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Abstract
This paper proposes a new machine learning method for fault detection using a reduced kernel partial least squares (RKPLS),
in static and online forms, for handling nonlinear dynamic systems. The choice of the fault detection method has a vital role
to improve efficiency and safety as well as production. The kernel partial least squares is a nonlinear extension of partial least
squares. The present method has been mostly used as a monitoring method for nonlinear processes. Thus, the standard method
cannot perform properly and quickly when the training data set is large. The main contributions of the suggested approach
are: the approximation of the components retained by the standard method and the reduction in the computation time as well
as the false alarm rate. Using the reduced principal, the online suggested method is presented for fault detection of nonlinear
dynamic processes. The online reduced method is developed to monitor the dynamic process online and update the reduced
reference model. For this reason, the moving window RKPLS is proposed. The general principle is to check if the new useful
observation satisfies, in the feature space, the condition of independencies between variables. Thereafter, the relevance of the
suggested methods is used to monitor the chemical stirred tank reactor benchmark process, the air quality and the tennessee
eastman process. The simulation results of the suggested methods are compared to the standard one.

Keywords Machine learning · RKPLS · MW-RKPLS · Nonlinear dynamic process · Fault detection · Tabu search

Introduction

Over the years, the security and monitoring of the industrial
processes are increasingly important steps to ensure main-
tained product quality and to guarantee proper functioning.
The industrial processes are highly complex and automated.
Furthermore, the quality concerning monitoring issues are
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hot topics, especially for large-scale systems. For the increase
in availability, reliability and safety, the choice of the mon-
itoring algorithms is important to ensure efficient process
monitoring techniques.

On the one hand, a fault is understood as an incorrect
function step in the actual dynamic system, which leads to
an unacceptable anomaly in the overall system performance
(Frank 1990). On the other hand, Fault Detection (FD) tech-
niques are necessary to monitor the continuity of operating
the system under normal conditions to ensure safety. Nev-
ertheless, the FD principle will help to limit the process
disturbances and keep the system safe and reliable. For this
reason, several techniques have been reported (Wang et al.
2018; Isermann 1984; Venkatasubramanian et al. 2003).

The FD literature is large and important as regards detect-
ing any fault that might occur (Joe Qin 2003; Jaffel et al.
2013). For years, several algorithms have been developed.
For example, we find the methods classified according to the
knowledge of the system in the form of two main classes (De
Angelo et al. 2009): qualitative or quantitative.

In this context and in order to model and analyze the
relationships between variables, multivariate statistical tech-
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niques have been developed for process monitoring such
as the Principal Component Analysis (PCA) (Neffati et al.
2019; Said et al. 2018), the Independent Component Analy-
sis (ICA) (Lee et al. 2006; Kano et al. 2003) and the Partial
Least Squares (PLS) (Li et al. 2010; Wold 1985). Thus, ICA
tries, with a group of independent components, to reflect non-
Gaussian information. The PCA method essays to extract
linear relations among the considered variables and then rep-
resents them with orthogonal Principal Components (Peng
et al. 2014). The PLS technique aims to extract process
data and quality data together and to model the relationship
between them.

However, the PLS as a data-driven method has shown a
good performance and has been widely used in modeling,
monitoring, and diagnosis in analytical, physical and clinical
chemistry as well as industrial processes. The PLS method,
which can extract relationships between two sets of variables,
inputs/outputs, can build a linear learning model with linear
Latent Variables (LVs) (Tang et al. 2017). Unlike the PCA,
which captures variations in input data with a descending
order of variance, the PLS model finds an optimum pair of
latent variables in the input data related to the output ones,
such that these transformed variables have the largest covari-
ance.

For process monitoring, several extended PLS methods
have been also proposed in the literature. Among the existing
work, the statistical process based on the PLS have been fre-
quently studied. MacGregor et al. suggested the monitoring
methods with multiblock PLS models and showed the per-
formance of the contribution diagrams used to identify the
fault variables using the PLS technique (MacGregor et al.
1994). In Kresta et al. (1991), the authors presented the basic
methodology, using the PLS models, to detect faults related
to output data for continuous processes. Li et al. (2010),
specified the geometric property of the PLS decomposition
structure in input data and then compared the different PLS
models to monitor the process. Helland et al. (1992), pro-
posed the recursive PLS algorithm in order to update the PLS
modelwith the latest process data. To solve several problems,
Zhou et al. (2010), suggested a total PLS model for output-
relevant process monitoring.

Actually, most industrial processes are nonlinear. Never-
theless, the application of the PLS is limited by its linear
assumption. For nonlinear input data and output data, non-
linear PLS (Rosipal 2010), polynomial PLS (Malthouse et al.
1997), neural PLS (Lee et al. 2006) and Kernel PLS (KPLS)
(Rosipal and Trejo 2001; Zhang et al. 2015; Zhang and Hu
2011) have been proposed. The kernel method has been very
developed in literature (Wu et al. 2017). Furthermore, the
KPLS methods have become one of the simplest, most ele-
gant and faster techniques at the level of the development of
the soft measurement model for nonlinear systems relative to
other nonlinear approaches. The KPLS technique provides

a good monitoring performance by finding those LVs that
present a nonlinear correlation with the response variables,
besides improving model understanding.

The KPLS can also be used to handle the original input
data that are non-linearly transformed into a feature space
of arbitrary dimensionality, via nonlinear mapping. Then a
linear PLS model will be created in the feature space. The
main advantage of the KPLS is that it does not involve any
nonlinear optimization utilizing the kernel function or the sta-
bilization problem (Kim et al. 2005). There have been recent
papers on the use of the standard KPLS with commonly used
indices, such as the Squared Prediction Error (SPE) and the
Hovelling index T 2 charts (Zhang et al. 2015).

There are still some problems for industrial process mon-
itoring based on the KPLS technique. Since the standard
KPLS performs an oblique projection to an input space, it
has limitations in distinguishing quality-related and quality-
unrelated faults. As a consequence, the number of latent
variables selected for the KPLS may be larger than that for
the linear PLS (Kim et al. 2005). Yet, the computation time
may increase according to the number of samples, selected
for the KPLS, for the storage of the symmetric kernel matrix
during the identification phase of a KPLSmonitoring model.

The main aim of this manuscript is to use the advan-
tages of the KPLS technique by introducing it as a part of a
new suggested method for nonlinear systems. In this study,
we propose a new Reduced KPLS (RKPLS) in which we
consider only the set of observations that approximates the
retained important components to produce a reduced size of
the kernel matrix.
In this paper, the optimized statistic RKPLS consists in
computing the optimized parameters of the KPLS to better
improve the detection phase. For this purpose, a metaheuris-
tic technique is chosen to compute the optimal value. The
considered metaheuristic is entitled the tabu search algo-
rithm (Marappan and Gopalakrishnan 2018). This method is
addressed using two objective functions, firstly the reduced
size and the reduced false alarm rate .
We propose, at the first place, a reduced method to over-
come the FD problems and facilitate this task. Then the
most important point is to follow real and dynamic systems
(Seera et al. 2016; Mosallam et al. 2016). The most real
industrial processes are dynamic over time, i.e. time vary-
ing. Whereas, the static RKPLS and the KPLS are based
on a model, time invariant, build from the training data. For
complex and dynamic systems, the fixed KPLS and RKPLS
methods give, in many cases, false alarms, which can reduce
the reliability of these methods. For this reason, we suggest
a new online FD method based on the reduced model. In
the literature, to update the RKPLS model, several dynamic
methods have been proposed (Chen et al. 2017; He et al.
2013). To better monitor a real mode and actual data, a mov-
ing window RKPLS (MW-RKPLS) is put forward. The main
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contribution is to determine the reduced model, which can
be updated, if new useful data are available. The suggested
MW-RKPLS consists in updating the RKPLS model using a
moving window. To conclude, the main contributions of this
paper lie in:

• We handle, firstly, the FD problem by a reduced method
which consists in selecting the significant components,
with an optimized statistic version.

• We use then the online MW-RKPLS that aims to update
RKPLS method using a moving window, if and only if a
new normal sample presents useful and important infor-
mation about the monitored system.

