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Abstract
Failure mode and effects analysis (FMEA) is one of the typical structured, systematic and proactive approaches for product 
or system failure analysis. A critical step in FMEA is identifying potential failure modes for product sub-systems, compo-
nents, and processes, for which component-failure mode (CF) knowledge is necessarily needed as an important source of 
knowledge. However, this knowledge is usually acquired manually based on historical documents such as bills of mate-
rial and failure analysis reports, which is a labor-intensive and time-consuming task, incurring inefficiency and plenty of 
mistakes. Nevertheless, few existing studies have developed an effective and intelligent approach to acquiring accurate CF 
knowledge automatically. To fill the gap, this paper proposes a method to construct the CF matrix automatically by mining 
unstructured and short quality problem texts and mapping as well as representing them as CF knowledge. Starting with mining 
the frequent itemsets of failure modes through Apriori algorithm, the method uses the semantic dictionary WordNet to find 
synonyms in the set of failure modes, based on which the standard set of failure modes is finally built. Subsequently, upon 
the previous work and components set, we design the component-failure mode matrix mining (CFMM) algorithm and apply 
it to establish the CF matrix from unstructured quality problem texts. Lastly, we examine the quality data of the seat module 
of an automobile company as a case study in order to validate the proposed method. The result shows that the failure mode 
extraction method with standardized features can extract failure modes more effectively than the FP-growth and K-means 
clustering methods. Meanwhile, the devised CFMM algorithm can extract more combinations of CF than the FP-growth 
method and build a richer CF matrix. Although different industries have distinct domain characteristics, our proposed method 
can be applicable not only to manufacturing but also to other fields needing FMEA to enhance product and system reliability.

Keywords  Failure mode and effects analysis · Component-failure mode matrix · Data mining · System reliability · 
Automotive industry

Introduction

Failure mode and effects analysis (FMEA) is a systematic 
activity for revealing potential faults when a firm does the 
planning of developing a product or new production meth-
ods, and for implementing appropriate actions to avoid 
faults, which ultimately improves product quality and reli-
ability (Stamatis 1995; Liu et al. 2016). By definition, failure 
mode refers to the termination of the ability of a system to 

perform a required function or its inability to perform within 
previously specified limits (ISO/IEC-15026-1 2013) and 
includes both known and/or potential failures and problems 
that may incur customers’ dissatisfaction and poor evalua-
tion, and thus endanger the reputation of the entire organi-
zation (Asan and Soyer 2016). In practice, FMEAs come in 
various forms, such as Design FMEA (DFMEA), Process 
FMEA (PFMEA) and System FMEA (Pfeifer 2002) accord-
ing to different emphasis and objectives. When creating a 
DFMEA, listing all potential failure modes for each compo-
nent is a very important step (Brook 2006) that is critical for 
creating failure-free designs (Arunajadai et al. 2004). While 
anticipating every failure mode is impossible, the develop-
ment team should formulate a list of potential failure modes 
as extensive as possible (Goel and Graves 2007). Most firms 
usually manually analyze, collate and summarize historical 
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documents such as the product function decomposition 
model, bill of materials (BOM) and failure analysis report 
to obtain the failure modes of components and obtain the 
corresponding relationship between the components and the 
failure modes (Wang et al. 2011).

DFMEA is a commonly used but significant tool in 
product design and development to take full account of the 
problems involved in the process of production, transporta-
tion, and use of products, to bring all possible problems into 
the scope of prevention, and to do a good job of preventive 
measures and solutions in advance. The creation of DFEMA 
first needs to know which failure modes have occurred in the 
product components. Component-failure mode matrix is an 
important source of knowledge in this process.

However, there are some assignable drawbacks of manu-
ally acquiring failure modes and their associations with com-
ponents under a DFMEA. First, the source of failure modes 
knowledge is very fragmented. When these documents are 
missing or difficult to find, the component-failure mode 
(CF) knowledge will be incomplete. Second, a large num-
ber of failure-mode types make it difficult for an enterprise 
to build a firm-level failure-mode library. Instead, different 
departments in a company usually use their own descrip-
tion vocabulary when describing the same failure mode or 
the same description for two marginally different failures 
(Tumer et al. 2003). Also, manually building CF knowledge 
is a time-consuming and labor-intensive activity. On the one 
hand, the designers who create DFMEA are far away from 
the production process, lack of understanding of the product 
quality problems that may occur in the production process; 
and the data of product quality problems scattered in the 
production process form an information isolated island, 
which is difficult for designers to use. On the other hand, 
the employees who record product quality problems often 
adopt according to their own habits when describing the 
same problem. Different words are used to describe the fail-
ure mode, which results in the ambiguity of the designer’s 
perception of failure mode.

In response to these problems, many scholars have stud-
ied the extraction of failure modes (Collins et al. 1976; 
Arunajadai et al. 2002; Tumer et al. 2003; Wani and Jan 
2006; Chen and Nayak 2007; Wijayasekara et al. 2014; 
Chang et al. 2015; Rajpathak and De 2016; Kai et al. 2015; 
James et al. 2017; Meng et al. 2017) by utilizing classifica-
tion, clustering and other methods to extract failure modes. 
Among these studies, few studies focus on the standardiza-
tion of failure modes. Tumer et al. (2003) provide a standard 
failure-mode taxonomy with a definition of three levels for 
each failure mode by analyzing operational failure reports 
from a problem and failure reporting database at Jet Propul-
sion Laboratory. However, these failure modes were based 
on predetermined failures (Roberts et al. 2003), and the 
authors did not mention the way how to build up the standard 

failure mode taxonomy. Beksinska et al. (2007) developed 
a standardized list of terms and definitions of failure modes 
for female condoms. However, there were only eight kinds 
of failure modes, and all of them were compiled by members 
of the WHO Technical Review Committee which is not suit-
able for complex products and systems. Other scholars have 
focused on functional-failure mode (EF) matrix construc-
tion (Arunajadai et al. 2002; Tumer and Stone 2003; Chang 
et al. 2015) and fault dependency matrix (D-matrix) mining 
(Singh et al. 2010; Rajpathak and Singh 2014; Deore 2015; 
Thombare and Dole 2015; Jenifa and Balachander 2015; 
Mendhe and Hande 2017). These studies presupposed that 
the CF matrix is known, whereas few studies revolve around 
mining the CF matrix from a large number of texts.

However, in the production process, as well as quality 
management activities, a large amount of data related to the 
quality problem are generated and accumulated. In our view-
point, the knowledge embedded in the unstructured quality 
problem data provides insight into component failure. Mean-
while, text mining is important because it can automatically 
discover knowledge assets hidden in the unstructured text 
(Hearst 1999; Khilwani and Harding 2016). Therefore, using 
a text mining method to automatically mine text instead of 
manually acquiring the failure modes of product compo-
nents and the relationship between components and failure 
modes from a large number of quality problem data can 
make it possible to predict each failure mode. The output 
of this method will provide a data foundation for DFMEA, 
improve the efficiency of building a DFMEA knowledge 
base, and improve product and system reliability and cus-
tomer satisfaction.

