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Abstract
Machine vision inspection systems are often used for part classification applications to confirm that correct parts are available
in manufacturing or assembly operations. Support vector machines (SVMs) and artificial neural networks (ANNs) are popular
choices for classifiers. These supervised classifiers perform well when developed for specific applications and trained with
known class images. Their drawback is that they cannot be easily applied to different applications without extensive retuning.
Moreover, for the same application, they do not perform well if there are unknown class images. This paper proposes a novel
solution to the above limitations of SVMs and ANNs, with the development of a hybrid approach that combines supervised
and semi-supervised layers. To illustrate its performance, the system is applied to three different small part identification and
sorting applications: (1) solid plastic gears, (2) clear plastic wire connectors and (3) metallic Indian coins. The ability of the
system to work with different applications with minimal tuning and user inputs illustrates its flexibility. The robustness of the
system is demonstrated by its ability to reject unknown class images. Four hybrid classification methods were developed and
tested: (1) SSVM–USVM, (2) USVM–SSVM, (3) USVM–SANN and (4) SANN–USVM. It was found that SANN–USVM
gave the best resultswith an accuracy of over 95% for all three applications.A software package known as FlexMVS for flexible
machine vision system was written to illustrate the hybrid approach that enabled easy execution of the image conditioning,
feature extraction and classification steps. The image library and database used in this study is available at http://my.me.que
ensu.ca/People/Surgenor/Laboratory/Database.html.

Keywords Machine vision (MV) · Part classification · Support vector machines · Artificial neural networks · Flexible
inspection · Identification · Sorting

Introduction

Traditionally, human operators perform the task of part iden-
tification and sorting through manual inspection (Huang and
Pan 2015; Malamas et al. 2003). Under ideal conditions, an
operator can perform well for inspection speeds of up to 20
parts/min (Schoonahd et al. 2007). However, target produc-
tion speeds for automated machinery are typically over 200
part/min (Chauhan and Surgenor 2015). Furthermore, human
performancedrops as operators suffer from fatigue, stress and
lack of concentration for tasks conducted over a long period
of time. Semi-automatic mechanisms are available that can
ease the task for the human operators. For example, the intro-
duction of a rejectionmechanismwherein an operator presses

B Keyur D. Joshi
joshikeyurd@gmail.com

1 Queen’s University, Kingston, ON, Canada

a button on themachine that will reject the part. Regardless, it
has been shown that machine vision (MV)-based inspection
systems can obtain higher accuracy results at higher produc-
tion rates than with people (Batchelor 2012). MV inspection
systems can help industry gain a competitive advantage in
terms of better product quality, higher customer satisfaction
and improved productivity.

The automated sorting of parts is a common application of
MV. Figure 1 illustrates how the application can be divided
into two groups: binary and non-binary. A class in general,
is a set that contains entities with similar properties. Most
sorting applications are binary in nature, where a part is either
accepted (class 1) or rejected (class 2) on the basis of an
easily recognizable feature such as size, shape or color. For
example, Abdullah et al. (2000) used a binary color based
MV system for quality inspection of bakery products. Cao
et al. (2015) performed binary sorting of safety belt pins
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Fig. 1 Two kinds of part sorting, binary and non-binary

using MV. Park (2015) used MV system for binary sorting
of semiconductors.

Sorting applications that are not binary in nature are more
complicated as they requiremore effort in feature recognition
and classification. The range of applications can be wide.
Penaranda et al. (1997) used a color MV system to sort tiles
into five different lots where tiles were of similar color and
visual appearance. Leemans et al. (2002) graded two types of
apples according to their external appearance using MV and
sorted them into four different grades. Tessier et al. (2007)
employed a MV approach to the automated sorting of five
different types of mine ore on conveyor belts, as sorted by
composition (soft, medium or hard) and moisture content
(dry or wet).

As a more targeted non-binary example that involves the
sorting of small parts, Wu et al. (2015) sorted gears into five
different categories using a monocular vision technique. It
included features such as number of holes, number of teeth
and color of the gear. Niklaus and Ulli (2015) dealt with
resistors classification. Shen et al. (2012) addressed bearing
classification. Nilsback and Zisserman (2006) were able to
find the bestmatch for a flower image fromadatabase of other
flowers with visual similarity. Other examples of non-binary
sorting include Akhtar et al. (2013), Nashat et al. (2011)
and Kim et al. (1999) who looked at the sorting of plant
leaves, baked biscuits and solder joints, respectively, using
various techniques including SVM and two stage (2D and
3D) classifiers.

Figure 2 shows a typical MV-based system for inspection.
When a part is in its correct position, one or more cameras
are used to acquire the image of the part for processing using
a computer equipped with special purpose image process-
ing analysis and classification software. The scene under the
camera is well illuminated to highlight a Region of Interest
(ROI). Various types and positions of illumination sources
are possible and the selection of them is application depen-
dent (Yan and Surgenor 2011). Image acquisition hardware
(i.e. camera) conducts the image acquisition and digitization
process, while the vision computing device (i.e. computer)

Fig. 2 A typical MV-based system for inspection

enhances and processes images for extracting useful infor-
mation or template matching. The computer interprets the
processed information and generates output signals for a
resulting action. The action is typically acceptance or rejec-
tion of the part, or if there are multiple types of parts, routing
of the part to the appropriate sorting bin.

A FlexibleMachine Vision System, ‘FlexMVS’ for object
detection and classificationwas developed, trained and tested
for this work. An overview of ‘FlexMVS’ is provided as an
appendix to this paper. The main goal of the research was to
develop a method that could be applied to various applica-
tionswithminimumuser inputs. SupervisedArtificial Neural
Networks (ANNs) and Support VectorMachines (SVMs) are
popular for the task of image classification. They work well
with the application for which they are developed. However,
in their supervised form, performance degrades when images
from an unknown class are introduced. This paper proposes
a novel solution to this limitation with ANNs and SVMs by
developing a hybrid approach that combines supervised and
semi-supervised layers.

The task of image classification is similar to the task of
novelty detection. For example, Piementel et al. (2014) used
the term novelty detection to address the problem of anomaly
detection and outlier detection, which is similar to the prob-
lem addressed by this paper. They reviewed several novelty
detection techniques and grouped them into five categories.
The work of this paper falls into their fourth category, which
is domain-based novelty detection, as it deals with the semi-
supervised SVM technique.

Three applications were selected to test the ability of the
MV-based system to deal with the unknown class problem:
(1) small plastic gears, (2) plastic push-in wire connectors
and (3) metallic Indian coins. Four hybrid methods that were
based on SVMs and ANNs were developed and applied to
the three applications.

An objective measure of the level of difficulty from one
application to the next was obtained with a survey of 14 indi-
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viduals who had experience in the field of machine vision.
More than 84% of respondents agreed that the gear applica-
tion was the easiest to classify, mainly due to their rotational
symmetry, the absence of minor internal patterns and were
uniformly solid gray in color. It was further agreed that the
connector application was more difficult relative to the gear
application, mainly because the connectors were rectangular
in shape (rotational asymmetric) and the body was transpar-
ent plastic. Finally, it was unanimously agreed that the coin
application was the most difficult. The coins had different
levels of wear, possessed internal patterns, were rotationally
asymmetric due to the internal pattern and were similar in
size between denominations.

Related work and FMS

The need for a Flexible Machine Vision (FMV) system,
an MV-based system that can be implemented for differ-
ent applications without extensive retuning or retraining, is
a decades old issue (Wilder 1989). The fact that it is still
an unresolved issue can be attributed to the complexity of
the problem and the observation that multiple MV methods
can achieve the same required performance, but usually only
after extensive tuning. For example, Modi and Bawa (2012)
compared 20 different MVmethods for coin recognition and
concluded they all worked.

FMV systems that have been developed to date have been
only pseudo-flexible, in the sense that they were not tested
on different applications, but instead they were tested on dif-
ferent styles of the same part for the same application. As
an example, Chetima and Payeur (2012) referred to their
approach as ‘automated tuning’ (with MV) and is believed
to be the only paper in recent times that set out to auto-
mate the “initial tuning of a real-time vision-based inspection
system”. But they only applied their binary classification sys-
tem to tortillas and then retuned and retrained the system
for seeded buns of similar geometry and style. As another
example that made use of the word ‘adaptive’, Su and Tarng
(2008) applied an Adaptive Neuro Fuzzy Inference System
(ANFIS) to inspect for surface appearance defects in varis-
tors. Therewere six classes of defects: back qualified, broken,
cracked, front-qualified, printed and dry. The adaptive action
was applied to the selection of the type of membership func-
tion for the ANN.