• We use only a reduced set of observations rich with infor-
mation,which improve theFDperformances in the online
version.

• The suggested approach is evaluated by using real
dataset.

The statisticRKPLSmethod is tested on theChemical Stirred
Tank Reactor (CSTR) benchmark process and the Tennessee
EastmanProcess (TEP).Afterwards, the relevance of the sug-
gested online MW-RKPLS method is used to monitor the air
quality and the TEP. The FD performances of both devel-
oped techniques are illustrated in terms of False Alarm Rate
(FAR), Good Detection Rate (GDR) and Computation Time
(CT).

The paper is organized as follows. In section “Previous
work”, an overview of the PLS and KPLS methods is given.
Section “Proposed RKPLS for fault detection” presents the
proposed RKPLS method. After that, the FD index SPE is
presented in section “Fault detection theory”. Thereafter,
in section “KPLS and RKPLS based EWMA-SPE chart”,
the KPLS based EWMA-SPE chart and the RKPLS based
EWMA-SPE chart are presented. Section “Suggested MW-
RKPLS monitoring” presents the suggested MW-RKPLS
method. The tabu search metaheuristic method is presented
in section “Selection of kernel parameter using tabu search
algorithm”. Section “Simulation results” shows the fault
detection performances using theCSTRprocess, the air qual-
ity and the TEP. Finally, section “Conclusion” concludes the
paper.

Previous work

Standard PLSmethod

Principle

The PLS method, which extracts a set a vectors called latent
components from the original input/output data space, builds
linear multivariable regression model. Thus, given the input

matrix X∈ �N×m containing N samples with m process
variables and the output matrix Y∈ �N×J comprising N
observations with J quality variables, we get:

X =
⎡
⎢⎣

x1
...

xN

⎤
⎥⎦ ∈ �N×m, Y =

⎡
⎢⎣

y1
...

yN

⎤
⎥⎦ ∈ �N×J ,

The objective of the PLS method is to search for a
set of vectors called LVs components T=[t1, t2...tl ] and
U=[u1, u2 . . . ul ], which represent as much as possible the
variations in the input and output observations (Taouali et al.
2015). The PLS model projects the input matrix and the out-
put matrix to a low-dimensional space with an L number of
LVs. The PLS decomposes the X and Y matrices as follows:

{
X = T PT + E
Y = UQT + F

(1)

where P = [p1, p2...pl ] and Q = [q1, q2...ql ] represent the
loadings for X and Y, respectively, and matrix E and matrix
F are the PLS residuals corresponding to the input matrix X
and the output matrix Y, respectively. On the other hand, the
number of latent factors is determined by cross-validation,
which gives the maximum prediction power based on data
excluded from training data (Qin 2012).

Algorithm

The main idea of the PLS algorithm is to extract each pair
of corresponding latent variables as a linear combination of
the input and output variables (Baffi et al. 1999). In the clas-
sical form presented by Wold (1985), the PLS method are
calculated from the Nonlinear Iterativ partial least squares
(NIPALS) algorithm. In each iteration, we find weight vec-
tors, wi and ci , which present the weights of the input and
output projections, as follows:

wi = uTi X/(uTi ui ), i = 1, 2..l, (2)

ci = t Ti Y/(t Ti ti ), i = 1, 2..l, (3)

For each iteration, a matrix of columns yields the following
variables: ti , ui , pi and qi . For an algorithm sequence, the
results of the previous iteration are used as inputs for the
next iteration, to ensure that the scores are extracted from the
input/output matrices.
A typical PLS algorithm is divided in four essential steps as
follows:

Step 1: Mean-center and scale X and Y;
Step 2: Using either the NIPLS algorithm, compute the fol-

lowing quantities: ti , ui , pi and qi ;
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Fig. 1 Flowchart of NIPALS algorithm

Step 3: Deflate X and Y by subtracting the computed latent
vectors from them;

Step 4: Go to step 2 to compute the next latent vector.

The organigram follows presents the essential steps of the
PLS model, as depicted in Fig. 1.

KPLSmethod

Principle

Generally, thePLSmethod is limited by its linear assumption.
In recent years, kernel methods (Rosipal and Trejo 2001;
Willis 2010) have received a lot of attention because of kernel
tricks that build a nonlinear latent variable model with an
approximately linear computational cost.
Therefore, linear systems can be performedby thePLSmodel
theory. Concerning nonlinear data in a higher-dimensional
space, called feature space F, where they can be modeled
linearly, they can be developed by the KPLS (Jalali-Heravi
andKyani 2007). The latter is formulated in this feature space
to extend the linear PLS to its nonlinear kernel form.

Furthermore, the key idea of the KPLS is to map the input
process variable data xi , i=1,...,N into a feature space F via
a nonlinear transformation �, as illustrated in Eq. (4):

� : xi ∈ �N → �(xi ) ∈ F (4)

In that case and due to the curse of dimensionality, it is impos-
sible to compute the nonlinear mapping of each unfolded
sample from batch processes. To tackle this issue, the Mer-
cer kernel k(., .) can be defined as the inner product of two
mapped samples (Wang 2012):

k(xi , x j ) =< �(xi ),�(x j ) >= �(xi )�(x j )
T (5)

where �(xi ) ∈ �1×S , i=1,...,N and S is the dimension of the
feature space.
The requirement on the kernel function is that it satisfies the
Mercer’s theorem. According to Eq. (5), the Gram matrix K
∈ �N×N can be obtained as follows:

K = �(X)�(X)T (6)

with �(X) = [ϕ(x1)T , ..., ϕ(xN )T ].
There are many kernel functions which are commonly used.
The different kernel functions are available as:
Polynomial kernel : K (X ,Y ) =< X ,Y >p,
Sigmoid kernel : K (X ,Y ) = tanh(β0 < X ,Y > +β1),

Radial basis kernel :K (X ,Y ) = exp(−‖X−Y‖2
2σ ),

where p, β0, β1, and σ are determined using the cross-
validation technique.

Algorithm

In this section, we will present the necessary steps of the
KPLSmethod. The kernel algorithms for the PLSwere given
byLindgren et al. (1993) for the optimizationofmatriceswith
a large number of samples.
At the first stage,mean centering in a high-dimensional space
must be performed. The centered GramKmatrix can be then
computed as indicated in Eq. (7):

K ←
(
In − 1

n
1n1

T
n

)
K

(
In − 1

n
1n1

T
n

)
(7)

where 1n denotes a vector of ones with length N, and In is
an N-dimensional identity matrix.
Now, considering a modified version of the PLS algorithm,
the score vectors T and U are scaled to a unit norm instead
of scaling the weight vectors W and C (Rosipal 2010).
On the other hand, we find the deflation step. It is based on
a rank-one reduction in the K and Y matrices using a new
extracted score vector T (Kim et al. 2005). The K and Y
matrices are deflated as:

123



Journal of Intelligent Manufacturing (2020) 31:865–884 869

K ← (In − t t T )K (In − t t T )

= K − t t T − KttT + t t T K ttT (8)

Y ← Y − t t T Y (9)

where In is an N-dimensional identity matrix.
After extracting the desired kernel, the following steps con-
sist in calculating the prediction outputs on the training and
testing samples. The corresponding prediction outputs on the
training samples can be written as follows:

Ŷ = KU (T T KU )−1T T Y (10)

The corresponding prediction outputs on the testing samples
can be represented as follows:

Ŷt = KtU (T T KU )−1T T Y (11)

where Kt is the kernel matrix of the test samples.
A typical KPLS algorithm is divided in four essential steps

as follows:

Fig. 2 Flowchart of KPLS-based SPE chart

Step 1: Calculate kernel matrix and then center;
Step 2: Set i=1, K1 = K , Y1 = Y ;
Step 3: Random initialized ui equal to any column of Yi ;
Step 4: ti = KT

i ui , ti = ti/ ‖ ti ‖;
Step 5: ci = Y T

i ti ;
Step 6: ui = Yi ci , ci = ci/ ‖ ci ‖;
Step 7: If ti converge, go to Step 7, else return to Step 3;
Step 8: Deflate K and Y;
Step 9: Repeat Steps 3 to 6 to extract more latent variables;
Step 10: Obtain the cumulative matrices T and U.

