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Abstract
Unnatural control chart patterns (CCPs) usually correspond to the specific factors in a manufacturing process, so the control 
charts have become important means of the statistical process control. Therefore, an accurate and automatic control chart 
pattern recognition (CCPR) is of great significance for manufacturing enterprises. In order to improve the CCPR accuracy, 
experts have designed various complex features, which undoubtedly increases the workload and difficulty of the quality 
control. To solve these problems, a CCPR method based on a one-dimensional convolutional neural network (1D-CNN) is 
proposed. The proposed method does not require to extract complex features manually; instead, it uses a 1D-CNN to obtain 
the optimal feature set from the raw data of the CCPs through the feature learning and completes the CCPR. The dataset 
for training and validation, containing six typical CCPs, is generated by the Monte-Carlo simulation. Then, the influence 
of the network structural parameters and activation functions on the recognition performance is analyzed and discussed, 
and some suggestions for parameter selection are given. Finally, the performance of the proposed method is compared with 
that of the traditional multi-layer perceptron method using the same dataset. The comparison results show that the proposed 
1D-CNN method has obvious advantages in the CCPR tasks. Compared with the related literature, the features extracted by 
the 1D-CNN are of higher quality. Furthermore, the 1D-CNN trained with simulation dataset still perform well in recogniz-
ing the real dataset from the production environment.
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Introduction

As a significant tool for the statistical process control (SPC), 
a control chart plays an important role in the manufactur-
ing quality control, wherein it is widely used to monitor 
whether the machining process is in control or not. A manu-
facturing process is considered natural or normal if only 
random causes are affecting its operation (Zan et al. 2010). 
Therefore, unnatural control chart patterns (CCPs) displayed 
on the control charts can be associated with specific causes 
that adversely affect the manufacturing processes (Western 
Electric Company 1958). Nelson (1984) provided possible 

explanations and corrective actions for unnatural patterns. 
For instance, he stated that trend patterns might point out 
to wear or thermal deformation of key parts of a machine 
tool, while changes in operators, materials, or equipment 
might result in shift patterns; furthermore, the cyclic pat-
terns might be related to the periodic variation in the power 
supply (Hachicha and Ghorbel 2012).

When some points exceed the boundaries of the control 
chart or when the control chart displays an unnatural pattern, 
that means the monitored manufacturing process is out of 
control (Montgomery 2007). The former can be easily rec-
ognized by the quality practitioners while identifying the 
latter requires some specific methods. For this reason, many 
scholars have formulated supplementary rules for detect-
ing the unnatural patterns, such as the Geometric Moving 
Averages test (Roberts 1959), the Runs rules (Ducan 1986), 
and the Zone rules (Nelson 1985). However, based on the 
subsequent research Cheng (1997) pointed out that there is 
no one-to-one mapping relation between a supplementary 
rule and an unnatural pattern; moreover, utilization of too 
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many rules may lead to too many false alarms. Manual expe-
rience and knowledge are still needed to identify the alarm 
authenticity, which introduces an additional burden to the 
quality control (Ranaee and Ebrahimzadeh 2011). Accord-
ingly, many studies pointed out that supplementary rules 
are often ineffective in recognizing the CCPs (Davis and 
Woodall 1988; Yang et al. 2015). Due to the deficiencies of 
supplementary rules and constantly increasing requirements 
for intelligent manufacturing, the interest in developing the 
accurate and automatic control chart pattern recognition 
(CCPR) algorithms has been significantly increased. Conse-
quently, many CCPR methods have been developed recently, 
and they can be divided into two categories: expert system 
methods and machine learning methods.

Due to the limitation of the expert system methods, there 
is less research in this field. In 1987, Swift designed the 
first expert system for CCPR (Swift 1987). On this basis, 
many other studies have been conducted (Cheng and Hubele 
1992; Kuo and Mital 1993; He et al. 2013) including the 
research on developing an expert system for CCPR. Bag 
(2012) focused on the design and development of an expert 
system for on-line detection of various control chart pat-
terns to enable the quality control practitioners to initiate 
prompt corrective actions for an out-of-control manufactur-
ing process. The typically used algorithms mainly included 
the statistical test and heuristic algorithm. The performance 
of these expert system methods is not excellent because their 
judgment rules are flawed (Zhou et al. 2018); however, their 
engineering application value is worth affirming.

On the other hand, the machine learning methods have 
been widely applied in the CCPR, and excellent results have 
been achieved. The machine learning methods can be clas-
sified into two categories, namely artificial neural networks 
(ANNs) and support vector machine (SVM). The ANNs 
based methods include supervised algorithms such as a 
multi-layer perceptron (MLP) (Cheng 1997; Pham and Wani 
1997; Al-Assaf 2004; Ranaee and Ebrahimzadeh 2013), a 
learning vector quantization (LVQ) (Guh 2008; Gauri 2010; 
Yang and Zhou 2015), a probability neural network (PNN) 
(Cheng and Ma 2008), and a radial basis function (RBF) 
neural network (Addeh et al. 2018). Additionally, a fuzzy 
adaptive resonance theory map (ARTMAP) neural network 
having an incremental learning ability was proposed to rec-
ognize the CCPs (Zan et al. 2010); an unsupervised algo-
rithm was used to realize the CCPs clustering analysis. It 
was reported that this method was superior to the traditional 
MLP method. However, the clustering results were more 
than the actual pattern type, resulting in an inconvenient 
use. In (Awadalla and Sadek 2012), a spiking neural network 
(SNN) architecture was proposed to be used for the CCPR. 
The SNNs represent the third ANN generation which con-
siders time as an important feature for information represen-
tation and processing. Furthermore, the learning algorithm 

