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Received: 28 September 2018 / Accepted: 9 May 2019 / Published online: 15 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Automated surface-anomaly detection using machine learning has become an interesting and promising area of research, with
a very high and direct impact on the application domain of visual inspection. Deep-learning methods have become the most
suitable approaches for this task. They allow the inspection system to learn to detect the surface anomaly by simply showing
it a number of exemplar images. This paper presents a segmentation-based deep-learning architecture that is designed for the
detection and segmentation of surface anomalies and is demonstrated on a specific domain of surface-crack detection. The
design of the architecture enables the model to be trained using a small number of samples, which is an important requirement
for practical applications. The proposed model is compared with the related deep-learning methods, including the state-of-
the-art commercial software, showing that the proposed approach outperforms the related methods on the specific domain
of surface-crack detection. The large number of experiments also shed light on the required precision of the annotation, the
number of required training samples and on the required computational cost. Experiments are performed on a newly created
dataset based on a real-world quality control case and demonstrates that the proposed approach is able to learn on a small
number of defected surfaces, using only approximately 25–30 defective training samples, instead of hundreds or thousands,
which is usually the case in deep-learning applications. This makes the deep-learning method practical for use in industry
where the number of available defective samples is limited. The dataset is also made publicly available to encourage the
development and evaluation of new methods for surface-defect detection.

Keywords Surface-defect detection · Visual inspection · Quality control · Deep learning · Computer vision · Segmentation
networks · Industry 4.0

Introduction

In industrial processes, one of the most important tasks when
it comes to ensuring the proper quality of the finished product
is inspection of the product’s surfaces. Often, surface-quality
control is carried out manually and workers are trained to
identify complex surface defects. Such control is, however,
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University of Ljubljana, Večna pot 113, 1000 Ljubljana,
Slovenia

2 Kolektor Group d. o. o., Vojkova 10, 5280 Idrija, Slovenia

3 Kolektor Orodjarna d. o. o., Vojkova 10, 5280 Idrija, Slovenia

very time consuming, inefficient, and can contribute to a seri-
ous limitation of the production capacity.

In the past, classicmachine-visionmethodswere sufficient
to address these issues (Paniagua et al. 2010; Bulnes et al.
2016); however, with the Industry 4.0 paradigm the trend
is moving towards the generalization of the production line,
where rapid adaptation to a new product is required (Oztemel
and Gursev 2018). Classical machine-vision methods are
unable to ensure such flexibility. Typically, in a classical
machine-vision approach features must be hand-crafted to
suit the particular domain. A decision is then made using
a hand-crafted rule-based approach or using learning-based
classifiers such as SVM, decision trees or kNN. Since such
classifiers are less powerful than deep-learning methods, the
hand-crafted features play a very important role. Various
filter banks, histograms, wavelet transforms, morphologi-
cal operations and other techniques are used to hand-craft
appropriate features. Hand-engineering of features, there-
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Fig. 1 The proposed scheme for the detection of surface defects

fore, plays an important role in classical approaches, but
such features are not suited for different task and lead to
longdevelopment cycleswhenmachine-visionmethodsmust
be manually adapted to different products. A solution that
allows for improved flexibility can be found in data-driven,
machine-learning approaches where the developed methods
can be quickly adapted to new types of products and surface
defects using only the appropriate number of training images.

This paper focuses on using state-of-the-art machine-
learning methods to address the detection of visual surface
defects. The focus is primarily on deep-learning meth-
ods that have, in recent years, become the most common
approach in the field of computer vision. When applied
to the problem of surface-quality control (Chen and Ho
2016; Faghih-Roohi et al. 2016; Weimer et al. 2013; Kuo
et al. 2014), deep-learning methods can achieve excellent
results and can be adapted to different products. Compared
to classical machine-vision methods, the deep learning can
directly learn features from low-level data, and has higher
capacity to represent complex structures, thus completely
replacing hand-engineering of featureswith automated learn-
ing process. With a rapid adaptation to new products this
method becomes very suitable for the flexible production
lines required in Industry 4.0. Nevertheless, the open ques-
tion remains: how much annotated data is required and how
precise do the annotations need to be in order to achieve a
performance suitable for practical applications? This is a par-
ticularly important questionwhen dealingwith deep-learning
approaches as deepmodels withmillions of learnable param-
eters often require thousands of images, which in practice is
often difficult to obtain.

This paper explores suitable deep-learning approaches for
the surface-quality control. In particular, the paper studies
deep-learning approaches applied to a surface-crack detec-
tion of an industrial product (see Fig. 1). Suitable network
architectures are explored, not only from their overall clas-
sification performance, but also from the point of view
of three characteristics that are particularly important for
Industry 4.0: (a) annotation requirements, (b) the number
of required training samples and (c) computational require-
ments. The data requirement is addressed by utilizing an
efficient approach with a deep convolutional network based

on a two-stage architecture. Novel segmentation and deci-
sion network is proposed that is suited to learn from a small
number of defected training samples, but can still achieve
state-of-the-art results.

An extensive evaluation of the proposed method is per-
formed on a novel, real-world dataset termed Kolektor
Surface-Defect Dataset (KolektorSDD). The dataset repre-
sents a real-world problem of surface-defect detection for an
industrial semi-finished product where the number of defec-
tive items available for the training is limited. The proposed
approach is demonstrated to be already suitable for the stud-
ied application by highlighting three important aspects: (a)
the required manual inspection to achieve a 100% detection
rate (by additional manual verification of detections), (b) the
required details of annotation and the number of training
samples leading to the required human labor costs and (c)
the required computational cost. On the studied domain, the
designed network is shown to outperform the related state-
of-the-art methods, including the latest commercial product
and two standard segmentation networks.

The remainder of the paper is structured as follows. The
related work is presented in “Related work” section, with
details of the segmentation and decision net in “Proposed
approach” section. An extensive evaluation of the proposed
network is detailed in “Segmentation and decision network
evaluation” section, and a comparison with the state-of-the-
art commercial solution is presented in “Comparison with
the state of the art” section. The paper concludes with a dis-
cussion in “Discussion and conclusion” section.