The following organigram presents the essential steps of the
KPLS model, as illustrated in Fig. 2.

Proposed RKPLS for fault detection

For kernelmethods, the training data used formonitoring and
modeling must be stored in a memory. Specifically, the mon-
itoring methods based on the KPLS suffer from computation
complexity (Jaffel et al. 2017), because the learning time as
well as the amount of computermemory increase rapidlywith
the number of observations. As a result, there are problems
of memory and calculation when the number of observations
becomes large, mainly when dynamic processes are being
monitored. Despite the fact that the KPLS method solves
the problem of non-linearity, it is computationally limited
because of the increased n-dimensional kernel matrix with
the number of observations (Taouali et al. 2016).
For this reason, a new reduction method entitled the RKPLS
is proposed in this section.

RKPLS principle

The important principle of the proposed RKPLS method is
to reduce the computation time. In this method, we select a
reduced number of observations among the N measurement
variables of the information matrix. The parameter number
of the resulting RKPLS model is equal to the number L of
the latent component. To conclude, we can say that to raise
the detection performance, we add in a reduced data set the
most loaded samples in terms of information. Such a system
is used to generate a reduced KPLS model, which will be
used for monitoring.
The suggested RKPLS method consists in approaching each
latent component {w j } j=1..P by transformed input data

φ(x ( j)
Latent ) ∈ φ{xi }i=1...M , which have the highest projec-

tion value in the direction of w j (Taouali et al. 2015).

The projection of vector φ(x ( j)
Latent ) can be written as:

φ(x ( j)
Latent ) = α j ∗ k j (x), j = 1, 2..L (12)
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After that, we project all the vectors of the transformed
data φ{xi }i=1...M on the latent component w j and we retain

x ( j)
Latent ∈ {x (i)}i=1...M that satisfies Eq. (13):

⎧⎪⎨
⎪⎩

φ(x ( j)
Latent ) j = max

i=1,..,M
φ(xi ) j

and

φ(x ( j)
Latent )i �= j < ς

(13)

where ς is a given threshold.
Once the reduced data set {x ( j)

Latent } j=1..L is determined, a
reduced data matrix can be defined as:

Xr = [x (1)
Latent x (2)

Latent ... x (L)
Latent ]T (14)

Furthermore, we make a reduced Kernel matrix Kr associ-
ated to a kernel function k, as indicated in Eq. (15):

Kr =
⎡
⎢⎣
k(x1, x1) . . . k(x1, xL)

...
. . .

...

k(xL , x1) . . . k(xL , xL)

⎤
⎥⎦ ∈ RL×L (15)

RKPLSmethod

The main algorithmic steps of the suggested RKPLS are
shown as follows:

Step 1: Acquire an initial standardized block of training data
{xi }i=1..N and scale them,

Step 2: Construct the kernel matrix K and scale it,
Step 3: Project {φi }i=1..N on the component latent {wi } and

choose x (i)
Latent that satisfies the Eq. (13),

Step 4: Construct the reduced kernel matrix Kr ∈ RL×L , as
in Eq. (15),

Step 5: Estimate the reduced KPLS model,
Step 6: Determine the control limits of the SPE chart pre-

sented in the next section.

To sum up, the fault detection flowchart of the RKPLS is
shown in Fig. 3.

Fault detection theory

FD indices

Statistical processmonitoring, to build processmodels, relies
on theuseof normal process data.TheFDstage is thefirst step
in process monitoring. The key idea of the kernel methods
is to map the measurement space into the feature space F, so
that data in the feature space F can be distributed linearly.
However, the two statistics SPE and T 2 can be used for fault
detection in space F.

In general, traditional PLS-based FDmethods use the SPE
and T 2, which are, respectively, expressed in terms of Euclid-
ian and Mahalanobis distances (Choi et al. 2005; Li et al.
2011).
In this paper, the model is used for FD through the SPE
detection indice, which is presented in the next subsection.

Squared prediction error

The SPE index is defined as the norm of the residual vector in
the feature space F (Fezai et al. 2018). The SPE index mea-
sures variability that breaks the normal process correlation,
which often indicates an abnormal situation (Joe Qin 2003).
It is possible to detect new events by computing the SPE or
the Q statistic of the residuals for a new observation.
The SPE index is calculated as the squared norm of the resid-
ual components as follows:

SPE =‖ X̃r ‖2=‖ Xr − X̂r ‖2=‖ (I − Ŵ Ŵ T )Xr ) ‖
(16)

where X̂r is the reduced estimated value for the RKPLS
method and Ŵ is the weights matrix. Nevertheless, the nor-
mal region defined by the SPE control limit includes residual
components developed by Jackson and Mudholkar (1979).
Thus, faults with small to moderate magnitudes can easily
exceed the SPE control limit. Therefore, the process is con-
sidered normal if:

SPE � δ2α (17)

where δ2α denotes the upper control limit for the SPE with a
significance level α.
The confidence limits δ2α for the SPEwith a significance level
can be calculated as:

δ2α = gχ2
h,α (18)

where the confidence level is (1 − α) × 100%, and g and h
are given as:

g = Variance(SPE)

2 × mean(SPE)
and h = 2 × (mean(SPE))2

Variance(SPE)
.

KPLS and RKPLS based EWMA-SPE chart

In this section, the classic KPLS and the proposed RKPLS
methods will be applied in the KPLS-based EWMA-SPE
technique and in the suggested RKPLS-based EWMA-SPE
technique, respectively, to improve the detection phase. Gen-
erally, the EWMA has been widely used to improve the
quality of a process when small process shifts are of interest
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Fig. 3 Flowchart of proposed
RKPLS-based SPE chart

(Abbas et al. 2014; Lu and Tsai 2015). It was first introduced
by Roberts (1959).
The single valued based EWMAstatistic Zmay be calculated
using Eq. (19):

Zi = λX̄i + (1 − λ)Zi−1, i = 1..N (19)

where λ is known as the smoothing parameter and is chosen
such that 0 < λ � 1, and i is the sample number. Afterwards,
X̄i is the average of the i th sample, and the quantity Zi−1

represents the past information where its initial value Z0 is
equal to the target mean or the average of the preliminary
samples.

SuggestedMW-RKPLSmonitoring

In order that the static KPLS method can be developed and
improved, we find several techniques as the MW-KPLS (Liu
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et al. 2010; Shinzawa et al. 2006). Nevertheless, we can
collect just the most useful observations in a reduced data
matrix, in order to reduce the FAR. For this reason, we use,
as a first step, the RKPLS method which solves the prob-
lem of memory and computation time when the number of
observations become large. Mainly for dynamic-process
monitoring, we can find a significant complication. Hence,
the principal objective is to develop the proposed MW-
RKPLS method.

MW-RKPLS formulation

The basic idea of the MW-RKPLS technique is based on a
fixed window along data in real-time. The moving window
technique allows the used algorithm to operate in an online
mode in a time-varying environment. The general principle
of the moving window is to eliminate the oldest sample and
then add a newly available one (Jiang and Yan 2013; Jaffel
et al. 2016). Themain procedure of the suggested FDmethod
is divided in both phases. The two phases are performed, as
follows:

Offline RKPLS model identification: At the first place,
we focus on determining an RKPLS model, presenting the
most loaded samples in terms of information, which will be
used for online monitoring. The reduced reference model
is built, which adequately described the normal operating
condition.

Let consider a data set X ∈ RN ′×m and Y∈ RN ′×J ,
where N ′ indicates the size of the moving window. All
RKPLS stages, already presented in the previous sections, are
executed to determine a reduced-model identification. To
update the RKPLS model, we adopt the moving window
method. The algorithm of this step is defined in the next
section.

