of the n-th 
learner

Δa,r	� Crowding distance of the a-th member in 
the r-th front

R	� Upper limit of front counter
|

|

Fr
|

|

	� Number of members in the r-th front
Xn,d	� The d-th component of n-th candidate 

solution
Xteacher	� Solution vector that represents the best 

solution known as teacher
Xmean	� Solution vector that represents the average 

knowledge level of population
Xnew
n

	� New solution vector produced by the n-th 
learner during the teacher or learner phases

XU
d

	� Upper limit of the d-th dimensional 
component

XL
d
	� Lower limit of the d-th dimensional 

component
XCand
a,d

	� Solution vector of the d-th dimensional 
component of a-th candidate teacher

Xpreferred	� Solution vector of most preferred Pareto 
optimal solution

Xteacher
n

	� Solution vector of teacher assigned to the 
n-th learner

X̃mean
n

	� Weighted mean position vector assigned to 
the n-th learner

En,a	� Normalized Euclidean distance between the 
n-th learner and the a-th candidate teacher

r1, r2, r3, r4	� Random numbers with the range of 0 to 1 
generated from uniform distribution

r5	� Random numbers with the range of − 1 to 1 
generated from uniform distribution

Pcr	� Crossover rate
Pmut	� Mutation probability
dr	� Randomly selected dimensional component 

for mutation
�U
m

	� Utopia point of a multi-objective optimiza-
tion problem in the m-th objective function

� SN
m

	� Pseudo nadir point of a multi-objective 
optimization problem in the m-th objective 
function

�m
a

	� Membership value of the a-th Pareto opti-
mal solution in the m-th objective function

�a	� Total degree of optimality of each a-th 
Pareto optimal solution

wm	� Relative importance of each m-th objective 
function

w1	� Relative importance level of minimizing 
surface finish

w2	� Relative importance level of maximizing 
material removal rate

�	� Counter of function evaluations
� 	� Maximum fitness evaluation numbers
da	� Smallest Euclidean distance between the 

a-th and b-th Pareto optimal solutions
d̄	� Average value of all smallest Euclidean 

distance
S	� Spacing measure
SD	� Standard deviation
R2	� Percentage of variation of data
P	� Significance of control variables
c1, c2	� Acceleration coefficients
�	� Grid inflation rate
nGrid	� Number of grid per dimension
nGroup	� Number of group created for multiple group 

learning
�	� Parameter used for epsilon dominance 

method
|A|	� Archive size

Introduction

Polytetrafluoroethylene (PTFE) is a fluoropolymer that has 
many excellent properties such as high hydrophobicity, 
high oleophobicity, high chemical resistance, high antifoul-
ing property, high sliding property, high thermal resistance, 
high weather resistance, low relative permittivity, and low 
dielectric loss tangent. It has been used in many applica-
tions including polymer bearing, gaskets, gears, valve seats, 
piston rings, seals, bushes, hose assemblies, high voltage 
switches, extension joints, cook wears, clinical, containers 
and pipework for reactive and corrosive chemicals. It has 
also been used in biomedical applications such as oxygen-
ator membrane, vascular graft and catheter coating. The 
virgin PTFE rods or components are manufactured through 
sintering or compression molding. The specific grade of 
PTFE which has the greater dielectric strength is frequently 
used in wire and cable wrap, and to separate conductive 
surfaces in capacitors.

As an instance, thick walled close tolerance extruded 
PTFE can be machined into standoff insulators and can also 
be used in high voltage encapsulation devices for miniature 
components with high dimensional accuracy and integrity. 
These components may require further machining opera-
tions to have net shape, suitable for the specific application. 
The accuracy of the machining process is decided by the 
control parameters such as feed, depth of cut, speed, nose 
radius etc. The poorly set control parameters do increase 
the surface roughness and lead to the poor net shape. The 
current research is aimed to determine the optimum control 
parameters for obtaining the minimum surface roughness 
and maximum material removal rate of material during 
machining of PTFE. The minimization surface roughness 
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increases the quality of the products and the maximization of 
material remove rate increases the production rate (quantity) 
of the products.

In most existing literatures, the regression models were 
developed as nonlinear functions consisting of several input 
process parameters with boundary limits. Although the idea 
of utilizing optimization method to solve a given regression 
model is proven feasible to obtain the optimum machining 
parameters, the solutions produced by traditional optimi-
zation algorithms (e.g., nonlinear programming, quadratic 
programming, dynamic programming and etc.) tend to 
stagnate into local optima due to the difficulty of achieving 
good guess of initial solutions (Mukherjee and Ray 2006). 
The emergence of new metaheuristic search algorithms 
(Lim and Isa 2015; Ji et al. 2017; Al-Omoush et al. 2019; 
Hu et al. 2019; Fan and Yan 2016) has become the popular 
alternative to overcome these challenges. Because, these 
algorithms do not strongly rely on the quality of initial solu-
tions and the gradient information of objective functions to 
solve an optimization problem. The substantial amounts of 
real-world optimization problems have been tackled using 
the metaheuristic search algorithms due to their promising 
search robustness. These include the energy management 
optimization (Yao et al. 2015, 2017; Mathew et al. 2018; 
Zhao et al. 2013; Zhao et al. 2012), robust control system 
design (Tang et al. 2013, 2014; Solihin et al. 2009, 2010), 
machine vision and image processing (Senthilnath et al. 
2016; Li et al. 2011; Jiao and Pan 2019; Mistry et al. 2017; 
Van and Kang 2016), just to name a few.

Majority of machining problems are formulated as the 
multi-objective optimization problems (MOPs) due to the 
simultaneous consideration of multiple performance char-
acteristics. There could be three to four control parameters 
involved in the optimization of response variables. There are 
generally two popular approaches used to tackle the MOPs, 
namely the priori method and the posterior method (Collette 
and Siarry 2003). In contrast to the priori method that only 
be able to produce one optimum solution at each trial of 
simulation by considering the predefined relative importance 
levels of objective functions, the posterior method is able to 
produce a complete set of trade-off optimal solutions with 
single run. Referring to the relative importance of objective 
functions that normally not known in advance, the process 
planner can choose a unique solution from the complete 
set of trade-off solutions obtained (Abbas et al. 2016). Due 
to its excellent capability to cater the frequent changes of 
customer requirements in real-world scenario of machin-
ing process, the posterior method is considered as a more 
promising approach than the priori method to address the 
machining problems with MOP characteristic. In addition, 
the performance selection index method for solving machin-
ing multi-criteria decision making problems was discussed 
by Petković et al. (2017).