Related work

Deep-learning methods began being applied more often to
surface-defect classification problems shortly after the intro-
duction of AlexNet (Krizhevsky et al. 2012). The work by
Masci et al. (2012) showed that for surface-defect classi-
fication the deep-learning approach can outperform classic
machine-vision approaches where hand-engineered features
are combined with support vector machines. They demon-
strated this on the image classification of several steel defect
types using a convolutional neural network with five layers.
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They achieved excellent results; however, theirworkwas lim-
ited to a shallow network, as they did not use ReLU and batch
normalization. A similar architecture was used by Faghih-
Roohi et al. (2016) for the detection of rail-surface defects.
They used ReLU for the activation function and evaluated
several network sizes for the specific problem of classifying
rail defects.

In a modern implementation of convolutional networks
Chen and Ho (2016) applied the OverFeat (Sermanet and
Eigen 2014) network to detect five different types of surface
errors. They identified a large number of labeled data, as an
important problem for deep networks, and proposed to miti-
gate this using an existing pre-trained network. They utilized
the OverFeat network trained on 1.2 million images of gen-
eral visual objects from the ILSVRC2013 dataset and used it
as feature extractor for the images with surface defects. They
utilized a support vector machine to learn the classifier on top
of deep features and showed that pre-trained features outper-
form LBP features. With the proposed Approximate Surface
Roughness heuristic theywere able to further improve on that
result; however, their method does not learn the network on
the target domain and is therefore not using the full potential
of deep learning.

Weimer et al. (2016) evaluated several deep-learning
architectures with varying depths of layers for surface-
anomaly detection. They applied networks ranging from
having only 5 layers to a network having 11 layers. Their
evaluation focused on 6 different types of synthetic errors
and showed that the deep network outperformed any classic
method, with an average accuracy of 99.2% on the synthetic
dataset. Their approach was also able to localize the error
within several pixels of accuracy; however, their approach
to localization was inefficient as it extracted small patches
from each image and classified each individual image patch
separately.

A more efficient network for explicitly performing the
segmentation of defects was proposed by Rački et al. (2018).
They implemented a fully convolutional network with 10
layers, using both ReLU and batch normalization to perform
the segmentation of the defects. Furthermore, they proposed
an additional decision network on top of the features from the
segmentation network to perform a per-image classification
of a defect’s presence. This allowed them to improve the
classification accuracy on the dataset of synthetic surface
defects.

Recently, Lin et al. (2018) proposed the LEDNet archi-
tecture for the detection of defects on images of LED chips
using a datasetwith 30,000 low-resolution images. Their pro-
posed network follows theAlexNet architecture, but removes
the fully connected layers and instead incorporates class-
activation maps (CAMs), similar to Zhou et al. (2016). This
design allows them to learn using only per-image labels and
using CAMs for the localization of the defects. The proposed

LEDNet showed a significant improvement in the defect-
detection rate compared to traditional methods.

Compared to the related methods, the approach proposed
in this paper follows a two-stage design with the segmen-
tation network and the decision network, similar to the
architecture by Rački et al. (2018). However, the proposed
approach incorporates several changes to the architecture
of the segmentation and decision networks with the goal
to increase the receptive field size and to increase the net-
work’s ability to capture small details. As opposed to some
related works (Rački et al. 2018; Weimer et al. 2016), the
proposed network is applied to real-world examples instead
of using synthetic ones. The used dataset in this study also
consists of only a small number of defective training samples
(i.e., 30 defective samples), instead of hundreds (Rački et al.
2018; Weimer et al. 2016) or thousands (Lin et al. 2018).
This makes some related architectures, such as LEDNet (Lin
et al. 2018), that use only per-image annotation and a large
batch size, inappropriate for the task at hand. Since a small
number of samples makes the choice of the network design
more important, this paper evaluates the effect of replac-
ing the segmentation network with two different standard
network designs, normally used for the semantic segmen-
tation, namely with DeepLabv3+ (Chen et al. 2018) and
U-Net (Ronneberger et al. 2015). The impact of using pre-
trained models is also evaluated by using the DeepLabv3+
network that is pre-trained on over 1.2 million images from
the ImageNet (Russakovsky et al. 2015) and the MS COCO
(Lin et al. 2014) datasets.

Proposed approach

The problem of surface-anomaly detection is addressed as
a binary-image-classification problem. This is suitable for
surface-quality control, where an accurate per-image classi-
fication of the anomaly’s presence is often more important
than an accurate localization of the defect. However, to over-
come the issue of a small number of samples in deep learning,
the proposed approach is formulated as a two-stage design, as
depicted in Fig. 2. The first stage implements a segmentation
network that performs a pixel-wise localization of the surface
defect. Training this network with a pixel-wise loss effec-
tively considers each pixel as an individual training sample,
thus increasing the effective number of training samples and
preventingoverfitting.The second stage,where binary-image
classification is performed, includes an additional network
that is built on top of the segmentation network and uses
both the segmentation output as well as features of the seg-
mentation net. The first-stage network is referred to as the
segmentation network, while the second-stage network, as
the decision network.
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Fig. 2 The proposed architecture with the segmentation and decision networks

Segmentation network

The proposed network consists of 11 convolutional layers
and three max-pooling layers that each reduce the resolution
by a factor of two. Each convolutional layer is followed by a
feature normalization and a non-linear ReLU layer, which
both help to increase the rate of convergence during the
learning. Feature normalization normalizes each channel to
a zero-mean distribution with a unit variance. The first nine
convolutional layers use 5 × 5 kernel sizes, while the last
two layers use 15×15 and 1×1 kernel sizes, respectively. A
different number of channels is allocated for different layers,
as can be seen in a detailed depiction of the network architec-
ture in Fig. 2. The final outputmask is obtained after applying
1 × 1 convolution layer that reduces the number of output
channels. This results in a single-channel output map with
an 8-times-reduced resolution of the input image. Drop-out
is not utilized in this approach, since the weight sharing in
convolutional layers provides sufficient regularization.

The design of the proposed segmentation network focuses
on the detection of small surface defects in a large-resolution
image. To achieve this the network is designed with two
important requirements: (a) the requirement for a large
receptive field size in a high-resolution image and (b) the
requirement to capture small feature details. This results in
several significant changes of the architecture compared to
the related work of Rački et al. (2018). First, an additional
down-sampling layer and large kernel sizes in higher lay-
ers are used to significantly increase the receptive field size.
Second, the number of layers between each down-sampling
is changed to having fewer layers in the lower sections
of the architectures and having more layers in the higher
sections. This increases the capacity of features with large
receptive field sizes. Finally, the down-sampling is achieved
usingmax-pooling instead of convolutionswith a large stride.
This ensures small but important details survive the down-

sampling process, which is particularly important in this
network with additional down-sampling layers.