Online RKPLS model update by moving window for
FD: At the second place, we focus on updating the model
and downdating the kernel matrix. The online procedure
consists in updating the reduced model if and only if
a new normal sample presents useful information about
the monitored system. The update strategy consists in
adding the next observation to the reduced data set as
follows.
The SPE index using the RKPLS, as indicate by Eq. (16),
can evaluate the new observation if xk+1 is used to update
the RKPLS model. Afterwards, we calculate the projection
of the new observation φk+1 once it is considered as a healthy
observation, on the spaces panned by {φ(x ( j)

Latent )} j=1,2...L .
In this case, the projection of the j th component is defined
by Eq. (20) and is noted by φ̂(xk+1):

φ̂(xk+1) j = 〈φ(x ( j)
Latent ), φk+1〉; j = 1, ..., L (20)

To get a good approximation of the φk+1, it is necessary
to verify the condition indicated by Eq. (13), and it can be
presented as follows:

|‖φ̂(xk+1)‖ − ‖φk+1‖| < ς (21)

where ς is a given threshold.
Thereafter, we have two cases. If the condition is true, the
updates of the RKPLS model are not implemented. Oth-
erwise, if Eq. (21) is not satisfied, the reduced data set
{φ(x ( j)

Latent )} j=1,2...L does not adequately approach φk+1.
Consequently, the update RKPLSmodel is based on themov-
ing window technique. The main objective is to add xk+1 to
the reduced data set, as shown the following equation:

{φ(x ( j)
Latent )} j=1,2...L+1 = {{φ(x ( j)

Latent )} j=1,2...L , φk+1}
(22)

Then the reduced kernelmatrix presents an update at the level
of the last row and column, which can be expanded. Thus,
the kernel matrix Kr

L+1 is given by:

Kr
L+1 =

⎡
⎣
Kr

L a

aT b

⎤
⎦ ∈ �(L+1)×(L+1),

where a is a vector such that ai = k(xik, xk+1)i=1,...,L and
b = k(xk+1, xk+1) are scalar.
The following step consists to downdate the Kr

L+1 matrix,
from the reduced data set, by excluding the influence
of the oldest observation. In this case, it is necessary
to remove the first row and the first column of Kr

L+1.

We denote by K̂ r
L ∈ �L×L the resultant matrix where

the reduced data set becomes {φ(x ( j)
Latent )} j=1,2...,L =

{{φ(x ( j)
Latent )} j=2...L , φk+1}. This fact makes the suggested

MW-RKPLS practical for many complex FD problems.

Flowchart of proposedMW-RKPLS

The main algorithmic steps of the proposedMW-RKPLS are
shown as follows:

Offline phase

Step 1: Select an initial standardized training data set of
input/output and set kernel parameter.

Step 2: Construct the kernel matrix K and scale it.
Step 3: Estimate initial KPLS model, so determine the L

latent variables.
Step 4: Project {φi }i=1,..,n and choose the {φ(x ( j)

Latent )}
j=1,..,L that satisfy Eq. (13).

Step 5: Construct the reduced kernel matrix Kr
L ∈ �L×L .
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Step 6: Determine initial RKPLS model.
Step 7: Determine initial control limit of the SPE statistic.

Online phase

Step 8: Obtain a new testing observation xk+1 and scale it.
Step 9: Evaluate FD index SPE for xk+1. If control limit

is not exceeded, the new observation xk+1 is con-
sidered normal, so go to step 10 otherwise, turn to
step 8.

Step 10: According to the condition mentioned by Eq. (21),
if it is satisfied, it is not necessary to update the
RKPLS model and turn to step 8, otherwise go to
the next step.

Step 11: Update the RKPLS model, download the kernel
matrix Kr

L ∈ �L×L and reject the oldest observa-
tion.

Step 12: Update the number of LVs and the Xr matrix.
Step 13: Update the control limit of the SPE index of the

monitoring statistic and the RKPLS model.
Step 14: To get a new testing data, return to step 8.

To sum up, the FD flowchart of theMW-RKPLS is illustrated
in Fig. 4.

Selection of kernel parameter using tabu
search algorithm

Selection principle of kernel parameter

In this paper, the kernel methods are the keys of the used
method, which is based on the kernel function and the ker-
nel parameters. In general, for systems diagnostic using the
KPLS method, the Gaussian kernel RBF is the most used
choice, as a nonlinear function. To have an optimal shape, it is
necessary to choose thewidth of parameterσ . This parameter
is the key element of the Gaussian kernel RBF and presents a
direct influence on the ability of the KPLS method. Thus, σ
presented in the kernel function has an important effort on the
partitioning outcome in the F feature space. In this section,
an optimization approach is presented to select an optimal
Gaussian kernel parameter, which is used in the suggested
RKPLS method. The large value in σ results to over-fitting,
and the small value of σ results in under-fitting. Furthermore,
the correct optimal kernel parameter is usually presented as
the one that can improve the FDperformance. For this reason,
the choice of the σ parameter needs to be treated by the given
application. The tabu search method is used to optimize the
σ parameter to apply for the RKPLS algorithm (Scrich et al.
2004).

Initial solution

In this context, we focus on the use of a meta-heuristic called
the tabu search. The general idea is to determine the initial
solution using the tabu search algorithm to find an optimal
σ value to the RKPLS model. An initialization solution is
presented at random. It is recommended to introduce the
parameter σ constraints in an interval σ ∈ [2−6, 26] to
reduce the search space for the RKPLS model. To improve
the FDperformance, the solution is determined by the nearest
unused neighbor values of the parameter. The process repeats
until all the neighbors are visited.

Simulation results

The considered performances to evaluate the suggested
method are the FAR, the GDR and the CT. The FAR is con-
sidered as the ratio between the total time of false alarms and
the total time of faultless data (Lahdhiri et al. 2017):

FAR = V iolated samples

Faultless data
% (23)

The GDR is calculated as the ratio between the total time of
the detected faults and the total time when the system is not
operating properly:

GDR =
(
V iolated samples

Faulty data
+ Not violated samples

Faultless data

)
%

(24)

Static RKPLSmethod

In this section, we demonstrate the FD performances of the
suggested RKPLS method. To evaluate the yield of our pro-
posed FD statistic, simulation on a chemical reactor CSTR
and on a TEP is presented. Nevertheless, it is compared with
the conventional KPLS method proposed in the literature.

Case study on CSTR benchmark process

As a first try, we start with the non-isothermal CSTR process,
used to conduct chemical reactions. The dynamic model of
the system is described by the following equations:

⎧⎪⎪⎨
⎪⎪⎩

dCA
dt = F

V (CA0 − CA) − k0e−E/RTCA
dTA
dt = F

V (TA0 − TA) + (−�H)k0
ρCp

e−E/RTCA − q
VρCp

q = aFb+1

Fc+( aFb
2ρcCpc

)
(T − Tcin)

(25)
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Fig. 4 Flowchart of suggested
MW-RKPLS

where the variables used to construct the data matrix are
presented in Table 1.

In this paper, the input matrix X is composed of a cool-
ing water flow rate, a reactant flow rate, temperature, and
concentration at the exit of the CSTR. The input vector is
expressed by:

X = [Fc F CA T ] (26)

Temperature T and concentration CA are controlled using
proportional integral controllers by manipulating the inlet
cooling water flow rate Fc and the feed flow rate F, respec-
tively.
To evaluate the performance of the suggested RKPLS, the
number of used observations is equal to 1000. In addition,
the training data Xtraining is computed on 500 samples, and
the so is for the testing data Xtesting . Thereafter, the tabu
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Table 1 Measurement variables in CSTR benchmark process

Variables Description

CA Concentration of “A” in inlet stream

k0 Reaction rate constant

E Activation energy

T0 Inlet stream temperature to reactor

Tcin Inlet temperature of coolant

�H Heat of reaction.

T Temperature of reactor

F Flow rate in and out of reactor

V Reactor volume

R Real gas constant

ρ Density of reactor contents and of all streams

Cp Heat capacity of reactor contents and of all streams

Table 2 Summary of good detection rates, false alarm rates, and com-
putation time for TEP data for case 1: fault in temperature T

Chart/Fault detection metric Example 1 (Fig. 5)

FAR (%) GDR (%) CT (s)

KPLS-based SPE 14.25 87 0.1233

KPLS-based EWMA-SPE 12.38 97 0.1233

RKPLS-based SPE 5.25 97.5 0.0393

RKPLS-based EWMA-SPE 4.96 100 0.0393

search method is used to compute the optimal value of σ . In
this case and for the CSTR system, the optimal σ value is
equal to 4.5.

In the simulated CSTR process, two fault scenarios repre-
senting two different types of faults are generated.