Substantial research works have been reported to design 
various posterior version of multi-objective evolutionary 
algorithms (MOEAs), aiming to effectively optimize dif-
ferent multi-objective machining problems. These MOEAs 
can be generally categorized under two different frameworks 
known as the Pareto-dominance-based (Deb et al. 2005; 
Corne et al. 2001; Zitzler et al. 2001) and decomposition-
based (Zhang and Li 2007; Deb and Jain 2014). The micro-
Electric Discharge Machining (microEDM) of Stainless 
Steel (SS) 316L was modelled with response surface meth-
odology (RSM). Three machining parameters known as dis-
charge current, pulse-on and pulse-off times were optimized 
by a multi-objective genetic algorithm (Suresh et al. 2014) 
in order to achieve the maximization of material removal 
rate and the minimization of tool wear rate simultaneously. 
Three process parameters for the electrochemical machin-
ing (ECM) of die tool steel with nanofluid coolant (i.e., tool 
feed rate, applied voltage and electrolyte discharge rate) 
were optimized using a multi-objective genetic algorithm 
developed by Sathiyamoorthy et al. (2015a). Sathiyamoorthy 
et al. (2015b) also attempted to optimize the machining of 
AISI 202 Austenitic stainless steel by considering multiple 
objectives. A regression model was developed by Viswana-
than et al. (2017) to correlate the response variable of cutting 
temperature for AZ91 Magnesium alloy with three process 
parameters knowns as the depth of rate, cutting speed and 
feed rate. Notably, the cutting speed was reported to play sig-
nificant role in minimizing the cutting zone temperature. The 
multi-objective ultrasonic machining process was addressed 
by Teimouri et al. (2015) with an imperialist competitive 
algorithm (ICA), while the particle swarm optimization was 
employed by Mohanty et al. (2016) to address the multi-
response optimization of electric discharging machining 
process. Recently, the cuckoo optimization algorithm and 
hoopoe heuristic were employed by Mellal and Williams 
(2016) to optimize the process parameters of two traditional 
machining processes (i.e., drilling process and grinding pro-
cess) and four modern machining processes (i.e., abrasive jet 
machining, abrasive water jet machining, ultrasonic machin-
ing and water jet machining). A multi-objective version of 
Jaya algorithm has been proposed by Rao et al. (2017b) to 
optimize four non-traditional machining processes, i.e., 
focused ion beam (FIB) micro-milling, laser cutting, wire-
electric discharge machining (WEDM) and ECM. Similar 
multi-objective Jaya algorithm was further applied by Rao 
et al. (2019) to optimize the process parameters of abrasive 
waterjet machining process and a multi-objective decision 
making method was incorporated to select a preferred solu-
tion from Pareto front based on the predefined requirements 
of process planner. The electrical discharge machining 
(EDM) of polycrystalline diamond (PCD) was modelled by 
Ong et al. (2018) using a radial basis function neural net-
work. A multi-objective moth search algorithm was then 
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applied to determine the optimal machining parameters, 
aiming to maximize the material removal rate and mini-
mize the electrode wear rate simultaneously. The teach-
ing–learning-based optimization (TLBO) and most of its 
modified versions have emerged as the popular optimizers to 
solve various traditional and modern machining processes, 
because these approaches do not require the fine tuning of 
any algorithm-specific control parameters. For instance, 
the simultaneous minimization of operation time incurred 
and carbon emission produced from a turning process were 
achieved with the multi-objective TLBO (MOTLBO) pro-
posed by Lin et al. (2015). A nonlinear regression was used 
by Abhishek et al. (2017) to formulate the machining model 
of carbon fibre reinforced polymer (CFRP) composite using 
single point high-speed steel cutting tool. A prior method 
developed using TLBO was then applied to optimize four 
machining parameters known as the spindle speed, feed rate, 
depth of cut and fibre orientation angle, aiming to achieve 
satisfactory machining performances in terms of material 
removal rate, surface roughness and cutting force. A non-
dominated sorting TLBO (NSTLBO) was designed to find 
the optimum parameters settings of four non-traditional 
machining processes of FIB micro-milling, laser cutting, 
ECM and WEDM (Rao et al. 2018). An enhanced multi-
objective TLBO (EMOTLBO) was proposed by Natara-
jan et al. (2018) to achieve the maximization of material 
removal rate and the minimization of surface roughness for 
the machining process of Delrin material. Apart from the 
machining process, other practical applications of MOTLBO 
and its variants can be found in existing literatures (Sultana 
and Roy 2014; Rao and Waghmare 2015; Yu et al. 2015; Li 
et al. 2016; Rao et al. 2016, 2017a).

This research aims to address the multi-response opti-
mization of machining of PTFE. Given its overwhelm-
ing demands for industrial applications, substantial works 
related to investigation of mechanical and wear properties 
of unfilled PTFE and reinforced PTFE have been conducted. 
Nevertheless, the investigation on the machining character-
istics of PTFE has yet to be conducted based on the best 
of the authors’ knowledge. In order to bridge this research 
gap, the first major contribution of this paper, as presented 
in Sect. 2, focused on the experimental design, derivation 
of regression model of PTFE based on the experimental 
results. The second major contribution (in Sect. 3) focused 
on designing an enhanced version of multi-objective algo-
rithm known as the non-dominated sorting modified teach-
ing–learning-based optimization (NSMTLBO), aiming to 

optimize the machining parameters of PTFE that respond 
to the minimum surface roughness and maximum mate-
rial removal rate simultaneously. Some modifications were 
incorporated into the proposed NSMTBLO in order to solve 
the MOPs effectively. For instance, a teacher selection 
mechanism based on the nearest Euclidean distance and the 
derivation of weighted mean position for each learner were 
introduced into the modified teacher phase to enhance the 
exploitation search capability of algorithm. A self-learning 
mechanism was also integrated into the modified learner 
phase, aiming to enhance the exploration search of algorithm 
through a probabilistic mutation. Finally, a fuzzy decision 
maker (Aghaei et al. 2011) was also applied to determine the 
most suitable machining parameters from the Pareto front 
obtained, based on the relative importance of all objec-
tive functions that may change frequently. Comprehensive 
simulation and experimental studies were performed and 
discussed in Sect. 4, followed by the concluding remarks 
in Sect. 5.

Experimental design and modelling of PTFE

Experimental details

The virgin PTFE rod in 30 mm diameter, prepared by sin-
tering process was used for experimental analysis. The vir-
gin PTFE is a pure and higher grade material which does 
not have recycled or reclaimed materials. It is in white 
colour and preferred to use in industries for its hygienic, 
better frictional resistance, excellent chemical resistance, 
outstanding electrical properties and excellent flexural 
properties. Table 1 shows the physical and mechanical 
properties of the material. Three levels of cutting speed 
(Vc), feed rate (f), depth of cut (ap) and nose radius (Nr) 
were used in design of experiments (DOE) to design L27 
orthogonal array (4 × 27). The nose radius of Nr = 0.4, 0.8 
and 1.2 mm as per the guidance from the cutting tool man-
ufacture was used. The machining parameters and levels 
used for DOE is shown in Table 2. The surface roughness 
(

Ra

)

 and material removal rate (MRR) were considered 
as response variables. The CNC turning centre (Model: 
Sprint 16TC Fanuc 0i T Mate Model C) was used for 
machining. The experiments were carried out with servo 
super cut coolant 32t according to DOE. The time taken 
for each pass of the required length was recorded. Each 
sample’s surface roughness was instantaneously measured 

Table 1   Mechanical properties of PTFE

Tensile strength (MPa) Tensile modulus (MPa) Elongation (%) Tg (°C) Tm (°C) Water absorption (%) Water contact angle (°)

14–35 400 200–400 − 10 327 0 110
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with Mitutoyo make surf tester. Four trials were done for 
each experiment and the average of the measurements was 
recorded. The MRR value was computed by referring to 
the rate of material’s volume removed from the sample as 
specified in Eq. (1) shown below:

where MRR refers to material removal rate (cm3/min); 
Dinitial and Dfinal refer to the initial and final diameters of 
PTFE sample (cm) before and after machining processes, 
respectively; L refers to the length of cut (cm); T refers to 
the time taken to cut the sample (min). The experimental 
design involved three (3) center runs which vary from low 
to high (− 1 is low, 0 is medium and + 1 is high). The values 
− 1, 0 and 1 represent the first level, second level and third 
level of each control parameter respectively. Figure 1 shows 
the machined sample, while Table 3 presents the control 
parameters and the corresponding response variables for 
each experiment conducted.

(1)MRR =

�

4

(

Dinitial − Dfinal

)2
× L

T

Response surface methodology (RSM)

Response surface methodology (RSM) is a common model-
ling technique used to investigate the effects of several input 
control variables and one or more output response variables. In 
this study, RSM was used to explore the relationship between 
four input machining parameters known as cutting speed 

(

Vc

)

 , 
feed rate (f), depth of cut (ap) and nose ratio 

(

Nr

)

 on two out-
put response variables of surface roughness 

(

Ra

)

 and material 
removal rate (MRR).

Without loss of generality, a second-degree polynomial 
RSM model is represented as follows:

where Y represents the response term;�0 represents the free 
term of regression equation; X1,X2,… ,XI represent the set 
of control variable terms; �i, �ii and �ij refer to the linear 
coefficient, quadratic coefficient and interacting coefficient 
terms, respectively. In this research, the response variable Y 
is associated with the four control variables, viz. Vc , f, ap and 
Nr , hence the function denoted as �(⋅, ⋅, ⋅, ⋅) is,

Let �1(⋅, ⋅, ⋅, ⋅) and �2(⋅, ⋅, ⋅, ⋅) be the operators used to return 
the output response variables of Ra and MRR, respectively, 
based on the four control variables of Vc , f, ap and Nr , where:

(2)Y = �0 +

I
∑

i=1

�iXi +

I
∑

i=j

�ijXiXj +

I
∑

i=1

�iiX
2

i

(3)Y = �
(

Vc, f , ap, Nr

)

(4)Ra = �
(

Vc, f , ap, Nr

)

(5)MRR = �
(

Vc, f , ap, Nr

)

Table 2   Three levels of input machining parameters

Machining parameters Level

I II III

Cutting speed, Vc (m/min) 80 120 160
Feed rate, f (mm/revolution) 0.1 0.3 0.5
Depth of cut, ap (mm) 0.5 0.75 1.0
Nose radius, Nr (mm) 0.4 0.8 1.2

Fig. 1   Machined PTFE sample
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The regression models represented by Eqs. (4) and (5) are 
the second-degree polynomial regression model which can be 
determined with RSM-Box-Behnken design-uncoded units in 
Design Expert software. The coefficients of �0,�i,�ii and �ij in 
Eq. (2) were determined from the measured experimental data, 
which further used for obtaining quadratic regression models 
(Mia 2018; Chabbi et al. 2017; Natarajan et al. 2018). The 
quadratic regression models of Ra and MRR are expressed as:

Problem formulation of PTFE machining

The objective functions for solving the multiobjective opti-
mization machining optimization of PTFE were developed 
based on the regression models stated in Eqs. (6) and (7). The 
four input parameters to be optimized in the multiobjective 
machining model of PTFE include the cutting speed, feed 
rate, depth of cut and nose ratio denoted as Vc , f, ap, and Nr , 
respectively. Meanwhile, the surface roughness and material 
removal rate, represented by Ra and MRR, respectively, are two 
contradict objective functions to be optimized because these 
output responses imply the quality and quantity of products, 
respectively.