Decision network

The architecture of the decision network uses the output from
the segmentation network as the input for the decision net-
work. The network takes the output of the last convolutional
layer of the segmentation network (1024 channels) concate-
nated with a single-channel segmentation output map. This
results in 1025-channel volume that represents the input for
the remaining layers with a max-pooling layer and a convo-
lutional layer with 5 × 5 kernel sizes. Combination of both
layers is repeated 3 times, with 8, 16 and 32 channels in the
first, second and third convolutional layer, respectively. A
detailed depiction of the architecture is given in Fig. 2. The
number of channels was chosen to increase as the resolution
of the features decreases, therefore resulting in the same com-
putational requirement for each layer. The proposed design
effectively results in a 64-times-smaller resolution of the last
convolutional layer than that of the original image. Finally,
the network performs global maximum and average pool-
ing, resulting in 64 output neurons. Additionally, the result
of the global maximum and average pooling on the segmen-
tation output map are concatenated as two output neurons,
to provide a shortcut for cases where the segmentation map
already ensures perfect detection. This design results in 66
output neurons that are combined with linear weights into
the final output neuron.

The design of the decision network follows two important
principles. First, the appropriate capacity for large complex
shapes is ensured by using several layers of convolution and
down-sampling. This enables the network to capture not only
the local shapes, but also the global ones that span a large area
of the image. Second, the decision network uses not only out-
put feature volume of the last convolutional operation from
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the segmentation network before channel reductionwith 1×1
kernel, but also the final segmentation output map obtained
after the channel reduction with 1×1 kernel. This introduces
a shortcut that the network can utilize to avoid using a large
number of featuremaps, if they are not needed. It also reduces
the overfitting to a large number of parameters. The short-
cuts are implemented at two levels: one at the beginning of
the decision network where the segmentation output map is
fed into several convolutional layers of the decision network,
and another one at the end of the decision network where the
global average andmaximumvalues of the segmentation out-
putmap are appended to the input of the final fully-connected
layer. The shortcut at the beginning of the decision network
and the several convolutional layers with down-sampling are
an important distinction with respect to the related work of
Rački et al. (2018). In contrast to the proposed work, they
use only a single layer and no down-sampling in the decision
layers, and do not use a segmentation output map directly in
the convolution but only indirectly through global max and
average pooling. This limits the complexity of the decision
network and prevents it from capturing large global shapes.

Learning

The segmentationnetwork is learned as abinary-segmentation
problem; therefore, the classification is performed at the level
of individual image pixels. Two different training approaches
were evaluated: (a) using a regression with a mean squared
error loss (MSE) and (b) using a binary classification with a
cross-entropy loss. The models are not pre-trained on other
classification datasets, but instead are initialized randomly
using a normal distribution.

The decision network is trained with the cross-entropy
loss function. Learning takes place separately from the seg-
mentation network. First, only the segmentation network is
independently trained, then the weights for the segmenta-
tion network are frozen and only the decision network layers
are trained. By fine tuning only the decision layers the net-
work avoids the issue of overfitting from the large number of
weights in the segmentation network. This is more important
during the stage of learning the decision layers than during
the stage of learning the segmentation layers. The restric-
tions of the GPU memory limit the batch size to only one
or two samples per batch when learning the decision layers,
but when learning the segmentation layers each pixel of the
image is considered as a separate training sample, therefore
increasing the effective batch size by several folds.

The simultaneous learning of both the segmentation and
decision networks was considered as well. The type of loss
function played an important role in this case. Simultane-
ous learning was possible only when cross entropy was used
for both networks. Since the losses are applied for different
scopes, i.e., one at the per-pixel level and one at the per-image

level, the accurate normalization of both layers played a cru-
cial role. In the end, properly normalizing both losses proved
not only more difficult to implement in practice than using
a separate learning mechanism, but it also did not introduce
any performance gain. The two-stage learning mechanism
therefore proved to be a better choice and was subsequently
employed in all experiments.

Inference

The input into the proposed network is a gray-scale image.
The network architecture is independent of the input size,
similar to fully convolutional networks (Long et al. 2015),
since fully connected layers are not used in feature maps,
but only after the spatial dimension is eliminated with global
average and max pooling. Input images can therefore be of
a high or a low resolution, depending on the problem. Two
image resolutions are explored in this paper: 1408×512 and
704 × 256.

The proposed network model returns two outputs. The
first output is a segmentation mask as an output from the
segmentation network. The segmentation mask outputs the
probability of a defect for an 8 × 8 group of input pixels;
therefore, the output resolution is reduced by 8 times with
respect to the input resolution. The output map is not inter-
polated back to the original image size since the classification
of 8 × 8 pixel blocks in high-resolution images suffices for
the problem at hand. The second output is the probability
score in the range of [0, 1] and represents the probability
of an anomaly’s presence in the image, as returned by the
decision network.

Segmentation and decision network evalua-
tion

The proposed network is extensively evaluated on a surface-
crack detection in an industrial product. This section first
presents the details of the dataset and then presents the details
of the evaluation and its results.

The Kolektor surface-defect dataset

In the absence of publicly available datasets with real images
of annotated surface defects a new dataset termed Kolek-
tor surface-defect dataset (KolektorSDD) was created.1 The
dataset is constructed from images of defected electrical com-
mutators (see Fig. 1) that were provided and annotated by
KolektorGroup d. o. o.. Specifically,microscopic fractions or
cracks were observed on the surface of the plastic embedding

1 The Kolektor surface-defect dataset is publicly available at
http://www.vicos.si/Downloads/KolektorSDD.
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Fig. 3 Several examples of surface images with visible defects and their annotation masks in the top, and defect-free surfaces in the bottom

Fig. 4 Example of five different annotation types generated by dilating the original annotation shown in (a) with different morphological kernel
sizes: b dilate=5, c dilate=9, d dilate=13 and e dilate=15

in electrical commutators. The surface area of each com-
mutator was captured in eight non-overlapping images. The
images were captured in a controlled environment, ensuring
high-quality images with a resolution of 1408 × 512 pixels.
The dataset consists of 50 defected electrical commutators,
each with eight relevant surfaces. This resulted in a total
of 400 images. For each item the defect is only visible in
a single image, which means there were 50 images where
the defects are visible (i.e., defective or positive samples).
For each image a detailed pixel-wise annotation mask is pro-
vided. The remaining 350 images serve as negative examples
with non-defective surfaces. Examples of such images with
visible defects and ones without them are depicted in Fig. 3.