is improved to provide perfect learning rules. However, the 
ANNs have certain shortcomings, which hinder their univer-
sality and practicability, such as difficulty in convergence, 
ease relapsing into a local extremum, difficulty in determin-
ing a most suitable network structure, etc. As a new genera-
tion of the machine learning methods, the SVM has been 
widely applied in the CCPR achieving good results. In Zhou 
et al. (2018), a novel CCPR method integrating the Fuzzy 
SVM (FSVM) with the hybrid kernel function and genetic 
algorithm (GA) was proposed; the obtained simulation 
results demonstrated that the proposed method achieved an 
excellent performance and outperformed other approaches 
such as the LVQ the MLP, the PNN, fuzzy clustering, and 
the SVM, in term of the recognition accuracy. Zhao et al. 
(2017) proposed a CCPR method based on the improved 
supervised locally linear embedding and SVM. It was used 
to reduce the dimensionality of a high-dimensional feature 
set. The results showed that the dimension of the feature set 
had a great influence on the classification accuracy but the 
proposed method identified patterns correctly.

Another important problem in the pattern recognition 
field is a data form to be used as a classifier input, i.e., input 
data representation. The first form denotes raw data (Pham 
and Oztemel 1994; Hassan et al. 2003; Cheng and Ma 2008). 
However, there are some problems when the CCPR directly 
uses unprocessed CCP data such as high input dimension. 
Namely, high-dimensional input data usually results in too 
large classifier size, which leads to a reduction in accuracy 
and efficiency for complex recognition problems (Ranaee 
and Ebrahimzadeh 2011). The second form denotes the fea-
ture set, consisting of shape features (Pham and Wani 1997; 
Gauri and Chakraborty 2006, 2009; Pelegrina et al. 2016), 
statistical features (Pelegrina et al. 2016; Addeh et al. 2018), 
or wavelet analysis features (Jin and Shi 2001; Ranaee and 
Ebrahimzadeh 2011). Most related studies showed that the 
CCP classifiers using the feature set as an input achieved 
a significantly better performance compared to the classi-
fiers using raw data as input (Hachicha and Ghorbel 2012). 
Besides, it is well known that choosing the most suitable 
feature set is the key to improve the recognition accuracy. 
Although many feature extraction methods have been pro-
posed to solve the CCPR problem, and the features have 
been designed by experts for the required tasks, the full 
potential of the feature-based approach has not been fully 
exploited yet because the discarded raw data still contains 
much important information. Thus, the most suitable feature 
set for a CCPR is still unclear, and a more comprehensive 
and effective feature extraction method such as feature learn-
ing is needed.

Feature learning refers to the collection of techniques 
that learn a transformation or sequence of transformations 
of raw data so that the data is optimally represented for a 
required task (Janssens et al. 2016). In recent years, the deep 
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neural networks (DNNs) have been widely applied in feature 
learning. Compared with the traditional ANNs, the special 
structure of the DNNs makes it possible to extract features 
from raw data (Ajm and Hulzebosch 1996). As a representa-
tive type of the DNNs, the convolutional neural networks 
(CNNs) have made remarkable achievements in the image 
recognition field. The CNNs use the alternating convolution 
and pooling layers to transform input data and optimize the 
convolution kernel by back propagation (BP) algorithm to 
minimize the cost (or loss) function, so that at the classifi-
cation step, the input data is transformed optimally, i.e., the 
optimal features are learned for the classification task. With 
the popularity of deep learning, scholars have begun to use 
the CNNs for fault diagnosis (Liao et al. 2017; Xia et al. 
2018; Xie and Zhang 2017). Janssens et al. (2016) used the 
CNNs to extract the vibration signal features and conduct the 
rotating machinery fault diagnosis, and the excellent result 
was obtained.

In this paper, a one-dimensional convolutional neural net-
work (1D-CNN), which is sensitive to the time sequence, is 
proposed to extract the CCP features and realize the CCPR. 
To the best of our knowledge, only one article presenting the 
CNN-based CCPR has been published recently (Miao and 
Yang 2019). In Miao and Yang (2019), the mathematical 
methods were used to extract features (statistical and shape 
features) from raw data, and then a CNN was applied to the 
extracted features. However, it should be noted that their work 
differs from the work presented in this paper because here, 
no feature is extracted from the CCPs and the CNN-based 
model is applied to the raw data so that the network can learn 
optimal features for the CCPR. In other words, feature learning 
not only simplifies the model and reduces time consumption, 

but also can get more optimal features than the one extracted 
manually. In addition, the method we propose is helpful to 
improve the automation and intelligence level of quality man-
agement in the manufacturing process.