The mathematical formulation of multi-response optimiza-
tion of PTFE machining process was presented in Eq. (8). The 
optimal parameters of Vc , f, ap, and Nr were solved using the 
proposed NSMTLBO as explained in the following sections. 
For sake of convenience, the maximization problem of MRR 
was converted into the minimization of negative MRR so that 
both objective functions can be expressed as the minimization 
problems.

(6)

Ra = 5.95983 + 0.057355 × Vc + 2.93750

× f + 7.43219 × ap + 2.99103 × Nr − 0.079688

× Vc × f − 0.036660 × Vc × ap + 7.20000 × f

× ap + 2.90625 × f × Nr − 1.75000 × ap × Nr

− 2.49455 × ap2 − 1.44817 × N2

r

(7)

MRR = 124.84157 + 0.16068 × Vc − 298.32469

× f − 333.61027 × ap + 67.27500 × Nr

+ 399.65000 × f × ap − 85.25000

× f × Nr − 50.00000 × ap × Nr

+ 240.99254 × f 2 + 193.44869 × ap2

(8)

⎧

⎪

⎨

⎪

⎩

Minimize
Vc,f ,ap,Nr

Ra

Maximize
Vc,f ,ap,Nr

MRR

s.t. 80 mm/minute ≤ Vc ≤ 200 mm/minute

0.1 mm/revolution ≤ f ≤ 0.5 mm/revolution

0.5 mm ≤ ap ≤ 1.0 mm

0.4 mm ≤ Nr ≤ 1.2 mm

Proposed methodology

Teaching–learning‑based optimization

The teaching–learning-based optimization (TLBO) algo-
rithm was inspired by the classical teaching and learning 
processes in school (Rao et al. 2011). A group of learners 
with the population size of N are randomly initialized at the 
beginning stage of optimization. Each of the n-th learner, 
denoted as Xn =

[

Xn,1,… ,Xn,d,… ,Xn,D

]

 , is assumed to be 
the candidate solution of a given optimization problem, 
where d ∈ [1,D] and D represent the index and the total 
dimensional size of problem, respectively. Let �

(

Xn

)

 be the 
objective function value of each n-th solution and it is used 
to represent the knowledge level of each n-th learner in a 
classroom that can be enhanced via the teacher or learner 
phases.

During the teacher phase, all learners can improve their 
knowledge by learning from the teacher denoted as Xteacher , 
i.e., an individual with the best fitness in population, by con-
sidering the average knowledge level of all learners in the 
population represented as Xmean , where:

Let r1 ∈ [0, 1] be a random number obtained from uniform 
distribution; Tf ∈ {1, 2} be a teaching factor used to empha-
size the importance of learner’s average quality Xmean . Dur-
ing the teacher phase, a new solution of n-th learner, denoted 
as Xnew

n
 , can be obtained as:

For learner phase, each of the n-th learner aims to 
improve its knowledge level (i.e., fitness) by interacting with 
its peers in the population. Let s be the index of a learner 
randomly selected by the n-th learner from population for 
peer learning, where s ∈ [1,N] and s ≠ n ; r2 ∈ [0, 1] is a 
random number generated from the uniform distribution. 
If the learner Xs that is randomly selected from the popula-
tion has better fitness than Xn , the latter learner is attracted 
towards the former one as shown in Eq. (11). Otherwise, a 
repel mechanism is introduced in Eq. (12) to prevent the 
convergence of a learner Xn towards the peer learner Xs with 
inferior fitness.

If the new solution Xnew
n

 generated from the teacher or 
learner phases has better fitness than the n-th learner, the lat-
ter solution will be replaced by the former one. Both of the 

(9)Xmean =
1

N

N
∑

n=1

Xn

(10)Xnew
n

= Xn + r1
(

Xteacher − Tf X
mean

)

(11)Xnew
n

= Xn + r2
(

Xs − Xn

)

(12)Xnew
n

= Xn + r2
(

Xn − Xs

)
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teacher and learner phases are repeated in until the termina-
tion criteria of TLBO are met. The teacher solution Xteacher 
is considered as best solution obtained from the optimization 
process.

Non‑dominated sorting modified teaching–
learning‑based optimization

In this section, the non-dominated sorting modified teach-
ing–learning-based optimization (NSMTLBO) is proposed 
as an improved posterior approach to solve the multi-objec-
tive optimization problems. The modified versions of teacher 
phase and learner phase are introduced into NSMTLBO to 
enhance its exploration and exploitation capabilities while 
searching for the optimal solutions in the parameter spaces. 
Two core concept known as the fast non-dominated sort-
ing and crowding distance (Deb et al. 2002) are also incor-
porated into NSMTLBO to ensure that the proposed work 
can solve multi-objective optimization problems effectively 
and efficiently. Without loss of generality, the minimization 
problems are considered in the remaining subsections, while 
explaining the search mechanisms of NSMTLBO in detail 
here.

Pareto dominance concept

Suppose that a total M objective functions are considered in 
a given multi-objective optimization problem. Let �m

(

Xn

)

 
be the objective function value of the n-th learner Xn for the 
m-th objective function. For a single objective optimization, 
it is intuitive to compare the quality of different solutions 
based on its objective function values. Nevertheless, it is 
nontrivial to rank all solutions from the best to worst for 
multi-objective optimization problems due to the presence 
of multiple conflicting objectives.

Pareto dominance concept is a commonly used approach 
to overcome the challenges of multi-objective optimization 
problems (Deb et al. 2002). For the self-contained purpose, 
the definitions of Pareto dominance are presented as follows:

Definition 1  A solution Xn is considered to dominate 
another solution Xs if Xn shows better or equal objective 
values on all objectives and produce a better result in at least 
one objective function. In other words,Xn ≻ Xs if and only if 
�i

(

Xn

)

≤ �i

(

Xs

)

 for ∀i ∈ {1, 2,… ,M} and 𝛹j

(

Xn

)

< 𝛹j

(

Xs

)

 
for ∃j ∈ {1, 2,… ,M} , or vice versa.

Definition 2  A solution denoted as X∗ is considered as a 
Pareto optimal solution if there is no existence of another 
solution X such that X∗ ≻ X . A Pareto optimal set can be 
determined from these Pareto optimal solutions.

Definition 3  Pareto front can be obtained by mapping the 
Pareto optimal set in the objective space.

Fast non‑dominated sorting and crowding distance

An initial population of NSMTLBO denoted as 
� =

[

X1,… ,Xn,… ,XN

]

 consisting of N learners is ran-
domly generated. Similar with majority posteriori version 
of multi-objective algorithms, NSMTLBO aims to generate 
an approximated Pareto front consisting of a set of non-dom-
inated solutions that are evenly distributed. In order to solve 
the multi-objective optimization problems effectively and 
efficiently, both of the fast non-dominated sorting approach 
and the crowding distance mechanism are incorporated into 
NSMTLBO to determine the ranking of all learners.