In addition, the dataset is annotated with several different
types of annotations. This enables an evaluation of the pro-
posed approach under different accuracies of the annotation.
Annotation accuracy is particularly important in industrial
settings since it is fairly time consuming and the human labor
spent on annotation should be minimized. For this purpose,
four more annotation types were generated by dilating the
original annotations with the morphological operation using
different kernel sizes, i.e., 5, 9, 13 and 17 pixels. Note that
this is applied to images of the original resolution, and in the
experiments with half the resolution the annotation mask is
reduced after being dilated. All the annotations, one manual
(a) and four generated ones (b–e), are depicted in Fig. 4.

Experiments

The proposed network is first evaluated under several dif-
ferent training setups, which include different types of
annotations, input-data rotation and different loss functions
for the segmentation network. Altogether, the network was
evaluated under four configuration groups:

– five annotation types,
– two loss-function types for the segmentation network
(mean squared error and cross entropy),

– two sizes of input image (full size and half size),
– without and with 90◦ input-image rotation.

Each configuration group makes it possible to assess
the performance of the network from four aspects. Differ-
ent annotation types allow an assessment of the impact of
the annotation’s precision, while different image resolutions
allow an assessment of the impacts on the classification per-
formance at a lower computational cost. Additionally, the
impact of different loss functions and the impact of aug-
menting the training data by rotating the images with the
probability of 0.5 are also assessed.

For the purpose of this evaluation, the problem of
surface-defect detection is translated into a binary-image-
classification problem. The main objective is to classify the
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image into two classes: (a) defect is present and (b) defect is
not present. Although pixel-wise segmentation of the defect
can be obtained from the segmentation network the evalu-
ation does not measure the pixel-wise error, since it is not
crucial in industrial settings. Instead, only the per-image
binary-image-classification error is measured. The segmen-
tation output is only used for visualization purposes.

Performance metrics

The evaluation is performedwith a threefold cross validation,
while ensuring all the images of the same physical product
are in the same fold and therefore never appear in the train-
ing and test set simultaneously. All the evaluated networks
are compared considering three different classification met-
rics: (a) average precision (AP), (b) number of false negatives
(FN) and (c) number of false positives (FP). Note, the posi-
tive sample is referred to as an image with a visible defect,
and the negative sample, as an image with no visible defect.
The primary metric used in the evaluation is average preci-
sion. This is more appropriate than FP or FN, since average
precision is calculated as the area under the precision-recall
curve and accurately captures the performance of the model
under different threshold values in a single value. On the
other hand, the number of miss-classifications (FP and FN)
are dependent on the specific threshold applied to the classi-
fication score. We report the number of miss-classifications
at a threshold value where the best F-measure is achieved.
Also, note that AP was chosen instead of the area under the
ROCcurve (AUC) sinceAPmore accurately captures the per-
formance in datasets with a large number of negative (i.e.,
non-defective) samples than does the AUC.

Implementation and learning details

The network architecture was implemented in the Tensor-
Flow framework (Abadi et al. 2015) and both networks are
trained using a stochastic gradient descend without momen-
tum. A learning rate of 0.005 was used for the mean squared
error (MSE) and 0.1 for the cross-entropy loss. Only a single
image per iteration was used, i.e., the batch size was set to
one,mostly due to the large image sizes and theGPUmemory
limitations.

During the learning process the training samples were
selected randomly; however, the selection process was mod-
ified to ensure that the network observed a balanced number
of defective and non-defective images. This was achieved
by taking images with defects for every even iteration, and
images without defects for every odd iteration. This mecha-
nism ensures that the system observes defective images at a
constant rate; otherwise the learning is unbalanced in favor
of the non-defective samples and would have learned signifi-
cantlymore slowly due to a larger set of non-defective images

in the dataset. It should be noted that this leads to training
that is not done exclusively by the epochs, as the number of
non-defective images is 8-times higher than the number of
defective ones and the network receives the same defective
image before receiving all the non-defective images.

Both networks were trained for up to 6600 steps. With 33
defective images per training set in onefold and alternating
between defective and non-defective images in each step this
translates to 100 epochs. One epoch is only considered to be
over when all the defective images are observed at least once,
but not all the non-defective images are necessarily observed.

Segmentation and decision network

The proposed network that consists of both the segmentation
network in the first stage and the decision network in the sec-
ond stage is evaluated first. Detailed results are presented in
Fig. 5. This graph shows the results of experiments for dif-
ferent annotation types in different colors and experiments
for using image rotation in dashed bars. The experiments
for full image resolution are reported in the top group and
experiments for half of the resolution at the bottom. The best-
performing results were obtained with annotations dilated
with 5 × 5 kernel sizes (dilate=5), cross-entropy loss func-
tion, full image resolution and without any image rotations.
The network in this configuration achieved an average pre-
cision (AP) of 99.9%, had zero false positive (FP) and one
false negative (FN).

Next, the impact of an individual learning setup can be
assessed by observing the averaged improvement in perfor-
mance for each specific change of the setting. An impact on
the performance is reported for the following changes to the
settings: (a) a change to the cross-entropy loss function for the
segmentation network from a mean-squared-error loss, (b) a
change to a smaller image resolution from the full image res-
olution, and (c) a change in the input data rotation by 90◦
from no rotation. Improvements in AP averaged over all the
experiments are reported in Fig. 6. The results for a specific
change of setting, e.g., for a change to half the image res-
olution from the full image resolution, are obtained by first
computing the AP of all the possible configurations of all
the settings (reported in Fig. 5) and then computing the dif-
ferences in the AP between two experiments where only the
setting in question was changed, e.g., between the experi-
ment that used the half image resolution and one that used
the full image resolution, but had all the other settings the
same. The overall improvement in performance is captured
through the average of the differences in AP over all the other
settings that remained the same. Standard deviations are also
reported separately for the positive and negative directions.

Loss function When comparing the mean squared error loss
(MSE) and the cross-entropy loss functions in Fig. 5 it is clear
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Fig. 5 Results of the proposed approach on the KolektorSDD (false positives (FP) shown in a dark colors and false negatives (FN) in light colors)
(Color figure online)

Fig. 6 Average changes in AP (average precision) as contributed by
different changes to the learning configuration

that the best performance is obtained with networks trained
using the cross-entropy loss function. This is reflected in the
APmetric and in theFP/FNcount, aswell as in improvements
to the cross entropy averaged over all the other settings in
Fig. 6. On average, the cross entropy achieved a 7-percent
points (pp) better AP.