The rest of the paper is organized as follows. “Methodol-
ogy” Section explains the simulation method of the CCPs and 
presents the recognition algorithm. “Proposed method” Sec-
tion introduces the proposed method in detail. “Experiments” 
Section presents the verification test and gives the results. Sub-
sequently, the results are discussed in “Discussion” Section. 
Lastly, “Conclusion” Section concludes the paper.

Methodology

Simulation method of CCPs

As shown in Fig. 1, there are generally six typical CCPs in the 
production process, namely, normal (NOR) pattern, upward- 
and downward-shift (US and DS) patterns, upward- and down-
ward-trend (UT and DT) patterns, and cycle (CYC) pattern. 
Except for the NOR pattern, the rest of the unnatural patterns 
corresponding to certain unusual changes in a monitored man-
ufacturing process.

The Monte-Carlo simulation is mostly used by scholars to 
provide a large number of the CCPs for the recognition algo-
rithm. The process mean and two noise components are used 
to create the data points for the various patterns (Zan et al. 
2010) as follows:

where y(t) denotes the value of a sample collected at time t, 
t is the time of sampling, μ is the statistical mean when the 

(1)y(t) = � + x(t) + d(t)

Fig. 1  Typical CCPs in the 
production process
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process is in control, x(t) is a random noise at time t, and it 
obeys normal distribution, x(t)~ N(0, σ); σ is the standard 
deviation when the process is in control, and d(t) is the spe-
cial disturbance caused by specific factors in the manufactur-
ing process at time t.

Based on Eq. (1), the simulation method of various typi-
cal CCPs is as follows.

The NOR pattern is given by:

The US and DS patterns are given by:

where v is parameter determining the shift position, and it 
is equal to 0 before the shift and to 1 after the shift, s is the 
shift magnitude; sign “+” is used for the US pattern, and 
sign “−” is used for the DS pattern.

The UT and DT patterns are given by:

where v is parameter determining the trend position, and it 
is equal to 0 before the trend and to 1 after the trend, d is the 
slope of a trend; the sign “+” is used for the UT pattern, and 
sign “−” is used for the DT pattern.

The CYC pattern is given by:

where a is the amplitude of a cycle, and ω is the period of 
a cycle.

CNN model

Deep learning has made outstanding achievements in the 
field of pattern recognition. Compared with the traditional 
machine learning methods, deep learning has many advan-
tages. (1) Data pre-processing can be omitted completely, 
and raw data can be directly used for model training and 
testing. (2) A multi-layer neural network can be used to learn 
deeper knowledge, and it is competent for more complex 
tasks. (3) The most appropriate features can be learnt for 

(2)d(t) = 0

(3)d(t) = ±v × s

(4)d(t) = ±v × d × t

(5)d(t) = v × a × sin (2�t∕�)

classification tasks. The comparison of deep learning and 
traditional machine learning methods is shown in Fig. 2.

A CNN is a type of a deep neural network. As shown in 
Fig. 3, a CNN is made up of three types of layers: convolu-
tional layer, subsampling layer (or pooling layer), and fully 
connected layer with a cost function. A typical CNN struc-
ture can, therefore, be divided into two parts; namely, the 
convolutional and pooling layers work as a feature extractor, 
and the fully connected layer works as a classifier (Xie and 
Zhang 2017).

A convolutional layer is the most important component of 
a CNN. The weights and biases of a convolutional layer are 
organized into a series of convolutional kernels (or filters). A 
set of output feature maps can be acquired by using different 
filters. Each output feature map is the result of a convolution 
of multiple input feature maps and multiple convolutional 
kernels, which is given by:

where * represents the convolution operation, l represents 
the serial number of current network layer, D is the number 
of feature maps, �l is a convolutional kernel connecting the 
(l−1)th layer to the lth layer, and its size is r × c , r represents 
height, c represents width, xl

j
 represents the jth output feature 

map, b is the additive bias of each output feature map, and f 
is an activation function.

Most commonly used nonlinearity activation functions 
are Sigmoid function and rectified linear units (ReLU) func-
tion, which are respectively given by:

The size of the output feature map of the lth convolution 
layer is Rl × Cl , R represents height, C represents width, and 
it is calculated by:

(6)xl
j
= f

(

Dl−1
∑

i=1

xl−1
i

∗ �
l
ij
+ bl

j

)

, j = 1, 2,… ,Dl

(7)f (x) = 1∕(1 + e−x)

(8)f (x) = max(0, x)

(9)Rl × Cl =
[(

Rl−1 − r
)

∕s + 1
]

×
[(

Cl−1 − c
)

∕s + 1
]

Fig. 2  Comparison of deep learning and traditional machine learning
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where s is the moving stride of a convolution kernel, and in 
this work, s is set to 1.

In the subsampling layer, the downsampling is completed 
so that the dimension of the feature maps can be quickly 
reduced. A subsampling layer is mathematically represented 
by:

where l represents the serial number of the current network 
layer, Dl is the number of input feature maps, xl

j
 represents 

the jth output subsample map, and down represents a pooling 
function.