The fast non-dominated sorting approach is employed in 
NSMTLBO to ensure that only non-dominated solutions are 
selected to guide the learners during the search process in 
order to ensure the population can converge towards the true 
Pareto front. During the fast non-dominated sorting process, 
two entities are computed for each n-th learner Xn , i.e., (i) 
the domination count denoted as Cn to indicate the num-
ber of solutions that dominate the learner Xn and (ii) a set 
denoted as Sn to store the solution sets that are dominated 
by the learner Xn-. All non-dominated solutions with Cn = 0 
found in the first round of sorting process are allocated in the 
first front denoted as F1 . For every n-th learner with Cn = 0 
stored in the first front F1 , each of the s-th learner Xs stored 
in the set Sn is visited to reduce its domination count by one. 
If the domination count Cs of any s-th learner is reduced to 
zero, it is stored into a new list denoted as Q to form the sec-
ond front F2 . The same process is repeated for all members 
stored in list Q to identify the third front F3 . From Fig. 2, the 
fast non-dominated sorting process continues until the non-
domination rank ���� =

[

Rank1,… ,Rankn,… ,RankN
]

 and 
fronts � =

[

F1,… ,Fr,… ,FR

]

 of all N learners are found, 
where r and R represent the index and upper limit of front 
counters, respectively.

In order to prevent premature convergence, it is crucial 
for NSMTLBO to maintain the diversity of its Pareto opti-
mal solution sets by choosing the non-dominated solutions 
from sparse regions as teacher in guiding the search process 
of remaining learners. The crowding distance (Deb et al. 
2002) denoted as Δn is a metric used to measure the density 
of solution Xn around the n-th learner in population by cal-
culating the average distance of two nearest solutions on 
both sides of Xn along each of the M objectives. Suppose that 
|

|

Fr
|

|

 is to the number of members allocated to the r-th front. 
The initial crowding distance of each a-th member is set as 
Δa,r = 0 , where a = 1,… , |

|

Fr
|

|

 . For every m-th objective 
function, a sorting process is performed on all members allo-
cated to the r-th front in ascending manner by referring to 
their respective objective values and a list represented as Lm,r 
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is used to store all sorted members. Suppose that for the r-th 
front, the a-th member is sorted to become the j-th element 
denoted as Lm,r

[

j
]

 for the m-th objective, where 

j = 1,… , |
|

Fr
|

|

 . Then, the crowding distance for every j-th 
sorted member with the objective function value denoted as 
�m

(

XLm,r[j]

)

 can be calculated as:

Fig. 2   The pseudo-code of fast non-dominated sorting approach
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From Eq. (13), the front members with larger crowding dis-
tances are located on the more sparse regions of objective 
space and vice versa. For every m-th objective function, the 
boundary solutions stored in the sorted list Lm,r are assigned 
with infinite crowding distance values. Similar procedures 
are repeated for all M objective functions and all R fronts as 
shown in Fig. 3. A set denoted as � =

[

Δ1,… ,Δn,… ,ΔN

]

 
used to store the overall crowding-distance value of each n-
th learner is then computed as the sum of individual distance 
values corresponding to each m-th objective function value.

Referring to the non-domination rank Rankn and the 
crowding distance Δn of each n-th learner, a crowding-
comparison operator denoted as ≺cco is used to compare the 
superiority of two solutions during the selection process 
so that a uniformly spread-out optimal Pareto front can be 
generated to solve the given multi-objective optimization 
problem. From Eq. (14), if both learners of Xn and Xs have 
different non-domination ranks,Xn is preferred over Xs if the 
former solution has better (i.e., lower) rank than the latter 
one. If both learners belong to the same rank, the solution 

(13)ΔLm,r[j] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞, if j = 1 or j = �

�

Fr
�

�

ΔLm,r[j] +
�m

�

XLm,r[j+1]

�

−�m

�

XLm,r[j−1]

�

�m

�

XLm,r[�Fr�]

�

−�m

�

X
Lm,r [1]

� ,

if j = 2,… ,
�

�

�

Fr
�

�

− 1
�

located in the less crowded regions with larger Δn value is 
preferred as follow:

Modified teacher phase

During the teacher phase of TLBO, each of the n-th learner 
adjusts its position Xn based on the differences between the 
teacher Xteacher and the mainstream knowledge of popula-
tion denoted as a mean value Xmean as shown in Eq. (10). 
For single objective optimization problem, the selection of 
teacher is intuitive and can be achieved by identifying the 
learner with best objective function value from population. 
On the other hand, the existance of mutually contradictory 
objectives in the multi-objective optimization problems 
tends to produce multiple non-dominated learners that are 
able to guide other learners as teachers in searching for the 
Pareto front.

A modified teacher selection scheme is introduced for 
teacher phase of NSMTLBO, aiming to leverage the exper-
tise of multiple teachers in solving the multi-objective opti-
mization problems. In contrast to the conventional TLBO 
where a same teacher is assigned to guide the search pro-
cesses of all learners, the nearest non-dominated learner 
stored in the Pareto front F1 is assigned as the teacher for 
every n-th learner during the teacher phase of NSMTLBO. 
Let |

|

F1
|

|

 be the number of candidate teachers contained in 
the Pareto front F1 and D represents total numbers of design 

(14)
Xn ≺cco Xs, if

(

Rankn < Ranks
)

or
(

Rankn = Ranks
)

and
(

Δn > Δs

)

Fig. 3   The pseudo-code of computing the crowding distance value of each learner
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variables that need to be optimized. Let XU
d

 and XL
d
 be the 

d-th dimensional component of the upper and lower limits, 
respectively, where d = 1,… ,D . Denote XCand

a,d
 and Xn,d as 

the d-th dimension of the a-th candidate teacher and n-th 
learner, where a = 1,… , |

|

F1
|

|

 and n = 1,… ,N , respectively. 
Then, the normalized Euclidean distance between the n-th 
learner and the a-th candidate teacher represented with En,a 
are computed as follow:

As shown in Fig.  4, the computation of normalized 
Euclidean distances between the n-th learner and all |

|

F1
|

|

 
candidate teachers are repeated using Eq. (15). Based on 
the En,a values, the closest candidate teacher denoted as 
Xteacher
n

 is identified as the teacher for the n-th learner dur-
ing the teacher phase. The adopted teacher selection mecha-
nism is anticipated to enhance the exploitation capability 
of NSMTLBO because each learner is guided by its closest 
teacher. The diversity of Pareto front can also be preserved 
due to the employment of different teachers in guiding dif-
ferent learners during the teacher phase of NSMTLBO.

For conventional TLBO, the contributions of all learners 
are equal in determining the mean value of population Xmean . 
It is anticipated that the conventional TLBO is susceptible to 
premature convergence because the same values of Xteacher 
and Xmean are used to update all of the learners in each gen-
eration. If the most knowledgeable teacher is trapped in 
a local optimum, it tends to misguide the rest of learners 
searching towards the local optimum and produce the same 
mean position Xmean . When both of the Xteacher and Xmean 
becomes undistinguishable, the position of learners cannot 
be updated and stuck at local optimum because the second 
term of Eq. (10) tends to approach zero value when teaching 
factor obtained by all learners are Tf = 1.

In order to address this issue, an alternate approach in 
obtaining the mean knowledge of population is proposed 
for the teacher phase of NSMTLBO. Unlike TLBO, the 

(15)En,a =

√

√

√

√

√

D
∑

d=1

(

XCand
a,d

− Xn,d

XU
d
− XL

d

)2

proposed NSMTLBO only leverages the benefits of useful 
information carried by the non-dominated learners stored 
in Pareto front F1 as the source of influences in guiding the 
search process of other learners. In order to prevent the 
diversity loss in second component of Eq. (10), each a-th 
non-dominated learner from F1 is assigned with different 
weightage to reflect its unique contribution in construct-
ing the weighted mean position of the n-th learner. Denote 
ra ∈ [0, 1] as the random number obtained from a uniform 
distribution for each a-th non-dominated learner in F1 with 
the position value of Xa . Suppose that X̃mean

n
 represents the 

weighted mean position of n-th learner, then

Given the closest teacher Xteacher
n

 and weighted mean 
X̃mean
n

 , the new position of each n-th NSMTLBO learner is 
updated through the modified teacher phase, where

where r3 and r4 are the random number with the range of 
0 to 1 generated from uniform distribution;Tf1 and Tf2 are 
the teaching factors with the range of 1 to 2 generated from 
uniform distribution, where Tf1, Tf2 ∈ [1, 2] (Rao and Patel 
2013; Lin et al. 2015). As shown in Fig. 5 and Eq. (17), 
each of the n-th NSMTLBO learner can learn directly from 
multiple teachers by updating its knowledge based on the 
differences between its current knowledge and (i) the clos-
est teacher’s knowledge and (ii) weighted mean knowledge 
of other teachers in classroom. These uniform distributions 
of Tf1 and Tf2 are used to emulate a more realistic classroom 
paradigm by generating the learners with different levels 
of learning tendency from the teachers. Particularly, the 
NSMTLBO learner is assumed to learn everything from the 
teachers successfully when Tf1 and Tf2 are equal to 2, while 
the learner fails to learn anything when Tf1 = Tf2 = 1 (Rao 
and Patel 2013; Lin et al. 2015).