Image resolution The network with the reduced image res-
olution on average performed with a 5-percent points worse
AP as seen in Fig. 6. A close inspection of Fig. 5 shows
that smaller images negatively impact mostly on networks
trained with the MSE loss function, while networks trained
with the cross entropy are not impacted. Cross entropy is less
sensitive to the reduced image resolution and in some cases

imageswith the reduced resolution performmarginally better
(approximately one percent in AP).

Image rotationRandomly rotating images, on the other hand,
did not prove as useful and did not lead to any significant
performance gains. In some cases the gain was at most one
percent point; however, in other cases the performance was
reduced by much more.

Annotation types Finally, comparing different annotation
types in Fig. 5 results in only a slightly negative impact on the
performance when training with smaller annotations (orig-
inal or dilation with small kernels) and when considering
the cross-entropy loss. The difference is more pronounced in
the MSE loss function. Overall, the best results seem to be
achieving annotations dilated with medium-to-large dilation
rates.

Contribution of the decision network

The contribution of the decision network to the final per-
formance is also evaluated. This contribution is measured
by comparing the results from the previous section with the
segmentation network without the decision network. Instead
of the decision network, a simple two-dimensional descrip-
tor and logistic regression are employed. A two-dimensional
descriptor was created from the values of the global max and
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Fig. 7 Improvements in the average precision contributed by the deci-
sion network

average pooling of the segmentation output map, which is
then used as a feature for the logistic regression, which is
learned separately from the segmentation network after the
network has already been trained.

The results are presented in Fig. 7. When focusing on
models with a cross-entropy loss it is clear that the net-
work with only the segmentation network already achieves
fairly good results. The best configuration as obtained by
dilate=9 annotation achieves an average precision (AP) of
98.2%, zero false positives (FP) and four false negatives (FN).
The decision network, however, improves this result across
most of the experiments. The contribution of the decision
network is larger for the MSE loss. The average precision
with the MSE loss function achieves an AP of < 90%
when only the segmentation network is used, while with the
decision network the AP is above 95% for the MSE loss.
For the network trained with the cross entropy the deci-
sion network contributes to the performance gain as well,
but since the segmentation network already performs well,
the improvements are slightly smaller, improving the AP by
3.6-percent points to more than 98% on average for the deci-
sion network. The same trend is observed in the number of
miss-classifications at the ideal threshold, where on aver-
age 4 miss-classifications for the segmentation network are
reduced to 2 miss-classifications on average when the deci-
sion network is included.

These results point to the important role of the deci-
sion network. Simple per-pixel output segmentation does not
appear to have enough information to predict the presence
of the defect in the image equally well as can the decision
network. On the other hand, the proposed decision network
is able to capture information from the rich features of the
last segmentation layers, and through additional decision lay-
ers, it is able to separate the noise from the correct features.

Additional down-sampling in the decision network have also
contributed to the improved performance since this increased
the receptive field size and enabled the decision network
to capture the global shape of the defect. Global shape is
important for the classification, but it is not important for the
pixel-wise segmentation.

Required precision of the annotation

Experiments from the previous section already demonstrated
that large annotations perform better than the finer ones. This
is further explored in this section by assessing the impact of
even coarser annotations on the classification performance.
For this purpose two additional types of annotation were cre-
ated, termed: (a) big annotation with a bounding box and (b)
coarse annotation with a rotated bounding box. Both annota-
tions are shown in Fig. 8. This type of annotation is less time
consuming for a human annotator to perform and would be
better in an industrial setting.

The results are presented in Fig. 9. Only networks with a
cross-entropy loss were used for this experiment, as theMSE
loss proved less capable in previous experiments. The exper-
iments show large annotations perform almost as well as the
finer ones. The annotation denoted as big performs slightly
worse, with a best AP of 98.7% and 3 miss-classifications,
while the coarse annotation achieves an AP of 99.7% and
2 miss-classifications. Note that with a smaller image reso-
lution both annotations achieve similar APs with the same
number of miss-classifications.

Fig. 8 Two additional annotations: a big and b coarse

Fig. 9 Results with the big and the coarse annotations
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These results are comparable to the results obtained with
finer annotations in the previous section where an AP of
99.9% is achieved with only one miss-classification. Finer
annotations do achieve slightly better results; however, con-
sidering that this level of detail is time consuming to annotate,
it would still be feasible to use coarse annotations with min-
imal or no performance loss.

Comparison with the state of the art

Several state-of-the-art models are further evaluated to assess
the performance of the proposed approach in the context
of the related work. This section first demonstrates the per-
formance of a state-of-the-art commercial product and two
standard segmentation networks under different training con-
figuration. This provides the best training configuration for
each state-of-the-art method and allows for a fair comparison
with the proposed network architecture, which is performed
at the end of this section.

Commercial software

The deep-learning-based state-of-the-art commercial soft-
ware for industrial image analysis, Cognex ViDi Suite
(Cognex 2018), is evaluated first. TheVidi company emerged
from CSEM in 2012, a private, non-profit, Swiss research
and technology organization, and was acquired by Cognex in
2017. The software package has three different deep-learning
tools: ViDi blue (fixturing, localization), Vidi Red (segmen-
tation and anomaly detection), ViDi green (object and scene
classification).

Vidi Red is a tool for anomaly detection, aesthetic visual
inspection and segmentation. The tool can run in an unsuper-
vised or supervised mode. In the former case only the images
of non-defective samples are required, and in the latter only
images of defective samples. The user can adjust various
parameters from four distinctive regions: sampling (feature
size, color), training (count epochs, train selection), pertur-
bation (rotation, scale, aspect-ratio, shear, flip, luminance,
contrast) and processing (sampling density, simple regions).

In this paper all the experiments using the Cognex ViDi
Suite v2.1 were performed using the ViDi Red Tool in
a supervised mode. The software is extensively evaluated
under different learning configurations to find the best con-
ditions for a fair comparison with the proposed approach in
the next section. The following learning configurations are
varied for this evaluation:

– five annotation types,
– three feature sizes (20, 40, 60 pixels),
– two sizes of input image (full size and half size),
– with/without 90◦ input data rotation.

The settings that are varied are similar to ones in the “Seg-
mentation and decision network evaluation” section, with the
difference being that different loss functions are not evalu-
ated since the software does not provide such a detailed level
of control. Instead, different sizes of the features are evalu-
ated, which have proven to play a crucial role on the proposed
dataset. Features of size from 20 to 60 pixels are evaluated.
Features of < 15pixels are not recommended based on the
documentation, while features larger than 60 pixels produced
worse results.

