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Abstract
This work proposes a new methodology and mathematical formulation to address the facility layout problem. The goal is to 
minimise the total material handling cost subjected to production-derived constraints. This cost is a function of the distance 
that the products should cover within the facility. The first idea is to use the A∗ algorithm to identify the distances between 
workstations in a more realistic way. A∗ determines the shortest path within the facility that contains obstacles and transpor-
tation routes. The second idea is to combine a genetic algorithm and the A∗ algorithm with a homogenous methodology to 
improve the quality of the facility layouts. In an iterative way, the layout solution space is explored using the genetic algo-
rithm. We study the impacts of the appropriate crossover and mutation operators and the values of the parameters used in 
this algorithm on the cost of the proposed arrangements. These operators and parameter values are fine-tuned using Monte 
Carlo simulations. The facility arrangements are all compared and discussed based on their material handling cost associ-
ated with the Euclidean distance, rectilinear distance, and A∗ algorithm. Finally, we present a set of conclusions regarding 
the suggested methodology and discuss our future research goals.

Keywords  Manufacturing systems design · Facility layout problem · Genetic algorithm · A∗ search algorithm · Monte Carlo 
simulation

Introduction

The facility layout problem (FLP) concerns the determina-
tion of the most efficient arrangement of equipment in an 
area. A facility can be a machine tool, workstation, manu-
facturing cell, machine shop, department, warehouse, and 
so forth (Palomo-Romero et al. 2017). This problem has 

broad applications in fields such as layout of hospitals, air-
ports, or manufacturing systems. From the manufacturing 
perspective, the efficiency of the facility layout is typically 
measured in terms of the material handling cost (MHC) (Liu 
and Meller 2007). The MHC is directly linked to the total 
distance the products and items should travel within the 
facility according to their manufacturing constraints, i.e., 
their routings. Various facility arrangements cause different 
total distances. The resolution of the FLP focuses on mini-
mising the MHC because, according to Ahmadi et al. (2017), 
approximately 20–50% of the total operating expenses in 
manufacturing environments are attributed to the MHC.

There are two ways to formulate layout problems: discrete 
and continuous. The discrete representation of the layout is 
often linked to the traditional mathematical programming 
approach. This approach attempts to assign a set of work-
stations to a set of predetermined and distinct locations. 
The associated optimisation problem is then addressed as a 
quadratic assignment problem (Drira et al. 2007). Such dis-
cretisation of the space simplifies the solutions space. How-
ever, as numerous possible locations are ignored, the chance 
to obtain an optimal layout is lessened. The continuous 
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formulation allows the workstations to be located anywhere 
within a planar site. The FLP models deal with workstations 
that could have all the same footprint or not.

Despite the significant literature in the FLP field, several 
improvements in the manufacturing context are still pos-
sible by (i) modelling the real characteristics of the studied 
cases in a more efficient way (more complex footprints of 
workstations, for instance); (ii) exploring new techniques 
to define the distance among equipment units, considering 
product routings, obstacles, and transportation routes; and 
(iii) using the knowledge of human experts for designing 
a layout, which can be seen for instance in Ahmadi et al. 
(2017).

Our main motivation is to explore a more relevant way 
to define layouts with a satisfactory MHC considering more 
realistic constraints. This research does not focus on finding 
the optimal solution; rather, it looks for a cost effective lay-
out. This means that we search for a realistic distance deter-
mination among the workstations for products that should 
cross a workshop. Most of the FLP resolution approaches 
use the rectilinear or Euclidean distance between worksta-
tions (Gonçalves and Resende 2015; Hosseini-Nasab et al. 
2017; Xie et al. 2018). These distances are easy to use but 
have shortcomings. The Euclidean distance can be defined 
as a straight line between the start and destination machines. 
It measures the distance between two workstations without 
considering the obstacles and machines in between (Gom-
athi et al.  2014). The rectilinear distance is computed by 
adding the vertical and horizontal distances between cen-
troids of workstations. It is mainly used for problem model-
ling where the facility space is defined as a grid of surface 
units. The products are allowed to travel over the borders of 
these units and cross the obstacles (Friedrich et al. 2018). 
The obtained solutions based on these distances should be 
therefore modified afterwards to make them realistic.

To improve the quality of the model, we consider a facil-
ity area containing obstacles and transportation routes. The 
obstacles are the occupied spaces, such as walls and stairs. 
They cannot contain workstations and products cannot pass 
through them. The transportation areas refer to permanent 
transportation paths (i.e., aisles) where no facilities are 
allowed to be located. However, they can obviously be used 
for product movements. The facility is modelled as a grid of 
surface units. The start and destination points for a product 
in the whole facility area are the centres of these units. Every 
equipment covers a given number of surface units. The prob-
lem to solve is therefore to find out the configuration where 
the sum of all the product displacements from one item of 
equipment to the next one is small, smaller than any other 
suggested configurations. The retained configuration may 
not be the optimal solution. In this case, we use the A∗ algo-
rithm for distance calculations.

To apply such ideas, we need to explore the whole solu-
tion space, which is composed of all possible arrangements 
of workstations within the facility area. This is time consum-
ing and difficult for large scale FLPs. That is the reason why 
we rely on genetic algorithms (GA), which allow exploring 
the solution space without any guarantee of studying every 
possible facility arrangement. However, the application of 
these algorithms in other areas, including FLP studies (Sadr-
zadeh 2012; Palomo-Romero et al. 2017; Aiello et al. 2013), 
shows that very good solutions can be found if and only if 
suitable algorithm parameters are used. To obtain such a 
guarantee, we applied the Monte Carlo simulation principles 
to the entire methodology in order to find out the best set of 
parameters that provide good arrangements with low MHC.

Our simulations show that the selection of the GA opera-
tors and parameters generates two classes of facility arrange-
ments. In the first class, the workstations are densely posi-
tioned in the facility area minimising drastically the MHC, 
while in the second class, the arrangements are porous, and 
the workstations occupy larger spaces.

The remainder of this paper is organised as follows. Sec-
tion 2 describes the FLP and reviews the related literature. 
Section 3 contains the principles of the A∗ algorithm and 
GA. Section 4 provides a detailed description of the devel-
oped structure for the proposed approach. The mathematical 
model of the considered FLP is introduced and the customi-
sation of the A∗ algorithm and GA to the FLP resolution is 
discussed. The identification of the parameter settings of the 
used GA via the Monte Carlo simulation and the evaluation 
of the facility arrangement performance is shown in Sect. 5. 
The whole methodology is applied on an illustrative pre-
sented in Sect. 6. Finally, the main conclusions of the paper 
and suggestions for further studies are presented.

Facility layout problem (FLP): related work

General statements

The facility layout design aims at efficiently positioning n 
facilities within a given area considering the architecture 
and structure of the manufacturing facility systems. Find-
ing the most efficient physical layout is regarded as a key to 
improvement in plant productivity (Tarkesh et al. 2009) and 
has a significant impact on operational performance meas-
ured by lead times, throughput rate, and work in process (El-
Baz 2004). This issue has been extensively studied during 
the past decades. The existing research works on the FLP 
fall into several categories such as equal- and unequal-sized 
FLPs, regular and irregular shapes (Azadeh et al. 2016), 
single- and multi-floor layouts (Park et al. 2011; Ahmadi and 
Jokar 2016), single- and multi-objective problems (Samar-
ghandi et al. 2010; Jolai et al. 2012), and static and dynamic 
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layout problems (Moslemipour and Lee 2012; Asl and 
Wong 2015). Kusiak and Heragu (1987), Singh and Sharma 
(2006), Drira et al. (2007), and Besbes et al. (2018) present 
an overview of the different schools of thought, trends, and 
the research niches of the area.

A facility-layout resolution process may involve two 
phases, the block and detailed layout phases. During the 
block layout phase, the relative location and size of each 
department are specified (Armour et al. 1964). Then, the 
detailed layout phase determines the exact position of work-
stations, aisle structures, flow paths, and the layout within 
each department (Meller and Gau 1996).