• Fault 1 is a step bias of the sensor measuring the temper-
ature T of the reactor, rather than its range of variation.
The fault is introduced between instances 250 and 350.

• Fault 2 is the similar fault of the sensormeasuring the con-
centration CA. The fault is introduced between instances
300 and 400.

Case 1: Fault in temperature T
In the first case study, we introduce a fault in temperature

during sample intervals from 250 to 350. The FD results are
provided in Table 2.
Figure 5a show the FD results of the KPLS-based SPE and
KPLS-based EWMA-SPE techniques. Nevertheless, Fig. 5b
presents the FD results of the proposed RKPLS-based SPE
and RKPLS-based EWMA-SPE techniques.

The suggested RKPLS provides a reduced kernel matrix
with 10 observations. From Fig. 5 and Table 2, we notice that
the proposed RKPLS-based SPE provides better results com-
pared to the classical KPLS-based SPE technique from the
FDR and CT point of view. On the other hand, the results of
the proposed RKPLS-based EWMA-SPE demonstrate also
that a GDR compared to the suggested RKPLS-based SPE
and good results with some false alarm rates compared to
the conventionalKPLS-basedEWMA-SPE technique.After-
wards, the FD results indicate that the suggested RKPLS-
based SPE and RKPLS-based EWMA-SPE techniques give

Fig. 5 Monitoring faults in temperature using KPLS and RKPLS techniques in sample intervals of [250–350]
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Table 3 Summary of good detection rates, false alarm rates, and com-
putation time for TEP data for case 2: Fault in concentration CA

Chart/Fault detection metric Example 2 (Fig. 6)

FAR (%) GDR (%) CT (s)

KPLS-based SPE 17.25 71 0.113

KPLS-based EWMA-SPE 16.25 79 0.113

RKPLS-based SPE 8 97 0.0338

RKPLS-based EWMA-SPE 5.05 100 0.0338

a good performance compared to the classical KPLS-based
SPE technique.

Case 2: Fault in concentration CA

In this section, we introduce a fault in concentration in
sample intervals of [300 to 400]. The FD results are given in
Table 3.
Figure 6a depicts the FD results of the KPLS-based SPE and
KPLS-based EWMA-SPE techniques. Furthermore, Fig. 6b
displays the FD results of the suggested RKPLS-based SPE
and RKPLS-based EWMA-SPE techniques.

In this case, we notice that the proposed detection strat-
egy RKPLS based on SPE shows an improvement at the
level of FDR compared to KPLS technique. Therefore, we
observe through Table 3 that the suggested RKPLS dras-
tically reduces the CT, which is very useful for a real
time application. Then Fig. 6 and Table 3 highlight that
the developed RKPLS-based EWMA-SPE provides better
results compared to the KPLS-based EWMA-SPE. Finally,
the FD results given by the CSTR benchmark process, in the

two studied cases, show a good performance for the proposed
RKPLS compared to the classical KPLS.

Next, to better study the performance of the proposed
method, the RKPLS algorithm is illustrated on the TEP.

Case study on TEP

In this part, the effectiveness of the proposed RKPLS for
process monitoring is investigated by applying the TEP. The
TEP is a complex nonlinear and dynamic process (Downs and
Vogel 1993).Actually, theTEP is developed to provide a real-
istic industrial process for evaluating control and monitoring
approaches, including the KPLS and the fisher discriminant
analysis. The five major units of this process are a reactor,
a stripper, a condenser, a recycle compressor and a vapor-
liquid separator, as depicted in Fig. 7. The TEP contains two
products of variables G and H from four reactants: A, C, D
and E. The reaction scheme is as follows:

⎧⎪⎪⎨
⎪⎪⎩

A(g) + C(g) + D(g) → G(liq);
A(g) + C(g) + E(g) → H(liq);
A(g) + E(g) → F(liq);
3D(g) → 2F(liq);

(27)

For the TEP, modeling, identification and monitoring rep-
resent a challenge for the control community and represent
as well the subject of several studies (Fezai et al. 2018; Jaffel
et al. 2016). Concerning the Xtrain matrix, we find 22 vari-
ables continuously measured among 41 process variables.
We find also 19 variables that are compositional measures
for the quality matrix Ytrain . All variables used to construct

Fig. 6 Monitoring faults in concentration using KPLS and RKPLS techniques in sample intervals of [300–400]
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Fig. 7 Flow diagram of TEP

Table 4 Measurement variables in TEP

Variables Description Unit

x1 A feed (stream 1) kscm h

x2 D feed (stream 2) kg h−1

x3 E feed (stream 3) kg h−1

x4 A and C feed (stream 4) kscm h

x5 Recycle flow kscm h

x6 Reactor feed rate kscm h

x7 Reactor pressure kPa

x8 Reactor level %

x9 Reactor temperature ◦C
x10 Purge rate kscm h

x11 Separator temperature ◦C
x12 Separator level %

x13 Separator pressure kPa

x14 Separator underflow m3 h−1

x15 Stripper level %

x16 Stripper pressure kPa

x17 Stripper underflow m3 h−1

x18 Stripper temperature ◦C
x19 Stripper steam flow kscmh

x20 Compressor work m3 h−1

x21 Reactor water temperature ◦C
x22 Separator water temperature ◦C

the data matrix are presented in Table 4. For the testing data
set, the fault is introduced at 224 observations. TEP data for
training the model were presented in Lahdhiri et al. (2018),
where 21 faults types could be introduced, as presented in
Table 5.

However, Fig. 8 shows theFDperformance of theRKPLS-
based SPE and RKPLS-based EWMA-SPE techniques for
IDV 1 fault test data. The proposed RKPLS method gives
0.2366 s as a CT. On the other hand, we have 0.6991 s for the
KPLS method. The optimal value of σ for the TEP system,
from the solution given by the tabu search method, is equal
to 10.

Tables 6 and 7 provide the FAR and GDR for some test
data sets of faults to validate the suggested method. Then the
undetected faults are mentioned in the tables by “–”.

The suggested RKPLS provides a reduced kernel matrix
with 135 observations. The RKPLS-based SPE as well as the
RKPLS based EWMA-SPE statistic shows better FD than
the KPLS-based SPE, and the KPLS based EWMA-SPE
statistics, as depicted in Fig. 8. The KPLS-based EWMA-
SPE method shows slight FD improvement compared to the
KPLS-based SPE. Afterwards, the RKPLS-based SPE and
the RKPLS-based EWMA-SPE demonstrate a better FD per-
formance with the FAR, as represented the Table 6, and a
better GDR as given in Table 7.
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Table 5 List of monitoring
variables in TEP

Fault number Process variable Type

IDV(1) A/C feed ratio, B composition constant Step

IDV(2) B composition, A/C ratio constant Step

IDV(3) D feed temperature Step

IDV(4) Reactor cooling water inlet temperature Step

IDV(5) Condenser cooling water inlet temperature Step

IDV(6) A feed loss Step

IDV(7) C header pressure loss-reduced availability Step

IDV(8) A, B, and C feed composition Random variation

IDV(9) D feed temperature Random variation

IDV(10) C feed temperature Random variation

IDV(11) Reactor cooling water inlet temperature Random variation

IDV(12) Condenser cooling water inlet temperature Random variation

IDV(13) Reaction kinetics Slow drift

IDV(14) Reactor cooling water valve Sticking

IDV(15) Condenser cooling water valve Sticking

IDV(16) Unknown Unknown

IDV(17) Unknown Unknown

IDV(18) Unknown Unknown

IDV(19) Unknown Unknown

IDV(20) Valve fixed at steady state position Constant position

IDV(21) A/C feed ratio, B composition constant Step

Fig. 8 Monitoring TEP IDV 1 fault using KPLS and RKPLS techniques

MW-RKPLSmethod

In this section, we present the FD performances of the sug-
gested MW-RKPLS. In order to illustrate that the KPLS and
theRKPLS are not appropriate formonitoring non-stationary
processes, Tables 6 and 7 show that many defects are unde-

tectable. We note that the number of FARs provided by the
KPLS and RKPLS approaches are undesirable, especially
for the dynamic and complex systems. This can be explained
by the fact that the KPLS and the RKPLS are unable to ade-
quately control non-stationary processes since they are based
on the use of a fixed model.
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Table 6 False alarm rates (%)
for TEP data