Implementation details Access to the learning and inference
core of the ViDi Suite is possible through the production and
training API. All of the experiments were done in the C#.Net
programming language. The evaluation was performed with
a threefold cross validation and the same train/test split as in
the previous experiments, using a gray-scale image (number
of color channels set to one) and learning for 100 epochs.
The training was performed on all the images from the
train fold; therefore, using a parameter training selection
of 100%. The models were exported and evaluated in the
production mode on the test folds with the parameter sim-
ple regions enabled and the sampling density set to one.
This ensures an equivalent processing procedure as used in
the proposed deep-learning model. We used default values
as recommended by the vendor for the sampling density.
Experiments with values that represent denser sampling at
the expense of slower inference were also performed, but
this did not improve the result.

ResultsThe results are presented inFig. 10.Among the differ-
ent learning setups, the best performance was achieved using
the model trained with the dilate=5 annotations, using the
smallest feature size (20 pixels), without rotating the images
and using the original image size. The model achieved AP
of 99.0%, and 5 miss-classifications, i.e., five FN and zero
FP. Note that onemodel achieved only 4miss-classifications,
although with an overall lower AP.

Annotation sizes Among the different annotation types, the
dilated annotations perform better than non-dilated ones.
However, among the different dilation rates the performance
gain isminimalwith only 0.1pp difference between dilate=5
and dilate=17.

Feature sizes Comparing the different feature sizes, the
model with small features consistently outperforms models
with larger features, regardless of the annotation precision.
This can be contributed to the specifics of the dataset with
a high image resolution and many small surface defects.
Furthermore, experiments with the half-resolution image
reveal that large features perform significantly worse than
the smaller features in this case. This leads to the conclusion
that large feature sizes cannot capture smaller details, which
are important for the classification.
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Fig. 10 Evaluation of the commercial software Cognex ViDi Suite on KolektorSDD

Image size and rotation Finally, the experiments also reveal
that neither the half-resolution image nor randomly rotating
the input data by 90◦ results in an improved performance.
The performance decreases slightly in both cases, although
the performance drop for both is minor.

Using state-of-the-art segmentation networks

Next, two standard segmentation networks are evaluated,
namely, DeepLabv3+ (Chen et al. 2018) and U-Net (Ron-
neberger et al. 2015). The DeepLab architecture was selected
as a representative of the pre-trained model that achieves
state-of-the-art results on current semantic segmentation
benchmarks, while the U-Net architecture was selected as a
representative of themodels designed for a precise pixel-wise
segmentation. The reader is referred to Chen et al. (2018) for
more detailed information about the DeepLabv3+ method
and to (Ronneberger et al. 2015) for details about the U-Net
model. Both models were evaluated under different anno-
tations, but only cross entropy is considered for the loss
function and only full-resolution image sizes without data
rotation are used, since those settings proved to be the best
performing in the previous experiments.

Implementation details Both segmentation methods were
embedded into the proposed approach by replacing the seg-

mentation part of the proposed network. A TensorFlow
implementation of both networks was embedded in the pro-
posed network. The DeepLabv3+ used in these experiments
was based on the Xception (Chollet 2017) architecture con-
taining 65 convolutional layers, trained and evaluated on a
single scale and using an output stride of 16. The U-Net used
in these experiments was a modified U-Net architecture with
24 convolutional layers, where the only modification is an
added batch normalization for each convolution. The orig-
inal U-Net also outputs the segmentation in the full input
resolution; however, since the pixel-wise accurate segmenta-
tion in full resolution is not in the interests of this experiment
the output-map resolution was reduced by 8 times. This cor-
responds to the same output resolutions as in the proposed
network.

For both segmentation networks the segmentation layers
were trained separately from the decision layers, similar to
the proposed approach, using threefold cross validation with
the same train/test split as in all the previous experiments.
Both methods were also evaluated with logistic regression
that replaces the decision network, but this proved to per-
form worse. The parameters of the DeepLabv3+ network
were initialized with a model that was pre-trained on the
ImageNet (Russakovsky et al. 2015) and the COCO dataset
(Lin et al. 2014), while the parameters of the U-Net network
were initialized randomly using a normal distribution, simi-
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Fig. 11 Evaluation of two standard segmentation networks
(DeepLabv3+ and U-Net)

lar to the initialization of the network presented in this paper.
Both networks were trained for 100 epochs with the same
learning procedure as used for the proposed model, i.e, using
a learning rate of 0.1 without momentum, a batch size of 1,
and alternating between defective and non-defective images
for each step.

Results The results are shown in Fig. 11. Of the standard net-
works, the best-performing model, i.e., DeepLabv3+ trained
using dilate=9 annotations, achieved an AP of 98.0%, and
obtained two FP and four FN at an ideal F-measure. Over-
all, slightly dilated annotations were shown to achieve the
best results, while the annotations dilated with larger kernels
gave worse results. On average, DeepLabv3+ also outper-
formed U-Net architecture by 2–3 percent points in average
precision, regardless of the annotation type.

Comparison with the proposed approach

Finally, all three state-of-the-art approaches are compared
against the network proposed in this paper. The state-of-the-
art methods are compared with the combined segmentation
and decision network. For a fair comparison all the methods
reported in this section were selected based on the best-
performing training setup from the evaluation in the previous
sections. For all methods this included using the original
image size (1408× 512 resolution), no input image rotation,
using the smallest feature size of 20 pixels for the com-

mercial software and using the cross-entropy loss function
for all the remaining methods. For the annotation type dif-
ferent methods performed the best at different annotations.
The commercial software and the proposed approach with
the segmentation and decision network both achieved the
best performance when trained on the dilate=5 annotations,
while DeepLabv3+ andU-Net achieved the best results when
trained using dilate=9 annotation. Selected configuration
setups for each are shown in Table 1.

Results The results are presented in Fig. 12. The pro-
posed approach, shown in the left-most bar, outperformed
all the state-of-the-art methods in all metrics. The commer-
cial product performed the second best, while both stan-
dard segmentation methods preformed the worst, with the
DeepLabv3+ architecture performing slightly better than the
U-Net. Observing the number of miss-classifications at the
ideal F-measure reveals that the proposed segmentation and
decision network was able to reduce the miss-classification
to only one false negative, while all the remaining methods
introduced 5 or more miss-classifications.