Stated thus, there is a paradox: on the one hand, we 
want the description of employees to be uniform and accu-
rate, such as building a standard failure-mode set manual 
beforehand but at the expense of the authenticity of the 
information. After all, we cannot exhaust all failure modes 
and ensure that they fully match the actual situations staff 
encounter. On the other hand, employee’s personalized 
description guarantees the authenticity and accuracy of the 
information records, but the description is probably confus-
ing, repetitive and logically poor, which brings great chal-
lenges to failure patterns recognition and CF matrix con-
struction. Unfortunately, the existing methods have fairly 
limited ability to solve this paradox.

To address the previous challenge, this paper solves the 
issues of standardization of failure modes and automatic con-
struction of a CF matrix based on data with implicit failure 
modes. In this study, the WordNet-based text mining method 
was initially built to create a standard failure mode library. 
Then, this paper proposes a component-failure mode matrix 
mining (CFMM) algorithm. Based on the standard failure 
modes constructed above and the existing product compo-
nents, the algorithm extracts the CF matrix from the quality 
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problem text, which can be treated as the component failure 
mode knowledge and the basic knowledge of FMEA. In par-
ticular, this paper makes the following contributions:

1.	 Different from the existing methods of failure-mode 
extraction, this paper considers the phenomenon that dif-
ferent departments use a different vocabulary to describe 
the same problem or failure mode and further studies the 
problem of failure mode standardization. Based on the 
semantic dictionary WordNet, this paper recognizes and 
unifies synonymous failure modes and then constructs a 
standard set of them, which provides a common vocabu-
lary across business units, providing a more comprehen-
sive and standard knowledge resource for DFMEA.

2.	 Based on historical data of components and failure 
modes, the CFMM method is employed to build a CF 
matrix automatically, which is more efficient and reli-
able than traditional experience-based, and brainstorm-
based approaches. It can also be combined with tradi-
tional approaches to building the CF matrix better. The 
CFMM algorithm in this paper covers both significant 
and insignificant FM in frequent itemsets more com-
prehensively and constructs the standard failure mode 
and the correlation matrix between components more 
completely with higher accuracy.

3.	 In the existing research on failure modes, the data source 
of most texts is after-sales data (Rajpathak and De 
2016), maintenance text data (Chen and Nayak 2007), 
existing FMEA, FMECA and other data. To the best of 
our knowledge, this paper is the first to use the product 
quality problem-solving data in the manufacturing pro-
cess as the data source for failure mode extraction. Note 
that our proposed method can also be compatible with 
data-driven FMEA construction based on sales data.

The remainder of this paper is organized as follows. In the 
next section, we give a literature review to related studies. 
Then, in “Research framework” section, the general research 
framework is provided to help guide the reader through the 
steps involved. In “Standard failure mode set construction“ 
section, the WordNet-based method is introduced to build 
up the standard failure mode set. “Component-failure mode 
matrix mining“ section presents the CFMM algorithm. “Case 
study” section takes the seat module in an automotive com-
pany as an example to perform our methodology and conduct 
relevance analysis. Then, we conclude our paper by discussing 
the benefit of our methodology and summarizing the main 
findings in “Conclusions and future work” section.

Literature review

Failure mode acquisition

Many text mining-related methods have been used by 
scholars to obtain failure modes. Some of them have stud-
ied the methods of failure mode classification. Based on 
the failure-experience matrix (Collins et al. 1976), Aruna-
jadai et al. (2002) classified incremental bills of materi-
als with recorded failure information into corresponding 
default failure modes. Wijayasekara et al. (2014) divided 
the software code failure data into hidden impact bugs 
and regular bugs. Wu et al. (2017) proposed a classifica-
tion tree kernel-based support vector machine to identify 
bearing failures. However, the classification method pre-
supposed the type of failure mode and usually set a few 
categories of failure modes. This approach is not appli-
cable to complex systems, such as automotive products, 
which may have many failure modes.

In addition, many scholars have studied how to use the 
clustering method to acquire failure modes. Based on the 
artificially established failure modes and their frequency, 
Wani and Jan (2006) adopted the “K clustering” method 
to determine the failure mode group in the conceptual 
design phase of the mechanical system. Chen and Nayak 
(2007) studied the method of automatically extracting fail-
ure modes from maintenance text datasets using Ward’s 
agglomerative method and the similar histogram clustering 
method. Arunajadai et al. (2004) constructed a similarity 
matrix between failure modes and then obtained failure 
mode groups through hierarchical clustering.

Moreover, some scholars clustered failure modes for 
better analysis based on historical data of FMEA. Chang 
et al. (2015) clustered the failure modes in the FMEA and 
converted the failure modes in complex FMEA worksheets 
into a tree structure by constructing the ETree learning 
algorithm. Kai et al. (2015) studied the Euclidean dis-
tance-based similarity measure and fuzzy adaptive reso-
nance theory neural network for the similarity analysis and 
clustering of failure modes in FMEA. Meng et al. (2017) 
performed K-means clustering on the preprocessed soft-
ware failure text and selected representative failure texts 
from the clusters as cluster labels.

Apart from the methods of classification and cluster-
ing, some scholars have studied the ontology method to 
extract failure modes. Rajpathak and De (2016) provided 
an ontology-based approach for identifying failure modes 
from repairing verbatim data. James et al. (2017) studied 
the construction of failure knowledge ontology based on 
historical data on maintenance and services.

Among the above methods, few studies have considered 
the case where the description of the failure mode is not 
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uniform. However, quality, maintenance or after repair 
records are usually recorded by different people or depart-
ments in different ways. One of the most limiting aspects 
of FMEA is the lack of a standard vocabulary to describe 
functionality and failure modes accurately and without 
ambiguity (Schneider 2003). Although some studies have 
emphasized that standardization of failure mode vocabu-
lary help to effectively maintain and utilize the knowl-
edge base and provides a standard failure mode vocabulary 
(Arunajadai et al. 2002), none of these studies provided a 
systematic approach to standardizing failure modes.

Considering the limitations of existing literature, this 
paper proposes a text mining method based on WordNet to 
construct a standard failure-mode set. Compared with previ-
ous studies, this method applies to a large number of failure-
mode sets and can extract and construct standard failure-
mode sets without consuming considerable labor and time.

Component‑failure mode matrix

CF knowledge is a representation of the potential failure 
modes of product subsystems and components in the FMEA 
and can be represented by a n × m CF matrix (Tumer and 
Stone 2003; Arunajadai et al. 2004), where m is the total 
number of failure modes occurring across all n components. 
In this matrix, a ‘1’ is placed for a component in the cell 
corresponding to the failure mode the component experi-
enced and a ‘0’ is placed in the other cells (Arunajadai et al. 
2002). Except for the binary information of failure modes 
for a given component (Xu et al. 2018), the likelihood or 
frequency of occurrence data can also be encoded in CF 
(Wang et al. 2011).