Wilder (1989) originally referred to the problem as the
need for “adaptive sensing”. Indeed, a number of researchers
have used the word “adaptive” in their work. For example,
Wang et al. (2017) performed adaptive maximum margin
analysis for image recognition. They proposed an adap-
tive maximum margin analysis for dimensionality reduction
that gave the largest margin between different classes. The
mathematical model involved calculating a weighting matrix

that could be adaptively calculated by solving the objec-
tive function. Schlipsing et al. (2014) presented an adaptive
pattern recognition system that worked in real-time for the
video-based analysis of soccer to identify a player’s posi-
tion. There were five classes of player: outfielder team 1
and 2, goalkeeper team 1 and 2 and referee. They used an
adaptive background model for automatic real-time player
segmentation. They considered their model robust because
experiments were conducted under different weather and
ground textures conditions. Li et al. (2013) presented locally
adaptive decision functions for person identity verification.
For a decision function, they adaptively prepared a local
threshold rule. The task was to verify if two images were
of the same person. This is similar to a binary classification
problem in the sense that the second image would be classi-
fied as either the same person (accept) or not the same person
(reject). Li andGuo (2013) proposed an adaptive active learn-
ing algorithm for image classification with 5 and 10 classes
from three public databases: MIT Urban and Natural Scene,
Caltech101 and VOC 2007. They set out to select the best
weighting parameter from a range of pre-defined values,
thereby making it adaptive. They validated their algorithm
by comparing it with four different approaches (near optimal,
fixed combination, most uncertainty and random sampling)
and concluded that their algorithm provided best results.

In spite of the examples in the previous paragraph, the
term ‘adaptive’ is not considered appropriate for MV-based
applications. In the automatic control system context, ‘adap-
tive’ refers to a system that continuously adapts to changes
in the operating conditions of a process. The term ‘flexi-
ble’ is used instead for this work as it is considered more
appropriate. ‘Flexible’ in the context of MV-based system is
in line with the definition of a flexible manufacturing sys-
tem (FMS). An FMS is a manufacturing system that can be
changed to produce new parts types and/or can change the
order of operations performed on a part, without having to
make a significant physical changes to the machine (Rosati
et al. 2013).

‘Flexible’ systems are changed only once as part of the
set-up procedure for a manufacturing process. For exam-
ple, when a switch is made to a new product type. It is in
this context that the phrase flexible machine vision (FMV) is
introduced. A system is combination of hardware(s) and/or
software(s). Small systems or subsystems combine together
and formabigger system.AnFMVsystem is a subsystem that
use generalized hardware and developed software package
that can work with different applications. The FMV system
is a part of a bigger system, Flexible Manufacturing Sys-
tem (FMS) or Flexible Assembly System (FAS) wherein a
change in application can be handled by changing some sys-
tem inputs. If an MV system is not truly flexible, it reduces
the efficiency of the FMS/FAS and will likely lead to a bot-
tleneck subsystem. In the context of FAS, Rosati et al. (2013)
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proposed constitutional elements, functioning principles and
working cycle of a fully flexible assembly system (F-FAS).
They were of the opinion that flexibility can be referred to
as the ability to handle a wide variety of part types, con-
duct model changeovers rapidly and easily, simultaneously
process multiple parts/models and quickly respond to part
design changes.

Papers can be found on the subject of FMS that useMV as
a component in a larger system. For example, Nerakae et al.
(2016) integrated an MV system with a robotic system for
a pick and place operation that assembled square, triangu-
lar and circular parts with various translational and angular
positions: above, center, below, 30°, 60° and 90°. They used
NI Vision Builder (VB) and LabVIEW NI Vision software.
The work involved controlling movement of a robotic arm
that used input from theMVsystem.Hosseininia et al. (2016)
introduced flexible automation withMV for a porcelain edge
polishing application. Specifically, MV was used to detect
the position and orientation of circular and rectangular bis-
cuits (porcelain dishes) so that a robot arm could perform the
polishing operation at the correct position and orientation.
Tapilouw et al. (2015) developed a white light triangula-
tion sensor for flexible inspection system to measure surface
depth profile with accuracy of 1.15 µm.

Weigl et al. (2016) improved performance of surface
inspection by online active learning and flexible classifier
updates. They proposed active learning as an additional
component to the conventional inspection system. This com-
ponent continuously updated the classifier with the help of
user interaction. The user interaction involved re-labelling of
samples after the predefined number of samples were classi-
fied into predicted classes. The classifier was then re-trained
with a combination of samples from the initial training set and
the newly labeled samples. Chen and Perng (2016) proposed
an automatic inspection system to detect defects on ICmold-
ing surface. They achieved 94.2% accuracy rate by using a
camera based vision system. Sun et al. (2016) implemented
an MV system for inspection to detect four major defects
in the manufactured using ANN. The system gave 98.5%
accuracy when employed back propagation neural networks.

As will be shown in “Conclusions and future work” sec-
tion, themethods reviewed above could not achieve the target
accuracyof 95%with the presenceof unknown images and/or
meet the requirement for ease of tuning. It will be shown that
the proposed hybrid approach does work with the three dif-
ferent small part applications under consideration.

Coin classification

The Indian coin application in this paper was identified as
particularly challenging. Thus, it is considered appropriate
to review papers that worked on the problem of coin recog-
nition. For example, Cooray andFernando (2011) described a

coin counting system that used a webcam to capture pictures
of Sri Lankan coins. Fukumi et al. (1992) proposed an ANN
pattern recognition system for Japanese coins which was
insensitive to rotation of the image. Modi (2011) obtained
81%average recognition rate by using intensity values of 100
pixels as a feature vector input to an ANN for Indian coins.
To generate the feature vector, the coin images were shrunk
in size to 10×10 pixels. Modi and Bawa (2011) increased
the average recognition rate to 98% when an image size of
20×20 pixels was used. The images were rotated from 0°
to 360° in 5° increments. Both obverse and reverse side of
Indian coins were used. It should be noted that they have
used 400 features (i.e. a large number). By using a multi-
level counter propagation neural network, Velu et al. (2011)
obtained a 99.5% average recognition rate for Indian coins.

The pattern variability within a single class due to wear,
rotationally asymmetric patterns and overlapping range of
acceptable diameters makes the coin application particularly
challenging. Furthermore, the introduction of counterfeit
coins increases the level of difficulty still further. In thiswork,
CAN 25 cent coins were introduced as a counterfeits due to
their size similarity with the Indian coins. An attempt to use
VB on this problem was only able to achieve an accuracy of
79% with a database consisting of good and medium qual-
ity coins. Furthermore, when Modi’s method was applied
to the problem, the achievable accuracy was only 60% (not
98% as reported in Modi and Bawa 2011), mainly due to
the introduction of a realistic database (Joshi et al. 2016).
It was then suggested that a Deep Neural Net (DNN) might
be able to achieve the target performance of 95% (Bianchini
and Scarselli 2014; Schmidhuber 2014). However, DNNwas
not considered for this application for three reasons: (1) they
are not transparent in the sense that finding the cause of the
misclassification is difficult, (2) they require a large database
that may result in overfitting and (3) they are susceptible to
gross errors (Nguyen et al. 2015; Szegedy et al. 2015).

Rationale for the hybrid approach

Upon a reviewof the literature, it was concluded that theoreti-
cally a hybrid SVM/ANNapproach that uses both supervised
and semi-supervised machine learning algorithms might be
able to meet the requirement that the system classify parts
into multiple known classes and reject any unknown classes.
The developed system must be able to learn all the classes
presented in training, but it must also be able to learn to
reject classes not covered in training. ANN is most com-
monly applied as a supervised machine learning algorithm
and is unable to deal with unknown classes. SVM is most
commonly applied as a semi-supervised machine learning
algorithm and is unable to differentiate between multiple
known classes. It is hypothesized that when used together,
they should be able to handle both multiple known and
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unknown classes. This paper sets out to test this hypothesis,
and to determine the best combination of SVM and ANN
algorithms, as applied to the problem of small parts inspec-
tion.