Several miss-classified images for all methods are pre-
sented in Figs. 13, 14. True-positive and false-negative
detections, as shown in Fig. 13, reveal a singlemissing detec-
tion for the proposed method in the first column. This sample
contains a small defect that is difficult to detect and was not
detected with any of the remaining methods as well. For the
remaining examples the method proposed in this paper was
able to correctly predict the presence of the defect, including
a small defect seen in the last column. The proposed method
was also able to localize the defects with excellent accuracy.
Good localization can also be observed in the related meth-
ods; however, the prediction of the presence or absence of
a defect was poor. Note that in some cases the score was
large; however, to correctly separate all the defects from the
non-defects the threshold needed to be set high aswell, point-
ing to many false positives on the images without defects.
This is well demonstrated in Fig. 14, showing several false
detections. False positives with high scores can be observed
in all the related methods, except in the method proposed
in this paper and in the commercial software. In particu-
lar, U-Net returned an output with a large amount of noise,

Table 1 Learning hyper-parameters with fixed learning values in the first three columns and the best selected learning configuration setup in the
remaining four columns

Method Number
epochs

Learning
rate

Initialization Annotation
type

Image size Data
rot.

Loss function Feature
size

Segmentation/decision net (our) 100 0.1 N (0.01) Dilate=5 1408 × 512 No Cross-entropy N/A

U-Net Ronneberger et al. (2015) 100 0.1 N (0.01) Dilate=9 1408 × 512 No Cross-entropy N/A

DeepLab v3+ Chen et al. (2018) 100 0.1 Pre-trained Dilate=9 1408 × 512 No Cross-entropy N/A

Cognex ViDi Suite 100 N/A N/A Dilate=5 1408 × 512 No N/A 60
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Fig. 12 Comparison with the state-of-the-art on KolektorSDD (in the middle graph: false positives in dark colors and false negatives in light) (Color
figure online)

Fig. 13 Examples of true-positive (green solid border) and false-negative (red dashed border) detections with the segmentation output and the
corresponding classification (the actual defect is circled in the first row) (Color figure online)

which prevented clean separation of true defects from false
detections, even with the additional decision network. The
proposed method, on the other hand, did not have any prob-
lems with the false positives and was correctly able to predict
the absence of the defect in those images.

Results in the context of an industrial environment When
considering to use the proposed model in industrial settings
it is important to ensure the detection of all the defected
items, even at the expense of more false positives. Since pre-
vious metrics do not capture the performance under those
conditions, this section sheds additional light on the number
of false positives that would be obtained if a zero-miss rate
would be required, i.e., if a recall rate of 100% is required.
These false positives then represent the number of items that
would be needed to be manually verified by a skilled worker

and directly point to the amount of work required to achieve
the desired accuracy.

The results, as reported in the right-most graphs in Fig. 12,
show that themodel as proposed in this paper introduces only
3 false positives at a zero-miss rate out of all 400 images. This
represents 0.75% of all images. On the other hand, the related
methods achieved worse results, with the commercial prod-
uct requiring the manual verification of 7 images, while the
standard segmentation networks required 68 and 108 man-
ual verifications, for DeepLabv3+ and U-Net, respectively.
Note that the results reported for both standard segmenta-
tions included using the proposed decision network. Using
logistic regression instead of the proposed decision network
resulted in significantly worse performance.

123



772 Journal of Intelligent Manufacturing (2020) 31:759–776

Fig. 14 Examples of true-negative (green solid border) and false-positive (red dashed border) detections with the segmentation output and the
corresponding classification score (Color figure online)

Sensitivity to the number of training samples

In industrial settings a very important factor is also the
required number of defective training samples, therefore we
also evaluated the effect of smaller training sample size. The
evaluation was performed using a threefold cross-validation
with the same train/test split as used in all previous experi-
ments, thus effectively using 33 positive (defective) samples
in each fold when trained on all the training samples. The
number of positive training samples was then reduced to
effectively obtain the training size N of 25, 20, 15, 10 and 5
samples for each fold,while the test set for each fold remained
unchanged. The removed training samples were randomly
selected, but the same samples were removed for all meth-
ods. The same training and testing procedure was followed
as in all previous experiments.

The proposed segmentation and decision network is com-
pared with the commercial software Cognex ViDi Suite and
two state-of-the-art segmentation networks. All methods are
evaluated using the best performing training setup deter-
mined in the experiments presented in the previous sections,
i.e., using dilated=5 annotations (or dilated dilated=9 for
segmentation networks), full image resolution, cross-entropy
loss and no image rotation. Results are reported in Fig. 15.
The proposed segmentation and decision network retains the
same result of over 99% AP and a single miss-classification
when using only 25 defective training samples. When using
even less training samples the results drop, but the proposed
method still achieves AP of around 96% when only 5 defec-
tive training samples were used. More pronounced drop in
performance can be observed for the Cognex ViDi Suite,

however, in this case the results drop already at N=25 to
AP of 97.4%. When using only 5 defective training sam-
ples the commercial software achieved AP of slightly below
90%. The same trend is observed in the number of miss-
classifications depicted in the bottom half of Fig. 15 with the
dark colors representing false positives and the light colors
representing false negatives.

The DeepLab v3+ and U-Net, on the other hand, perform
worse than the proposed approach when less training sam-
ples are used. The performance ofU-Net quickly drops,while
DeepLab retains fairly good results even for only 15 defected
training samples. Note that the performance at 20 and 15
defected training samples slightly outperforms the results
obtained with all training samples, indicating that DeepLab
is fairly sensitive to specific training examples and removing
such samples helps in improving the performance. U-Net is
significantly more sensitive to the decrease of the number
of training samples; the results varied from 75% to slightly
above 90% in average precision.However, for 10 and 5 defec-
tive training samples, DeepLab performed the worst with AP
of only 46% and 16%, respectively.

Overall, the experimental results show that the proposed
method retains superior and stable performance also when
smaller number of training samples are available.