Many studies involving component and failure modes 
used the CF matrix as a known resource to study other 
issues, such as functional-failure mode (EF) matrix construc-
tion and fault dependency matrix (D-Matrix) construction. 
The EF matrix relates the failure modes to the elemental 
functions. Each element in the matrix indicates whether any 
component solving function has ever failed by a failure mode 
(Arunajadai et al. 2002; Tumer and Stone 2003; Chang et al. 
2015). Most studies centered on the construction of the EF 
matrix by formula EF = EC × CF , where EC represented a 
functional component matrix. Another area of study related 
to component-failure mode considered D-matrix. Unlike the 
CF matrix, the D-matrix indicates the dependencies between 
observable symptoms and failure modes. It is a system diag-
nostic model for capturing hierarchical system-level fault 
diagnosis information (Rajpathak and Singh 2014). In the 
D-matrix matrix, rows represent combinations of compo-
nents and failure modes, and columns represent symbols. 
Singh et al. (2010) introduced three types of D-matrices 
and introduced sources of D-matrices, such as historical 
field fault data, engineering schematics, and failure modes, 

and impact and critical analysis (FMECA) data. Based on 
the construction of fault diagnosis ontology, Rajpathak and 
Singh (2014) applied ontology-based text mining algorithms 
to identify necessary artifacts, such as parts, symptoms, 
failure modes and their dependencies, from unstructured 
repair verbatim texts in the automotive field. Based on this 
research, many scholars have conducted similar research. 
Deore (2015) and Thombare and Dole (2015) described 
an ontology-based text mining method for automatically 
building and updating the D-matrix by mining thousands of 
repaired verbatim data collected during diagnostic events. 
Mendhe and Hande (2017) further studied the representation 
of the D-matrix in a graph. Jenifa and Balachander (2015) 
introduced a method to construct the D-matrix with the help 
of the FP growth algorithm such that the best-practice repair 
actions can be discovered.

However, all of these studies assumed that the CF matrix 
or relationship between components and failure modes is 
known (Liu et al. 2017), and in the case studies of these 
papers, the number of components and failure modes were 
relatively small. Thus, the CF matrix could be provided 
based on experience. Unfortunately, complex products or 
systems contain many components, and there are many 
failure modes, which makes it time-consuming and labor-
intensive to acquire the CF matrix manually. Therefore, it 
poses significant challenges to obtaining the component 
and the failure mode relationship automatically. Given such 
constraints, this paper provides a CFMM method based on 
historical text data to automatically construct a CF matrix, 
which fills the gap in the field.

Research framework

The goal of this study is to automatically obtain the CF 
matrix from a large number of unstructured quality problem 
data. For exposition clarity, we illustrate the research frame-
work and the process of CF matrix extraction in Fig. 1. The 
raw data are first preprocessed; then, a standardized failure-
mode set is constructed by the following steps, including 
failure mode frequent itemset mining and frequent itemset 
standardization. Moreover, the nonstandard failure mode text 
in the existing problem title set is replaced with the standard 
failure mode to form a new problem title set. Furthermore, 
the CF matrix mining algorithm is designed. Based on the 
standard failure mode set and the existing component set, 
the algorithm is used to extract the CF matrix from the pro-
cessed quality problem text. The part covered by the red 
line in Fig. 1 is the focus of this paper. In “Standard failure 
mode set construction” section, the process and method of 
constructing the standard failure mode set are introduced in 
detail. The “Component-failure mode matrix mining” sec-
tion serves to describe the CFMM algorithm in detail.
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Standard failure mode set construction

According to the research framework in Fig. 1, we can see 
that the method of constructing a standard failure mode 
set includes the following steps: text preprocessing, failure 
mode frequent itemset mining, and failure mode standardi-
zation. Text preprocessing operations include removing 
stopwords, converting abbreviations into complete words, 
and removing context words. Failure mode frequent itemset 
mining includes part-of-speech tagging, extracting frequent 
itemsets using the Apriori algorithm, and pruning. Failure 
mode standardization operations include WordNet-based 
failure mode synonym identification and failure mode com-
bination and standardization.

This paper collects related problem corpora from the 
database of quality problem-solving. T =

{
t1, t2,… , tl

}
 is 

the original quality problem text set, where ts represents the 
sth problem, s = 1, 2,… , l . First, the original text should be 
preprocessed by deleting stopwords, translating acronyms 
into complete words, and deleting context words. In the step 
of removing stopwords, the stopwords in the text are deleted 
based on the current stopwords. At the same time, a diction-
ary of domain abbreviations is built to convert abbrevia-
tions in the original text into complete words. Many scholars 
have proposed different methods to address the abbreviation 
ambiguity problem (Wu et al. 2015; Kim and Yoon 2015). 
However, the abbreviations have domain characteristics, and 
the quality problems are titled in short texts. These abbrevia-
tions usually have a unique sense. Therefore, after identify-
ing the abbreviation in the original text, it is replaced with 
the word in the abbreviation database, and the disambigua-
tion processing is not performed. In addition, the original 
text contains information such as components, which con-
tain words that are different from the words contained in the 

failure mode. Therefore, to focus on the failure mode, so as 
not to interfere with this information during the failure mode 
extraction process, words contained in the components in the 
original text are deleted according to the known component 
set C =

{
c1, c2,… , cn

}
.

Then, in the failure mode frequent itemsets mining step, 
all the problem texts are part-of-speech tagged, and all the 
word sets U =

{
u1, u2,… , uo

}
 in the preprocessed document 

are obtained. Moreover, these words are used as items, and 
each problem record is taken as a transaction unit to create 
associated transaction data. According to the Apriori algo-
rithm (Han et al. 2011), itemsets satisfying the minimum 
support threshold � are extracted from associated transaction 
data as candidate itemsets. The set of candidate itemsets is 
represented as F�

1
=

{
f �
1
, f �
2
,… , f �

j
,… f �

v

}
 , in which f ′

j
 is the 

jth frequent itemset. Each candidate itemset can be seen as a 
failure mode. According to the experience of domain 
experts, a failure mode contains no more than three words, 
so this paper does not consider frequent itemsets with more 
than three items. Moreover, frequent itemsets do not belong 
to failure modes, such as road, cobblestone and other words 
that indicate the situation of the problem, and the words that 
indicate a location such as right, left, rear, front, and middle. 
Therefore, combined with expert experience, this paper per-
forms artificial pruning on candidate itemsets and then 
ob t a in s  a  new  se t  o f  c and ida t e  i t emse t s 
F�

2
=

{
f �
1
, f �
2
,… , f �

j
,… f �

�

}
 , where 𝛿 < v.