(16)X̃mean
n

=

∑
�
F1�

a=1
raXa

∑
�
F1�

a=1
ra

(17)Xnew
n

= Xn + r3
(

Xteacher
n

− Tf1Xn

)

+ r4
(

X̃mean
n

− Tf2Xn

)

Fig. 4   The pseudo-code of finding the closest teacher for each learner in the teacher phase
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Modified learner phase

The learner phase of TLBO promotes the exploration search 
of algorithm by introducing the repelling mechanism in 
Eq. (12) when the n-th learner is randomly assigned to an 
inferior peer. As the iterative generation of TLBO becomes 
larger, the changes in population tends to be stabilized 
because all learners tend to converge towards a particular 
region of search space. Without the notable changes of 
population diversity, it becomes challenging for a randomly 
selected learner to assist the particular learner to break out 
from sub-optimal region, especially if the optimization prob-
lem consists of a complicated Pareto front. It is also more 
difficult for the learner in a multi-objective algorithm to ran-
domly choose another peer that is completely dominated by 
it, hence the likelihood of triggering repelling mechanism 
in Eq. (12) is reduced further.

In order to address these challenges, a modified learner 
phase is proposed for NSMTLBO. A probabilistic muta-
tion scheme is first designed as an alternative learning 
strategy in the learner phase of NSBTLBO, aiming to per-
turb the learners with a mutation probability represented 
as Pmut = 1∕D . From the perspective of classroom teach-
ing–learning paradigm, different types of learners exist 
in the same classroom and some learners might prefer 
to improve their knowledge level via self-learning rather 
than interacting with their peers. The inclusion of this 
mutation operator is to facilitate the self-learning of some 
NSMTLBO learners during the learner phase after they 
complete the teacher phase. When the self-learning mecha-
nism is triggered for the n-th learner with probability Pmut , 

a random dimensional component of n-th learner, denoted 
as dr ∈ [1,D] , is selected for perturbation, where

where r5 ∈ [−1, 1] is a random number obtained from uni-
form distribution;Xnew

n,dr
, XU

n,dr
 and XL

n,dr
 are the dr-th dimen-

sional component of the n-th learner, the upper and lower 
boundary limits of decision variables, respectively. The 
pseudocode of self-learning mechanism is described in 
Fig. 6.

For the n-th learner that prefer to improve its knowl-
edge by interacting with other peers, a random peer learner 
denoted as Xs is chosen from population to update Xn using 
Eq. (11) or Eq. (12), where n, s ∈ [1,N] and s ≠ n . If the 
randomly chosen peer learner Xs dominates the learner 
Xn , the latter learner is attracted towards the former one as 
shown in Eq. (11). On the other hand, the learner Xn tends 
to be driven away from the inferior peer learner Xs using 
Eq. (12) to prevent the premature convergence of popula-
tion in sub-optimal regions of fitness lanscapes. If both of 
the learner Xn and peer Xs are non-dominated with each 
other, one of the learning strategy expressed using Eq. (11) 
or Eq. (12) will be randomly selected with an equal chance 
for updating the n-th learner at the modified learner phase 
of NSMTLBO as shown in Fig. 7.

Fuzzy decision maker

After obtaining the Pareto front F1 of a given multi-objec-
tive optimization problem, a fuzzy decision maker is then 
used by NSMTLBO to determine the most suitable solution 

(18)Xnew
n,dr

= Xn,dr
+ r5

(

XU
dr
− XL

dr

)

Fig. 5   The pseudo-code of 
modified teacher phase in 
NSMTLBO

Fig. 6   The pseudo-code of 
self-learning mechanism in the 
modified learner phase
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from the Pareto front obtained by referring to the relative 
importance levels of all objective functions stated by the 
stakeholders.

Denote �� =
[

�U
1
,… ,�U

m
,… ,�U

M

]

 as the utopia point of 
a given multi-objective optimization problem consisting of M 
objective functions. Utopia point is a specific point located 
in objective space with all objective function values demon-
strate the best possible values. On the other hand, the pseudo 
nadir point denoted as ��� =

[

� SN
1

,… ,� SN
m

,… ,� SN
M

]

 is 
another extreme point in objective space that consisting of 
the worst values for all objective functions. In order to select 
the most preferred optimal solution from Pareto front F1 , the 
membership value of every a-th Pareto front member with 
a = 1,… , |

|

F1
|

|

 for the m-th objective function is computed by 
calculating the relative distances between the objective func-
tion value of a-th Pareto front member, denoted as �m

(

Xa

)

 , 
and both of the utopia and pseudo nadir points in each m-th 
objective function. For any m-th objective function, if the a-th 
Pareto optimal solution is closer to the utopia point, the higher 
membership value denoted as �m

a
 is assigned to indicate the 

higher degree of optimality for the a-th Pareto front member 
in the m-th objective function and vice versa.

For minimization problem, the fuzzification process used to 
determine the membership value �m

a
 of each a-th Pareto front 

member with the objective function value �m

(

Xa

)

 in the m-th 
objective function is shown as follow:

The value of �m
a

 for maximization problem is computed as:

Assume that wm represents the relative importance level 
of every m-th objective function given by stakeholders, 
while �a refers to the total degree of optimality for every 
a-th Pareto front member. Then,
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Fig. 7   The pseudo-code of 
modified learner phase in 
NSMTLBO
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From Fig. 8, the a-th Pareto front member with the largest 
value of �a is selected from F1 as the most preferred Pareto 
optimal solution denoted as Xpreferred because it produces bet-
ter optimization on all objective functions of a given multi-
objective optimization problem as compared with other 
Pareto front members by referring to the relative importance 
of all objective functions.

The complete NSMTLBO algorithm

The complete procedures of NSMTLBO are presented in 
Fig. 9, where � and �  denote the counter of function evalua-
tions and maximum fitness evaluation numbers, respectively. 
During the initialization stage of NSMTLBO, a population 
P consists of N learners is randomly generated, followed by 
the function evaluation of these N learners in all M objec-
tive functions. The front number, non-domination rank and 
crowding distance of all learners are then computed, fol-
lowed by the sorting of members of population P from the 
best to worst by referring to these metrics.

During the search process, the new solution Xnew
n

 of each 
n-th learner is generated via the modified teacher or learner 
phases and stored in an offspring population denoted as 
���� with the population size of N. A combined population 

(21)�a =

M
∑

m=1

wm�
m
a

denoted as ����� = � ∪ ���� with the population size of 2 N 
is constructed and all members of ����� are sorted from 
the best to worst based on their non-domination ranks and 
crowding distances. An operator denoted as Trunc(⋅, ⋅) is 
then applied to truncate the best N members with the low-
est Rankn and largest Δn in ����� , aiming to create a new 
population of P for the next phase or next generation. These 
procedures are repeated until the termination condition is 
satisfied, i.e., when the values of fitness evaluation counter 
exceed the maximum fitness evaluation numbers, i.e.,𝛾 > 𝛤  . 
When the proposed NSMTLBO is terminated, the preferred 
optimal solution denoted as Xpreferred is determined from the 
Pareto front of F1 with the fuzzy decision maker based on 
the relative importance level specified for each objective 
function.

Performance metrics

Two evaluation metrics are adopted in this study to compare 
the optimization performances of all algorithms in tackling the 
multi-response optimization of PTFE machining problem. The 
first metric used for performance comparison of two Pareto 
fronts is a coverage operator of two sets by computing the 
percentage of members of one Pareto front to be dominated 
by those of another Pareto front (Zitzler et al. 2000). Denote 
C(⋅, ⋅) as the coverage operator used to compare two Pareto 
fronts of FA

1
 and FB

1
 , then

Fig. 8   The pseudo-code of fuzzy decision maker
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(22)C
(
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|
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1
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∶ a ≺= b

}

|

|

|

|

|

|

FB
1

|

|

|

If C
(

FA
1
,FB

1

)

= 1 , it implies that all members of the 
Pareto front FB

1
 are dominated or perform equally to all 

members from FA
1
 . In contrary,C

(

FA
1
,FB

1

)

= 0 means that 
none of the solution in FB

1
 are covered by those of FA

1
 . 