Fault KPLS-based SPE KPLS-based RKPLS-based SPE RKPLS-based
EWMA-SPE EWMA-SPE

IDV(1) 6.25 4.44 1.32 0.6

IDV(5) 1.05 0.7 0.91 0.152

IDV(6) 14.44 10.33 2.2 1.08

IDV(7) 0.44 0 0 0

IDV(8) 0.446 0 4.05 0

IDV(9) – – 0.11 0

IDV(10) – – 0.02 1.72

IDV(12) 9.55 9.10 0.01 0.13

IDV(13) 38.82 37.13 5.31 1.67

IDV(14) – – 0.9 1.77

IDV(15) – – 1.73 0

IDV(16) – – 10.05 8.88

IDV(19) – – 10.71 3.75

IDV(20) 19.36 14.25 10.71 3.75

Table 7 Good detection rates
(%) for TEP data

Fault KPLS-based SPE KPLS-based RKPLS-based SPE RKPLS-based
EWMA-SPE EWMA-SPE

IDV(1) 95.02 99.22 99.9 100

IDV(5) 19.84 41 98 100

IDV(6) 84.05 88.44 97.33 98

IDV(7) 77.46 80.07 99.61 99.65

IDV(8) 96 96.39 99.23 100

IDV(9) – – 100 100

IDV(10) – – 67.64 99.22

IDV(12) 97.29 100 97.33 100

IDV(13) 90 94 96.64 100

IDV(14) 92.78 99.74 97.39 99

IDV(15) – – 98.06 100

IDV(16) – – 100 99.88

IDV(19) – – 99 99.89

IDV(20) 98 99 100 100

For the dynamique and real systems, the MW-RKPLS
method represents several advantages over the static one. In
this part, we consider two real, complex and dynamic sys-
tems.At the first place, the study is based on theTEP,which is
a highly nonlinear and dynamic process. At the second place,
the air quality system takes place, which is a real system.

Case study on TEP

The benchmark of the TEP, being real data coming from the
sensors, is very used for the FD procedure in research. In the
static mode, the model can not correctly track the variation
and change in the complex TEP. This problem producesmore
difficulty for the FD in the process. Many faults are not well

detected by the static method. In the rest of this section, we
repeat the simulation with the online MW-RKPLS method.
Nevertheless, Fig. 9 depictes the FDperformance of theMW-
KPLS-based SPE and the MW-RKPLS-based SPE for IDV
1 fault test data. The updated numbers of LVs using theMW-
RKPLS and the MW-KPLS are presented in Fig. 10.

The detection results, in terms of FAR and GDR, of the
two simulatedmethods (MW-RKPLS andMW-KPLS) using
the SPE index in the normal operation condition are provided
in Table 8.

According to Table 8, the MW-RKPLS based SPE
presents good performances in term of FAR, and all faults
are detected compared to both static approaches based on the
EWMA-SPE.
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Fig. 9 Monitoring TEP IDV 1 fault using MW-KPLS and MW-RKPLS techniques

Fig. 10 Evolution of number of
LVs with MW-KPLS and
MW-RKPLS

We notice that the MW-RKPLS algorithm provides a com-
parable performance in terms of FAR than the MW-KPLS.
The suggested MW-RKPLS method gives 0.9971 s as a CT.
On the other hand, we have 1.304 s for the KPLS method.
It is highlighted, in this part that the MW-RKPLS has bet-
ter performances than the MW-KPLS, especially in terms of
average CT and computation cost. Then the online method
has better performances compared to the static one in terms
of FAR and FD procedure.

Case study on air quality

To better control the suggested method, we use an air quality
monitoring network AIRLOR, which is operating in Lor-
raine, France. The AIRLOR monitoring network consists of
20 stations placed in several sites: rural, urban and peri-rural.
Six neighbor measurement stations are reserved to the regis-

tering of some pollutants, like sulfur dioxide (SO2), carbon
monoxide (CO), ozone (O3) and nitrogen oxides (NO and
NO2) (Bell et al. 2004; Harkat et al. 2006).
Afterwards, the principal idea is to detect sensor faults of the
measure ozone concentration O3 and the nitrogen oxides NO
and NO2. The phenomenon of the photochemical pollution
presents, in fact, a dynamic nonlinear behavior. For this rea-
son, we use, in this part, the proposed MW-RKPLS method.

The observation vector X contains 18 monitored variables,
respectively named υ1 to υ18, including an ozone concentra-
tion O3, a nitrogen oxide, and a nitrogen dioxide collected
from each station, as depicted in Eq. (28).

x(k) =
[
υ1(k)υ2(k)υ3(k)︸ ︷︷ ︸

Station1

. . . υ10(k)υ11(k)υ12(k)︸ ︷︷ ︸
Station4

. . . υ16(k)υ17(k)υ18(k)︸ ︷︷ ︸
Station6

]T

(28)
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Table 8 Performances of MW-KPLS and MW-RKPLS for online FD

Fault MW-KPLS based SPE MW-RKPLS based SPE

FAR (%) GDR (%) FAR (%) GDR (%)

IDV(1) 8.39 96.87 0.571 98

IDV(2) 4.02 97.16 1.33 96.26

IDV(3) 19.64 42.26 2.23 87.092

IDV(4) 1.34 35.69 0.23 62.75

IDV(5) 1.33 46.90 0.23 89.32

IDV(6) 7.14 75 1.78 99.097

IDV(7) 3.12 54.63 2.23 68.55

IDV(8) 1.41 98.19 0 97.06

IDV(9) 4.85 77.57 0.23 95.12

IDV(10) 1.26 57.98 1.23 86.18

IDV(11) 11.87 70.48 2.99 77.91

IDV(12) 5.80 98.32 0.44 99.03

IDV(13) 5.35 96 3.12 95.74

IDV(14) 11.87 100 0.89 77.75

IDV(15) 8.30 56.31 0.03 85.67

IDV(16) 12.05 53.99 0.44 100

IDV(17) 6.69 97.29 1.33 81.57

IDV(18) 4.79 98.26 3.12 88.40

IDV(19) 8.03 51.67 6.25 99.49

IDV(20) 8.03 60.82 1.78 96.56

IDV(21) 18.75 63.78 2.67 62.24

Case 1: Fault in ozone O3

To illustrate the effectiveness of the suggested MW-
RKPLS method for FD, a bias fault is simulated on the
variable υ10(k) between observations 400 and 500. Themag-
nitude of the fault is equal to 30% of the range of its variation.

Next, Fig. 11 shows the evolution of the SPE index using
the MW-KPLS and the MW-RKPLS. The updated numbers
of LVs using the MW-RKPLS and the MW-KPLS, for case
1, are presented in Fig. 12.

The compared performances of the suggested MW-
RKPLS in terms of FAR, GDR and CT are summarized in
Table 9.

TheMW-RKPLS approach is compared to theMW-KPLS
approach. It is indicated that the MW-RKPLS method has
better performances than the MW-KPLS method, especially
in terms of average CT and FAR, as presented in Table 9 and
Fig. 11.

Case 2: Fault in nitrogen oxides NO2

In this part, to illustrate the effectiveness of the suggested
MW-RKPLS method for FD, a bias fault is simulated on
the variable υ15(k) between observations 250 and 350. The
magnitude of the fault is equal to 30% of the range of its
variation.
The monitoring results of the MW-KPLS and the MW-
RKPLS, using the SPE index for the nitrogen oxides NO2

bias fault, are depicted in Fig. 13.
From this figure, the injected fault is clearly detected in

time. Figure 14 shows the updated numbers of LVs using the
MW-RKPLS and the MW-KPLS.
The compared performances of the suggested MW-RKPLS
in terms of FAR, GDR and CT are summarized in Table 10.

According to Tables 9 and 10, we observe that the eval-
uation of the FAR and GDR, for the proposed method, is
always the best compared to the MW-KPLS in both different
cases. Therefore, we deduce that the suggestedMW-RKPLS
drastically decreases the CT, which is very useful for a real
time application.