FLP formulation

It is possible to use a discrete or a continuous representation 
of an FLP. The discrete representation is the traditional FLP 
formulation and is the most popular one owing to its simplic-
ity, as seen in Zhou et al. (2017), Ramkumar et al. (2008), 
Xiaoning and Weina (2011), among other authors. The quad-
ratic assignment problem has been developed to model a 
discrete FLP. The main assumptions used are (i) unrestricted 
shop, (ii) equal-sized facilities, (iii) regular shape facilities, 
and (iv) predetermined locations. The quadratic assign-
ment formulation simplifies the FLP mainly because of the 
first and fourth assumptions. The first assumption allows 
unfeasible layouts and the fourth assumption restricts the 
solution space. The continuous formulation and resolution 
approaches make it possible to allocate resources anywhere 
within the facility area (Drira et al. 2007). Table 1 presents 
a comparison of the main characteristics of the discrete and 
continuous approaches.

Different FLP resolution approaches

In almost all of the published papers, the layout efficiency is 
measured in terms of transportation costs and satisfaction of 
the adjacency requirement. These costs are related to one or 
more of the following parameters: distance, unit transporta-
tion cost, and estimated total flow to be transported from 
workstation i to workstation j. The workstations may also 
be defined by some adjacency requirements, which define 
the needed or desired nearness or remoteness for each pair 
of machines depending on the shared materials or personnel, 

or according to security, noise, and vibration reasons (Hos-
seini-Nasab et al. 2017).

To solve the FLP, various resolution methods have been 
developed. These approaches can be classified into exact, 
heuristic, and metaheuristic optimisation approaches. They 
all look to obtain either good solutions subject to certain 
constraints or global or local optimum solutions that meet 
one or more performance objectives. These approaches are 
applied to illustrative cases randomly generated or to real 
case studies.

Several research works use exact methods to seek opti-
mal solutions for small-sized FLPs. The mainly used exact 
methods are the branch and bound, dynamic programming, 
and cutting plane techniques. Among the research papers that 
introduce exact algorithms, Solimanpur and Jafari (2008) 
suggested a branch and bound algorithm to solve a nonlin-
ear mixed-integer programming model. Their objective is to 
minimise the total distance travelled by materials in a given 
area. Palubeckis (2012) proposed a branch and bound algo-
rithm to solve the problem of the assignment of n facilities 
to n locations equally spaced along a straight line in order to 
minimise the MHC. To solve a dynamic FLP, Dunker et al. 
(2005) combined a GA to generate a set of candidate layouts 
with dynamic programming to evaluate the fitness function 
defined as the costs of material handling and rearrangements. 
The main weakness of these methods is that they cannot solve 
large scale FLPs because of the intractable and combinato-
rial nature of the problem (Ripon et al. 2013). They remain 
insufficient for realistically sized applications. Hence, heu-
ristic techniques have been introduced to find near-optimal 
solutions for large size instances with reasonable computa-
tion time. These algorithms can be classified into construc-
tion, improvement, and hybrid algorithms. The construction 
algorithms build progressively a layout from scratch by plac-
ing a sequence of workstations until a completed layout is 
obtained. Some of the popular construction algorithms are 
the computerised relationship layout planning (CORELAP) 
(Lee and Moore 1967), automated layout design program 
(ALDEP) (Seehof and Evans 1967), and programming lay-
out analysis and evaluation technique (PLANET) (Deisen-
roth and Apple 1972). The main drawback of these methods 
is that the final solution may be unsatisfactory in terms of 
quality as they generate only one solution. That is the rea-
son why the improvement algorithms start with an initial 

Table 1   Discrete versus 
continuous FLP formulation

Formulation types Plant site Equipment size Distance

Discrete representation Predetermined loca-
tions, i.e., fixed 
locations

Equal, with fixed or 
ignored dimensions

Parameters

Continuous representation No predetermined 
locations, i.e., 
decision variables

Equal or unequal area Variables: it depends 
on the location of the 
machines
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solution and try then to improve it by swapping the location 
of facilities. The best-known examples of these methods are 
the computerised relative allocation of facilities technique 
(CRAFT) (Armour et al. 1964) and multi-floor plant lay-
out evaluation (MULTIPLE) (Bozer et al. 1994). The hybrid 
algorithms utilise conjointly the principles of the construc-
tion and improvement algorithms. They generate the initial 
solution and attempt to improve it. BLOCPLAN is a hybrid 
algorithm (Donaghey and Pire 1990).

Because the FLP is known to be complex, in recent 
years, metaheuristics approaches have been developed to 
solve FLPs by GAs (Azadivar and Wang 2000; Shayan and 
Chittilappilly 2004; Wang et al. 2005; Mazinani et al. 2012; 
Vitayasak et al. 2016), simulated annealing (Tam 1992; 
Deb and Bhattacharyya 2003; Mckendall et al. 2006; Sahin 
and Turkbey 2009; Sahin 2011), tabu search (Chiang and 
Kouvelis 1996; Liang and Chao 2008; Samarghandi and 
Eshghi 2010; Bozorgi et al. 2015), ant colony optimisation 
(Solimanpur et al. 2004; Hani et al. 2007; Komarudin and 
Wong 2010), and particle swarm optimisation (Samarghandi 
et al. 2010; Jolai et al. 2012; Asl and Wong 2015; Wang 
et al. 2014). Interested readers are invited to refer to Kundu 
and Dan (2012) for an in-depth analysis of the different 
metaheuristics methods applied in FLPs.

Many hybrid algorithms have been proposed and used 
in the optimisation of manufacturing and design problems 
(Pholdee et al. 2017). For example, Moslemipour (2018) 
proposes a novel hybrid intelligent algorithm by combin-
ing the simulated annealing and clonal selection algorithms 
to solve uncertain dynamic FLPs. A GA combined with a 
strategy of partial solution deconstruction and reconstruc-
tion (PDR) is provided by Paes et al. (2017) to solve the 
unequal area FLP. Comprehensive comparisons of the effi-
ciency of different optimisation algorithms have been pre-
sented by Karagöz and Yildiz (2017). However, Kiani and 
Yildiz (2016) suggest that it is not enough to present the 
best and worst results obtained by the used approach, but a 
comparative study must define whether the algorithms are 
significantly better than the others or not.

Table 2 provides a synthesis of the related papers in the 
literature, where the gaps and overlaps are identified with a 
spotlight on the resolution approaches. Several observations 
can be made regarding these research works. First, it can be 
noted that there are two basic types of objectives adopted in 
the mathematical models for the FLP. Some of them aim to 
minimise a function related to the travel of parts and operators 
(MHC, travel distance, etc.) while the others aim to maximise 
the satisfaction of the proximity requests between two facili-
ties that exchange a large number of parts. Second, it has been 
noticed that most of the published papers adopted some con-
straints. Two sets of constraints are introduced: no overlaps 
are allowed between facilities and the facilities should remain 
within the site boundaries (Saraswat et al. 2015). However, 

other sets of constraints such as aisle structure, existing 
restrictions, and complex geometrical constraints (e.g., fixed 
barriers, green land, walls, etc.) are rarely considered.

According to the literature, the existing detailed layouts 
generally use either the rectilinear distance (Ahmadi and 
Akbari Jokar 2016; Gonçalves and Resende 2015; Heragu 
and Kusiak 1991; Khalil 1973) or the Euclidean distance 
(Tompkins and Reed 1976; Van Camp et al. 1991) to evalu-
ate their efficiency. Nevertheless, these methods cannot be 
applied in the presence of obstacles and barriers. The last 
column of Table 2 lists the different techniques used to solve 
the layout problem.