Experimental setup and image collection

The experimental setup is shown in Fig. 3. The main com-
ponents are seen to be a camera and a ring light as mounted
on a linear belt conveyor. The part (in this case a connec-
tor) appears as the bright spot directly under the camera. The
conveyor was a Dorner 2200 series with two key features:
(1) there were no sidewalls, which enabled flexible light-
ing and camera arrangements, and (2) conveyor speed range
was 0.5–50 m/min. The entire apparatus was placed in an
enclosure to ensure uniform lighting conditions. The natural
color of the conveyor belt was yellow. A black background
was applied to maximize the differentiation between the part
being inspected and the conveyor surface.

The camera was a monochrome smart CCD camera
(8.5 mm sensor) from NI that could provide 60 frames per
second (fps) with a resolution of 640 × 480 pixels. This
industrial camera can be used for on-line classification of
moving parts as it contains a built-in processor that can
run programs developed off-line in NI Vision Builder or
VB. However, VB was only used for image acquisition in
this application. Image processing and classification was
conducted off-line using the Image Processing Toolbox in
MATLAB to enable the development and testing of novel
classificationmethods. The lens was fromKowawith a 6mm
focal length. Aside from its focal length, it was selected
because it had markings on the lens for focus and aperture
and a locking screw.Most lens do not havemarkings because
they are supposed to work under fixed operating conditions.
Nevertheless, given the different nature of the applications for
this paper, it was thought that different settings on the lens
might be required. The need to change the settings, however,
did not emerge.

In preliminary experiments (Joshi et al. 2016), a diffused
light produced better quality images as compared to those
with a direct light. Both bright field and dark field light-
ing approaches were subsequently tested for the Indian coin
application. Dark field provided better results as compared to
bright field, as it tended to minimize the shifting of shadows
generated by the internal surface pattern. With this result in
hand, an industrial grade dark field ring light was obtained.
Specifically, an RL1660 dark field LED-based illuminator
from Advanced Illumination was used to provide uniform
light in the central field of view (FOV). An orange-red color
(wavelength 625 nm) was selected over a red color (wave-
length 660 nm) as the smart camera’s sensitivity to that
wavelength was higher.

For all experiments, data was collected when the parts
and conveyor were stationary. Data collection of moving
parts and conveyor will be considered as future work. It
was observed that if the camera fps is high enough, moving
images would appear as stationary images. Specifically, the
images did not begin to visibly ‘blur’ until speed exceeded
400 parts/min (conveyor speed 18 m/min, camera speed 55
fps). The target speed for this application was 100 parts/min.
Images were saved from the smart camera directly to the
computer by File Transfer Protocol (FTP) over the internet.
The internal memory facility on the camera was not used.

Design of the image database

The design of the image database involved two steps: (1)
setup original image database and (2) prepare conditioned
image database. The basic requirement of the system is to be
able to classify multiple classes and reject an unknown class.
Following the practice of Wu et al. (2015), it was decided
that working with four classes per application would satisfy
the “multiple” requirement, to be used in both training and
testing. A fifth class was created to be used for testing only.
This class is referred to as the others or ‘OT’ class. Training
for OT is not possible because it involves a wide range of
images with different properties and characteristics. The OT
class covers true negatives (correctly rejected), false neg-
atives (incorrectly rejected), counterfeits and any part that
does not belong to the four known classes (i.e. unknown).

Figure 4 shows the five selected classes for the gear (top),
connector (middle) and coin (bottom) applications, with the
‘test only’ class as the ‘others’ (OT) class. The five gear
classes are: 40 teeth spur with 12 holes, 24 teeth spur with
internal clutch, 24 teeth crown/bevel front side, 24 teeth
crown/bevel back side and 16 teeth spur (as the unknown).
The five connector classes are: 4 pin front side, 4 pin back
side, 3 pin front side, 3 pin back side and 2 pin one side (as
the unknown). The known coin classes are the reverse sides
of 1 |, 2 |, 5 |, 10 | Indian coins and the 25 cent Canadian
coin (as the unknown). By convention, the “reverse” side of
a coin is the side that shows a number. The parts from these
three applications can all fit in an area of 50 mm×50 mm.

Based upon previous experience with the coin application
(Joshi et al. 2016), different images were used for training
and testing, as this was consideredmore realistic. 30 physical
parts were available for each class; 25 were used for training
and 5 were used for testing. One original image was acquired
for each part (taken at a random orientation). Figure 5 illus-
trates the 30 original images for a given class from each
application: 24 teeth crown gear (top), 4 pin front side con-
nector (middle) and 5 | coin (bottom). There were a total of
125 images for each application (25 samples/class×4 classes
for training and 5 samples/class×5 classes for testing). For
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Fig. 3 Experimental setup for
three applications

Fig. 4 The five classes for the three applications (Brightness and sharp-
ness increased by 50% for this paper)

details on the rationale for this database design, refer Joshi
(2018).

The FOV of the camera was larger than size of the parts.
Due to the random nature of their placement, each part was

not necessarily in the center of the FOV when its image was
taken. However, the system did guarantee that the part would
be in the FOV. The size of each original image was 640×
480 pixels. This size is too large for speedy analysis and it
also contains irrelevant background information. For faster
analysis, a smaller centered image was adopted. Thus, as
the image conditioning (IC) step, the following actions were
taken on each original image:

1. Cropped to reduce size
2. Translated to center part in image
3. Rotated by 18° increments to generate 20 versions of

each original image

This third IC step results in a total of 2000 images for
training (100×20) and 500 images for testing (25×20), for
each application. The final size of the images is a user input.
The following guidelines can be used for size selection:

• Largest part must fit within a 480×480 pixel square with
a minimum clearance (black background) of 15 pixels
around the outer boundary of the part in the image. If
the part does not fit in this square, increase the working
distance between camera and the part, followed by focal
adjustments, to get the part inside the 480×480 square.

• There can be too much clearance. There can be too little
clearance. If the clearance is more than necessary, the size
of the part will be small and the system will have less
information about the part. If the clearance is less than
necessary, cropping might add ‘0’s to the image (depends
on the dimension given by user). This is not desired, as it
might change the shade of the background.

• Conditioned images will be square only. Therefore, user
needs to enter only one dimension of the conditioned
image.Maximumvalueuser can enter is 480.Valuebeyond
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Fig. 5 Sample of 30 original images from a single class for each of the
three applications. (Brightness and sharpness increased by 50% for this
paper)

480 is not desirable. If the user enters value more than
640, system will not generate square conditioned image
because it cannot make square beyond 640 that is original
maximum dimension of the source image.

• A value less than 100 pixels is not preferred as it will
encourage smaller parts or in the case of the big part will
be cropped (part will not be fully visible). Therefore, min-
imum value set to 100.

• Default value of the dimension is 350 pixels. However, this
will not guarantee reasonable performance as selection of
this value depends on the largest part from the original
images.

Once a user enters the dimension, system will start condi-
tioning training and testing images. This procedure will take
time depending on the number of images and class. After
completion of IC, FlexMVS will prompt for another inputs
from the user for feature extraction purposes. Figure 6 dis-
plays 20 conditioned images from a single original image for
three applications when user provided default value of 350
pixels as the size of conditioned image. These conditioned
images will be used to extract features.

Feature selection and extraction

Feature selection and extraction are critical steps because the
value of the feature is the basis for the classification decision.
For the best performance, features should be non-redundant,
consistent within the class and encapsulate important details
of a part. There are two types of features: global and local.
Global features are extracted from the whole image and
represented by a single feature vector. Local features are
calculated from the different points of interest within the
image. There are several local feature detectors available,
two of the most popular are SIFT (scale invariant feature
transform) and SURF (speeded up robust features). Once the
points of interest are identified, information from them and
their surroundings can be extracted and converted in high
dimensional feature vectors. Local features are often com-
putationally expensive.

Feature selection

Features were selected after considering the common proper-
ties of the parts being studied, such as size and shape. ‘Color’
is an important feature for a given application when it is
the significant differentiator between classes. However, in
the three applications considered for this work, color was
not a significant differentiator. Therefore, color-based fea-
tures were not selected. This does not mean that the selected
features were not influenced by the color. Intensity-based
features are dominated by shades of grey, which is a measure
of color.