Fig. 9   The pseudo-code of complete NSMTLBO
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Notably, it is not guarantee that C
(

FA
1
,FB

1

)

 must be equal 
to 1 − C

(

FB
1
,FA

1

)

 , therefore it is crucial to obtain both 
results during performance comparisons.

Spacing metric (Coello et al. 2004) is the second met-
ric used for performance comparison by measuring the 
uniformity of Pareto fronts distribution obtained by dif-
ferent algorithms. Suppose that M refers to the numbers 
of objective functions to be optimized, while |

|

F1
|

|

 repre-
sents the number of non-dominated solutions obtained 
from Pareto front. Then, the smallest Euclidean distance 
between the a-th and b-th Pareto optimal solutions for 
each m-th objective function in the objective space is:

The average value of all da is then computed as:

Define S as the spacing measure to quantify the dis-
tance variance of neighbouring Pareto optimal solutions, 
then

The spacing measure of S = 0 is the best possible value 
produced by a compared algorithm because it implies that 
all of the Pareto front members are equidistant from each 
other.

Experimental studies

In this section, the capability of the proposed PTFE 
regression model to fit in the given experimental data is 
first investigated. The quantitative and qualitative analy-
ses of Pareto fronts produced by NSMTLBO and another 
six well-established algorithms are then conducted and 
compared thorough simulation studies. Based on the 
optimized machining parameters obtained from simula-
tions, the performance deviations between the actual and 
simulated results were then investigated through further 
validation experiments in order to confirm the practicabil-
ity NSMTLBO in solving the PTFE machining problem.

(23)

da = min
a,a≠b

M
∑
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|

|

|
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− 1

|
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(

d̄ − da
)2

Evaluation of PTFE modelling using analysis 
of variances (ANOVA)

The goodness-of-fit of the measured data and model was 
done using a statistical tool known as ANOVA. SD, R2 and 
P are the output parameters of ANOVA that represent the 
standard deviation, percentage of variation of data and sig-
nificance of the control variable (adequacy), respectively. 
The parameter SD represents how far the date values fall 
from the fitted values, which seems to be an indicator to 
show how good of a model in describing the response. The 
percentage of data variation in the response is qualified using 
the parameter R2 with the range of 0–100%, where greater 
values of R2 implies for better fitting in modelling. The 
probability P is used to check if the tested parameters are 
essential in determining the responses of model. If P < 5% , 
it indicates that the parameters are significant on responses 
of an adequate model. On the other hand, the parameter is 
concluded to be insignificant on the responses of an adequate 
model for P > 5%.

The Box-Behnken uncoded units were used in this study 
and the 95% confidence interval was set to find the vari-
ance among input machining parameters (Vc, f, ap and Nr) 
and output responses Ra and MRR. The contribution of each 
process parameter on the output responses were calculated 
as shown in Tables 4 and 5. Table 6 shows the parameter R2 
which is used to assess the percentage of data variance to 
the response. It is seen that 97% variability of data of MRR 
and 95% variability data of surface roughness are around the 
mean. In other words, the higher R2 shown above, reveals 
the strength of the relationship between the model and the 
dependent variable. It is the evidence of the fitness of the 
models.

Performance analysis of NSMTLBO in PTFE 
machining problem

The parameter settings of all involved multi-objective opti-
mization algorithms considered in solving the proposed 
PTFE machining optimization problem are first presented. 
It is followed by the presentation and discussion of simula-
tion results obtained by all algorithms. Both of the quali-
tative and quantitative analyses are used to compare the 
optimization performance demonstrated by each compared 
methods. Finally, the performance deviations between the 
simulated and experiment results obtained for the surface 
roughness and material removal rate are compared based on 
the selected optimized machining parameters.

Parameter settings for simulation and experimental studies

Extensive performance evaluation of NSMTLO was con-
ducted by comparing it with another six well-established 
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algorithms. This included the multi-objective particle swarm 
optimization (MOPSO) (Coello et al. 2004), non-dominated 
sorting genetic algorithm II (NSGA-II) (Deb et al. 2002), 
multi-objective grey wolf optimizer (MOGWO) (Mirjalili 
et al. 2016), multi-objective teaching–learning based opti-
mization (MOTLBO) (Lin et  al. 2015), multi-objective 
improved teaching–learning based optimization (MO-
ITLBO) (Patel and Savsani 2016) and non-dominated sort-
ing teaching–learning based optimization (NSTLBO) (Rao 
et al. 2018). The concept of external archive is used by 
MOPSO, MOGOW and MO-ITLBO to store the non-dom-
inated solution found during the optimization. Meanwhile, 

Table 4   ANOVA results for modelling the surface roughness of PTFE

Source Sum of squares Degree of 
freedom

Mean square F-value P value % Contribution Remarks

Model 4.61 11 0.419 28.16 < 0.0001 Significant
Vc 0.6365 1 0.6365 42.79 < 0.0001 13.18
f 0.5808 1 0.5808 39.04 < 0.0001 12.02
ap 0.0017 1 0.0017 0.1131 0.7413 0.04
Nr 0.1045 1 0.1045 7.03 0.0182 2.16
Vc × f 1.63 1 1.63 109.28 < 0.0001 33.75
Vc × ap 0.3567 1 0.3567 23.98 0.0002 7.39
f and ap 0.5184 1 0.5184 34.85 < 0.0001 10.73
f and Nr 0.2162 1 0.2162 14.53 0.0017 4.48
ap and Nr 0.1225 1 0.1225 8.23 0.0117 2.54
ap2 0.1485 1 0.1485 9.99 0.0065 3.07
Nr

2 0.3477 1 0.3477 23.37 0.0002 7.20
Residual 0.2231 15 0.0149
LACK OF FIT 0.0357 13 0.0027 0.0293 1
Pure error 0.1875 2 0.0937
Cor total 4.83 26

Table 5   ANOVA results for 
modelling the material removal 
rate of PTFE

Source Sum of squares Degree of 
freedom

Mean square F-value P-value % Contribution Remarks

Model 7608.96 9 845.44 67.66 < 0.0001 Significant
Vc 484.8 1 484.8 38.8 < 0.0001 6.20
f 2905.99 1 2905.99 232.57 < 0.0001 37.15
ap 896.34 1 896.34 71.73 < 0.0001 11.46
Nr 33.87 1 33.87 2.71 0.118 0.43
f × ap 1597.2 1 1597.2 127.83 < 0.0001 20.42
f and Nr 186.05 1 186.05 14.89 0.0013 2.38
ap and Nr 100 1 100 8 0.0116 1.28
f2 607.02 1 607.02 48.58 < 0.0001 7.76
ap2 918.25 1 918.25 73.49 < 0.0001 11.74
Residual 212.42 17 12.5
Lack of fit 212.42 15 14.16
Pure error 0 2 0
Cor total 7821.38 26

Table 6   Fit statistics (R2) values for material removal rate and surface 
roughness

Material removal rate, MRR SD 3.53 R2 0.9728
Mean 37.75 Adjusted R2 0.9585
C.V. % 9.36 Predicted R2 0.9269

Surface roughness, Ra SD 0.122 R2 0.9538
Mean 2.36 Adjusted R2 0.9200
C.V. % 5.17 Predicted R2 0.9261
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both mechanisms of fast non-dominated sorting and crowd-
ing distance are incorporated into NSGA-II, MOTLBO and 
NSTLBO for determining the quality of solutions obtained 
in solving the multi-objective optimization problems. The 
excellent performances of these six selected algorithms in 
handling different multi-objective optimization problems 
were verified in their literatures, hence the performance 
comparison between NSMTLBO and these peer algorithms 
are expected to be convincing.