Gaps to fill in FLP resolution

As it can be seen from Table 2, the most frequently used 
objective function in the FLP is the minimisation of the 
MHC (71%) followed by the minimisation of the total trav-
elled distance by the material. The table shows that the most 
commonly used distance determinations are the rectilinear 
(76%) and Euclidean (6%), which have the shortcomings 
indicated in Sect. 1. Therefore, the main motivation of this 
research is to improve the distance computation in order to 
obtain the most realistic MHC. This was necessary because 
the facility structure is defined through obstacles and trans-
portation routes. This consideration led to the use of A∗ . The 
generation of various candidate layouts was performed by 
using a GA because we rely on the fact that the FLP does 
not require a global optimum but a sufficiently good solu-
tion, as noticed by Mitchell (1998). This choice was guided 
by some other facts provided by past research works. In 
fact, Mazinani et al. (2012) argue that a GA provides better 
solutions in FLPs than other metaheuristics methods, while 
other authors have proved the effectiveness of GAs in finding 
‘good enough’ solutions to many problems (Palomo-Romero 
et al. 2017; Aiello et al. 2013; Datta et al. 2011; Hernández 
Gress et al. 2011). Sadrzadeh (2012) demonstrated that a 
GA is still an appropriate strategy for addressing problems 
in many different fields. The genetic-based approaches 
applied to FLPs make it possible to explore the complex 
search spaces efficiently while guaranteeing a sound popula-
tion diversity, i.e., to explore almost every part of the solu-
tion space thanks to its crossing and mutation mechanisms. 
These techniques are encapsulated in a general approach, 
which is defined hereafter.

Overview of used techniques

Method of calculation of distance between facilities

A∗ is an optimisation algorithm mainly utilised for determin-
ing the shortest paths in a two-dimensional grid, which was 
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developed by Hart et al. (1972). The A∗ algorithm aims at 
finding an efficient, directed path among all possible paths 
to a destination. Among the different possible paths, it first 
examines the ones that lead more quickly to the goal and 
puts aside all the others. All these possibilities are stored, 
but not removed, as it is not possible to know in advance 
whether a path is the shortest path or not. If this road reaches 
a deadlock, this solution becomes inoperable. As described 
in Zhou et al. (2013), the implementation of the A∗ algo-
rithm from source to destination includes the checking of 
many adjacent nodes, one after another. Using some internal 
indices, the A∗ algorithm is directed towards the destination 
while detecting the shortest possible path. These indices are 
(i) the total travel cost from the start node to destination, (ii) 
the cost of the path from the start node to any intermediate 
node lastly studied on the path, and finally (iii) the cost of 
the cheapest path from any intermediate node to the destina-
tion. Interested readers may refer to Appendix 3 for a more 
technical description of the algorithm or to Rafia (2010) and 
Saleh (2015).

Overview of genetic algorithms (GAs)

The Holland GAs (1975) are robust metaheuristics used to 
solve difficult optimisation problems (Sadrzadeh 2012). The 
GA solves problems based on the evolution mechanisms and 
nature of genes (Mazinani et al. 2012). It operates with a set 
of problem solutions named population. Each individual of 
the population is a chromosome and represents a possible 
solution. The fitness value of an individual (solution) rep-
resents its quality according to a given objective function; 
the higher the fitness value is, the more valuable the solu-
tion. Usually, the initial population is randomly generated, 
although a set of known individuals can be used to launch 
the evolution process. Then, the GA makes this population 
evolve iteratively. At each iteration, the evolution process 
works as follows. A subset of individuals is selected as the 
parents based on their high fitness value. The next generation 
is obtained thanks to crossover and mutation. The crossover 
operator allows the combination of two selected parents to 
produce a better offspring. The mutation operator is used 
to introduce a new genetic structure in the population by 
rearranging the structure of a chromosome. Owing to the 
randomness nature of both crossover and mutation, some 
children may violate the constraints that all individuals in 
a population should respect. Therefore, there would be fea-
sible and infeasible individuals among these newly born 
children. The infeasible or low performance individuals are 
excluded from the rest of the process. This iterative evolu-
tion process may be applied again to these children if the 
quality of the solutions is not satisfactory. The iterations are 
stopped if the gap between the ‘i-th’ and ‘(i + 1)-th’ genera-
tions is below a specified threshold. The GAs are sensitive 

to the parameters (size of population, crossover probability, 
etc.) and the crossover and mutation operators.

In the following sections, the GA steps are detailed. A 
GA is implemented in two parts: the initial steps and the 
iterative steps.

Initial steps of the GA application

(1)	 Chromosome encoding and representation. Every 
individual should be encoded in a relevant way to 
make it usable for the whole solution determination. 
The encoding usually takes place after a mathematical 
modelling phase of the problem.

(2)	 Generation of the initial population. A set of initial 
solution individuals is either generated randomly or 
defined by the users as a feasible solution via a heuris-
tic, for example. It is also possible to initiate the algo-
rithm by including ‘good’ or ‘already known’ solutions 
(Grefenstette 1986; Sadrzadeh 2012; Wu et al. 2007). 
In fact, the GA needs a number of initial solutions to 
initiate the exploration of the solution space. The ran-
domly generated solutions can be feasible and unfea-
sible solutions. On the contrary, the ‘solutions found 
heuristically’ represent a population of known and fea-
sible solutions obtained thanks to ground experience, 
and they can be used as the initial solutions.

(3)	 Initial evaluation of individuals. A fitness function 
measures the quality of the solutions in the search 
space.

(4)	 Filtering of individuals. The evolutionary algorithms 
are unconstrained optimisation techniques. First, the 
individuals are randomly generated without consid-
ering constraints. Then, their fitness is evaluated to 
exclude the worst individuals. Various published papers 
review the different approaches for handling of con-
straints (Coello 1999). Among others, Ponsich et al. 
(2007) identify the following classes: elimination of 
infeasible individuals, penalisation of their objective 
function, dominance concepts, preservation of feasi-
bility, repairing of infeasible individuals, and hybrid 
methods. According to Coello (2002), the majority 
of studies comparing these constraint-handling tech-
niques are inconclusive. Thus, he suggests to adopt the 
penalty-based approaches owing to their implemen-
tation simplicity and efficiency. The key idea of this 
technique is to transform a constrained problem into 
an unconstrained one by introducing the constraints in 
the objective function via penalty terms, which assign 
a high penalty to the infeasible solutions that violate at 
least one constraint.
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At the end of this step, if the target performance of the 
individuals is reached, the algorithm is stopped. Otherwise, 
a set of iterations will be performed.

Iterations of the GA

The GA seeks to find the best solution over the generations 
through the following steps that define the process of creat-
ing new generations.

(5)	 Selection of parents. The purpose is to create a mat-
ing pool consisting of individuals of the population to 
be combined to create the new generation. The mat-
ing pool is used by the crossover and mutation opera-
tors. Many selection operators exist to select the best 
chromosomes to be parents for reproduction. Table 9 in 
Appendix 4 presents the most cited selection operators 
with their advantages and shortcomings.

(6)	 Crossover process. This is the first step for producing 
new individuals (children) from selected parents. The 
crossover process is specified thanks to (i) the crossover 
probability and (ii) the crossover operator.

The crossover probability ( Pc ). It is defined to show the 
proportion of the population of parents that will be chosen 
for mating via the crossover operator. Generally, the most 
used rates are between 0.45 and 0.95 (Al-Zuheri et al. 2014). 
If Pc is 100%, then all offspring are obtained by crossover. 
If it is equal to 0%, the offspring represents an exact copy 
of the parents.

The crossover operator. The previous research works have 
defined various crossover operators: linear order crossover, 
uniform crossover, order crossover, etc. (Sastry et al. 2005; 
Eiben and Smith 2007; Dalle Mura and Dini 2017). The 
choice of a crossover operator is strongly linked to the kind 
of problem and the chromosome encoding. The majority of 
adopted crossover operators are applied to chromosomes that 
typically contain a gene sequence where the order is man-
datory. In other crossover operators, the gene order is not 
considered. Among others, the N-point crossover techniques 
are used (see Appendix 5).