Tuytelaars and Mikolajczyk (2008) in their survey of
feature detectors, provide a few guidelines for feature selec-
tion. One important guideline addressed was the level of
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Fig. 6 Sample of 20 conditioned images from an original image for each
of the three applications. (Brightness and sharpness increased by 50%
for this paper)

invariance. As the level of invariance is increased, the dis-
criminative power of a feature is decreased. This implies that
the level of invariance should be as low as possible. On the

other hand, a low level of invariance cannot compensate for
observed variability.

When the number of selected features is large, the non-
relevant features can negatively impact the training of the
model. Blum and Langley (1997) first pointed out that non-
relevant features reduce the rate of learning and require more
training to reach a given accuracy. More recently, Chetima
and Payeur (2008) used 82 features to decide whether to
accept or reject a sample. To remove non-relevant features,
they employed four different feature selection methods. One
of their methods known as RELIEF reduced the number of
features from 82 to 10. Dash and Liu (2003) focused on
inconsistency-based feature selection in order to minimize
the number of features. In one of their datasets termed as
Splice, they reduced the number of features from 60 to 9. Hua
et al. (2005) demonstrated that for a sample size of 200, per-
ceptron and linear/polynomial SVM-based linear/nonlinear
model would have an optimal feature size in between 10 and
30. In this paper, the sample size is 500. Thus, the 14 fea-
tures used in this paper is not considered a large number and
is consistent with the range recommended by Hua et al. and
as used by others.

Out of the 14 features considered in this work, the first
5 are global in that they work with the whole image. These
global features are: average intensity (AVIN), black to white
pixels ratio (BWR), circularity (CIRC), diameter (DIAM)
and frequency weighted intensity (KAVG). The remaining
9 features are local in that information from only the pixels
surrounding the individual points of interest are used. How-
ever when combined, these 9 features become global because
every pixel in the conditioned image was utilized to get their
values. Individually, these 9 features (labelled I1 to I9) are
intensity values of the local image (3×3 pixels).

These features are selected considering the three applica-
tions at hand. Some features are dominant for one application
while other features are dominant for another application.
For example, DIAM is dominant for coins whereas BWR is
dominant for connectors. Itwas found that the combination of
these 14 features was able to provide the target performance
for all three applications.

In summary, in order to generate the conditioned image
database, the user had to provide the following inputs:

(1) Size of conditioned image in pixels
(2) Size of largest part in pixels
(3) Size of smallest part in pixels

Feature extraction

With the conditioned image database in place, the next step
is to start extracting features from the training image dataset.
The system will ask the user to select class wise conditioned
training images for labelling purposes wherein the user can
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specify the class name. A feature vector is prepared for each
image. If there are 500 images of a given class in the training
dataset, 500 feature vectors prepared. The same procedure
employed for all classes. Thus, for a training dataset with
four classes, 2000 (500 feature vectors×4 classes) feature
vectors prepared. After all the feature vectors are generated,
the system will ask the user to select class wise conditioned
testing images for labelling purposes, wherein the user can
again specify the class name. However, in this case, change
in the class name will only be in the 5th (OT) class. The
testing dataset labelled in order to enable calculation of the
performance measures.

The calculated feature values are continuous in nature. An
8-bit discretization procedure applied to reduce complexity
and ensure that when input to the classifier, all feature values
were discrete in nature with a range of 1–256. This approach
is analogous to having a histogram of 256 bins. A higher
than 8-bit discretization would not significantly reduce dis-
cretization error. A lower than 8-bit discretization may not
provide sufficient range for the feature. For a given feature,
discretization of the training features is straightforward. The
image with the lowest feature value is assigned to the 1st bin
and the image with the highest feature value is assigned to
the 256th bin. The intermediate feature values are scaled and
assigned to their bins, respectively. However, discretization
of the testing features is not as straightforward.

When discretizing testing features, information must be
retrieved from the training images for the range of the feature
values. The Eq. (1) is used to interpolate the discretized value
of a feature for a testing image:

Ftest
1D � Round

{
1 +

(
Ftest
1C − Ftrain

1Cmin

)(
255

Ftrain
1Cmax − Ftrain

1Cmin

)}

(1)

where Ftest
1D �discrete value of the test image for feature

F1, Ftest
1C �continuous value of the test image for feature

F1, Ftrain
1Cmin �minimum value of continuous feature F1 from

training dataset of all classes and Ftrain
1Cmax �maximum value

of continuous feature F1 from training dataset of all classes.
The Round function rounds to the nearest integer, with dec-
imal point 5 rounded up.

If the discrete (interpolated) value of a feature for a test-
ing image is outside the range of the training discrete feature
dataset, it will be clipped to the minimum or maximum value
of the training discrete feature dataset. Once all the discrete
values are obtained for the training and testing datasets, the
next task is to normalize these in between 0 and 1. The nor-
malizing procedure is the same for both: training and testing
datasets. The following equation is used to calculate the nor-
malized value of a discrete feature:

F1N � F1D ∗ 0.00390625 (2)

where F1N is the normalized value of the feature F1, F1D
is the discretized value of the continuous feature F1 and
0.00390625 (=1/256th) is the resolution obtained for an 8-
bit normalization inspired from 8-bit discretization. By using
Eq. (2), normalized features range from [0.00390625, 1] in
steps of 0.00390625. The output of this procedure is class
wise normalized feature values. These normalized values
are used in the next step for developing hybrid models and
thereby predicting the class for a test image.

The normalized values of the 14 features for the images
in the training dataset for the gear application are plotted by
class in Fig. 7. The top two plots show the actual feature
values for all 2000 images of the four classes. The actual
value plots illustrate the degree of features overlap between
classes. The bottom two plots depict the median feature val-
ues for the four classes. The median value plots illustrate the
degree of separation between features by class, as well as
the target feature values for a test image to be considered as
one of the classes. From Fig. 7 actual value plots, one can
compare the feature values between classes. For example,
the I5 value of C1 is always less than the I5 value of C2 and
the BWR value of C1 is always less than the BWR values of
the other classes. The utility of the median value plots will
become more apparent when dealing with the more difficult
connector and coin applications, where the degree of overlap
between classes with the actual value plots becomes more
evident.

As highlighted in Fig. 7, I5 is the best feature for the gear
application as it provides the clearest differentiation between
the 4 classes. There is a fair degree of overlap of the values
with the other features. This does not mean that I5 is the only
feature that should be used. All features become important
in the testing phase with the introduction of the OT class. For
an OT part to get accepted in the testing stage, it must have
values of all 14 features within an acceptable range. Figure 7
can also be used to identify the least effective features. For
example, DIAM is the worst feature because according to the
actual values plots, there is a high degree of overlap between
classes C2, C3 and C4 (highlighted in Fig. 7). Its closest
competitor is CIRC that also has overlap between classes
C2, C3 and C4. Thus, the prediction is that both CIRC and
DIAMwill be the least effective features for this application.

Figure 8 gives the normalized values of the 14 features by
class of the training image dataset for the connector applica-
tion. As highlighted in the figure, BWR is the best feature for
this application as there is no overlap between classes (from
actual value plots). There is clear overlap for the other 13
features. However, median value plots can help for finding
least effective features. In Fig. 8, the least effective feature
is still DIAM (highlighted) as according to both (actual and
median value) plots. There is considerable amount of overlap
between C1 and C2, and C3 and C4. Its closest competitor
is CIRC, where the median value plot shows considerable
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Fig. 7 Gear feature values for training image dataset by class (with I5
in green and DIAM in red) (Color figure online)

amount of overlap between Class 1 and 3 but Class 2 and 4
were ambiguously separated.

An analysis was carried out from both (actual and median
value) plots for comparison between any possible combina-
tions of only two classes. It turned out that out of 14 features,
12 features help in discriminating between C4 versus C1; 4
features help in discriminating between C1 versus C2 and
C3 versus C4. On this basis, two predictions can be made
about the connector application: (a) C1 versus C4 will be the
easiest to differentiate between and (b) C1 versus C2 and C3
versus C4 will be the hardest to differentiate between. This
meant that the system will be more confused between C1
versus C2 and C3 versus C4 relative to the C1 and C4.

Figure 9 gives the normalized values of the 14 features by
class of the training image dataset for the coin application.
The fact that there is not one feature that can clearly differ-
entiate between the classes confirms the difficult nature of
this application. It is the combination of these features that
provided the necessary differentiation between classes in the

Fig. 8 Connector feature values for training image dataset by class (with
BWR in green and DIAM in red) (Color figure online)

testing stage. However, it is possible to make some predic-
tions for the coin application from this figure.