The new set of pruned frequent itemsets contains a large 
number of failure modes. If the result is used as a failure 
mode set, there will be frequent itemsets that may represent 
the same failure mode. Therefore, it is necessary to standard-
ize the set of candidate itemsets F′

2
 and merge the different 

frequent itemsets that are described by synonyms. In quality 
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Fig. 1   The research framework
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management, developing a generic description vocabulary 
that can be understood by the various departments is a chal-
lenge for the organization. It would take many workforces 
and material resources to identify synonyms or phrases arti-
ficially from hundreds of words or phrases manually. There-
fore, some methods are often used to identify synonyms, 
such as identifying synonyms in dictionary annotations 
(Blondel and Senellart 2002; Muller et al. 2006; Wang and 
Hirst 2012), vocabulary cooccurrence algorithms in large 
corpora (Baroni and Bisi 2004), and search engine-based 
methods for identifying synonyms in web (Yates and Etzioni 
2009; Cheng et al. 2012). However, it is difficult to identify 
the synonymous failure modes by these methods since the 
quality problem text is usually short and contains limited 
information. Of course, there may be a phenomenon of poly-
semy for the corpora on the Internet, whereas the failure 
mode in this research is often a non-polysemy noun which 
has strong domain characteristics. Therefore, each frequent 
itemset with a support count can be considered a failure 
mode with only a single meaning. In the step of standardiza-
tion of failure modes, this paper introduces a synonym 
extraction method based on WordNet. WordNet is a cogni-
tive linguistics-based English dictionary designed by psy-
chologists, linguists and computer engineers at Princeton 
University. It organizes vocabulary information based on 
word meaning rather than word form. WordNet groups them 
according to the meaning of the terms. Each group of words 
with the same meaning is called a Synset (Fellbaum 2000). 
WordNet is used to find synonymous relationships between 
all words in the set of candidate itemsets and build a syno-
nym set. For each set of synonymous frequent itemsets, the 
frequent itemsets with the highest support count are taken 
as the standard failure mode of the group. Finally, combined 
with the experience and opinions of domain experts, the 
results are revised, and a standard set of failure modes is 
constructed. For example, according to WordNet, f ′

i
 and f ′

j
 

are synonymous, and the support count of a frequent itemset 
f ′
j
 is higher than f ′

i
 , then these two failure modes are unified 

into f ′
j
 as the standard failure mode, and the new support 

count of f ′
j
 will be the sum of first support count of f ′

j
 and 

f ′
i
 . According to this rule, this paper constructs a synony-

mous failure mode set and obtains a new set of frequent 
itemsets F =

{
f1, f2,… , fm

}
 as a standard failure mode set, 

in which m < 𝛿.

Component‑failure mode matrix mining

Notation and formalization

We use the titles of the quality problems as a link to con-
struct the CF matrix of the existing component set and the 

standard failure-mode set. Here we give the notations and 
definitions which will be used in the CFMM algorithm.

Automotive components are an essential part of a car. 
They usually consist of multiple parts and have specific 
functions. The component set can be formalized as

where ci indicates the ith component, i = 1, 2,… , n.
Failure mode refers to the termination of the ability of 

a system to perform a required function or its inability to 
perform within previously specified limits. It is the result 
of the failure mechanism (cause of the failure mode). For 
example; a fully fractured axle, a deformed axle or a fully 
open or fully closed electrical contact are each a separate 
failure mode of a DFMEA. The failure mode set can be for-
malized as

where fj represents the jth failure mode, j = 1, 2,… ,m.
A problem title is a comprehensive refinement of the 

problem, usually recorded in the form of short text, and 
contains information about components and failure modes. 
Problem title set can be represented by

where ts represents the sth problem title, s = 1, 2,… , l.
The text of components, failure modes, and problem titles 

can only be computed after mathematical representation. 
This paper uses the bag of words (BOW) model to repre-
sent these texts. In information retrieval, the BOW model 
assumes that for a document, its word order and gram-
mar, syntax and other elements are ignored, and it is only 
regarded as a collection of several words. The appearance 
of each word in the document is independent and does not 
depend on whether other words appear. Before using the 
BOW model to represent text, it is necessary to create a 
dictionary. A dictionary consisting of the words contained 
in the text of the component, failure mode, and problem title 
can be represented as

where w
�
 represents the �th word in the dictionary, 

� = 1, 2,… , e.
Based on the dictionary, this paper uses BOW to repre-

sent the component set as the document-term matrix. The 
document-term matrix of components can be formalized as

where cwi� = 1 indicates that component ci contains the word 
w
�
 , and cwi� = 0 indicates the opposite.

C =

{
c1, c2,… , cn

}
,

F =

{
f1, f2,… , fm

}
,

T =

{
t1, t2,… , tl

}
,

W =

[
w1,w2,… ,we

]
,

CWne =

�
cwi�

�
n×e

=

⎛⎜⎜⎜⎝

cw11 cw12 ⋯ cw1e

cw21 cw22 ⋯ cw2e

⋮ ⋮ ⋱ ⋮

cwn1 cwn2 ⋯ cwne

⎞⎟⎟⎟⎠
,



255Journal of Intelligent Manufacturing (2020) 31:249–265	

1 3

Similarly, the document-term matrix of failure modes can 
be formalized as

where fwj� = 1 indicates that failure mode fj contains the 
word w

�
 , fwj� = 0 indicates the opposite.

The document-term matrix of problem titles can be for-
malized as

where tws� = 1 indicates that problem title ts contains the 
word w

�
 , tws� = 0 indicates the opposite.

CF matrix is an m × n-dimensional matrix, it can be rep-
resented as

where m is the total number of failure modes occurring 
across all n components, and cfij indicates the number of 
times that component ci has experienced failure mode fj.

Assumptions and algorithm

In this section, we provide a novel text mining method for 
mining the relationships of components and failure modes. 
For the ease of quality exposition, we need to give out some 
assumptions as follows.

Assumption 1  Each title only contains one component.

Assumption 2  Each title only contains one failure mode.

In fact, a problem title in practice usually contains the fol-
lowing information, including the problem situation, the com-
ponents in which the problem occurred, and what the problem 
is. People who input problems into the system will not describe 
the problematic component and the failure mode multiple 
times in the title. These titles form a concise representation 
of the most important message of a document (Mangnoesing 
et al. 2012), and they are often concise and rarely have com-
plex statement expressions (Miao et al. 2008). Moreover, the 
method also has some reference for extracting related informa-
tion from the titles described by short text in other scenarios. 

FWme =

�
fwj�

�
m×e

=

⎛⎜⎜⎜⎝

fw11 fw12 ⋯ fw1e

fw21 fw22 ⋯ fw2e

⋮ ⋮ ⋱ ⋮

fwm1 fwm2 ⋯ fwme

⎞⎟⎟⎟⎠
,

TWle =

�
tws�

�
l×e

=

⎛⎜⎜⎜⎝

tw11 tw12 ⋯ tw1e

tw21 tw22 ⋯ tw2e

⋮ ⋮ ⋱ ⋮

twl1 twl2 ⋯ twle

⎞⎟⎟⎟⎠
,

CFnm =

�
cfij

�
n×m

=

⎛⎜⎜⎜⎝

cf11 cf12 ⋯ cf1m
cf21 cf22 ⋯ cf2m
⋮ ⋮ ⋱ ⋮

cfn1 cfn2 ⋯ cfnm

⎞⎟⎟⎟⎠
,

However, for some non-title content, for example, an article 
or lengthy text, there may be different methods for different 
research needs.

In this method, we first need to find out which components 
and failure modes each title contains. Through the formula 
below, we can obtain the association between the title and the 
component.