(7)	 Mutation process. Mutation helps to maintain diver-
sity in the population by preventing population stagna-
tion at a local optimal solution. The mutation process 
is specified thanks to (i) the mutation probability and 
(ii) the mutation operator.

The mutation probability. It defines how often parts of 
chromosome will be rearranged. If pm is equal to zero for 
example, there is no mutation. By increasing this probability, 
more and more chromosomes will be mutated.

The mutation operator. The mutation operator is applied 
to two children generated by the crossover operation accord-
ing to the probability pm . The two main operators used for 
mutation are exchange and inversion (see Appendix 6).

(8)	 Replacement and evaluation of the children fitness 
value. The new solutions or chromosomes can be better 
or worse than their parents are. Therefore, a replace-
ment strategy is applied here to define the new popula-
tion by keeping the best individuals. Strategies such 
as replacement, crowding, and elitist can be used for 
this purpose (Triki et al. 2016). To do so, each child 
is evaluated using the fitness function (as in step (3)). 
Thus, to avoid any loss of the best solutions, the elit-
ist strategy retains the best genetic information of the 
initial population along with the individuals obtained 
by the crossing and mutation operators to use them for 
the next generation.

(9)	 Stopping criteria. One or more criteria may be used to 
stop the iterations of the GA, such as maximum number 
of generations, fitness convergence, or computing time 
(Wu et al. 2007).

Overview of the proposed approach

The proposed approach of FLP resolution is structured in 
two phases, as presented in Table 3.

Initialisation. The main objective is to minimise the 
MHC. A set of initial facility arrangements is defined and 
the distance between workstations is computed. The cost 
of future facility layouts are compared to the cost of these 
initial arrangements. The facility area is defined by its global 
constraints regarding its dimensions and the pre-defined 
positions of some restricted elements. A restricted element 
is a limited space within the area that has its own local con-
straints. A forbidden element is a restricted element, such as 
walls, stairs, or other barriers, that does not allow any equip-
ment assignment and through which parts cannot pass. A 
selective element, such as a transportation corridor for mate-
rials, parts, and human beings, cannot be assigned to facili-
ties but can be used by product flows. All the workstations 
are characterised by a rectangular shape whose dimensions 
are known in advance. The equipment position is defined 
thanks to the coordinates of the centroid.

Loops of �∗ and GA application. The candidate layouts 
are generated by the GA. This algorithm is specified by its 
crossover and mutation operators and their parameters. The 
Monte Carlo simulation is used to determine their influ-
ence on the performance of the GA and to select the best set 
of operators and parameters. Finally, a penalty function is 
introduced in the GA to handle the violated constraints. The 
MHC of these layouts is computed.
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The following sections define these two phases in detail.

Initialisation: FLP definition

The problem is to position n machines within a generic rec-
tangular facility (see Fig. 1) with a fixed length (L) and width 
(W). The area is considered as a grid of uniform squares 
called surface units. An aisle, i.e., a selective element, allows 
transportation of goods and movement of operators. It is 
defined by the position of its lower and upper limits, ( ylower ) 
and ( yupper ). The area contains obstacles, i.e., the forbidden 
elements (the thick blue line in the figure). Around each 
forbidden element, an accessibility plan is defined (one unit 
element at all sides) to prevent the case of having a machine 
placed side by side with an obstacle. A machine i is defined 

by its horizontal ( wi ) and vertical ( li ) dimensions and the 
coordinates of its centroid ( xi, yi).

The following variables and symbols are used to model 
the FLP:

Parameters

N	� Number of machines
P	� Number of products
L	� Fixed length of shop floor
W	� Fixed width of shop floor
M	� Number of obstacles
li	� Length of machine i
wi	� Width of machine i
loi	� Length of obstacle i
woi	� Width of obstacle i
xoi	� The x coordinates of the geometric centre of obstacle 

i
yoi	� The y coordinates of the geometric centre of obstacle 

i
ylower	� Vertical coordinates of the lower side/wall of aisle
yupper	� Vertical dimension of the upper side/wall of aisle
fij	� Number of trips between two machines
cij	� Unit cost for transportation over a distance of one 

unit element from machine i to machine j

Decision variables

xi	� The x coordinates of the geometric centre of facility i
yi	� The y coordinates of the geometric centre of facility i

Zx
ij
	�

{

= 1 if facility i is strictly to the right of facility j
(

xi > xj
)

0 otherwise

Z
y

ij
	�

{

= 1 if facility i is strictly above facility j(yi > yj)

0 otherwise

Table 3   Different steps of our proposed approach

General steps Our approach

Initialisation Define the objective of FLP
Define a path to go from machine i to machine j
Define the distance computation rules
1) Define the area
 by its global constraints
 by its local constraints
2) Define every facility
 by its dimensions
 by its accessibility area
3) Define the flows of parts
 Between every couple of facilities
 Qualification of the flow (e.g., density)

To minimise the MHC
Avoid the forbidden elements, allowing the selective elements
A* algorithm
Global constraints
Area limits
Area forbidden and selective elements
Facilities have a predetermined rectangular shape
Each facility is characterised by an accessibility plan (one unit ele-

ment around each machine) that allows the operator to access the 
machine

A* algorithm

Iterative applica-
tion of intertwined 
GA/A*

Generate candidate layouts
Evaluate the candidate layouts and choose the 

most appropriate one

GA
Evaluation of MHC

Fig. 1   Representation of the layout problem
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Zx
iv
	�
{

= 1 if obstacle i is strictly to the right of facility v

0 otherwise

Z
y

iv
	�
{

= 1 if obstacle i is strictly above facility v

0 otherwise

Fit function
MHC:

Constraints:

(1)MHC =

P
∑

p=1

N
∑

i=1

N
∑

j=1

f
p

ij
∗ cij ∗ Kij

(2)
li

2
≤ xi ≤ L −

li

2
∀i = 1…N

(3)
wi

2
≤ yi ≤ W −

wi

2
∀i = 1…N

(4)
(

xj − xi
)

> Zx
ij

(

li

2
+

lj

2

)

∀i, j = 1…N with i ≠ j

(5)

(

xi − xj
)

> (1 − Zx
ij
)

(

li

2
+

lj

2

)

∀i, j = 1…N with i ≠ j

(6)

(

yj − yi
)

> Z
y

ij

(

wi

2
+

wj

2

)

∀i, j = 1… ..N with i ≠ j

(7)

(

yi − yj
)

> (1 − Z
y

ij
)

(

wi

2
+

wj

2

)

∀i, j = 1…N with i ≠ j

(8)

(

xv − xoi
)

> Zx
iv

(

loi

2
+

lv

2

)

∀i = 1…M, ∀v = 1…N

(9)

(

xoi − xv
)

> (1 − Zx
iv
)

(

loi

2
+

lv

2

)

∀i = 1…M, ∀v = 1…N

(10)

(

yv − yoi
)

> Z
y

iv

(woi

2
+

wv

2

)

∀i = 1…M, ∀v = 1…N

(11)

(

yoi − yv
)

> (1 − Z
y

iv
)

(woi

2
+

wv

2

)

∀i = 1… ..M, ∀v = 1… ..N

Equation  (1) minimises the cost of the material flow 
between machines. Constraint sets (2) and (3) ensure that 
the machines are assigned within the boundaries of the 
shop floor. Constraint sets (4)–(7) prevent overlapping of 
machines. Constraints (8)–(11) prevent overlapping between 
machines and obstacles. Constraints (12) and (13) ensure 
that no machine would be assigned in the aisle boundaries. 
Finally, constraints (14)–(18) define the domains for the dif-
ferent variables.