The best features for the coin application need to be deter-
mined from the median value plots of Fig. 9, as the actual
value plots are seen to overlap considerably for all features.
The most effective features as seen to be AVIN and I5, as
the two features whose median values are distinctly different
(highlighted in Fig. 9). By contrast, KAVG and I9 are two
features whose median values are very close and provide the
least degree of discrimination (also highlighted in Fig. 9).

Classificationmethods

As the difficulty of an application increases, it will demand
more conservative and stricter ways to get the target perfor-
mance. Ideally, the number of False Positives (FPs) and False
Negatives (FNs) should be minimized. However, in most
part-manufacturing applications, FNs are preferred over FPs,
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Fig. 9 Coin feature values for training image dataset by class (with
AVIN and I5 in green, KAVG and I9 in red) (Color figure online)

because one can always recycle incorrectly rejected good
parts (FNs), but one cannot permit incorrect acceptance of
faulty parts (FPs). Therefore, the target was to get 0% FPs
along with accuracy of more than 95%.

Four classification methods were developed and tested for
the three applications. All methods are hybrid in the sense
that they use both supervised and semi-supervised machine
learning algorithms, in order to meet the requirement that
the system be able to classify parts into multiple (known)
classes and reject any unknown class. The developed system
must learn all the classes presented in training, but must also
learn to ‘reject’ classes not covered in training. The reject
class is a subset of the OT class, which is defined earlier in
“Design of the image database” section, includes a range of
possibilities (i.e. FNs, TNs, counterfeits). Although, it is not
possible to train for the OT class, one must still be able to
test and classify images as OT.

In the procedure of classification, the system requires
labelled images that the user has provided in the feature
extraction step. Details of the four hybrid methods will

be covered in next paragraphs. All four methods were
implemented by using a combination of MATLAB’s Image
Processing, Statistics and Machine Learning, Neural Net-
work and Computer Vision toolboxes. Each method was a
combination of two of three different machine-learning algo-
rithms: SSVM, USVM and SANN; where SSVM stands for
supervised SVM, USVM stands for semi-supervised SVM
and SANN stands for supervised ANN.

MethodM5: USVM-SSVM classification

SVM is a classification algorithm that aims to maximize
the distance between class boundaries (Vapnik et al. 1996).
With labelled training images as input, the SVM algorithm
builds a model to predict the class of an unlabeled test image
dataset.MethodM5 uses SVM for both supervised and semi-
supervisedmachine learning, with the semi-supervised SVM
being applied before the supervised SVM, hence the desig-
nation USVM–SSVM.

The first layer of M5 uses semi-supervised SVM to iden-
tify images belonging to theOTclass. This is implemented by
combining the training datasets of four classes into one class
and preparing a temporary single class called ‘accept’. The
semi-supervised classifier will learn this one class ‘accept’
and make OT the second class. The semi-supervised SVM
classifier then calculates the classification score for each
image in the test dataset. Once the classification score is
obtained, a decision on whether the test image belongs to
the ‘accept’ class or the OT class can be made based upon
the value of the classification score. If the classification score
is negative, the image is classified as OT as it is an outlier for
the ‘accept’ class. Otherwise, the image is classified as being
in the ‘accept’ class. The second layer of M5 is implemented
only if the result from the first layer was ‘accept’.

The second layer of M5 uses a supervised SVM classifi-
cation algorithm for the four known classes. This involves
training a number of binary SVM classifiers to reduce the
problem from multi-class to binary class. The actual number
of binary classifiers will be discussed in “Results and discus-
sion” section. The prediction provided by the second layer
is taken as the decision for the test image that passed in the
first layer.

There is a difference between learning a single class (with
low pattern variation) and learning number of classes alto-
gether as a single class (with high pattern variation). When
the pattern variation is high, the ability of the system to recog-
nize the OT class is compromised. Therefore, if the first layer
of M5 incorrectly predicts the image as one of the known
classes, then the second layer will classify that unknown
image into one of the four classes, as it is a supervised layer.
Thus, it is predicted that M5 will have non-zero FPs.
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MethodM6: SSVM-USVM classification

This method is similar to M5 as it also uses two SVM
algorithms, except that their order is reversed, hence it is
designated as SSVM–USVM. Thus, the first layer is the
application of the supervised SVM classifier to the four
known classes. Specifically, a single multi-class SVM clas-
sifier (composed of multiple binary classifiers) learns from
the training dataset and classifies images from the test dataset
into one of the four known classes. This means that an image
that belongs to the OT class gets classified into one of the
four known classes by the first layer. Based on its training,
the second layer will be able to correct this mistake.

The second layer of M6 sets out to validate the prediction
of themulti-class classifier in the first layer. As the number of
known classes is four, four semi-supervised SVM classifiers
are trained with images from their respective classes. For
example, if the prediction for an image in the first layer is
C1, then the image will undergo a validation step with the
semi-supervised SVM classifier for C1 in the second layer.
The imagewill be classified asC1, only if it passes this second
layer. Otherwise, the image will be classified as OT. Classes
C2, C3 andC4 are handled in a similar fashion. The first layer
of M6 classifies OT images as one of the four known classes
due to its supervised nature. However, the second layer will
‘catch’ that image as OT because it does not align with any
of the images in the training dataset.

Every test image will be classified as one of the known
classes by the first layer of M6, as it is a supervised layer.
The second layer is strict in classifying images into one of
the known classes as it contains four binary classifiers with
low pattern variations. Because of this, it is predicted that
M6 will have zero FPs.

MethodM7: USVM-SANN classification

Supervised Artificial Neural Networks (SANNs) are widely
used for classification problems. SANNs are inherently adap-
tive as they can map any input–output continuous relation
provided that they are given a sufficient number of hidden
neurons and a properly designed training dataset (Nielsen
2015). However, they can only work with known classes.
In method M7, in order to enable SANN for an application
that has an unknown class, semi-supervised SVM is applied
before SANN, hence it is given the designation USVM-
SANN.

This method is similar to M5 in the sense that SVM is
used for the unsupervised learning of the unknown or OT.
The difference between M5 and M7 is that instead of using
SVM for supervised learning,M7 uses SANN. The first layer
in M7 uses semi-supervised SVM to check for images in the
OT class. If the classification score is negative, the image
is classified as OT, as it is an outlier for the ‘accept’ class.

Otherwise, the image is classified to be in the ‘accept’ class.
The second layer of M7 is implemented only if the result of
this first layer is ‘accept’.

The second layer for M7 is SANN learning. Only the
images that pass in the first layer are considered in the sec-
ond layer. SANN will predict the class of the image based
on the training with the four known classes. This means that
irrespective of the original class of the image, SANN will
classify the image into one of the four known classes As a
consequence, it is predicted that M7 will have non-zero FPs.

There are two possibilities for an FP occurring with M7:
(1) an OT image is classified as a known image by the first
layer and the second layer (SANN) classifies it as one of the
known four classes; and (2) first layer correctly classifies an
image as a known class image, however, the second layer
classifies the image into an incorrect known class (i.e. clas-
sifies C1 as C4). This implies that M7 will have non-zero
FPs.

MethodM8: SANN-USVM classification

Thismethod is similar toM7 as it also uses an SANN in com-
bination with a USVM, except that their order is reversed,
hence it is designated SANN-USVM. Thus the first layer is
the application of a multiclass SANN classifier to provide an
initial prediction of an image’s class. Every image from test
dataset will go through the first and second layers. In the sec-
ond layer, one of the four semi-supervised SVM classifiers
will be used to determine if the initial prediction was correct.
Prior to this, four semi-supervised classifiers are trained to
predict a known class or an OT class. These classifiers are
strict in classifying a test image into the known class. The
four classifiers correspond to each of the four known classes.

In the second layer, one of the four available classifiers is
selected based on the initial prediction by the SANN mul-
ticlass classifier. For example, consider a case where a test
image’s initial prediction from first layer is C3. Then in the
second layer, the semi-supervised SVM classifier designed
for C3 will be applied. If the image is actually from C3, it
will pass the second layer and the final prediction will be
C3. On the other hand, if it does not pass second layer, it is
classified as OT. To illustrate the nature of M8 further, the
training and testing procedures for M8 are given in Figs. 10
and 11, respectively. A subroutine named ‘Get vectors’ used
in training is included in Fig. 10.