In formula (1), CWT  represents the transposition of the 
document-term matrix of components. In each row of the 
matrix TC , the result of the multiplication is a number indi-
cating the number of identical words in the component and 
the problem title. For example, tc11 indicates the number of 
identical words in the first component and the first problem 
title. For each title, we need to find a component in all com-
ponents so that the value of this multiplication is the largest, 
which indicates that the number of identical words in this 
component and this problem title is the highest. This com-
ponent is the component that the title contains. For exam-
ple, if max

(
tc11, tc12,… , tc1n

)
= tc12 , then title 1 contains 

component 2. If a problem title can correspond to multiple 
components, we take the component that contains the least 
number of words as the component corresponding to the 
problem title. For example, the problem title is “Seat belt 
noise,” there are two components in the component set that 
are “seat belt” and “seat belt buckle.” Then, the dictionary 
will be {seat, belt, noise, buckle}. According to the above 
method, the results of multiplying the seat belt and the seat 
belt buckle by the problem title are both 2. However, the cor-
responding component in the title should be the “seat belt,” 
not the “seat belt buckle.”

After this step, we get the correspondence between all titles 
and components and store the subscripts of the components 
identified in all titles in an array, which then generates a col-
lection of components corresponding to all the problem titles. 
Moreover, the occurrence frequency of each component is 
calculated as the statistical result of the component identified 
from all the titles.

As with the above method of obtaining the association 
between the titles and the components, we can get the associa-
tion between the titles and the failure modes by the following 
formula.

(1)TC =

�
tcsi

�
l×n

= TW × CWT
=

⎛⎜⎜⎜⎝

tc11 tc12 ⋯ tc1n
tc21 tc22 ⋯ tc2n
⋮ ⋮ ⋱ ⋮

tcl1 tcl2 ⋯ tcln

⎞⎟⎟⎟⎠

(2)TF =

�
tfsj

�
l×m

= TW × FWT
=

⎛⎜⎜⎜⎝

tf11 tf12 ⋯ tf1m
tf21 tf22 ⋯ tf2m
⋮ ⋮ ⋱ ⋮

tfl1 tfl2 ⋯ tflm

⎞⎟⎟⎟⎠
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Based on the work done, we store the subscripts of the fail-
ure modes identified in all titles in an array, then generate a 
collection of failure modes corresponding to all the problem 
titles. Again, the occurrence frequency of each failure mode 
is calculated.

According to the component subscript and failure modes 
subscript corresponding to each problem title, the compo-
nent is associated with the failure mode, and the number of 
failure modes of each component is calculated accordingly. 
Furthermore, the CF matrix is established.

The CFMM algorithm is shown in Table 1. The applica-
tion of this algorithm will be explained in the next section 
with an example.

As shown in the algorithm, the purpose of steps 1–11 
is to determine which components are included in each 
title. In steps 12 and 13, the number of occurrences of each 
component is calculated as a statistical result. Similarly, the 
purpose of steps 14 to 23 is to identify the failure mode 
contained in each title. In steps 24 and 25, the number of 
occurrences of each failure mode is calculated as a statisti-
cal result.

According to Steps 8, 9, 20, and 21, we obtain the com-
ponent subscript and failure mode subscript corresponding 
to each problem title. Then, through step 27, the components 
are associated with the failure modes, and the number of 
failure modes of each component is calculated accordingly. 
Furthermore, the CF matrix is established.

Case study

Experimental data

In this section, we take problem data of a car seat system 
from Company A as an example to verify the proposed 
method. The seat is an important part of the automotive 
interior. In addition to providing smooth operation and 
comfortable driving for the passengers, it must also have 
the function of ensuring the safety of the passengers. At the 
same time, some seats also have the function of heating, 
automatic adjustment, and other requirements to meet the 
individual needs of customers. The failure modes of the car 
seat components may have various effects; some may affect 
the appearance, some may affect the function, and even more 
pose a safety hazard. Therefore, some measures can be taken 
from the design stage to avoid problems by identifying the 
failure modes of each component of the seat and performing 
FMEA. The seat system includes front seat assembly, rear 
seat assembly, seat belt system, and child restraint system 
for a total of more than 300 components. Due to space limi-
tations, this paper presents some common components in 
Table 2.

We obtained 11,677 problem records from the year 2010 
to 2016 from the quality management information system of 
Company A, of which 568 are related to the seat. Accord-
ing to the title of these data, we delete the items that only 
contain simple content such as “problems,” “problem,” “seat 
problem.” Meanwhile, some titles written in German are 
also deleted. After this process, the number of useful seat 
problems is 495. Each record includes the problem number, 
vehicle model, main module, title, description, creation date 
and other information. Before data mining, we construct the 
corresponding stopword list and obtain the acronym table 
commonly used in Company A.

The problem titles are refined short texts. The extraction 
of the failure modes and the construction of the CF matrix 
are based on the problem titles. In company A, there is a 
standard for the input of the quality problem title, usually 
“problem finder _ model _ project stage _ problem concise 
description.” For example, in the problem title “FDP_F35_
SE_Noise from right rear seat backrest unlocking as driving 
on the bumpy road”, “FDP” indicates that the problem was 
discovered by a road test, “F35” indicates that the problem 
occurred on the F35 model, and “SE” indicates that the prob-
lem is mass production problem. Despite the input criteria, 
the problem finder will occasionally describe the problem 
in the way he is used to, resulting in reduced data quality. 
According to the statistics, 65% of the problem input of the 
seat module meets the standard, and the remaining problem 
title is a concise description of the problem. However, this 
does not affect the subsequent analysis of this paper. In the 
process of extracting the failure mode, this paper filters the 
information of the problem finder, model and project stage 
and only uses the concise description.

Failure mode extraction result

This section uses the WordNet-based approach described 
in “Standard failure mode set construction” section to build 
a standardized failure mode set. Table 3 presents a syno-
nym set of standard failure modes. As shown in the table, 
the synonymous failure modes are combined, and a total of 
17 groups are obtained. The number in parentheses after 
each failure mode indicates the support count for the fail-
ure mode. For most groups, the failure mode with the high-
est support count is considered the standard failure mode, 
which is the most commonly used expression for inputting 
the problem from different quality departments. For some 
groups, although some failure modes have the highest sup-
port count, the experts judge the other failure modes in the 
group as the standard failure mode. For example, in group 
12, “aroma,” “smell,” and “odor” indicate that the seat emits 
an unusual smell. Although “smell” has the highest sup-
port count, “odor” is a more professional expression, so it 
is adopted as the standard failure mode of this group. The 
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support count of the standard failure mode will be the sum 
of support count of the synonymous failure modes in each 
group. The standard failure modes of seat module presented 
in Table 3 are not only applicable in company A but are also 

an important reference for all vehicle manufacturers and cor-
responding seat suppliers.

After the failure mode mining of 495 seat quality prob-
lem records, a total of 57 types of failure modes were 

Table 1   Component and failure mode association mining algorithm

Algorithm 1 CF matrix mining (CFMM)
Input: CW , FW , TW
Output: CF .