Iterative application of intertwined GA/�∗

The very first step of the GA application is to design a rel-
evant coding for the individuals. We use the equipment cen-
troid to encode the position of each machine by the couple 
(x,y). Each couple (x,y) is a gene; x and y are the alleles 
of this gene. There are n machines to place in the facility 
defined by its limits, the points A, B, C, and D in Fig. 1. It 
is placed on a 2D orthonormal coordinate plan. The origin 
of the plan is positioned on the lower left corner of the area, 
point A in Fig. 1. Each chromosome is composed of 2 × n 
genes, as shown in Fig. 2. The n alleles { x1 … xn } form a 
vector. This vector represents the position of the machines in 
the horizontal direction and { y1 … yn } defines their position 
in the vertical direction. The pseudocode of our algorithm 
is presented below.

(12)

((

yi +
wi

2

)

− ylower

)(

yupper −
(

yi −
wi

2

))

< 0 ∀i = 1… ..N

(13)

((

xi +
li

2

)

− xlower

)

(

xupper −
(

xi −
wi

2

))

< 0 ∀i = 1…N

(14)Zx
ij
∈ {0, 1} ∀1 ≤ i, j ≤ N

(15)Z
y

ij
∈ {0, 1} ∀1 ≤ i, j ≤ N

(16)Zx
iv
∈ {0, 1} ∀1 ≤ i ≤ N ∀1 ≤ v ≤ M

(17)Z
y

iv
∈ {0, 1} ∀1 ≤ i ≤ N ∀1 ≤ v ≤ M

(18)All other variables >= 0

Fig. 2   Chromosome associated 
to the location variables
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Algorithm 1: Pseudocode of our proposed approach
Define parameters of the GA using Monte Carlo simulation;

• Population size
• Crossover probability
• Mutation probability

Generate the initial population randomly;
Evaluate the fitness of all the individuals using algorithm;
Repeat c times

Perform selection of the best individuals for reproduction
Perform crossover operator;
Update the fitness of the modified individuals using algorithm;
Perform mutation operator;
Update the fitness of the modified individuals using algorithm;
Generate the population for the next generation;

End;

the local optimum solutions may survive throughout the 
algorithm if improper parameters are set. To solve this 
problem, several methods, such as the full factorial design 
and Taguchi method, are used to calibrate the parameters 
that influence the performance of a metaheuristic algorithm 
(Pourvaziri and Naderi 2014). We use the Monte Carlo sim-
ulation principle to identify the effects of the GA parameters 
on the quality of layout generation. Monte Carlo simulations 
are powerful tools to investigate randomised trials (Yang and 
Tian 2012). They produce results that are in good agreement 
with most of the randomised trials.

The experiments are generated to examine the effects of 
the population size (N), crossover probability ( Pc) , mutation 
probability ( Pm) , and behaviour of the operators (selection, 
crossover, and mutation). The parameters of the applied 
Monte Carlo simulation are the following (Fig. 3):

–	 Population size (number of layouts simultaneously con-
sidered in the experiment). It is randomly generated 
between 100 and 250 following a uniform probability 
distribution. This allows a sufficiently large popula-
tion for every simulation. There is no preference of size 
between the limits.

–	 Crossover probability. We use a normal distribution with 
a mean of 0.7 and a standard deviation of 0.1. In this way, 
we guarantee that new individuals will be introduced, 
which may be better than the old ones (Angelova and 
Pencheva 2011).

–	 Mutation probability. It is generated according to a nor-
mal distribution with a mean of 0.18 and a standard devi-
ation of 0.06. By choosing this distribution, it is guar-
anteed that the mutation will affect a few members of a 
population in any given generation, and small diversions 
in the genetic structures of the parents will be introduced.

The other specialisations of the used algorithms are 
defined hereafter:

Generation of the initial popula-
tion

The initial-solution individuals are 
generated randomly

Evaluation of initial individuals Evaluation of the MHC based 
on computation of the shortest 
distances between workstations 
(using A∗ ), see Eq. (1)

Filtering of individuals The penalty-based approach.
Selection of parents Roulette wheel (Michalewicz 

1994) and tournament (Gold-
berg and Deb 1991)

Crossover process
Crossover probability ( Pc) A normal distribution with 

� = 0.7 and � = 0.1 is used.
Crossover operator One point crossover (Holland 

1975), two point crossover 
(Starkweather et al. 1991), 
three point crossover, four point 
crossover

Mutation process
Mutation probability A normal distribution with 

� = 0.18 and � = 0.06 is used.
Mutation operator Exchange and inversion operator
Evaluation of the children fitness 

value
The elitist strategy

Stopping criteria 130 iterations (the fitness function 
cannot be further improved)

Tuning of GA parameters by Monte Carlo 
simulation

The performance of a GA relies on setting the values of the 
basic parameters, such as crossover probability, mutation 
probability, population size, and selection strategy. However, 
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A difference between the roulette wheel and tournament 
selection methods is revealed. The two simulation results are 
provided in Appendixs 1 and 2 to study the impact of selec-
tion operators on the output of our proposed approach. The 

crossover and mutation operators also affect the performance 
of the GA. We choose to make a comparison between {one 
point, two points, three points, four points} crossover opera-
tors and also between the exchange and inversion mutation 
operators. Therefore, in each iteration, one of these crossover 
and mutation operators is chosen randomly and applied to 
the selected parents. Each of these operators has an equal 
probability of being chosen.

Simulations with these operators and parameters are 
conducted, giving a total of 100 runs for the Monte Carlo 
simulation and 130 iterations for the GA.

Fig. 3   Monte Carlo simulation

Table 4   Input data of obstacles

Coordinates (x,y) Width Length

Obstacle 1 (12,3) 2 4
Obstacle 2 (7,18) 4 2

Table 5   Quantity of material 
flow from facility i to facility j

Facilities 1 2 3 4 5 6 7 8

1 1 2 2
2 4 3 6 2
3 2 3 1
4 5 2 2
5 4
6 4
7 1
8
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Experiments

To evaluate the efficiency of the proposed approach, we use 
an illustrative case inspired by an industrial case we studied 
in (Besbes et al. 2017). The proposed algorithm has been 
applied to a layout of eight facilities that must be arranged in 
a plant floor with 30 * 20 square surface units. An aisle with 
the same length as the plant configuration layout and two 

different vertical dimensions ( ylower = 9 and yupper = 12 ) was 
considered. The input data corresponding to the obstacles 
are presented in Table 4.

The quantity of material flow between machines is pre-
sented in Table 5. This matrix is extracted from Appendix 7. 
For each couple of facilities, the unit cost to move one prod-
uct per unit distance from facility i to facility j is fixed equal 
to 1 monetary unit. The resolution method of the model 
was programmed and implemented in Matlab and run on an 

Fig. 4   Illustrative example of the FLP: machines are overlapped (a) and machines are not overlapped (b)

Fig. 5   Best fitness function value versus experiences of the Monte Carlo simulation: roulette operator (a) and tournament operator (b)
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Intel(R)Core™ i5 3360 M CPU@2.8 GHZ processor with 
8 GB RAM. The Monte Carlo simulations are used after-
wards to make a sensitivity analysis of the used GAs against 
its various parameters.

The parameter values for the proposed method and the 
obtained MHC for each obtained configuration are described 
in Appendixs 1 and 2.

In the first set of tests, the roulette (wheel selection) 
operator is used to select parents in order to create better 
offspring. The second set of tests is done with the tourna-
ment operator.

Roulette operator

The best and worst solutions, in terms of the fit function 
obtained over 100 Monte Carlo simulations by roulette are 
illustrated in Fig. 5a. This Figure shows the best and worst 
MHC under different Monte Carlo simulations and the cor-
responding crossover and mutation probabilities. The best 
solution (minimum cost) obtained by the roulette operator 
is 272 and the worst one is equal to 487 (Appendix 1). Fig-
ure 12a in Appendix 8 demonstrates the convergence to the 
best function value of the layout problem. The correspond-
ing layouts are represented in Fig. 6a, b. The machines are 
not overlapped. Each machine is characterised by its centroid 
( xi, yi) , a predetermined length li , and width wi . The obtained 
results demonstrate that between each couple of machines 
there is a distance dij ≥ 1, as shown in Fig. 4b, and there is 
not a common surface between two machines as illustrated 
in Fig. 4a.