The commonly used subsampling strategies are the max 
pooling and the average pooling. In the max pooling strat-
egy, the maximum value of the subsampling region is taken 
as a new feature, while, in the average pooling strategy, the 
mean value of the subsampling region is taken as a new 
feature. Scholars believe that max pooling reflects the most 
striking feature of the subsampling region, while the average 
pooling selection is more smooth (Xie and Zhang 2017).

The size of the output subsample map of the lth subsam-
pling layer is Rl × Cl , and it is calculated by:

where u is the step size of pooling operation. In this work, 
u is set to 2.

As shown in Fig. 3, the feature maps are expanded and 
spliced together in the first fully connected layer. The num-
ber of neurons in this layer is M, representing M features 
extracted by the CNNs. The M is calculated by:

Neurons in a fully connected layer have full connections 
to all neurons in the previous layer like in a regular neural 
network. Hence, they can be computed with a matrix multi-
plication followed by a bias offset:

(10)xl
j
= down

(

xl−1
j

)

, j = 1, 2,… ,Dl

(11)Rl × Cl =
(

Rl−1∕u
)

×
(

Cl−1∕u
)

(12)M = Rl−1 × Cl−1 × Dl−1

where f v is the input vector of a fully connected layer, bo is 
the bias vector, and �o is the weight matrix.

The last layer in a CNN is the output layer, containing N 
neurons represents the number of pattern types to be identi-
fied. Usually, the activation function of the output layer is a 
Sigmoid function or a Softmax function, which are respec-
tively given by Eqs. (7) and (14). Finally, in the training 
phase, the BP algorithm is used to optimize the weights and 
biases ( �l

ij
 , �o , b

l
j
 , and bo ) in a CNN to minimize the value 

of the cost function.

In this paper, a 1D-CNN, which is slightly different from 
a typical CCN, is used to complete the CCPR. More details 
about the 1D-CNN structure are introduced in the following 
sections.

Proposed method

Manual feature extraction from raw CCP data can improve 
the recognition accuracy, but it also increases the workload 
and complexity of the quality control. Therefore, this paper 
proposes a 1D-CNN to complete the CCPR so as to extract 
the CCP features through the feature learning.

Compared with the traditional machine learning 
method, the advantage of a CNN is that it can realize 
end-to-end recognition or diagnosis. In other words, the 
input of the neural network is raw data, and the output 
is the pattern type. Feature extraction, feature selection, 
and feature optimization are completed by the convolu-
tion and pooling layers of a CNN. The weights and biases 

(13)O = f
(

�of v + bo
)

(14)f
(

xi
)

= exi∕

N
∑

j=1

exj

Fig. 3  Typical CNN structure
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of a CNN structure are optimized and adjusted by the BP 
algorithm by minimizing the cost function. Thus, the best 
feature set is obtained through the CNN learning process. 
In that way, a lot of manpower is saved, and complex work 
is finished by a neural network. The structure of the pro-
posed 1D-CNN is slightly different from a common CNN 
structure. The feature mapping in the 1D-CNN structure 
is not a matrix but a vector, which makes the 1D-CNN 
particularly sensitive to the time sequence such as a CCP.

The structure of the proposed CCPR method is shown 
in Fig. 4, where it can be seen that the proposed CNN 
structure consists of two convolution layers, two pooling 
layers, and a fully connection layer, such that the convolu-
tion and pooling layers complete feature extraction, and 
the fully connection layer realizes classification. Since the 
proposed network represents a 1D-CNN, the CNN struc-
tural parameters C and c (the width of feature maps and 
convolutional kernels) equal to 1. The dimension of the 
raw CCP data is 25, and there are six different patterns 
as mentioned earlier; thus, the structural parameters are 
R1 = 25 and N = 6. The other structural parameters of the 
1D-CNN, such as the number of feature maps (D) and the 
height of the convolution kernel (r), will be discussed and 
optimized in the next section. The pooling function of the 
subsampling layer is max pooling.

Since the deep learning is used in the proposed CCPR 
method, the main steps of the proposed method are very 
simple, and they are as follows:

Step 1 The training and test sets containing the raw CCP 
data are generated by the method introduced in “Meth-
odology” Section.
Step 2 Training set is used to train the 1D-CNN and opti-
mize the network weights and biases.
Step 3 The optimized 1D-CNN is validated by the test set.

Experiments

A series of simulations were conducted to verify the feasibil-
ity and effectiveness of the proposed method. The 1D-CNN 
was implemented by using Python programming program, 
and it was run on a personal computer with a 2.20-GHz CPU 
and 2 GB RAM. The correct recognition ratio (CRR) was 
used as an estimation criterion, and it represented the ratio 
of the number of correctly classified patterns to the total 
number of test patterns. The confusion matrix was used to 
present the evaluation results more intuitively. Finally, the 
validity of 1D-CCN was evaluated through the comparison 
with the existing methods of the same type.

CCP parameters

Six common CCPs were considered, namely NOR, UT, DT, 
US, DS, and CYC. The Monte-Carlo simulation algorithm 
introduced in “Methodology” Section was used to generate 

Fig. 4  The structure of the proposed CCPR method
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datasets for training and testing of the 1D-CNN. The param-
eters of the six CCPs are shown in Table 1.