Fig. 11 Monitoring faults in the ozone O3 using MW-KPLS and MW-RKPLS techniques in sample intervals of [400–500]

123



882 Journal of Intelligent Manufacturing (2020) 31:865–884

Fig. 12 Evolution of number of
LVs with MW-KPLS and
MW-RKPLS, for O3

Table 9 Summary of good detection rates, false alarm rates, and com-
putation time for TEP data for case 1: fault in ozone O3 in online mode

Chart/fault detection metric Example 1 (Fig. 11)

FAR (%) GDR (%) CT (s)

MW-KPLS-based SPE 13.20 82 0.69

MW-RKPLS-based SPE 7.55 100 0.445

Our proposed reduced method is much less expensive in
terms of memory and time than the other standard KPLS
methods, such as the MW-KPLS and the KPLS, which con-
firms the efficiency of the suggested MW-RKPLS as well as
the statistic one.

Fig. 13 Monitoring faults in nitrogen oxides NO2 using MW-KPLS and MW-RKPLS techniques in sample intervals of [250–350]

Fig. 14 Evolution of number of
LVs with MW-KPLS and
MW-RKPLS, for NO2
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Table 10 Summary of good detection rates, false alarm rates, and com-
putation time for TEP data for case 2: fault in nitrogen oxides NO2

Chart/fault detection metric Example 2 (Fig. 13)

FAR (%) GDR (%) CT (s)

MW-KPLS-based SPE 14.70 88 0.63

MW-RKPLS-based SPE 8.08 98 0.469

Conclusion

In this research, we have used a new FD method appli-
cable to the process monitoring using KPLS in static and
dymanic forms. Furthermore, we have put forward a reduced
KPLSmethod based on the SPE index for nonlinear dynamic
process monitoring. However, the process data and product
quality data are readily modeled utilizing LVs methods, like
PLS.

The idea of this paper is to handle a reduced data-driven
method for FD in online version. Our main contribution is to
use first the RKPLS which solves the problem of CT and the
storage of variables. In fact, we adopt only the observations
rich with information. Second, we suggest the MW-RKPLS
to update the reducedmodel and to better monitor a real data.

Nevertheless, the RKPLS-based SPE and RKPLS-based
EWMA-SPEFDperformances are assessed and compared to
those of the classicalKPLS-basedSPE.On the other hand,we
have proposed an improved RKPLSmethod, called theMW-
RKPLS, for nonlinear dynamic process monitoring. Firstly,
the FD of the CSTR benchmark process and of the dynamic
highly nonlinear system TEP using the suggested RKPLS-
based SPE and the RKPLS based EWMA-SPE have been
addressed to evaluate the performances of the developed
techniques. Then the MW-RKPLS method has been com-
pared to the MW-KPLS method using the nonlinear system
TEP and the air quality monitoring network data.
With the RKPLS method, the results have been satisfac-
tory relative to the classical KPLS-based SPE and the
KPLS-based EWMA-SPE. More precisely, the results have
demonstrated the efficiency of the developed technique in
terms of false alarm rate, gooddetection rate and computation
time, compared with the conventional fault detection KPLS.
To solve the problem of detection, the dynamicMW-RKPLS
method has been tested on highly dynamic systems, and the
results have been satisfactory compared to the static method.
Most importantly, the MW-RKPLS has had better perfor-
mances than the MW-KPLS, especially in terms of average
CT and FAR.

Finally, the performances and good scaling properties
of the suggested method have been proved through several
experiments. The suggested MW-RKPLS method may be
very helpful to design a real time monitoring strategy for
fault reconstruction and isolation.

References

Abbas, N., Riaz, M., & Does, R. J. (2014). An EWMA-type control
chart for monitoring the process mean using auxiliary information.
Communications in Statistics-Theory andMethods, 43(16), 3485–
3498.

Baffi, G., Martin, E. B., & Morris, A. (1999). Non-linear projection to
latent structures revisited: The quadratic PLS algorithm. Comput-
ers & Chemical Engineering, 23(3), 395–411.

Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., & Dominici, F.
(2004). Ozone and short-term mortality in 95 US urban commu-
nities, 1987–2000. Jama, 292(19), 2372–2378.

Chen, J., Yin, Z., Tang, Y., & Pan, T. (2017). Vis-NIR spectroscopywith
moving-window PLS method applied to rapid analysis of whole
blood viscosity. Analytical and Bioanalytical Chemistry, 409(10),
2737–2745.

Choi, S. W., Lee, C., Lee, J. M., Park, J. H., & Lee, I. B. (2005). Fault
detection and identification of nonlinear processes based on kernel
PCA. Chemometrics and Intelligent Laboratory Systems, 75(1),
55–67.

DeAngelo, C. H., Bossio, G. R., Giaccone, S. J., Valla,M. I., Solsona, J.
A., &Garcia, G. O. (2009). Online model-based stator-fault detec-
tion and identification in induction motors. IEEE Transactions on
Industrial Electronics, 56(11), 4671–4680.

Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process
control problem. Journal of Process Control, 17(3), 245–255.

Fezai, R., Mansouri, M., Taouali, O., Harkat, M. F., & Bouguila, N.
(2018). Online reduced kernel principal component analysis for
process monitoring. Journal of Process Control, 61, 1–11.

Frank, P.M. (1990). Fault diagnosis in dynamic systems using analytical
and knowledge-based redundancy: A survey and some new results.
Automatica, 26(3), 459–474.

Harkat, M. H., Mourot, G., & Ragot, J. (2006). An improved PCA
scheme for sensor FDI: Application to an air quality monitoring
network. Journal of Process Control, 16(6), 625–634.

He, S. H., He, Z., & Wang, G. A. (2013). Online monitoring and fault
identification of mean shifts in bivariate processes using decision
tree learning techniques. Journal of Intelligent Manufacturing,
24(1), 25–34.

Helland, K., Berntsen, H. E., Borgen, O. S., & Martens, H. (1992).
Recursive algorithm for partial least squares regression. Chemo-
metrics and Intelligent Laboratory Systems, 14(1–3), 129–137.

Isermann, R. (1984). Process fault detection based on modeling and
estimation methods: A survey. Automatica, 20(4), 387–404.

Jackson, J. E., &Mudholkar, G. S. (1979). Control procedures for resid-
uals associated with principal component analysis. Technometrics,
21(3), 341–349.

Jaffel, I., Taouali, O., Elaissi, E., &Messaoud, H. (2013). A new online
fault detection method based on PCA technique. IMA Journal of
Mathematical Control and Information, 31(4), 487–499.

Jaffel, I., Taouali, O., Harkat, M. F., & Messaoud, H. (2016). Moving
window KPCA with reduced complexity for nonlinear dynamic
process monitoring. ISA Transactions, 64, 184–192.

Jaffel, I., Taouali, O., Harkat, M. F., & Messaoud, H. (2017). Kernel
principal component analysis with reduced complexity for non-
linear dynamic process monitoring. The International Journal of
Advanced Manufacturing Technology, 88(9–12), 3265–3279.

Jalali-Heravi,M.,&Kyani,A. (2007).Application of genetic algorithm-
kernel partial least square as a novel nonlinear feature selection
method: Activity of carbonic anhydrase II inhibitors. European
Journal of Medicinal Chemistry, 42(5), 649–659.

Jiang, Q., & Yan, X. (2013). Weighted kernel principal component
analysis based on probability density estimation and moving win-
dow and its application in nonlinear chemical process monitoring.
Chemometrics and Intelligent Laboratory Systems, 127, 121–131.

123



884 Journal of Intelligent Manufacturing (2020) 31:865–884

Joe Qin, S. (2003). Statistical process monitoring: Basics and beyond.
Journal of Chemometrics, 17(8–9), 480–502.

Kano, M., Tanaka, S., Hasebe, S., Hashimoto, I., & Ohno, H. (2003).
Monitoring independent components for fault detection. AIChE
Journal, 49(4), 969–976.

Kim, K., Lee, J. M., & Lee, I. B. (2005). A novel multivariate regression
approach based on kernel partial least squares with orthogonal sig-
nal correction. Chemometrics and Intelligent Laboratory Systems,
79(1–2), 22–30.