In the same Fig. (6a, b), we report the shortest paths 
found by A∗ , represented by coloured broken lines. The 
corresponding heat map of distances is illustrated in Fig. 7, 
in the top maps. These figures show the contrast between 
the best and the worst solutions obtained by the roulette 
operator.

Tournament operator

Applying the tournament operator, the cost of the best and 
worst solutions found by the GA combined with the A∗ algo-
rithm over the 100 Monte Carlo simulations are illustrated in 
Fig. 5b. The best-fit function value of the FLP is equal to 267 
and the worst one is equal to 464. Figure 12b in Appendix 
8 presents the convergence to the best function value of the 
layout problem. The configurations associated with the best 
and the worst solutions are given in Fig. 6c and d. All the 
machines respect all the constraints. The shortest path values 
using the A∗ algorithm are reported in Appendix 9, and the 
corresponding heat map of distances is illustrated in Fig. 7.

Discussion of the obtained results

Regarding all the experimentations performed, the combina-
tion of GA parameters that produces the best results is the 
following:

–	 Population size is 194
–	 Crossover probability is 0.8049
–	 Mutation probability is 0.1024
–	 Selection operator is tournament

As shown in Fig. 8, the best MHCs found by the approach 
with the Monte Carlo simulations, for both the tournament 
and roulette operators, follow a normal distribution. These 
variations can be represented by the mean μ and the standard 
deviation � , as reported in the following table.

Roulette wheel selection method Tournament 
selection method

�r = 359.61 �t = 374.39

�r = 40.1147 �t = 36.3092

cvr =
�r

�r

= 11.15% cvt =
�t

�t

= 9.70%

It might be observed that μr < μr; however, 𝜎r > 𝜎t . This 
means that by focusing only on the mean value, the tourna-
ment operator gives in general better solutions than the rou-
lette wheel selection method. However, the density of MHCs 
is lower than that provided by the roulette operator. By 
comparing the standard deviations of these two operators, it 
might be concluded that the tournament gives a distribution 
less flattened. However, to compare these two distributions 
appropriately, we use the coefficient of variations. In this 
case, it can be concluded that these two distributions remain 
quite similar owing to the very low difference between their 
coefficients of variations. The final conclusion about the use 
of these two operators is that the roulette operator tends to 
suggest more effective configurations with less MHC. How-
ever, it is necessary to apply both operators to be sure that 
the obtained configuration reduces as much as possible the 
MHC (the best configurations obtained for the roulette and 
tournament operators are shown in Fig. 6a, c).

These results show the practicability and applicability of 
the suggested method. Further, they demonstrate that the 
proposed method is efficient and useful for the placement 
of a set of rectangular machines with defined area require-
ments, which have to be located, without overlapping, in a 
given organisation satisfying a set of constraints. The main 
advantage of the proposed approach is its ability to explore 
a large space of solutions, keeping the practicability of the 
design and considering more realistic distances between the 
facilities.
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Finally, as presented in Table 6, the proposed approach 
gives a better solution than a GA integrated with Euclidean 
or rectilinear distances. By using the roulette wheel selec-
tion method, the MHC is decreased by 8.93% compared to 
that with Euclidean distance, and by 33% compared to that 
with rectilinear distance. As for the tournament selection 
method, the MHC is decreased by 13.15% compared to that 
with Euclidean distance and by 36.7% compared to the one 
with rectilinear distance.

Finally, once the best configuration is obtained, the 
approach determines the best theoretical routes for prod-
ucts from one workstation to another (see in Fig. 6 the con-
figurations with an extract of the routes to obtain a clearer 
visibility). Hence, it can be presented as a good basis for 
the development of an advanced support tool to help engi-
neers and designers in determining the most effective layout 
through a realistic approach. The convergence of the used 
algorithms is based on genetic parameters, and it is signifi-
cantly influenced by the population size and the probabilities 
of crossover and mutation. These solutions are characterised 
by different values of the fit function. Nevertheless, all of the 
solutions (the facility arrangements) satisfy all of the con-
straints and path requirements. Observing the best and worst 
solutions obtained in both cases, we notice that, in the first 
one, most equipment units share the same accessibility plan 
to allow the transportation of materials and operators. In 

fact, all the facilities are concentrated in a determined loca-
tion. Consequently, the remaining space in the workshop can 
be employed for other usages (storage, for example) or new 
value-added equipment. On the contrary, in the worst solu-
tions, the workstations are distributed and scattered across 
the plant floor. Each machine has its own accessibility plan. 
This aspect could be attractive for the decision makers when 
negative factors (e.g., bad smells and noise) that have not 
been modelled in the FLP formulation exist within a physi-
cal spatial environment, and thus, it is necessary to avoid 
certain locations for particular facilities. However, if this 
is not the case, a significant amount of space, which can be 
exploited for other activities, will be lost.

The best class of configurations may need adjustment by 
the decision makers if the company needs to include qualita-
tive considerations in the design.

Conclusions and future scope of work

This work proposes a new approach to solve the FLP. The 
main idea is to arrange facilities in a planar site while 
taking into account various kinds of geometric facility 
requirements. Some issues, such as site boundaries, over-
lap elimination, and aisle and obstacle consideration, were 
mathematically formulated. The objective is to minimise the 
MHC.

GAs are adopted in the literature to solve large facil-
ity design problems. A GA combined with A∗ allows to 
explore the solution space. The A∗ algorithm is used as a 
new method to determine the shortest path between two 
facilities. The GA involves chromosome encoding and gen-
eration of initial population, fitness function definition, and 
choice of the selection strategy and the crossover and muta-
tion operators, while defining the handling constraints and 
stopping criteria.

The proposed algorithm parameters are calibrated using 
Monte Carlo simulations. The whole approach is applied 
on an illustrative case and the obtained results show the 
practicability and applicability of the proposed model. The 
random variation of the parameters provides one solution 
for each simulation. Our simulations produce two classes of 
arrangements. In the first class, the different workstations 
are concentrated in a determined location. In the second 
class, the machines are scattered across the workshop. The 
discussions about the results show that expert knowledge 
is required to adapt the final solution to the un-modelled 
usage constraints, i.e., those ones difficult to model through 
a mathematical model. For future studies, the method should 
evaluate solutions in terms of flow density on plant aisles in 
order to make it possible, for example, the identification of 
potential critical cross points. In addition, some rules can 
be incorporated to obtain diverse layout configurations, and 

Fig. 6   Monte Carlo simulations and product flow obtained by A* 
algorithm: best (a) and worst (b) layouts found via roulette, best (c) 
and worst (d) layouts found via tournament in the Monte Carlo simu-
lations

◂

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1
2 0
3 5
4 10
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Fig. 7   Heat map of distances obtained by roulette and tournament
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the most suitable one could be chosen among them. For 
example, we should avert bypassing and backtracking and 
eliminate the overlap of all kinds of flows in order to reduce 
the risk of collisions. The shape of the existing plant floor is 
another element that can be considered. In fact, a real area 
can have regular shapes or it could be irregular. In a future 

research work, the authors aim to integrate these constraints 
as well as some parameters such as the machines’ types, their 
supply of parts and delivery of products/components and the 
potential reworking in the proposed method and to validate 
its effectiveness through the application to real cases.

Appendix 1

See Table 7.