In the actual manufacturing process, the change of a 
monitored object is very complicated. In order to simulate 
this situation more truly, the CCP parameters were randomly 
selected within a certain range, using the uniform distribu-
tion. The mean μ was set to 30, and the standard deviation 
σ was set to 0.05. The value of the slope d varied in the 
range [0.1σ, 0.3σ]. The magnitude of the shift s changed in 
the range [1.5σ, 3σ], and the amplitude of cyclic patterns 
a varied in the range [1.5σ, 4σ]. The value of the period of 
cycle ω was respectively set to 4, 5, 6, 7, and 8. The start-
ing position of each unnatural pattern was in the range [4, 
9]. The data length of the CCPs was 25. By comparing the 
recognition rate of different sample size, it was found that 
when the number of samples exceeds 2000, the improvement 
of the recognition rate will not be significant. At the same 
time, the computational cost of the experiment increases 
exponentially. After taking these factors into account, the 
generated dataset contained 2000 samples per CCP, which 
was a total of 12,000 different samples. The dataset was 

random divided into two parts, of which 9600 samples were 
used to train 1D-CNN, and the rest was used for testing.

1D‑CNN performance dependence on structural 
parameters

In order to determine an optimal 1D-CNN structure, the 
1D-CNN performance was compared for different structural 
parameters. The comparison results are shown in Table 2. 
Namely, two sets of experiments were carried out with the 
same dataset. The activation function of each 1D-CNN layer 
was the Sigmoid function. The purpose of the first experi-
ment was to optimize the size of the convolution kernel (r), 
and the results are given in Table 2. Afterward, the second 
experiment was carried out to optimize the number of fea-
ture maps (D), and the results are also presented in Table 2. 
The mean square error (MSE) of the experiments is shown 
in Fig. 5.

We trained the neural network with different struc-
tural parameters. The respective CRR, the training time 
of each epoch, and the MSE were determined. As it can 

Table 1  The parameters of six 
CCPs

Pattern Mathematical representation Parameter value/range

NOR y(t) = � + x(t) � = 30, � = 0.05

UT y(t) = � + x(t) + v × d × t d ∈ [0.1�, 0.3�]

DT y(t) = � + x(t) − v × d × t d ∈ [0.1�, 0.3�]

US y(t) = � + x(t) + v × s s ∈ [1.5�, 3�]

DS y(t) = � + x(t) − v × s s ∈ [1.5�, 3�]

CYC y(t) = � + x(t) + v × a × sin (2�t∕�) a ∈ [1.5�, 4�],� ∈ {4, 5, 6, 7, 8}

Table 2  The 1D-CNN 
performance at different 
structural parameters

The best results are shown in bold

No. D2, D3 r2 D4, D5 r4 CRR (%) Time (s/epoch)

Experiment 1 1 6 2 12 9 97.23 0.935
2 6 2 12 7 97 0.962
3 6 2 12 5 96.5 0.992
4 6 2 12 3 97.27 1.010
5 6 4 12 8 97.1 0.923
6 6 4 12 6 96.87 0.987
7 6 4 12 4 96.67 1.038
8 6 4 12 2 96.73 1.052
9 6 8 12 6 96.87 0.905

10 6 8 12 4 96.07 1.014
11 6 8 12 2 96.33 1.091
12 6 16 12 2 96.13 0.873

Experiment 2 13 1 2 2 9 81.07 0.129
14 2 2 4 9 95.13 0.211
15 3 2 6 9 96.2 0.340
16 12 2 24 9 96.93 3.290
17 24 2 48 9 97.23 11.624
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be seen in Table 2 and Fig. 5, the first combination of 
structural parameters had the highest CRR, the shorter 
training time, and the fastest convergence speed. There-
fore, it denoted the best-performance 1D-CNN structure, 
which was used in the subsequent experiments. All the 
network parameters were determined, and they are sum-
marized in Table 3.

Influence of activation function on recognition 
performance

To select the most convenient activation function, we per-
formed a set of simulations whose results are shown in 
Table 4, and the corresponding MSE is shown in Fig. 6. 
In scheme 1, the activation function of each layer in the 
1D-CNN was the Sigmoid function, and in scheme 2, the 
activation function of the convolution layer was the ReLU 
function, and the activation function of the output layer 
was the Softmax function. As it can be seen in Table 4, 
the 1D-CNN with the ReLU and Softmax activation 
functions performed better than that with the Sigmoid 
function; both the CRR and the convergence speed were 
significantly better.