A key difference between M7 and M8 is the use of binary
semi-supervised SVM classifier/s with low (strict, as in M7)
and high pattern variation (not strict, as in M8). This implies
that similar toM6,M8will not provide any FPs. Performance
differences between M6 and M8 will be dependent on the
individual capability of the supervised multi-class classifiers
of SVM (M6) and ANN (M8).
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Fig. 10 Flowchart explaining training procedure of M8

Performancemeasures

The simplest and most popular performance measure is the
accuracy. In the context of this paper, it is defined as the
correct number of predictions divided by the total number
of predictions. FPs and FNs are incorrect classifications.
True Positives (TPs, correctly accepted) and True Negatives
(TNs, correctly rejected) are considered correct classifica-
tions. Variations on accuracy with similar inputs include
positive predictive value (correctly accepted out of total
accepted), true positive rate (correctly accepted out of total
positive) and true negative rate (correctly rejected out of total
negative) (Sokolava and Lapalme 2009). For this paper, two
performance measures will be used: (1) percentage accuracy
and (2) percentage of FPs. As stated in “Classification meth-

ods” section, the target performance is 95% accuracy with
0% FPs.

Results and discussion

As a benchmark of performance, Table 1 summarizes the
results and parameters for the coin application with two con-
ventional non-hybrid methods, when tested with an image
database that excluded unknown images. The first method
used an SSVM (designated M1). The second method used
an SANN (designated M2). As mentioned earlier, Modi and
Bawa (2011) reported 97.7% accuracy for Indian coins using
an ANN, with a database of only known images (Experiment
E1-R in Table 1). Chauhan et al. (2017) repeated Modi’s
experiment with the same parameters and ANN setup, but
with a higher quality image database, and achieved 100%
accuracy, with both non-hybrid SSVM and SANN (E2-R
in Table 1). When Chauhan’s experiment was repeated, but
with 4 instead of 14 classes and 14 instead of 400 features,
the accuracy was still 100% for both SSVM and SANN (E3
in Table 1).

In order to obtain quantitative measure of the negative
impact of unknown images, Table 2 repeats experiment E3
from Table 1, with the same parameters, but with unknown
images introduced to the database, that is the database devel-
oped for this paper. The third method used the Supervised
K Nearest Neighbor (SKNN, designated M3) approach with
the value of K set to 1. InM3, the developed model compares
the feature vector of the test image with the feature vectors
of the training images. The model would then find an image
from the training datasetwhose feature vectorwas the nearest
to the test image. Finally, the model would assign the class
of that image from the training dataset to the test image.

The fourth method used the Supervised Bag of Words
(SBOW, designated M4) approach. For M4, the vocabulary
for visual words was prepared by K means clustering of
extracted SURF features from training images, where the
value of Kwas 500. In the training ofM4, amodel was devel-
oped considering the frequency of these 500 visual words
from the training dataset. The test image in M4 gets classi-
fied based on the frequency of the 500 visual words. Note
that M4 is the only method of the 8 methods examined that
did not use the features from the designed generic feature
library (of 14 features).

For the coin application (E6), the accuracy drops from
100 to 69% for SSVM, 76% for SANN, 71% for SKNN and
66% for SBOW. Thus, the impact is seen to be significant.
The accuracy for the gear (E4) and the connector (E5) appli-
cations is 80% for both, which is still well below the target
accuracy of 95%. Note that for the connectors, M4 dropped
the accuracy to a low of 78% with E5. It is acknowledged
that if the number of unknown images doubles (reducing
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Fig. 11 Flowchart explaining testing procedure of M8

Table 1 Benchmark SSVM and SANN results with partial database (excludes unknown images, OT class) of classes as shown in Fig. 4, where
suffix ‘–R’ in experiment number denotes experiment from the reference paper

Exp. 
# Application

M1 (non-hybrid)
SSVM

M2 (non-hybrid)
SANN Parameters

Acc. 
(%)

FPs.   
(%)

Acc. 
(%)

FPs.   
(%) Features Classes Images per class

E1-R Coins, Modi and 
Bawa (2011) - - 97.7 - 400 14 (train & test) 342 (train) and 

18 (test)

E2-R Coins, Chauhan
et al. (2017) 100 0 100 0 400 14 (train & test) 342 (train) and 

18 (test)

E3 Coins (this paper) 100 0 100 0 14 4 (train & test) 500 (train) and 
100 (test)

the number of known images, to keep the same size of test
dataset) the accuracy would drop to 60%. For experiments
E3 to E6, SSVM was multiclass with 6 binary classifiers
using the ‘one versus one’ (OVO) method. SANN was mul-
ticlass with 14 neurons in the input layer, 10 neurons in the
hidden layer and 4 neurons in the output layer. For further
details, seeModi andBawa (2011) andChauhan et al. (2017).
SKNN was multiclass with one classifier. SBOW was mul-

ticlass with one classifier. No FNs were reported for any of
the experiments as is seen in an examination of Tables 1 and
2.

Table 3 summarizes the results with the four hybrid clas-
sification methods described in “Classification methods”
section. A total of 18 experiments were conducted (E7 to
E24). Experiments E7, E8 and E9 were conducted with
default user inputs: 350 pixels as the conditioned image size,
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Table 2 Conventional methods results with full database (includes unknown images) of classes as shown in Fig. 4

Exp. 
# Application

M1 (non-hybrid)
SSVM

M2 (non-hybrid)
SANN

M3 (non-hybrid)
SKNN

M4 (non-hybrid)
SBOW

Acc.
(%)

FPs. 
(%)

Acc.
(%)

FPs. 
(%)

Acc.
(%)

FPs. 
(%)

Acc.
(%)

FPs. 
(%)

E4 Gears 80 20 80 20 80 20 80 20

E5 Connectors 80 20 80 20 80 20 78 22

E6 Coins 69 31 76 24 71 29 66 34

Parameters used for E4, E5 and E6 are same as parameters used for E3 features�14, classes�4 (train) & 5 (test), images per class�500 (train)
& 100 (test)

Table 3 Hybrid SSVM/SANN results with full database (includes unknown images) of classes as shown in Fig. 4

Exp. 

#
Application

Image 
Size 

(square 
pixels)

Smallest 
part size 
(pixels)

Largest 
part size 
(pixels)

M5 (hybrid)
USVM–SSVM

M6 (hybrid)
SSVM–USVM

M7 (hybrid)
USVM–SANN

M8 (hybrid):
SANN–USVM

Acc. 
(% )

FPs. 
(% )

Acc. 
(% )

FPs. 
(% )

Acc. 
(% )

FPs. 
(% )

Acc. 
(% )

FPs. 
(% )

E7 Gears

350 160 340

100.0 0.0 99.0 0.0 100.0 0.0 99.0 0.0

E8 Connectors 80.0 20.0 98.8 0.0 80.0 20.0 98.8 0.0

E9 Coins 69.4 30.6 89.2 0.0 76.0 24.0 96.2 0.0

E10

Gears

345 160 340 100.0 0.0 99.6 0.0 100.0 0.0 99.6 0.0

E11 355 160 340 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

E12 350 150 330 100.0 0.0 97.8 0.0 100.0 0.0 97.6 0.0

E13 350 170 350 100.0 0.0 98.4 0.0 100.0 0.0 98.4 0.0

E14 350 150 350 100.0 0.0 97.8 0.0 100.0 0.0 97.8 0.0

E15

Connectors

345 160 340 80.0 20.0 98.8 0.0 80.0 20.0 98.8 0.0

E16 355 160 340 80.0 20.0 99.8 0.0 80.0 20.0 99.8 0.0

E17 350 150 330 80.0 20.0 100.0 0.0 80.0 20.0 100.0 0.0

E18 350 170 350 80.0 20.0 98.8 0.0 80.0 20.0 98.6 0.0

E19 350 150 350 79.6 20.0 97.6 0.0 79.6 20.0 98.0 0.0

E20

Coins

345 160 340 68.4 31.6 88.0 0.0 75.6 24.4 96.8 0.0

E21 355 160 340 70.0 30.0 89.4 0.0 73.8 26.2 94.4 0.0

E22 350 150 330 69.4 30.6 89.2 0.0 75.6 24.4 97.2 0.0

E23 350 170 350 69.4 30.6 89.2 0.0 77.6 22.4 97.0 0.0

E24 350 150 350 69.4 30.6 89.2 0.0 75.8 24.2 97.4 0.0

- Average performance 83 17 96 0 85 15 98 0

160 pixels as the size of the smallest part and 340 as a size of
the largest part. The remaining experiments varied the user
inputs to study their effect. The observation from Table 3 is
that M8 (ANN-USVM) provided the best performance with

an average accuracy of 98% and zero FPs. As shown in table,
changing the user inputs for M8 from±2 to±6% causes the
accuracy to range from 94% (E21) to 100% (E17). Finally,
the default user input results give the gear, connector and
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Table 4 Confusion matrices of
experiments E7, E8 and E9 by
method M8 (SANN–USVM)