Fig. 8   Probability associated with normal distribution of the fitness function

Table 6   Comparison of total cost associated with the Euclidean and 
rectilinear distances and A* algorithm

Euclidean distance Rectilinear 
distance

A
∗ Algorithm

Best roulette 296.3148 362 272
Best tournament 302.1296 365 267
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Table 7   Experiment layout and 
sample experimental data (RWS 
method)

GAs parameters Fitness function GAs parameters Fitness function

Pc Pm N Pc Pm N

1 0.6731 0.1787 137 355 51 0.6406 0.0855 181 434
2 0.6469 0.2175 114 373 52 0.6125 0.1053 122 350
3 0.7707 0.1097 196 337 53 0.8265 0.1817 168 427
4 0.6315 0.2550 211 347 54 0.8698 0.2099 120 335
5 0.7667 0.2006 138 417 55 0.5722 0.2538 194 384
6 0.6161 0.0888 249 348 56 0.7802 0.1378 109 408
7 0.7413 0.1770 241 331 57 0.6975 0.2073 185 379
8 0.6921 0.1209 178 390 58 0.8889 0.2693 147 333
9 0.6160 0.1961 145 367 59 0.6195 0.1266 177 347
10 0.6609 0.1640 170 351 60 0.6561 0.1788 119 487
11 0.6108 0.1895 192 387 61 0.6812 0.2027 239 344
12 0.6531 0.0832 193 346 62 0.7433 0.1098 179 298
13 0.6665 0.1825 138 448 63 0.6579 0.1362 235 304
14 0.6682 0.2073 158 296 64 0.6462 0.2030 112 286
15 0.6995 0.1554 117 305 65 0.6956 0.1549 123 407
16 0.6970 0.1474 162 394 66 0.6270 0.0931 143 413
17 0.6513 0.1951 138 350 67 0.7854 0.1761 113 322
18 0.6518 0.2836 111 382 68 0.7487 0.2641 215 335
19 0.7871 0.2016 162 375 69 0.9012 0.1360 175 342
20 0.4858 0.2010 164 302 70 0.6392 0.1055 228 327
21 0.7307 0.1464 249 372 71 0.6603 0.2933 161 346
22 0.7615 0.1760 102 380 72 0.7345 0.1390 191 381
23 0.6698 0.1985 199 370 73 0.6441 0.2745 182 427
24 0.6858 0.1657 169 299 74 0.7170 0.0723 240 338
25 0.5868 0.1167 185 345 75 0.6680 0.2056 138 313
26 0.7015 0.1565 230 296 76 0.6971 0.2156 222 405
27 0.7502 0.1754 198 356 77 0.5651 0.1244 122 288
28 0.7388 0.2246 136 384 78 0.5523 0.1891 109 379
29 0.6005 0.1582 217 379 79 0.7809 0.1246 151 404
30 0.8269 0.2241 154 376 80 0.7197 0.1979 247 401
31 0.6336 0.3123 121 380 81 0.7739 0.1272 228 272
32 0.5985 0.2110 215 377 82 0.7662 0.1468 193 393
33 0.6326 0.1552 150 403 83 0.8010 0.2082 193 366
34 0.6323 0.2275 219 403 84 0.4652 0.2205 155 301
35 0.6811 0.0691 207 389 85 0.6343 0.1889 170 365
36 0.7668 0.1715 149 392 86 0.6066 0.1874 216 399
37 0.6727 0.2378 117 330 87 0.8866 0.3108 133 333
38 0.6543 0.2118 177 324 88 0.5107 0.1540 118 323
39 0.9020 0.1221 223 378 89 0.9176 0.1821 156 328
40 0.7052 0.1786 159 365 90 0..7768 0.1377 211 357
41 0.6380 0.2044 112 337 91 0.7216 0.1317 117 334
42 0.6038 0.1968 141 283 92 0.6688 0.1853 224 387
43 0.5457 0.1797 128 311 93 0.7288 0.0878 134 421
44 0.8004 0.2045 147 382 94 0.5528 0.0981 208 377
45 0.7146 0.1995 226 378 95 0.8222 0.1660 235 368
46 0.6605 0.1175 206 324 96 0.5854 0.1436 195 318
47 0.7681 0.2347 194 365 97 0.6212 0.1597 179 350
48 0.6029 0.1542 203 418 98 0.6106 0.2381 156 344
49 0.6871 0.2959 123 355 99 0.6545 0.1488 195 343
50 0.6117 0.2264 246 309 100 0.7767 0.1203 215 377
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Appendix 2

See Table 8.

Table 8   Parameter sets of the 
proposed GAs (tournament 
selection)

GAs parameters Fitness function GAs parameters Fitness function

Pc Pm N Pc Pm N

1 0.6966 0.2349 180 395 51 0.8147 0.2041 150 372
2 0.7216 0.1599 142 349 52 0.8461 0.1549 242 391
3 0.7717 0.1466 185 361 53 0.7141 0.3117 161 379
4 0.7561 0.1814 222 382 54 0.7741 0.1290 242 374
5 0.7603 0.1049 153 318 55 0.5567 0.2967 202 369
6 0.7116 0.1495 224 313 56 0.6747 0.2085 113 383
7 0.7215 0.1377 205 410 57 0.7265 0.1764 105 349
8 0.6400 0.1229 247 331 58 0.5721 0.1554 245 370
9 0.7662 0.1104 236 404 59 0.7383 0.1694 236 332
10 0.6128 0.1442 234 371 60 0.8049 0.1024 194 267
11 0.7860 0.1447 215 331 61 0.7120 0.0483 121 399
12 0.7770 0.1990 180 352 62 0.8113 0.1873 220 426
13 0.5859 0.2447 117 408 63 0.7656 0.1603 217 349
14 0.7564 0.2159 249 387 64 0.7596 0.1404 144 386
15 0.8451 0.2407 178 458 65 0.7872 0.1447 223 366
16 0.7175 0.2954 195 373 66 0.7086 0.2010 164 383
17 0.7118 0.1893 171 355 67 0.8634 0.1415 176 415
18 0.6515 0.2598 122 394 68 0.6886 0.3135 158 403
19 0.7009 0.0958 168 374 69 0.8220 0.2168 191 383
20 0.6675 0.2297 197 379 70 0.8449 0.0810 141 341
21 0.6155 0.2330 117 337 71 0.8180 0.1416 115 361
22 0.8026 0.1764 164 312 72 0.8106 0.1471 206 372
23 0.8245 0.0931 208 446 73 0.6309 0.1233 217 329
24 0.6960 0.1978 223 396 74 0.6884 0.2705 239 412
25 0.9176 0..1251 118 353 75 0.7510 0.2135 198 326
26 0.7420 0.2016 204 343 76 0.7263 0.1409 128 378
27 0.5460 0.2624 197 381 77 0.7371 0.1975 250 365
28 0.5751 0.1197 235 363 78 0.7267 0.2404 181 420
29 0.7458 0.1935 192 371 79 0.7306 0.1662 197 408
30 0.6736 0.2215 113 405 80 0.6094 0.1825 218 427
31 0.7673 0.2348 179 355 81 0.6040 0.1330 235 314
32 0.6929 0.1367 178 392 82 0.6508 0.2387 159 376
33 0.7981 0.1832 224 337 83 0.7143 0.2587 148 377
34 0.7336 0.1251 106 464 84 0.6121 0.1886 169 375
35 0.6389 0.2396 249 382 85 0.7768 0.1153 238 428
36 0.6779 0.1970 207 367 86 0.7216 0.2509 152 373
37 0.7765 0.1220 242 355 87 0.6064 0.2308 194 408
38 0.7805 0.0315 129 343 88 0.5596 0.1976 170 408
39 0.6031 0.2256 210 376 89 0.7079 0.1887 228 308
40 0.7655 0.1378 203 331 90 0.6214 0.1689 189 415
41 0.8636 0.1545 180 455 91 0.7934 0.1898 161 359
42 0.6682 0.1450 130 372 92 0.6956 0.2041 129 409
43 0.7372 0.1709 174 401 93 0.6470 0.1543 154 410
44 0.8453 0.1721 192 287 94 0.6762 0.2560 136 347
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Appendix 3

The A* algorithm seeks a new measure of distance (see 
Fig. 9). It starts by placing the starting node in the open list 
called current node. The open list contains the list of nodes 
to be verified. It consists of nodes that have been visited but 
not explored yet. After inspecting its entire adjacent squares, 

the starting node is removed from the open list and placed 
in another list named closed list. The closed list contains all 
the nodes that, at one time or another, have been considered 
as part of the solution path. Before switching to the closed 
list, a node must first pass through the open list. Before being 
judged as good, it must first be studied by looking at all sur-
rounding squares of the starting point while ignoring squares 
with obstacles. These studied nodes are also added to the 
open list. For each of these squares, the current node is saved 
as its ‘parent square’. The parent square is required when we 
want to trace the path. To determine if a node is susceptible 
to be part of the solution path, it is necessary to quantify its 
quality. To do this, we calculate the distance between the 
point studied and the last point that was judged as good. We 
also calculate the distance between the point studied and the 
point of destination. The sum of these two distances gives 
the quality of the studied node. This operation will be car-
ried on until the target node is reached.