Performance comparison between MLP and 1D‑CNN

To evaluate the performance of the proposed method fur-
ther, a comparative experiment of 1D-CNN, CNN and 
MLP was conducted. As already mentioned, the MLP as a 
machine learning method with an excellent performance 
has been widely used in the CCPR and has achieved good 
results (Pham and Wani 1997; Al-Assaf 2004; Ranaee and 
Ebrahimzadeh 2013), which is why we used it in this work. 
The input of 1D-CNN was raw data, the input of CNN 
was control chart image data, which were 60 × 60 pixels 
in size (R1 = C1 = 60) , and the MLP input was either the 
raw data or the feature set. The feature set included the 
statistical features (mean, standard deviation, skewness, 
and kurtosis) and shape features (S, NC1, NC2, APML, 
APSL), which have been proved to be very effective in 
the CCPR (Pham and Wani 1997; Hassan et  al. 2003; 

Fig. 5  The MSE of the experiments. The numbers in the figure leg-
end correspond to the numbers in Table 2

Table 3  Structural parameters 
of the 1D-CNN

Parameter Value

Number and size of the input layer D1 × R1 × C1 = 1 × 25 × 1

Number and size of the first convolutional layer feature map D2 × R2 × C2 = 6 × 24 × 1

Size of the first convolutional kernel r2 × c2 = 2 × 1

Number and size of the first pooling layer subsample map D3 × R3 × C3 = 6 × 12 × 1

Number and size of the second convolutional layer feature map D4 × R4 × C4 = 12 × 4 × 1

Size of the second convolutional kernel r4 × c4 = 9 × 1

Number and size of the second pooling layer subsample map D5 × R5 × C5 = 12 × 2 × 1

Number of features M = 24

Number of neurons in the output layer N = 6

Table 4  Comparison of 1D-CNNs with different activation functions

The best results are shown in bold

Activation function CRR (%) MSE Time (s/epoch)

Sigmoid 97.23 0.0343 0.935
ReLU-Softmax 98.33 0.0126 0.910

Fig. 6  The MSE for different activation functions
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Gauri and Chakraborty 2009; Pelegrina et al. 2016). A 
detailed description of the features can be found in (Pham 
and Wani 1997; Hassan et al. 2003). The MLP used in 
the experiment was a typical three-layer neural network, 
containing 25 neurons that were receiving the CCPs raw 
data, or 9 neurons which were receiving the feature set. 
There were 15 neurons in the hidden layer, and 6 neurons 
in the output layer corresponding to the six typical CCPs. 
The activation function of all layers was the Sigmoid 
function. The structural parameters of the CNN were as 
follows: r2 = c2 = r4 = c4 = 5 , u3 = 4 , u5 = 2 , and other 
parameters were the same as the 1D-CNN. In order to 
evaluate the classifier performance more intuitively, the 
confusion matrix was used. The values on the confusion 
matrix diagonal denoted the percentage of correctly recog-
nized patterns. The other values in the matrix represent the 

percentage of misclassifications (Sokolova and Lapalme 
2009). The CRR was equal to th e average value of all the 
elements on the matrix diagonal. The confusion matrix is 
shown in Fig. 7, where it can be clearly seen that the per-
formance of the 1D-CNN exceeded other methods perfor-
mance. Namely, the 1D-CNN achieved higher recognition 
accuracy and lower error rate.

In addition, the performance in the three cases was 
compared using different number of samples per pattern. 
As shown in Table 5, the number of samples of each CCP 
was respectively set to 200, 2000, or 20,000. The recog-
nition rate and time of each epoch were determined, and 
obtained results are shown in Table 5, where it can be 
demonstrated that the proposed method was superior to 
the traditional MLP method and the CNN method with 
image data as input in terms of both recognition accuracy 
and time consumption.

(a) (b)

(c) (d)

Fig. 7  The CCPR confusion matrix for a the MLP and raw data, b the MLP and feature set, c the 1D-CNN and raw data, and d the CNN and 
image data
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Comparison of 1D‑CNN and other methods

To further evaluate the effectiveness of the CNN, the pro-
posed method was compared with the methods reported in 
the related literature. As shown in Table 6, many classifiers, 
including the MLP, PNN, Fuzzy ARTMAP, SVM, and RBF, 
were used for the CCPR. The input was either raw data or 
feature set. Based on the results presented in Table 6, using 
the features as an input was generally more effective than 
using the raw data. Particularly, when image and statistical 
features were combined, the performance was most promi-
nent. When the input of the 1D-CNN was a raw signal, the 
final output of the convolution and pooling layers could be 
understood as an optimal feature set extracted by the neural 
network through the learning process. The box-plots of some 
features are plotted in Fig. 8. The total number of features 
M was equal to 24, but due to the limited space, only six 
features are displayed in Fig. 8. In Zhou et al. (2018) and 
Ranaee and Ebrahimzadeh (2013) similar box-plots of shape 
and statistical features were given. In Fig. 8, the values of 
features of the same CCP type were closer to each other and 
separated from that of the other types in the feature space, 
which proved that CNN learned features from the raw data 
more than excellent.