1 for 1s← to l do for each problem title
2 for 1i← to n do for each component
3 [ ] ( ) ( )1 Tp i TW s,: CW i,:− ← × The number of identical words in component and title.
4 end for
5 find i α← s.t. [ ] [ ]1p α max p n− ←

6 if the number of the maximum value in [ ]p n is greater than one do

7 find 'α α← s.t.
11 '

ee
ατα ττ τ

cw min cw
==

←∑ ∑ then the component that has the fewest words

8 [ ]1 'x s - α←

9 else [ ]1x s - α←
10 end if
11 return [ ] [ ] [ ]{ }0 1 1x x x l -CX c ,c , ,c←

12 for each [ ]x kc CX∈ do

13 [ ] [ ]x k x kc c .count← + +

14 for 1j← to m do  for each failure mode

15 [ ] ( ) ( )Tq j 1 TW s,: FW j,:− ← × the number of identical words in failure mode and title

16 end for
17 find j β← s.t. [ ]1q β max q[m]− ←

18 if the number of the maximum value in [ ]q m is greater than one do

19 find 'β β← s.t. 11 '

ee
ατα ττ τ

fw min fw
==

←∑ ∑ then the failure mode that has the fewest words

20 [ ]1 'y s - β←

21 else [ ]1y s - β←
22 end if
23 return [ ] [ ] [ ]{ }0 1 1y y y l -FY f , f , , f←

24 for each [ ]y kf FY∈ do

25 [ ] [ ]y k y kf f .count← + +

26 end for
27 return [ ] [ ] [ ] [ ] [ ] [ ]{ }0 0 1 1 1 1x y x y x l - y lD cf ,cf , ,cf −←

28 for each [ ] [ ]x k y kcf D∈ do

29 [ ] [ ] [ ] [ ]x k y k x k y kcf cf .count← + +

30 end for
31 for each ij nmcf CF∈ do

32 If ijcf D∈

33 ij ijcf cf .count← + +

34 else 0ijcf ←
35 end if
36 end for
37 return nmCF
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recognized. Due to space constraint, this paper only dis-
plays in Fig. 2 the failure modes that occurred more than 
six times. As shown in Fig. 2, “noise”, “wavy”, “defect”, 
“gap”, and “function defect” are the top five failure 
modes. This chart is a kind of Pareto Chart, the statistics 
in this chart will be a guide for the managers of quality 

management. According to Fig. 2, the quality managers 
will identify the main failure modes that occurred on seat 
module and perhaps take some priority measures to solve 
these failure modes to improve key performance indicator 
(KPI) such as defects per 100 units (DPU). In this way, we 

Table 2   A portion of the seat assembly

System Component

Front seat assembly Seat rail/seat armrest/seat backrest/headrest/covers/finishers/seat heating/first aid box
Rear seat assembly Supports/covers/headrest/center armrest/ski bag/finishers/seat heating
Seat belt system Seat belt/belt height adjuster/belt tensioner/belt buckle/end fittings
Child restraint system Child seat impact table/child seat height adjustment/child seat footrest/ISOFIX

Table 3   The Standard failure 
mode set

No Synonymous failure mode set with support count Standard failure mode

1 Squeaking (6), knocking (0), creaking (2), sound (0), rattle 
(11), noise (109)

Noise (128)

2 Failure (3), malfunction (6), defect (55) Defect (64)
3 Wrinkle (12), wavy (55) Wavy (67)
4 Move (2), movement (2), loose (22) Loose (26)
5 Incorrect (0), fault (2), abnormal (2), wrong (13) Wrong (17)
6 Lose (0), omitted (2), disappear (0), missing (8) Missing (10)
7 Thermal (1), heating (7) Heating (8)
8 Broken (3), damage(7) Damage (10)
9 Thread (2), stitch (2), sewing (2), seam (6) Seam (12)
10 Friction (0), rubbing (4), detrition (0) Rubbing (4)
11 Shake (0), vibration (3) Vibration (3)
12 Aroma (0), smell (4), odor (2), scent (0) Odor (6)
13 Warning (0), alarm (2) Alarm (2)
14 Pollutant (1), contamination (2) Contamination (3)
15 Delamination (0), lamination (2) Lamination (2)
16 Not parallel (1), parallelism (0), misalignment (2), tapered (0), 

wedge (0)
Not parallel (3)

17 Deformed (0), distortion (0), twist (2) Deformed (2)

Fig. 2   The standard failure 
modes and their frequency
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can organize and utilize resources such as personnel and 
equipment more effectively in quality management.

In addition, to compare the method of this paper with 
other methods, we adopt the clustering method and the 
FP-growth algorithm in RapidMiner Studio to extract the 
failure modes from the text. RapidMiner is a drag-and-
drop graphical tool for machine learning, data mining, text 
mining, predictive analysis, and business analysis. It is a 
kind of tool embedded with algorithms such as K-Means 
which is a classical clustering algorithm and FP-growth 
which is a classical algorithm to extract frequent itemsets. 
Some other text mining tools or programming languages 
can also be used to deal with these tasks.

After the pretreatment process, we exploit the K-means 
algorithm for clustering and the squared Euclidean dis-
tance as a measure of distance between samples, which is 
the sum of quadratic differences overall attributes.

K-means clustering requires a prior determination of 
the cluster values Kmax . There is no clear theoretical guid-
ance on how to determine the Kmax . Most scholars use 
the empirical rule for Kmax ≤

√
n , where n is the num-

ber of data objects (Rezaee et al. 1998; Limwattanapi-
bool and Arch-Int 2017). Therefore, according to the 
method and considering a total of 495 problem records, 

the predetermined category does not exceed 22 categories, 
which means K = 22.

Table 4 shows the clustering results for all quality prob-
lem text records. The descriptive terminologies in the table 
are representative terms for a cluster selected by RapidMiner 
according to the order of TF-IDF of these terms; the absolute 
count is the number of files in the cluster; the coverage is 
the number of documents in the cluster divided by the total 
number of documents in the collection. After judging, some 
of the different clusters are a type of failure mode, but they 
are divided into different clusters. For example, cluster 2, 
cluster 8, cluster 17, and cluster 18, are noise-type failure 
modes. Therefore, we combine these four clusters into one 
cluster and define it as the “noise” failure mode type. Finally, 
we merge the 22 clusters into 18 failure modes and add the 
same cluster counts as the count of the failure modes.

Furthermore, this paper also uses the FP-growth algo-
rithm in RapidMiner to extract the frequent failure mode 
set. In this part, the FP-growth algorithm is used to extract 
frequent itemsets. To eliminate the infrequent itemsets, the 
minimum support was set to 0.02, where minimum sup-
port = (number of occurrences of an itemset)/(size of the 
example set). After manual pruning, RapidMiner extracted 
a total of 495 failure modes for 71 categories.