Table 8   (continued) GAs parameters Fitness function GAs parameters Fitness function

Pc Pm N Pc Pm N

45 0.5369 0.0806 108 429 95 0.5477 0.0832 154 398
46 0.8952 0.2277 106 353 96 0.5731 0.3236 229 397
47 0.6258 0.1762 153 334 97 0.6639 0.1853 241 402
48 0.7197 0.1134 134 404 98 0.6339 0.1442 133 391
49 0.5650 0.2573 241 399 99 0.6758 0.2627 128 345
50 0.6801 0.1359 174 328 100 0.7554 0.1336 199 348

Fig. 9   Different shortest paths between two facilities: rectilinear, 
Euclidean, A* Algorithm
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Definition of different elements of pseudo code

node start It represents the start position.

node goal It represents the destination.

X It represents the node under consideration.

Open list Open list stores all successive paths that remain to be explored.

Closed list Closed list stores all paths that have been explored.

g(x) g(x) is the cost of the path from the initial state to node x.

k(x,y) It is the cost of the path from x to y, x is the successor of y.

h(x) h(x) is the heuristic estimate or the cost or a path from node x to a goal.

f(x) f(x) estimates the lowest total cost of any solution path going through node x.

Pseudo code* 
Open list { node_start} 
Closed list 
g(node start)  0 
f(node start)  h(node start) 
Put all obstacles on the Closed list 
while  the Open list < > 
|  Find the node x with the lowest f on the Open list 
|  f(x) = g(x) + h(x) 
|  Insert x in Closed list 
|  if  x is node goal we have found the solution;  
|  then  Break 
|  else Generate each state y that come after node current 
|  | for each y of x do 
|  | | g(y) = g(x) + k(x,y) 
|  | | if  y  { Open list  Closed list} or g(y) > g(x) + k(x,y) 
|  | |      g(y) g(x) + k(x,y) 
|  | |      f(x) g(x) + h(x) 
|  | |      Parent (y)  x 
|  | |      Insert “node successor” in Open list
|                      |               |                End %if
|  | end % for
|  end % if
end % while 
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Appendix 4

See Table 9.
Roulette wheel selection. A chromosome is selected 

from the mating pool with a probability proportional to its 
fitness value. A chromosome with a high fitness value has a 
higher chance of being selected as a parent. Thus, the main 
idea is to prefer better solutions to worse ones. Consider a 
circle divided into n slices, where n is the number of indi-
viduals in the population. Each individual is assigned a slice 
of the roulette wheel, which is proportional to its fitness 
value. A pointer is chosen on the wheel circumference and 
the wheel is rotated in a repetitive way. The portion of the 
wheel that is in front of the fixed point is chosen as the 
parent.

Tournament selection. N individuals are randomly taken 
up from the population in a tournament selection. A copy 
of the best individual (based on fitness values) is kept in the 

mating pool as a parent. The number of individuals compet-
ing in each tournament is referred to as the tournament size.

Appendix 5

N point crossover. Almost all of the N point crossover pro-
cesses use the same strategy. Hereafter, we define the single 
point crossover. A split line is randomly determined between 
1 and (n − 1) genes (see Fig. 10), where n is the number 
of genes. Each parent is divided into two blocks of alleles. 
The portion before the split line is exchanged between the 
parents to create two new solutions, as illustrated in Fig. 10. 
This crossover operation is analogue to the binary crossover 
operation of GAs.

See Fig. 10.

Table 9   Advantages and disadvantages of different selection strategies

Advantages Disadvantages

Roulette wheel selection
 Easy to implement
 It gives a chance to all individuals to be 

selected
 Diversity in the population is preserved. Even 

poor performance individuals are may be 
chosen

At the beginning of the search, a fit individual will introduce a bias that may cause a premature 
convergence and a loss of diversity

For instance, if an initial population includes one or two very fit individuals and the rest of 
the population is not good, these fit individuals will quickly dominate the whole population 
and prevent the population from exploring other potentially better individuals (Razali and 
Gerghty 2011)

Tournament selection
 Efficient
 Simple to implement
 No requirement for fitness scaling or sorting

Some individuals may never be selected for a tournament while other individuals participate in 
each tournament. This leads to a loss of diversity (Razali and Gerghty 2011)

Random selection
 Easy to implement
 The diversity is preserved, all the individuals 

have an equal probability of selection

If individuals in a population have the same probability to be selected, it will be very difficult 
for the population to improve because the selection probabilities for fit and unfit individuals 
are very similar. Therefore, random selection is, on average, slightly more disruptive than 
the roulette wheel selection in terms of disruption of genetic codes (Sivanandam and Deepa 
2008)



636	 Journal of Intelligent Manufacturing (2020) 31:615–640

1 3

Appendix 6

Several types of mutation exchange and inversion operators 
are used at this step to permute two or more workstations. 
The exchange mutation performs a swap of two randomly 
selected genes. For instance, in Fig. 11, the two genes (x2, 
y2) and (x4, y4) are swapped. The inversion operator con-
sists in selecting two genes randomly and inverting the posi-
tion in the chromosome between these two blocks as shown 
in Fig. 12.

See Figs. 11, 12.

Appendix 7

Pre-treatment phase In this study, we try to determine the 
most efficient arrangement of equipment in an area of such 
company that produce four products {A-E-C-H} and five 
semi-final products {G-D-B-F-I}. The assembly of G and 
D gives the product A and the product E comes from the 
assembly of B, F and I. Data of the products of our problem 
are provided in Table 10.

Fig. 12   Inversion operator Before 
inversion

1 2 3 4 5 6
…

−2 −1

1 2 3 4 5 6
…..

−2 −1

A�er 
inversion

1 2 6 5 4 3
…

−2 −1

1 2 6 5 4 3
…..

−2 −1

Fig. 11   Exchange operator Before 
exchange

1 2 3 4
…. …. …

−2 −1

1 2 3 4
…. …. …..

−2 −1

A�er 
exchange

1 4 3 2
…. …. …

−2 −1

1 4 3 2
…. …. …..

−2 −1

Fig. 10   a Before single point 
crossover, b after single point 
crossover Parent1 1 2 3 4

…. …. …
−2 −1

1 2 3 4
…. …. …..

−2 −1

(a)

Parent2 2 3 4
…. …. …

−2 −1

1 2 3 4
…. …. …..

−2 −1

Child1 1 2 3 4
…. …. …

−2 −1

1 2 3 4
…. …. …..

−2 −1

(b)

Child2 1 2 3 4
…. …. …

−2 −1

1 2 3 4
…. …. …..

−2 −1
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Appendix 8

See Fig. 13.

Appendix 9

SeeTable 11.

Fig. 13   Best cost versus number 
of iterations, roulette operator 
(a) and tournament operator (b)

Table 10   Data of the products of our problem

Product type Production route Quantity to produce

A 1-2-8 1
B 1-3-4-8-5 2
C 5-2-3-6 3
D 2-3-7-8 1
E 1-7-6 2
F 4-6-7 2
G 2-8 1
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