The results showed that the recognition rate of the pro-
posed method was 98.33%, representing one of the higher 
results, but not the highest, which might be caused by the 

following reasons. The datasets used in training and test-
ing classifiers were different. Also, in some literature, the 
parameter setting lacked the randomness when generating 
simulation data, such as selecting only a few fixed values 
instead of uniform distribution in a certain range, or the 
parameter setting range was too narrow, which could deviate 
from the actual CCPs. With the aim to make the simulation 
data more close to the real patterns, the parameters presented 
in Table 1 were adopted, and the parameters obeyed a uni-
form distribution in a wide range. This inevitably increased 
the difficulty of the CCPR, resulting in a decrease in the 
recognition rate, which was caused by large randomness of 
parameters and the existence of a random noise x(t) [see 
Eq. (1)] so that the CCPs dataset generated by the simulation 
algorithm contained some dirty data. In Fig. 9a, the pattern 
computed by Eqs. (1) and (4) is presented, and according to 
its category label in the dataset it represented a UT pattern, 
but this pattern was more like a US pattern, and it was also 
recognized as a US pattern by the 1D-CNN. Even when the 
CCP was identified manually, the same result was obtained 
as that by the 1D-CNN. In other words, the 1D-CNN actu-
ally achieved the correct recognition. Similarly, in Fig. 9b, a 
US pattern was identified, but actually it should be UT pat-
tern. Therefore, some misclassification in Fig. 7c was partly 
caused by dirty data in the dataset, not real errors. As shown 
in the last row in Table 6, after removing the dirty data from 
the dataset, the 1D-CNN had the CRR of more than 99.30%.

Table 5  Comparison results for different numbers of samples

Number of sam-
ples per pattern

MLP and Raw data MLP and Feature set 1D-CNN and Raw data CNN and Image data

CRR (%) Time (s/epoch) CRR (%) Time (s/epoch) CRR (%) Time (s/epoch) CRR (%) Time (s/epoch)

200 82.61 1.14 92.00 0.33 92.40 0.11 93.20 2.66
2000 85.93 6.59 93.27 2.20 98.33 0.91 96.33 23.16
20,000 87.07 52.44 93.54 17.43 98.31 9.02 96.78 228.96

Table 6  Performance comparison of different methods

Reference Number of 
CCP patterns

Input representation Classifier CRR (%)

Guh and Tannock (1999) 4 Raw data MLP 94.38
Hassan et al. (2003) 6 Statistical features MLP 96.80
Assaleh and Al-Assaf (2005) 4 Frequency features MLP 97.22
Cheng and Ma (2008) 6 Raw data PNN 95.58
Zan et al. (2010) 6 Autoregressive (AR) spectrum Fuzzy ARTMAP 95.00
Ranaee and Ebrahimzadeh (2013) 6 Shape and statistical features MLP 99.15
Kao et al. (2016) 7 Independent component analysis (ICA) SVM 98.94
Zhou et al. (2018) 6 Shape and statistical features FSVM 99.28
Addeh et al. (2018) 8 Shape and statistical features Bees-RBF 99.63
This work 6 Raw data 1D-CNN 98.33
This work 6 Raw data—after removing dirty data from datasets 1D-CNN 99.30
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Besides, in most literature, there were more sampling 
points per control chart sample, about 60 sampling points, 
which could ensure a larger difference between different 
CCP types; moreover, the trend patterns could become more 
evident with the time, helping the achievement of a high 
recognition rate. (In this case, the recognition rate of the pro-
posed method was over 99.73%.) In this work, the number of 
sampling points per control chart sample was 25 to detect the 
abnormalities in the manufacturing process more timely and 
reduce the loss of manufacturing enterprises. However, the 
patterns could become very similar, especially trend pattern 
and shift pattern, which would make the recognition even 
more difficult.

Application in production environment

In order to further illustrate the proposed methodolog, a 
control chart diagnostic system including Nelson rules and 
1D-CNN has been developed and applied to the monitor-
ing of a real dataset from the production environment. The 

diameter of parts is regarded as the key quality characteris-
tic, which can be measured with a three-coordinates measur-
ing machine.

As shown in Fig. 10, in the analysis of control charts by 
Nelson rules, only a small number of second-type anoma-
lies (9 continuous points on the same side of the central 
line) were found, and the process was basically stable and 
controlled. At the same time, the 1D-CNN method was 
implemented for a moving window on control charts. Like 
the number of sampling points in simulation experiments, 
the window size of CCPR was also set as 25. Unlike the 
results of Nelson rules method, the 1D-CNN can identify 
all 5 unnatural CCPs, as shown in Fig. 11.

Through communication with enterprise engineers, it was 
found that tool status and equipment exchange may lead to 
the emergence of these unnatural CCPs in the processing 
process. The 1D-CNN can accurately identify unnatural 
CCPs that Nelson rules can not recognize. This means that 
the 1D-CNN trained with simulation dataset still performed 
well in recognizing the real dataset from the production 

Fig. 8  Box-plots of some features for different CCP types

Fig. 9  Examples of dirty data in 
the datasets for a control chart 
with a UT label, and b control 
chart with a US label
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environment. In addition, Nelson rules and 1D-CNN rec-
ognition results are complementary, and the use of both can 
make the recognition system more perfect.

Discussion

The network structural parameters used in the compara-
tive experiment are shown in Table 2. After many epochs 
of training, the final recognition rate varied a little, and the 
training time of each epoch differed slightly. Changing the 
number of feature maps, we found out that if their num-
ber was too small, the recognition rate decreased signifi-
cantly, indicating that the number of features extracted by 
the 1D-CNN was insufficient. On the other hand, when the 
number exceeded a certain value, the difference in the recog-
nition rate with the increase in parameter D was not obvious, 
which indicated that the number of features extracted by the 
1D-CNN was enough to describe the raw data, but the train-
ing time increased significantly, decreasing the efficiency. 