Table 4   Failure mode extraction results with the K-means clustering method

Cluster Absolute 
count

Coverage (%) Descriptive terminologies Failure mode type Failure mode 
count

New 
cluster 
number

Cluster 0 8 1.6 Malfunction, without, omit Malfunction 8 C_0
Cluster 1 20 4.0 Loose, screw, easy, trim Loose 20 C_1
Cluster 2 56 11.3 Noise Noise 160 C_2
Cluster 8 90 18.2 Noise, squeak,, drive
Cluster 17 11 2.2 Rattle, noise, biw
Cluster 18 3 0.6 Guide, damage, noise
Cluster 3 24 4.8 Gap, misalign, taper Gap 39 C_3
Cluster 10 15 3.0 And, between, gap, seal
Cluster 4 14 2.8 Not, accept, smell Smell 14 C_4
Cluster 5 13 2.6 Wrong, decor, direct Wrong 13 C_5
Cluster 6 43 8.7 Scratch, damage, stuck, touch Scratch 43 C_6
Cluster 7 12 2.4 Cannot, open, adjust Cannot open 12 C_7
Cluster 9 8 1.6 Hole, outer, close Hole 8 C_8
Cluster 11 51 10.3 Wavy Wavy 51 C_9
Cluster 12 15 3.0 Material, defect Material defect 15 C_10
Cluster 13 22 4.4 Adjust, function, noise, defect Adjust defect 22 C_11
Cluster 14 12 2.4 Wrinkle, area, edge Wrinkle 12 C_12
Cluster 15 13 2.6 Fall, off, mechanism Fall off 13 C_13
Cluster 16 10 2.0 Miss, label, inform Missing 10 C_14
Cluster 19 12 2.4 Nok, fit, corner Fit nok 12 C_15
Cluster 20 11 2.2 Offset, between, and, sit Offset 11 C_16
Cluster 21 32 6.5 Function, defect, heat Function defect 32 C_17
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Table 5 shows the categories and number of failure modes 
extracted by these three methods. As we can see, our method 
extracts 57 failure modes categories, which can yield more 
failure mode categories than the clustering method but 
fewer than the FP-growth method. For the frequent item-
sets extracted by FP-growth, there are some failure modes 
described with different words but the same failure mode. 
For example, FP-growth extracts “noise” with a support 
count of 109 and “rattle” with a support count of 11, which 
should be the same failure mode according to the domain 
experts. Another example will be “wavy” with support count 
of 55 and “wrinkle” with the support count of 12, but both 
of them means the wavy of the seat surface. In these 71 
failure modes categories extracted by FP-growth, there are 
some synonyms, but they are not combined and standard-
ized. Based on these failure mode set, the users will be con-
fused when the select words to describe the failure modes. 
However, our method not only extracts frequent itemsets 
of failure modes but also builds up the synonyms of failure 
modes based on WordNet. At the same time, the problem 
titles are always written by a short text, the matrix repre-
sented by the vector space model will be sparse. Thus it 
is not easy to cluster the similar text in the same group by 
cluster algorithms, and sometimes different text will be clus-
tered into one group. As shown in Table 5, “scratch,” “dam-
age,” “stuck,” and “touch” are clustered in one group by the 
clustering algorithm, which should be the different failure 
modes. At the same time, “noise” distributed in cluster 2, 8, 
17, and 18. The clustering result is not so satisfactory. On 
the whole, our method can obtain a variety of high-quality 
failure mode sets.

The failure modes with support count greater than ten are 
selected and presented in Fig. 3 due to the limited space. The 
number of failure modes extracted by these three methods 
is compared. As shown in Fig. 3, most of the failure modes 
obtained by our method are the highest. However, for partial 
failure modes such as “noise,” the clustering method obtains 
the largest number, mainly because the clustering result is 
not particularly accurate.

Component‑failure mode matrix construction result

In this section, we use the CFMM algorithm in “Com-
ponent-failure mode matrix mining algorithm” section to 
mine the association matrix between the seat components 
and the failure modes from the set of quality problem 

titles. The algorithm effectively identifies 110 component 
categories for a total of 495 seat components from all the 
quality problems. The identified useful failure modes are 
57 categories. Similarly, the seat components that appear 
more than twice are presented in Fig. 4.

As shown in Fig. 4, “seat backrest,” “seat,” “seat belt,” 
“seat headrest,” and “seat cover” are the top-five most 
popular seat components. In the actual situation, the com-
ponent described by “seat” is said to be the complete seat 
in the module structure. However, it is possible that some 
employees did not specify specific components when 
entering data.

As mentioned earlier, the number of components catego-
ries extracted is 110, and the failure mode category is 57. 
That is, the CF matrix is a 110*57-dimensional matrix. In 
this matrix, there are 266 nonzero items (CF combinations), 
and the total number of all failure modes that have occurred 
for all components is 495. Because the matrix obtained by 
the CFMM algorithm cannot be presented, we use Table 6 
as an example to specify the CF matrix.

From the table, we can see that the matrix is a three-
by-four dimensional matrix. In this matrix, there are five 
nonzero items, which means that the CF combinations have 
occurred five times. They are “seat belt broken,” “seat belt 
noise,” “seat belt stuck,” “seat backrest wavy” and “cup 
holder noise.” As shown in the table, the total number of 
failure modes for all components is eleven.

This paper also uses the FP-growth algorithm in Rapid-
Miner to extract components and failure mode frequent 
itemsets. The minimum support is set to 0.02 to eliminate 
itemsets that do not occur frequently. After manual pruning, 
the FP-growth algorithm in RapidMiner extracts 50 catego-
ries of CF combinations. The sum of the support count of 
all combinations is 188. Among these 50 categories of CF 
combinations, there are 14 components categories and 27 
failure modes categories. According to this result, the CF 
matrix whose size will be 14*27 can be constructed. Table 7 

Table 5   Comparison of failure modes extracted by three methods

FP-growth K-means clustering Our method

Failure mode catego-
ries

71 18 57
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Fig. 3   Comparison of the number of failure modes obtained by the 
three methods
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presents the differences between the CF combination mined 
by the CFMM method and the FP-growth algorithm.

Furthermore, we compare the number of each combina-
tion of CF extracted by the CFMM algorithm and FP-growth 
algorithm. Because the CF matrix obtained by CFMM is 
too large, this paper cannot present all CF combinations. 
Therefore, the CF combinations that occur more than three 
times are presented in Fig. 5.

As shown in Fig. 5, the number of each CF combination 
obtained by the CFMM algorithm is higher than the cor-
responding number obtained by the FP-growth algorithm, 
which shows that the CFMM algorithm proposed can extract 
the CF matrix more effectively.

To visualize the relationship between the seat com-
ponents and the failure modes, we use the data analysis 

platform Gephi to present the CF matrix in the form of a 
network diagram. To better present the effect, we delete 
the isolated components or failure modes in the matrix 
that are not associated with other points. As shown in 
Fig. 6, the components and the failure mode nodes are 
mixed to form a complex connection network. The larger 
the node and the number, the more times the component 
or failure mode occurs. In this network diagram, two 
directly connected nodes must be a component and a fail-
ure mode. Two failure modes or two components cannot 
be connected by one edge. The edge between two nodes 
indicates the number of times the component experienced 
the failure mode. The thicker the edge, the more times the 
component has experienced the failure mode.

Through the above network diagram, quality manage-
ment personnel can have a more macroscopic and direct 
understanding of the failure modes that appear in the 
components. It is very important for supplementing the 
DFMEA at the enterprise level. In addition, the quality 
management personnel can further drill down according 
to Fig. 6 to analyze the composition of the failure modes 
of each component. Therefore, allocating more quality 
management-related resources to those key components 
and failure modes. According to the network diagram, this 
paper takes the seat backrest with the most occurrence as 
an example for further analysis. The drill-down analysis 
result is shown in Fig. 7. The three most common failure 
modes on the seat backrest are “wavy,” “noise” and “gap.” 
For this case, the enlightenment is that quality manage-
ment personnel should focus their attention on these three 
categories of failure modes on the seat backrest.