Kresta, J. V., MacGregor, J. F., & Marlin, T. E. (1991). Multivari-
ate statistical monitoring of process operating performance. The
Canadian Journal of Chemical Engineering, 69(1), 35–47.

Lahdhiri, H., Ben Abdellafou, K., Taouali, O., Mansouri, M., & Kor-
baa, W. (2018). New online kernel method with the Tabu search
algorithm for process monitoring. Transactions of the Institute of
Measurement and Control, 0142331218807271.

Lahdhiri, H., Taouali, O., Elaissi, I., Jaffel, I., Harakat, M. F., &
Messaoud, H. (2017). A new fault detection index based onMaha-
lanobis distance and kernel method. The International Journal of
Advanced Manufacturing Technology, 91(5–8), 2799–2809.

Lee, D. S., Lee, M. W., Woo, S. H., Kim, Y. J., & Park, J. M.
(2006). Nonlinear dynamic partial least squaresmodeling of a full-
scale biological wastewater treatment plant.Process Biochemistry,
41(9), 2050–2057.

Lee, J., Qin, S. J., & Lee, I. (2006). Fault detection and diagnosis
based on modified independent component analysis. AIChE Jour-
nal, 52(10), 3501–3514.

Li, G., Alcala, C. F., Qin, S. J., & Zhou, D. (2011). Generalized
reconstruction-based contributions for output-relevant fault diag-
nosis with application to the Tennessee Eastman process. IEEE
Transactions on Control Systems Technology, 19(5), 1114–1127.

Lindgren, F., Geladi, P., & Wold, S. (1993). The kernel algorithm for
PLS. Journal of Chemometrics, 7(1), 45–59.

Li, G., Qin, S. J., & Zhou, D. (2010). Geometric properties of partial
least squares for process monitoring. Automatica, 46(1), 204–210.

Liu, J., Chen,D. S.,&Shen, J. F. (2010). Development of self-validating
soft sensors using fast moving window partial least squares. Indus-
trial & Engineering Chemistry Research, 49(22), 11530–11546.

Lu, S. L., & Tsai, C. F. (2015). Comparison of single EWMA-type
control charts based on Economicstatistical design. The Business
& Management Review, 6(4), 236.

MacGregor, J. F., Jaeckle, C., Kiparissides, C., & Koutoudi, M. (1994).
Process monitoring and diagnosis by multiblock PLS methods.
AIChE Journal, 40(5), 826–838.

Malthouse, E., Tamhane, A., & Mah, R. (1997). Nonlinear partial least
squares. Computers & Chemical Engineering, 21(8), 875–890.

Marappan, R., & Gopalakrishnan, S. (2018). Solution to graph coloring
using genetic and tabu search procedures. Arabian Journal for
Science and Engineering, 43(2), 525–542.

Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prog-
nostic method based on Bayesian approaches for direct remaining
useful life prediction. Journal of Intelligent Manufacturing, 27(5),
1037–1048.

Neffati, S., Abdellafou, K., Taouali, O., & Bouzrara, K. (2019). A new
bio-CADsystembased on the optimizedKPCAfor relevant feature
selection. The International Journal of Advanced Manufacturing
Technology, 102(1–4), 1023–1034.

Peng, K., Zhang, K., He, X., Li, G., & Yang, X. (2014). New ker-
nel independent and principal components analysis-based process
monitoring approachwith application to hot stripmill process. IET
Control Theory & Applications, 8(16), 1723–1731.

Qin, S. J. (2012). Survey on data-driven industrial process monitoring
and diagnosis. Annual Reviews in Control, 36(2), 220–234.

Roberts, S. (1959). Control chart tests based on geometric moving aver-
ages. Technometrics, 1(3), 239–250.

Rosipal, R. (2010). Nonlinear partial least squares: An overview. In
Chemoinformatics and advanced machine learning perspectives:
Complex computationalmethods and collaborative techniques, pp.
169–189.

Rosipal, R., &Trejo, L. J. (2001). Kernel partial least squares regression
in reproducing kernel hilbert space. Journal of Machine Learning
Research, 2(Dec), 97–123.

Said,M., Fazai, R., Abdellafou, K., &Taouali, O. (2018). Decentralized
fault detection and isolation using bond graph and PCA methods.
The International Journal of Advanced Manufacturing Technol-
ogy, 99(1–4), 517–529.

Scrich, C. R., Armentano, V. A., & Laguna, M. (2004). Tardiness min-
imization in a flexible job shop: A tabu search approach. Journal
of Intelligent Manufacturing, 15(1), 103–115.

Seera, M., Lim, C. P., & Loo, C. K. (2016). Motor fault detection and
diagnosis using a hybrid FMM-CARTmodel with online learning.
Journal of Intelligent Manufacturing, 27(6), 1273–1285.

Shinzawa, H., Jiang, J. H., Ritthiruangdej, P., & Ozaki, Y. (2006).
Investigations of bagged kernel partial least squares (KPLS) and
boosting KPLS with applications to near-infrared (NIR) spectra.
Journal of Chemometrics: A Journal of the Chemometrics Society,
20(8–10), 436–444.

Tang, J., Zhang, J., Wu, Z., Liu, Z., Chai, T., &Yu,W. (2017). Modeling
collinear data using double-layer GA-based selective ensemble
kernel partial least squares algorithm. Neurocomputing, 219, 248–
262.

Taouali, O., Elaissi, I., & Messaoud, H. (2015). Dimensionality reduc-
tion of RKHS model parameters. ISA Transactions, 57, 205–210.

Taouali, O., Jaffel, I., Lahdhiri, H., Harkat, M. F., & Messaoud, H.
(2016). New fault detection method based on reduced kernel prin-
cipal component analysis (RKPCA). The International Journal of
Advanced Manufacturing Technology, 85(5–8), 1547–1552.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K.
(2003). A review of process fault detection and diagnosis: Part III:
process history based methods. Computers & Chemical Engineer-
ing, 27(3), 327–346.

Wang, Q. (2012). Kernel principal component analysis and its applica-
tions in face recognition and active shape models. arXiv preprint
arXiv:1207.3538

Wang, T., Qiao, M., Zhang, M., Yang, Y., & Snoussi, H. (2018).
Data-driven prognostic method based on self-supervised learning
approaches for fault detection. Journal of Intelligent Manufactur-
ing, 1–9.

Willis, A. (2010). Condition monitoring of centrifuge vibrations using
kernel PLS.Computers &Chemical Engineering, 34(3), 349–353.

Wold, H. (1985). Partial least squares: Encyclopedia of statistical sci-
ences.

Wu,C., Chen, T., Jiang,R.,Ning, l,& Jiang, Z. (2017).Anovel approach
to wavelet selection and tree kernel construction for diagnosis of
rolling element bearing fault. Journal of IntelligentManufacturing,
28(8), 1847–1858.

Zhang, Y., Du, W., Fan, Y., & Zhang, L. (2015). Process fault detection
using directional kernel partial least squares. Industrial & Engi-
neering Chemistry Research, 54(9), 2509–2518.

Zhang, Y., & Hu, Z. (2011). Multivariate process monitoring and anal-
ysis based on multi-scale KPLS. Chemical Engineering Research
and Design, 89(12), 2667–2678.

Zhou, D., Li, G., &Qin, S. J. (2010). Total projection to latent structures
for process monitoring. AIChE Journal, 56(1), 168–178.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1207.3538

	Machine learning technique for data-driven fault detection of nonlinear processes
	Abstract
	Introduction
	Previous work
	Standard PLS method
	Principle
	Algorithm

	KPLS method
	Principle
	Algorithm


	Proposed RKPLS for fault detection
	RKPLS principle
	RKPLS method

	Fault detection theory
	FD indices
	Squared prediction error

	KPLS and RKPLS based EWMA-SPE chart
	Suggested MW-RKPLS monitoring
	MW-RKPLS formulation
	Flowchart of proposed MW-RKPLS

	Selection of kernel parameter using tabu search algorithm
	Selection principle of kernel parameter
	Initial solution

	Simulation results
	Static RKPLS method 
	Case study on CSTR benchmark process
	Case study on TEP

	 MW-RKPLS method 
	Case study on TEP
	Case study on air quality


	Conclusion
	References