Gears E7 Predicted classes

Class C1 C2 C3 C4 OT Subtotal

Actual classes C1 95 0 0 0 5 100

C2 0 100 0 0 0 100

C3 0 0 100 0 0 100

C4 0 0 0 100 0 100

OT 0 0 0 0 100 100

Accuracy: 99% FPs: 0% Total: 500

Connectors E8 Predicted classes

Class C1 C2 C3 C4 OT Subtotal

Actual classes C1 100 0 0 0 0 100

C2 0 100 0 0 0 100

C3 0 0 100 0 0 100

C4 0 0 0 94 6 100

OT 0 0 0 0 100 100

Accuracy: 98.8% FPs: 0% Total: 500

Coins E9 Predicted classes

Class C1 C2 C3 C4 OT Subtotal

Actual classes C1 100 0 0 0 0 100

C2 0 82 0 0 18 100

C3 0 0 99 0 1 100

C4 0 0 0 100 0 100

OT 0 0 0 0 100 100

Accuracy: 96.2% FPs: 0% Total: 500

coin application accuracies as 99.0, 98.8 and 96.2%. This is
consistent with the belief that the gear application was the
least difficult and the coin application was the most difficult.

Table 3 can also be used to confirm the FP predictions
from “Classification methods” section. It was predicted that
M5 will have non-zero FPs. The results for M5 confirm that
FPs are present for the connector and coin applications. For
M6, it was predicted that there will be zero FPs. Results for
M6 for all experiments confirm that prediction. The predic-
tion for M7 was that it will have non-zero FPs. Results for
M7 confirms this prediction for the connector and coin appli-
cations. M8 was predicted to provide zero FPs. Results for
M8 for all experiments are in agreement with this prediction.

Table 4 gives the results for E7, E8 and E9 with M8 in the
form of a confusion matrix (CM), which tabulates the actual
classes versus predicted classes. The actual classes are the
ones labelled by the user. The class assigned by the classifier
to an image is the predicted class. The performance of the
classifier is reported by three measures: accuracy, percentage
of FPs and FNs. FNs can be obtained by subtracting accu-
racy plus FPs from 100. In a confusion matrix, the diagonal
values are TPs and TNs, the off diagonal values excluding

last column (OT) are FPs, and the off diagonal values in the
last column (OT) are FNs. The information from the CM can
provide insights into why a method performed the way it did.

In the Table 4, the CM for E7 (gears) shows that 5 images
of C1 were classified as OT by the system. The CM for E8
(connectors) shows that 6 images of C4 were classified as
OT by the system. The CM for E9 (coins) shows that 18
images of C2 were classified as OT by the system. This is
because those images did not provide feature values thatwere
in the acceptable range for the classifier. The same reason is
applicable to the three applications. The CM also indicates
which class for a given application is the most difficult to
classify. For example, CM for E9 in Table 4 illustrates that
class C2 was the most difficult to classify as it registered the
maximum number (18) of FNs.

Figures 12, 13 and 14 show feature plots obtained from
the test datasets for gears, connectors and coins, respectively.
The actual value plots in each figure shows feature values of
500 images of the test dataset of an application. Even though
the median value plots look to be the same for C1 to C4 in
training and testing (Figs. 7 vs. 12, Figs. 8 vs. 13 and Figs. 9
vs. 14), they are not exactly the same due to the adopted
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Fig. 12 Gear feature values for testing image dataset by class (with
feature KAVG in green) (Color figure online)

DTT strategy for the setup of the training and testing datasets
(Chauhan et al. 2017).As per the discussion in “Classification
methods” section, it is not possible to fully test the OT class.
Thus, the fifth class prepared forOT should not be considered
as the only OT. For example, any non-Indian coin or Indian
coins with unknown pattern would be considered as OT for
the coin application.

One can see that different features can become impor-
tant when the OT class is introduced. For example, with the
gear application, I5 was the best discriminating feature in
training (Fig. 7, highlighted in green for actual value plots);
but KAVG effectively discriminates OT from C1, C2, C3
and C4 in testing (Fig. 12, highlighted in green for actual
value plots). Interestingly for the connector application, the
important feature in training was BWR (Fig. 8, highlighted
in green for both: actual and median value plots), the same
feature effectively discriminates OT from C1, C2, C3 and C4
in testing (Fig. 13, highlighted in green for both actual and
median value plots).

Fig. 13 Connector feature values for testing image dataset by class (with
feature BWR in green) (Color figure online)

For the coin application, the important features in training
were AVIN and I5 (Fig. 9, highlighted in green for median
value plots); butBWRandDIAMwere the important features
that could effectively discriminate OT from C1, C2, C3 and
C4 in testing (Fig. 14, highlighted in green for median value
plots).

The general observation form this discussion is confirma-
tion that features that are important for one application, may
not be important for another application. Thus, for an MV
system to be successful and flexible, the feature set must
be comprehensive. For the three applications considered in
this paper, the selected set of 14 features was able to do the
job because they combined both geometrical and statistical
measures. Moreover, these features were easy to calculate in
comparison with advanced features such as SIFT and SURF.
Based on these observations, the likelihood that the proposed
system will work for other applications is considered high.
The system has the following basic constraints for a given
application: (1) the conditioned image should be between
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Fig. 14 Coin feature values for testing image dataset by class (with
features BWR and DIAM in green) (Color figure online)

100×100 to 480×480 pixels square and (2) the part must
fit inside the conditioned image with a minimum 15 pixel
clearance around the outer boundary of the part, as explained
in “Design of the image database” section. The size of the
part in the image depends upon the working distance and
the focal length of the lens. For the applications covered in
this paper, this meant a part that fit within a 3×3 cm square
with 10 cm working distance between the camera lens (of
6 mm focal length) and the part. There is no direct restriction
on the physical size of the part. However, the discriminat-
ing details of the part should be visible, as dictated by the
selection of an appropriate combination of camera, lens and
lighting.

Comparison of non-hybrid and hybrid methods

Of the eight methods studied, the first four (M1 to M4) were
non-hybrid (supervised)methods and the remaining four (M5
to M8) were hybrid (semi-supervised and supervised) meth-
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Fig. 15 Comparison between non-hybrid (M1 to M4) and hybrid (M5
to M8) methods for classes of three applications as shown in Fig. 4

ods. Figure 15 provides a comparison of the performance
of the eight methods, as applied to the three applications.
The first observation is that the hybrid methods provide bet-
ter accuracy with fewer false positives than the non-hybrid
methods. In particular,M8 (hybrid, SANN-USVM) is seen to
have the best combined performance by achieving the target
of zero FPs and exceeding the target accuracy of 95%. By
contrast M4 (non-hybrid, SBOW) had the worst combined
performance (65% accuracy with non-zero FPs). The second
observation is that the best performing non-hybrid method
wasM2 (SANN), as compared to M1, M3 andM4. The third
observation is that the worst performing hybrid method was
M5 (USVM-SSVM), as compared to M6, M7 and M8.

Discussion of hybrid methods

All four possible combinations for a two layered hybrid
method based on SVMandANNwere studied. First,M5was
tested and was found unable to achieve target performance
for any of the three applications. Second, M6 was tested, and
was found unable to achieve target performance for the coin
application. At this point, M5 was tested to see if SANN
could provide better results than SSVM. The answer was no,
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M7 was also unable to achieve target performance. Finally,
M8 was tested and found to be the only method that could
achieve target performance for all three of the applications.