Fig. 4   Components identified 
by the CFMM algorithm 105 102 
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Table 6   An example of a CF matrix

Components: 3 
Failure modes: 4
Problem sources: 11

Wavy Broken Noise Stuck

Seat belt 0 1 2 1
Seat backrest 3 0 0 0
Cup holder 0 0 4 0

Table 7   Comparison of CF matrix identified by CFMM and FP-
growth algorithm

CF matrix 
dimension

CF combination 
categories

CF com-
bination 
quantity

CFMM 110 × 57 266 495
FP-growth 14 × 27 50 188
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Fig. 5   CF combination extrac-
tion results comparison

31 

25 

20 20 

9 9 8 
6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 4 4 3 4 3 3 3 4 3 3 

0

5

10

15

20

25

30

35

se
at

 b
ac

kr
es

t w
av

y
se

at
 n

oi
se

se
at

 b
ac

kr
es

t n
oi

se
se

at
 w

av
y

se
at

 g
ap

se
at

 b
el

t f
un

ct
io

n 
de

fe
ct

se
at

 b
ac

kr
es

t g
ap

se
at

 b
ac

kr
es

t o
ffs

et
se

at
 c

ov
er

 w
av

y
se

at
 b

ac
kr

es
t l

oo
se

se
at

 fu
nc

tio
n 

de
fe

ct
se

at
 s

qu
ea

k 
no

is
e

se
at

 b
el

t n
oi

se
se

at
 a

dj
us

t n
oi

se
se

at
 fo

am
 o

do
r

se
at

 b
el

t s
tu

ck
se

at
 v

ib
ra

tio
n

se
at

 h
ol

e

cu
p 

ho
ld

er
 n

oi
se

se
at

 b
ac

kr
es

t h
ol

e
se

at
 b

el
t m

at
er

ia
l d

ef
ec

t
se

at
 h

ea
t f

un
ct

io
n 

de
fe

ct

se
at

 lo
os

e
se

at
 b

el
t r

et
ra

ct
or

 n
oi

se

se
at

 w
ro

ng

CFMM FP-growth

se
at

 h
ea

dr
es

t m
ec

ha
ni

sm
 n

oi
se

se
at

 b
ac

kr
es

t u
nl

oc
k 

no
is

e

se
at

 b
el

t b
uc

kl
e 

fu
nc

tio
n 

de
fe

ct

se
at

 b
el

t p
re

 ti
gh

te
n 

de
fe

c t

se
at

 b
ac

kr
es

t h
ea

t f
un

ct
io

n 
de

fe
ct

se
at

 a
dj

us
t f

un
ct

io
n 

de
fe

ct

se
at

 b
ac

kr
es

t m
at

er
ia

l d
ef

ec
t

se
at

 b
ac

kr
es

t f
un

ct
io

n 
de

fe
ct

Fig. 6   Network map between seat components and failure modes
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Conclusions and future work

In this study, we developed a novel systematic approach of 
effectively establishing the design failure-mode and effects 
analysis upon the standardization of failure modes and CF 
matrix mining, to overcome some significant shortcom-
ings of existing methods. Different departments use dif-
ferent vocabulary when describing the same failure mode, 
so building standard failure mode vocabulary can improve 
communication between departments and improve people’s 
understanding of failure modes. However, manually building 
standard failure mode vocabulary is a time-consuming and 
labor-intensive process. At the same time, the CF matrix is 
an essential source of knowledge for DFMEA, while manu-
ally extracting CF matrix from large amounts of different 
documents is also not an easy task.

The focused DFMEA here is a fundamental tool for 
improving quality and enhancing the reliability of products. 
DFMEA is an effective weapon commonly used in product 
design and development to take full account of the problems 
involved in the production, delivery, and use of products, 
to bring all possible problems into the scope of prevention, 
and to prepare preventive means in advance. The creation 
of DFEMA first needs to know which failure modes have 
occurred in the product components. Component-failure 
mode matrix is an important source of knowledge in this 
process. On the one hand, the designers who create DFMEA 
are far away from the production process, lack of under-
standing of the product quality problems that may occur 
in the production process, and the data of product quality 
problems scattered in the production process form an infor-
mation isolated island, which is difficult for designers to 
use. On the other hand, the employees who record prod-
uct quality problems often adopt according to their own 
habits when describing the same problem. Different words 

are used to describe the failure mode, which results in the 
ambiguity of the designer’s perception of failure mode. To 
solve these problems, this paper proposes a method to mine 
failure modes from quality data recorded in a large num-
ber of production processes and construct a standard failure 
mode library as a general language for problem description 
between different departments. On this basis, we use a large 
number of product quality data to construct component-fail-
ure mode matrix automatically and use it as a knowledge 
reference for designers to create DFMEA.

In response to these problems, this paper first extracted a 
list of frequent failure modes from problem-solving data by 
Apriori algorithm, then based on WordNet, find the synony-
mous failure modes from the list, and then build the standard 
failure mode vocabulary. Based upon the standard failure 
mode vocabulary and the existing component set, the qual-
ity problem title with implied failure mode information was 
used as a link, and the CFMM algorithm was examined to 
construct the CF matrix automatically. This paper adopted 
a car company’s seat module as an example to analyze the 
results of the standard failure modes and the effect of the 
CFMM algorithm. The results showed that the failure mode 
extraction method with standardized features could extract 
the failure mode better than the FP-growth and K-means 
clustering methods. At the same time, the CFMM algorithm 
could extract more CF combinations and build a richer set 
of CF matrices than the FP-growth method. Although each 
industry has different domain characteristics, the method in 
this paper is applicable not only to the manufacturing indus-
try but also to other fields that need to use FMEA to ensure 
product and system reliability.

Our theoretical contribution can be in large part reflected 
in the innovative component-failure mode matrix (CFMM) 
algorithm used in the DFMEA construction process. The 
proposed method has several advantages over the existing 

Fig. 7   Seat backrest failure 
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methods: (1) In the construction of standard failure modes, 
the FP-growth approach does not standardize failure modes, 
and many essentially same FMs are computed into differ-
ent FMs, resulting in more significant errors. While the 
K-means clustering method uses rough fields in FM rec-
ognition and extraction, and many of the FMs that should 
have been included are eventually omitted with poor accu-
racy. (2) For developing CFMM, the FP-growth algorithm 
only seeks the correlation between FM and components with 
significant frequency in frequent itemsets, and the coverage 
of FMs is relatively narrow, whereas the CFMM algorithm 
in this paper covers both significant and insignificant FM 
in frequent itemsets, and constructs the correlation matrix 
between standard failure modes and components more com-
pletely with high accuracy.

This paper mined the quality problem title recorded in 
text form, which serves as a concise information represen-
tation that provides important information about failure 
modes. However, in the text of other records such as quality 
problem descriptions, partial failure mode information is 
also included, and it is possible that one description con-
tains multiple failure modes. Identifying failure modes from 
longer texts and building a CF matrix will continue to be 
studied in the future. Due to space limitations, this paper 
only studied the relationship between components and fail-
ure modes. However, in the text of quality problems, the 
causal relationship between failure mode and cause may 
also be implied, and this will also be an important source of 
knowledge for FMEA. Therefore, the relationship between 
failure mode and cause may also be one of the problems 
studied in future research.
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