Under various structural parameters, the convergence rate 
of the MSE was different, but the final convergence results 
were close. As shown in Fig. 5, test No. 1 converged at the 
20th epoch but tests No. 9 and No. 12 converged at the 40th 
epoch. In the first convolutional layer, the convolutional ker-
nel of a smaller size converged fast. To sum up, the structural 
parameters of the 1D-CNN had a little effect on the final 
recognition rate but had a significant impact on the train-
ing time. Therefore, to achieve higher recognition rate, the 
number of feature maps should be ensured to be enough.

According to the results given in Table 4 and Fig. 6, it 
is obvious that the 1D-CNN with ReLU and Softmax func-
tions performed better than with the Sigmoid function. Both 
the CRR and the convergence speed improved significantly. 
Thus, the ReLU activation function was more suitable for the 
1D-CNN because the gradient dissipation problem in deep 
learning could be effectively solved.

In Fig. 7, it is shown that there were different numbers of 
misclassification of the two recognition algorithms. How-
ever, the performance of the 1D-CNN was significantly 

Fig. 10  CCPR result for real data based on Nelson rules

Fig. 11  Unnatural CCPs detected from real data by 1D-CNN
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better than that of the MLP. In the case of the MLP and raw 
data, the recognition results showed the tendency of misclas-
sification the NOR patterns with the CYC patterns. At the 
same time, there was also a severe misclassification between 
the UT and US patterns, and between the DT and DS pat-
terns. The misclassification of the NOR patterns with CYC 
patterns was about 10.8%, and of the CYC patterns with the 
NOR patterns about 18.8%. Such a result can be considered 
as a very bad result, which means that the Type I errors 
(false alarms) and Type II errors (missed disturbances) of 
this CCPR system were severe. In addition, the misclassifi-
cation between the NOR and CYC patterns was effectively 
improved when the feature set was used as MLP input, which 
proved the effectiveness of the feature-based method, but the 
CRR was still unsatisfactory. In contrast, the NOR and CYC 
patterns were accurately identified by the 1D-CNN, and the 
CRR was high, it was 98.33% exactly. Other CCP types 
also had lower error rates. More importantly, there was no 
misclassification between the unnatural patterns and NOR 
patterns. In other words, there were no Type I and Type II 
errors in this CCPR system. The experimental results given 
in Table 5 show that the 1D-CNN performance decreased 
significantly when the number of samples was small com-
pared with the traditional MLP method, which is typical for 
deep learning. However, the recognition rate of the 1D-CNN 
was still higher than that of the MLP. In addition, the itera-
tion time of the proposed method was much smaller than that 
of the MLP, regardless of the number of samples. When the 
number of samples was large, the 1D-CNN still achieved 
good training efficiency.

In the CCPR process, extracting a large number of fea-
tures improved the recognition accuracy of the CCPs, but it 
also increased the quality control workload. Moreover, the 
feature extracted is becoming more and more complicated. 
Although the features were specially designed by the experts 
for the CCPR, they could not be guaranteed to be the best 
ones. Also, the shape features were specially designed for 
the CCPR, which led to their poor versatility in other fields. 
In contrast, there were no such problems in the feature learn-
ing process. The raw data of the CCPs was continuously 
transformed by the convolution and pooling layers to get 
the feature set, and the network weights and biases were 
optimized by the learning algorithm to minimize the cost 
function. Although the features extracted by the neural net-
work did not have any apparent physical meaning like the 
shape and statistical features did, it could be ensured that 
the feature set obtained by the neural network was the best 
for the recognition task. The results presented in Fig. 8 also 
prove this. Namely, the method based on the 1D-CNN and 
raw data achieved higher recognition rate than the method 
based on the MLP and traditional feature set due to the high-
quality feature set obtained by the 1D-CNN. In addition, the 
raw data was fed directly to the network input, which not 

only reduced the workload but also provided strong general-
ity in other fields.

Conclusion

In this paper, a 1D-CNN is proposed for feature learn-
ing and realization of an end-to-end CCPR. Based on the 
obtained results, the following conclusions can be drawn. (1) 
Although there were many network structural parameters, 
parameters selection was not complicated. When the number 
of feature maps was enough, good recognition accuracy was 
obtained regardless of the convolutional kernel size. (2) The 
ReLU activation function was more suitable for deep learn-
ing, and it significantly improved the 1D-CNN recognition 
accuracy and convergence speed. (3) The feature set learned 
by the proposed 1D-CNN was superior in quality over the 
one extracted manually. When the raw CCP data was used 
as an input, the patterns were correctly recognized by the 
proposed 1D-CNN with the recognition accuracy of 98.33%. 
The identification accuracy, convergence speed, and iteration 
time of the proposed model were significantly better than of 
the traditional MLP model.

In summary, the proposed 1D-CNN avoids the problem of 
extracting all kinds of complex features, making it more con-
ducive to the practical quality control and helping to improve 
the automation and intelligence level of quality management 
in enterprises. In the future, an on-line prediction and diag-
nosis system of control chart based on a variety of deep 
learning algorithms will be studied.
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