The parameter settings of all compared algorithms were 
tuned as shown in Table 7 based on the recommendations 
of their respective literatures. The inertia weight � of 
MOPSO was set to be reduced from 0.9 to 0.4 in linear 
manner, while the parameter settings of both acceleration 
coefficients were given as c1 = c2 = 2.05. For MOPSO and 
MOGWO, the parameters of grid inflation and number 
of grid per dimension that are crucial in constructing 
the external archive were set as � = 0.1 and nGrid = 10 , 
respectively. The teaching factor Tf  of NSTLBO was 
randomly generated as 1 or 2, while the NSGA-II has 
a crossover rate of Pcr = 0.9 . A multiple group learn-
ing approach with the group number of nGroup = 4 was 
adopted by MO-ITLBO during the teaching phase and 
its archive was managed by epsilon-dominance method 
with � = 0.007 (Patel and Savsani 2016). For NSMTLBO, 

the mutation probability were set similar as MOPSO and 
NSGA-II, i.e., Pmut = 1∕D (Deb et al. 2002; Coello et al. 
2004). The teaching factors of MOTLBO, MO-ITLBO and 
NSMTLBO were generated as the values between 1 and 
2 to show the different capabilities of learners to improve 
their knowledge level from the teachers.

Different population sizes of N = 20, 30 and 40 were set 
to investigate the effect of population sizes on the optimi-
zation performances of all compared algorithms based on 
the recommendation of selected previous works (Natarajan 
et al. 2018; Rao et al. 2017b). For MOPSO, MOGWO 
and MO-ITLBO, the archive size |A| was set equal to N. 
Based on most official documents that specify the rules 
of competition among optimization algorithms the same 
maximum fitness evaluation number needs to be used 
as the termination condition of all compared algorithms 
for the sake of fair performance comparison (Suganthan 
et al. 2005; K. Tang et al. 2010; Liang et al. 2013). In 
this study, the maximum fitness evaluation number is set 
as � = 20, 000 . All algorithms were implemented with a 
Matlab 2017a software on the workstation consisting of 
Intel ®Core i7-7500 CPU @ 2.70 GHz. Each compared 
algorithm was run 20 times independently to obtain their 
average results.

Table 7   The parameter settings 
of all involved multi-objective 
optimization algorithms

Algorithms Parameter settings

MOPSO N, |A| ∈ {20, 30, 40}, � ∈ 0.9 → 0.4, c
1
= c

2
= 2.05, Pmut = 1∕D, � = 0.1, nGrid = 10

NSGA-II N ∈ {20, 30, 40}, Pcr = 0.9, Pmut = 1∕D

MOGWO N, |A| ∈ {20, 30, 40}, � = 0.1, nGrid = 10

MOTLBO N ∈ {20, 30, 40}, Tf ∈ [1, 2]

MO-ITLBO N, |A| ∈ {20, 30, 40}, nGroup = 4, Tf ∈ [1, 2], � = 0.007

NSTLBO N ∈ {20, 30, 40}, Tf ∈ [1, 2]

NSMTLBO N ∈ {20, 30, 40}, Pmut = 1∕D, Tf1,Tf2 ∈ [1, 2]

Table 8   Performance 
comparison of coverage metrics 
of all algorithms for different 
population sizes

Compared sets N = 20 N = 30 N = 40

Mean SD Mean SD Mean SD

C(RP, SP) 0.175 0.250 0.098 0.195 0.091 0.195
C(SP, RP) 0.000 0.000 0.003 0.015 0.004 0.012
C(RP, TP) 0.220 0.357 0.207 0.354 0.329 0.418
C(TP, RP) 0.015 0.037 0.000 0.000 0.008 0.018
C(RP, UP) 0.065 0.104 0.035 0.054 0.026 0.038
C(UP, RP) 0.000 0.000 0.000 0.000 0.000 0.000
C(RP, VP) 0.050 0.087 0.103 0.098 0.169 0.067
C(VP, RP) 0.005 0.022 0.010 0.024 0.000 0.000
C(RP, WP) 0.108 0.069 0.116 0.093 0.076 0.041
C(WP, RP) 0.065 0.056 0.040 0.021 0.041 0.026
C(RP, XP) 0.025 0.057 0.020 0.038 0.023 0.037
C(XP, RP) 0.005 0.022 0.000 0.000 0.000 0.000



930	 Journal of Intelligent Manufacturing (2020) 31:911–935

1 3

Results and discussions

Table 8 presents the mean and standard deviation (SD) val-
ues of coverage metric obtained by all compared algorithms 
for N = 20, 30 and 40. The proposed NSMTLBO is reported 
to have the most competitive optimization performance 
because of its capability to produce the Pareto fronts with 
larger percentages of non-dominated solutions as compared 
with the remaining six peer algorithms in all population 
sizes. For instance, it is observed that 32.9% of the members 
of Pareto front obtained by NSGA-II are inferior to those 
of NSMTLBO for N = 40, whereas only 0.8% of the Pareto 
front members of NSMTLBO are inferior to those of NSGA-
II. There are 17.5% and 6.5% of Pareto front members of 
MOPSO and MOGWO, respectively, in N = 20 are worse 
than those of NSMTLBO. In contrary, all Pareto optimal 
solutions obtained by NSMTLBO are non-dominated by 
those of MOPSO and MOGWO. For all three TLBO variants 
considered in benchmarking, MOTLBO demonstrates the 
worst results because the percentages of its Pareto optimal 
solutions dominated by NSMTLBO increase with popula-
tion sizes, i.e., 5.0%, 10.3% and 16.9% for N = 20, 30 and 
40, respectively. In contrary, the Pareto optimal solutions 
of NSMTLBO that are dominated by those of MOTLBO 
are at least ten times lesser for all population sizes. It is 
also observed that the performance differences between 
NSTLBO and NSMTLBO are relatively small because not 
more than 2.5% of NSTLBO’s Pareto optimal solutions are 
dominated by NSMTLBO, while there are not more than 
0.5% of the Pareto front members produced by NSMTLBO 
are worse than those of NSTLBO for the population sizes 
of N = 20, 30 and 40.

Remark  The Pareto fronts generated by NSMTLBO, 
MOPSO, NSGA-II, MOGWO, MOTLBO, MO-ITLBO and 
NSTLBO algorithms are represented with RP, SP, TP, UP, 
VP, Wp and Xp respectively.

The mean and SD values of spacing metric obtained by 
MOPSO, NSGA-II, MOGWO, MOTLBO, MO-ITLBO, 
NSTLBO and NSMTLBO for the 20 independent runs in 

all population sizes are summarized in Table 9. It is reported 
that the quality of Pareto fronts generated by NSMTLBO 
are the best for having the non-dominated solution sets that 
are diversified and yet uniformly distributed as indicated by 
the lowest spacing values obtained for N = 20, 30 and 40. 
Among all compared algorithms, the Pareto fronts obtained 
by NSGA-II in solving the PTFE machining problem has 
the worst quality because not only majority of the Pareto 
front members are dominated by those of NSMTLBO, but 
they also have the poorest distributions. While the MOPSO, 
MOGWO and MOTLBO can produce lesser Pareto opti-
mal solutions dominated by NSMTLBO, the uniformity and 
diversity of their Pareto fronts are at least two times worse 
than those of NSMTLBO according to the spacing metric. It 
is noteworthy that the Pareto fronts generated by MO-ITLBO 
and NSTLBO have shown different observations. For MO-
ITLBO, the Pareto fronts generated have second best spacing 
values but they consist of more inferior solutions dominated 
by NSMTLBO. In contrary, the Pareto fronts produced by 
NSTLBO have much higher spacing values although it can 
produce more non-dominated solutions. The poor quality 
of Pareto fronts obtained by NSTLBO reveals the existence 
of duplicated non-dominated solutions and this explains the 
better coverage and yet inferior spacing values. As compared 
with MO-ITLBO and NSTLBO, the proposed NSMTLBO 
has more competitive performance in producing the Pareto 
fronts with better quality and well distributed solutions.

In order to evaluate the computational efficiency of each 
compared algorithm, the mean computation time incurred 
by MOPSO, NSGA-II, MOGWO, MOTLBO, MOITLBO, 
NSTLBO and NSMTLBO in 20 independent runs in all 
population sizes are presented in Table 10. The proposed 
NSMTLBO has demonstrated promising computation effi-
ciency because the computational time incurred to optimize 
the PTFE multi-objective machining problems is lesser than 
those of NSGA-II, MOGWO, MOTLBO and NSTLBO for 
all population sizes of N = 20, 30 and 40. Although the mean 
computational time incurred by MOPSO and MO-ITLBO 
are lower than NSMTLBO in most population sizes, the per-
formance differences of computational efficiency between 
these three algorithms are not significant. In addition, the 

Table 9   Performance 
comparison of spacing metric 
of all algorithms for different 
population sizes

Algorithms N = 20 N = 30 N = 40

Mean SD Mean SD Mean SD

MOPSO 2.916 1.702 4.420 2.962 4.816 3.178
NSGA-II 4.129 1.545 5.621 2.340 7.792 3.010
MOGWO 3.266 1.799 5.697 2.867 7.635 3.967
MOTLBO 3.061 1.015 4.782 1.568 6.388 2.056
MO-ITLBO 2.227 1.461 2.509 1.666 2.745 1.437
NSTLBO 3.929 1.854 5.312 2.394 7.508 3.757
NSMTLBO 1.213 0.841 1.837 1.102 2.186 1.014
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proposed NSMTLBO has better performance than MOPSO 
and MO-ITLBO for being able to produce the Pareto fronts 
consisting of higher percentages of non-dominated solutions 
and more uniformly distributed of solution sets. Based on the 
simulation results shown in Table 10, it is suggested that the 
proposed modifications incorporated into NSMTLBO can 
achieve better tradeoff between the extra computational over-
heads consumed and performance enhancement achieved as 
compared with majority of peer algorithms.