M8 succeeded for two reasons: (1) low intraclass variation
because the USVM for M8 is trained from only one class,
whereas the USVM for M5 and M7 is trained from four
classes (high intraclass variation) and (2) SANN performed
better than SSVM. The second reason is consistent with the
results achievedbyother researchers, for exampleAntkowiak
(2006) and Ren (2012).

Speed of machine vision-based inspection systems

Two factors limit the speed of machine vision-based inspec-
tion systems: (1) time takenby the camera to acquire an image
and (2) time taken by the system to classify that image. The
speed for image acquisition is a hardware limitation, for a
given camera. The speed of classification is a software lim-
itation, for a given computer. For example, a 60 fps camera
takes 0.02 s to acquire an image. The inspection speed of
FlexMVS was found to be 400 parts/min, or 0.15 s to clas-
sify a part. Thus, with this camera, the system takes 0.17 s to
acquire and process a single image. The speed of the system
could be increased by reducing the number of features, but
this would compromise the accuracy and flexibility of the
system.

For this type of application (inspection of small parts),
achievable speeds with human inspectors has historically
been shown to be in the order of 30 parts/min or 2 s/part
(Drury 1973). This speed is not only significantly lower than
that achievable with machine vision, but the accuracy with
human inspection varies from 70 to 90% and is highly depen-
dent on the level of operator fatigue.

Inspection speed is a relative measure. Target speed in the
context of medical component manufacturing is on the order
of 130 parts/min or 0.46 s/part (ATS automation, 2018). Tar-
get speed in the context of high speed assembly machines is
on the order of 1000 parts/min or 0.06 s/part. The limitations
in the assembly case are the physical limits as to how fast a
part can be moved (Shafer, 1999). Thus, the target speed for
machine vision inspection applications can range from 100
parts/min (0.6 s/part) to 1000 parts/min (0.06 s/part). With
this as background, a speed of 500 parts/min or 0.12 s/part
seemed to be a reasonable target for the flexible machine
vision system. FlexMVS currently operates at an inspection
speed of 400 parts/min. This can be improved by optimizing
the algorithms used for the classification methods.

Conclusions and future work

This paper presented a novel solution to the problem of
small parts classification when there are unknown class

images. A hybrid SVM/ANN approach was taken that com-
bined supervised and semi-supervised layers. Four hybrid
classification methods were implemented and tested: (1)
SSVM–USVM, (2) USVM–SSVM, (3) USVM–SANN and
(4) SANN–USVM. A software program known as FlexMVS
was developed to illustrate the hybrid approach to three dif-
ferent small part classification applications: (1) solid plastic
gears, (2) clear plasticwire connectors and (3)metallic Indian
coins. The ability of the system to work with these dif-
ferent applications while requiring only three user inputs,
with a fixed image conditioning process and a constant num-
ber of features, is provided as evidence of the flexibility
of FlexMVS. Flexibility in a MV-based system is impor-
tant, in order that users can change application with minimal
re-tuning of the system. The robustness of the system was
demonstrated by its ability to reject unknown class images.
The four methods were trained with four classes and tested
with five classes, where the 5th class was considered as
the unknown class. It was found that SANN–USVM gave
the best results with an accuracy of over 95% for all three
applications. Future work will involve further testing with
different small part applications whose geometric character-
istics are not as pronounced, to further confirm the flexibility
and robustness of the system.

Finally, it should be noted that the image library and
database used in this study has been made publically avail-
able for others who are conducting research in machine
vision. http://my.me.queensu.ca/People/Surgenor/Laborator
y/Database.html is the address at which access to the image
library and database can be found.

Appendix: FlexMVS software overview

FlexMVS is the software developed for small part classifi-
cation using the hybrid SVM/ANN approach documented
in this paper. It is written in MATLAB 2017a. The results
presented in this paper were generated with FlexMVS. This
appendix sets out to illustrate its ease of use, list the required
actions to generate a classification run and outline the options
available to the user.

The main graphical user interface (GUI) of the system
is shown in Fig. 16. As keyed to the labels in Fig. 16, the
required actions by the user to setup a run are:

(a) Select path of the training and testing folder, which
contains the original image database as explained in
“Design of the image database” section.

(b) Input size of the conditioned images, as per the guide-
lines in “Design of the image database” section. A
subsequent press of the ‘Condition’ button will initiate
the conditioning step and the original image database
will be replaced with a conditioned image database.
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Fig. 16 Main GUI of FlexMVS,
with required actions labelled

(c) Input size of the smallest and largest part, again follow-
ing the guidelines in “Design of the image database”
section. A subsequent press of the ‘Extract’ button will
result in a prompt to the user to enter labels, which in
turn will initiate the feature extraction step, as outlined
in “Feature selection and extraction” section.

(d) Select one of the four classification methods. A sub-
sequent press of the ‘Classify’ button will initiate the
classification step, as outlined in “Classification meth-
ods” section.

(e) Once classification is complete, the results are dis-
played: i.e. values of accuracy, FPs and FNs. A user
can select another classification method and press the
‘Classify’ button again to get a new set of results.

After completing a classification run, the user has options
to investigate the results in more detail. The four options are
selected by tabs given in the bottom half of Fig. 16, labelled:

1. Plot Features
2. Confusion Matrix
3. List FPs & FNs
4. Hybrid-Model

The sub window for the ‘Plot Features’ tab appears in
Fig. 16. There are two switches that appear as toggle icons.
The first toggle is to select training or testing dataset features
as the plot. The second toggle is to select FPs or FNs as the
plot. The feature plot for training and testing will be similar

to that shown in Figs. 7 and 12, respectively. The plot of
FPs and FNs will be similar to the feature plots, but with
fewer classes (misclassified). For example, Fig. 17 shows
plots of 3.8% FNs (from CM of E9 in Table 4) for the coin
application. Comparing median value plots of Fig. 17 with
the median value plots of Fig. 9 clearly confirms that feature
values of class C2 and C3 do not align with the median value
plots of training images and hence, they were misclassified
into OT class.

If the ‘Confusion Matrix’ tab is selected, the sub-window
shown in Fig. 18 will appear. Pressing the ‘Compute and
Show’ buttonwill display the confusionmatrix for the current
run, in a format similar to Table 4.

If the ‘List FPs and FNs’ tab is selected, the sub-window
shown in Fig. 19 will appear. If the ‘Show FNs’ button is
pressed then a list would appear as shown in the Fig. 19, that
provides name of the FNs images. If there are no FNs, a mes-
sage would appear stating that ‘No False Negatives Found:
Try False Positives instead. You may have 100 percentage
accuracy. OR You need to execute Classification step first’.
Similar message would appear, if there were no FPs in the
classification run and the user pressed ‘Show FPs’ button.

If the ‘Hybrid-Model’ tab is selected, the sub-window
shown as Fig. 20 will appear. A press of the ‘Prepare Hybrid-
Model’ button will initiate themodel building process.When
the preparation step is complete, a press of the ‘Test Hybrid-
Model’ button will open the GUI shown as Fig. 21. The user
must then select a test image by pressing the ‘Browse’ but-
ton. The selected image will then appear, as shown in Fig. 22.
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Fig. 17 FNs plot obtained from ‘Plot Features’ utility

Fig. 18 Sub-window under confusion matrix tab

When the ‘Predict’ button is pressed, FlexMVS will apply
the hybrid-model’s algorithms to the selected test image and
will provide a decision regarding the class of the image. For
example, Fig. 22 shows the selected coin image as Class
C3 because its features were in line with the training fea-
tures of the Class C3. In the example of Fig. 23, the selected
‘non-Indian (Canadian)’ coin imagewas assigned toOTclass

Fig. 19 Sub-window under List FPs and FNs tab

Fig. 20 Sub-window under hybrid-model tab

Fig. 21 GUI for test hybrid-model before image selection

because in this example, FlexMVS had been trained on the
Indian coin database.

As a final point, Figs. 22 and 23 shows the time taken
to classify the single test image (0.14776 s in the case of
the Indian coin and 0.14969 s in the case of Canadian coin
example). The time of 0.15 s to classify a single part image
is equivalent to an inspection rate of 400 parts per min. This
provides a baseline for the minimum production rate.
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Fig. 22 GUI for test hybrid-model after ‘Predict’ is pressed

Fig. 23 GUI for test hybrid-model of an OT class
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