Computational cost

The approach proposed in this paper is superior to the
state-of-the-art segmentation methods in terms of computa-
tional cost and is competitive with the commercial software.
Forward-pass times with respect to the average precision
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Fig. 15 Classification performance on KolektorSDD at varying number of positive (defective) training samples

Fig. 16 Detection (forward pass) time with respect to the classification
performance for a single image

are reported in Fig. 16. Results were obtained on a single
NVIDIA TITAN X (Pascal) GPU. The proposed method is
shown to be significantly faster than DeepLab v3+ and U-
Net, with a better accuracy as well. This is achieved with
a smaller number of parameters, which is reflected in the
marker size in Fig. 16 and is shown in Table 2 as well.
This performance is achieved using only 15.7 mio param-
eters for the proposed model, while U-Net and DeepLab
v3+ have more than twice as many parameters, with 31.1
mio and 41.1 mio parameters, respectively. The number of
parameters for the Cognex ViDi Suite is not publicly avail-
able. The proposedmethod and commercial software are also
shown at half the resolution depicted with the star marker in

Table 2 Comparison with the state-of-the-art methods in the number
of learnable parameters and average precision

Method Number of
parameters

Average
precision

Segmentation/decision net (our) 15.7 mio 99.9

Cognex ViDi Suite N/A 98.9

DeepLab v3+ Chen et al. (2018) 41.1 mio 97.9

U-Net Ronneberger et al. (2015) 31.1 mio 96.1

Bold indicates the best performing model in each metric

Fig. 16. This shows that the proposed method results in a 3-
times faster forward pass than with full resolution—33ms
for the half-resolution and 110ms for the full-resolution
image. The fastest performance is achieved with the com-
mercial software, Cognex ViDi Suite, with 10ms per image.
However, when using half the image resolution the proposed
best-performing model achieves a similar performance with
only a slightly larger computational cost. Note that the pro-
posed model achieved this performance in the TensorFlow
framework without applying any computational optimiza-
tion, while it can be safely assumed that the commercial
software has been highly optimized to reduce the compu-
tational cost as much as possible.

Discussion and conclusion

This paper explored a deep-learning approach to surface-
defect detection with a segmentation network from the
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Fig. 17 Examples of true-positive (the upper three rows) and true-negative (the bottom row) detections onKolektorSDDwith the proposed approach
(classification score is depicted in the top-left corner for each example)

point of view of specific industrial application. A two-stage
approach was presented. The first stage included a segmen-
tation network trained on pixel-wise labels of the defect,
while the second stage included an additional decision net-
work build on top of the segmentation network to predict the
presence of the anomaly for the whole image. An extensive
evaluation of the proposed approach was made on a semi-
finished industrial product, i.e., an electrical commutator,
where the surface defects appeared as fractures of the mate-
rial. This problem domain has been made publicly available
as a benchmark dataset, termed the Kolektor Surface-Defect
Dataset (KolektorSDD). The proposed approach was com-
pared on this domain with several state-of-the-art methods,
including proprietary software and two standard segmenta-
tion methods based on deep learning.

The experiments on KolektorSDD demonstrated that the
proposed model achieves significantly better results than
related methods with only one miss-classification, while the
related methods achieve five or more miss-classifications.
This can be attributed to the proposed two-stage design with
the segmentation and the decision network, as well as to the
improved receptive field size and an increased capacity to
capture the fine details of the defect. The related methods
are missing some of those characteristics. For instance, the
worst-performing segmentationmethod,U-Net, has a limited

receptive field size, with only 45 pixels versus 205 pixels of
the proposed method. Although DeepLabv3+ improves the
receptive field size, it does this at the expense of too many
parameters, which cause the model to overfit, despite being
pre-trained on separate datasets.

On the other hand, it is difficult to assess the differences
with the commercial software, since the details of themethod
are not publicly known. Nevertheless, the experiments show
that the commercial software performs significantly worse
than the proposed method when using lower-resolution
images. This experiment is an indication that the commercial
software struggles to capture finer details of the defect and
requires a higher resolution for good performance. However,
it still cannot attain the same performance as the proposed
method even when high-resolution images are used.

The performance of the proposedmethodwas achieved by
learning fromonly 33 defective samples. Several examples of
correct classification are depicted in Fig. 17.Moreover, using
only 25 defective samples showed that good performance can
still be attained,while relatedmethods achievedworse results
in this case. This indicates that the proposed deep-learning
approach is suitable for the studied industrial applicationwith
a limited number of defected samples available.Moreover, to
further consider applications for the industrial environment,
three important characteristics were evaluated: (a) the per-
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formance to achieve 100% detection rate, (b) details of the
annotation and (c) the computational cost. In terms of the
performance to achieve a 100% detection rate the proposed
model has been shown to require only three images for the
manual inspection out of all 400 images, leading to a 0.75%
inspection rate. Large and coarse annotations also turned out
to be sufficient to achieve a performance similar to the one
with finer annotations. In some cases larger annotations even
resulted in better performance than using fine annotations.
This conclusion is seemingly counter-intuitive; however, a
possible explanation can be found in the receptive field size
used to classify each pixel. The receptive field for a pixel that
is slightly away from the defective area will still cover part of
the defective area and can therefore contribute towards find-
ing features that are important for their detection, if they are
annotated correctly. This conclusion can result in reduced
manual work when adapting methods to new domains and
will lead to reduced labor costs and the increased flexibility
of production lines.

The proposed approach is, however, limited to the specific
type of tasks. In particular, the architecture was designed for
tasks that can be framed as a segmentation problem with
pixel-wise annotation. Other quality-control problems exist
for which a segmentation-based solution is less suitable.
For instance, quality control of complex 3D objects may
require detection of broken or missing parts. Such problems
could be addressed by detection methods, such as Mask R-
CNN (Kaiming et al. 2017).

This study demonstrated the performance of the proposed
approach on a specific task (crack detection) and on a spe-
cific surface type, but the architecture of the network was
not designed for this specific domain only. Learning on new
domains is possible without any modification. The architec-
ture can be applied to images that contain multiple complex
surfaces, or it can be applied to detect other different defect
patterns, such as scratches, smudges or other irregularities,
providing that a sufficient number of defected training sam-
ples is available and that the task of the particular defect
detection can be framed as a surface segmentation problem.
However, to further evaluate this, new datasets are needed.
To the best to our knowledge, the DAGM dataset (Weimer
et al. 2016) is the only publicly available annotated dataset
with a diverse set of surfaces and defect types suitable
for evaluation of learning-based approaches. The proposed
approach achieves perfect results on this dataset, which is,
however, synthetically generated and also saturated accord-
ing to the obtained results. Future effort should, therefore,
be focused also on acquiring new complex datasets based on
real-world visual inspection problems, where deep-learning
(and other) methods could be realistically evaluated in full
extent; the dataset presented in this paper is a first step in this
direction.
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