The Pareto-fronts of PTFE machining problem obtained 
by MOPSO, NSGA-II, MOGWO, MOTLBO, MO-ITLBO, 
NSTLBO and NSMTLBO for N = 30 are illustrated in 
Fig. 10. In general, the qualitative results of Fig. 10 are 
aligned with the quantitative performance analyses reported 
in Tables 2 and 3. NSGA-II shows the worst optimization 

Table 10   Performance comparison of mean computation times of all 
algorithms for different population sizes

Algorithms Mean computation time (s)

N = 20 N = 30 N = 40

MOPSO 3.500 4.358 5.445
NSGA-II 4.681 6.548 7.102
MOGWO 7.564 9.545 11.133
MOTLBO 4.653 5.114 6.003
MO-ITLBO 2.542 3.294 3.986
NSTLBO 4.065 6.345 7.033
NSMTLBO 3.473 4.651 5.886

Fig. 10   The Pareto fronts of (a) MOPSO, b NSGA-II, c MOGWO, d MOTLBO, e MO-ITLBO, f NSTLBO and g NSMTLBO
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performance not only because it has Pareto-front with une-
ven distribution of solutions, but some solutions obtained 
are also dominated by the other compared algorithms. For 
instance, the material removal rate of solution produced by 
NSGA-II is around 20 cm3/mm when the surface rough-
ness value is 1.6 μm, while other peer algorithms such 
as MOGWO, MOTLBO, MO-ITLBO, NSTLBO and 
NSMTLBO can produce the material removal rates higher 
than 40 cm3/mm with same surface roughness. In addition, 
it is observed that the Pareto-fronts generated by MOPSO, 
MOGWO, MOTLBO, MO-ITLBO and NSTLBO are infe-
rior than that of NSMTLBO because the proposed approach 
can produce higher percentages of non-dominated solutions, 
especially those at the boundary regions of objective space. 
For instance, the proposed NSMTLBO is able to obtain 
five Pareto solutions when surface roughness changes from 
1.4 to 1.6 μm, while the MOPSO, MOGWO, MOTLBO 
and NSTLBO can only produce one, four, four and three 
Pareto solutions, respectively, for the same range of surface 
roughness. In contrast to NSMTLBO, the Pareto fronts of 
MOTLBO, MO-ITLBO and NSTLBO fail to detect a Pareto 
front member with the surface roughness of 2.7 μmand 
the material removal rate of 98 cm3/mm. The capability 
of NSMTLBO in identifying the Pareto optimal solutions 
located in the boundary regions of objective space is attrib-
uted to the promising exploitation strength offered by the 
modified teacher phase. The mechanism of assigning the 
nearest non-dominated solution as teacher of each learner 
allows the refinement of search process around a promising 
solution. Meanwhile, the unique mean positions generated 
for each learner by considering different weight contribu-
tions of all non-dominated solutions allow the learners to 
search the regions slightly beyond the promising solutions 
in order to reach other unvisited non-dominated solutions. 
Finally, the proposed NSMTLBO also outperforms the 
MOPSO, MOGWO, MOTLBO and MO-ITLBO for being 
able to produce the Pareto front with better uniformity. The 
extra momentum offered by the probabilistic self-learning 
mechanism in the modified learner phase during the search 
process can prevent the stagnation of NSMTLBO at the local 
Pareto-front as well as maintaining the diversity of solutions 
in Pareto-front.

After completing the quantitative and qualitative analyses 
of Pareto-fronts obtained by NSMTLBO, it is equally cru-
cial to validate the optimal process parameters obtained by 
considering relative importance levels of all objective func-
tions with those actual values of surface roughness (Ra) and 
material removal rate (MRR) obtained from experiments. 
Define w1 and w2 as the weightage to imply the importance 
levels of objectives in minimizing Ra and maximizing MRR, 
respectively, where w1 + w2 = 1 . In this section, the weight-
age setting of w1 = w2 = 0.5 are considered on both contra-
dict objectives. This implies that the equal emphasis levels 

were considered in maximizing the quality and quantity of 
PTFE product simultaneously during the machining process. 
The proposed NSMTLBO was first executed with a popula-
tion size of N = 30 to produce a Pareto-front similar to that 
of in Fig. 10g. A fuzzy decision maker was then applied 
to determine the preferred optimum machining parameters 
based on the predefined weights of w1 and w2 using Eqs. (19) 
to (21). The predicted and experimental values of Ra and 
MRR obtained based on the optimum machining parameters 
were presented in Table 11 together with their error values.

Given the equal weightage values of w1 = w2 = 0.5 , 
the optimum machining parameters obtained by the pro-
posed NSMTLBO are Vc = 160 m/min, f = 0.50 mm/rev, 
ap = 0.98 mm and Nr = 0.8 mm. The predicted values of 
surface roughness and material removal rate based on the 
simulation with these machining parameter settings are Ra

= 2.2347 μm and MRR = 96.8347 cm3/mm, respectively. By 
referring to the validation results presented in Table 11, it 
is observed that the deviations between the predicted and 
experimental values of Ra and MRR are 3.26% and 3.7%, 
respectively. Referring to these negligibly small perfor-
mance deviations, it can be concluded that the good consist-
ency between the simulated and actual experimental results 
is achieved.

Conclusions

The experimental design was done and the L27 orthogonal 
array consisting of three-level of cutting speed 

(

Vc

)

 , feed (f), 
depth of cut (ap) and nose radius 

(

Nr

)

 was formulated. The 
experiments were performed using a CNC turning machine 
with cemented carbide tool at an insert angle of 80°. The 
surface roughness was measured and material removal rate 
was computed instantly in each experiment. The response 
surface model (RSM) was rendered from the experimental 
results and the minimization function of surface roughness 
and maximization function of material removal rate were 

Table 11   Comparison between the predicted and experimental values

Machining condition w
1
= w

2
= 0.5

Machining parameters Cutting speed, Vc 160
Feed rate, f 0.5
Depth of cut, ap 0.98
Nose radius, Nr 0.8

Predicted values Surface roughness, Ra 2.2347
Material removal rate, MRR 96.8347

Experimental values Surface roughness, Ra 2.31
Material removal rate, MRR 93.25

Error rates ΔRa (%) 3.36
ΔMRR (%) 3.70
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derived. ANOVA was applied to determine the relationship 
between the dependent variable and independent variables.

Apart from developing the regression model of PTFE, an 
enhanced version of multi-objective optimization algorithm 
abbreviated as NSMTLBO was designed to tackle the multi-
objective machining problem. Some notable modifications 
were introduced into the proposed NSMTLBO, including: 
(i) a modified teacher phase consisting of the teacher selec-
tion mechanism based on the nearest Euclidean distance and 
the derivation of weighted mean position for each learner, 
(ii) a modified learner phase consisting of the probabilistic 
mutation operator to emulate the self-learning mechanism 
of learner and (iii) a fuzzy decision maker to determine the 
preferred non-dominated solution from Pareto front based 
on the predefined importance levels of objective functions. 
The optimization performance of NSMTLBO was evaluated 
through extensive simulation studies and it was proven that 
the proposed approach can outperform the other six peer 
algorithms due to its excellent capability in generating the 
Pareto fronts with better uniformity and higher numbers 
of non-dominated solutions. Finally, the simulation results 
obtained by NSMTLBO were validated and it was reported 
that the performance deviations between the simulated and 
experimental results of both surface roughness and material 
removal rates for PTFE are less than 3.70%, implying the 
applicability of proposed work in machining of PTFE.
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