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Abstract
Quality in a manufacturing process implies that the performance characteristics of the product and the process itself are
designed to meet specific objectives. Thus, accurate quality prediction plays a principal role in delivering high-quality
products to further enhance competitiveness. In tubing extrusion, measuring of the inner and outer diameters is typically
performed either manually or with ultrasonic or laser scanners. This paper shows how regression models can result useful to
estimate both those physical quality indices in a tube extrusion process. A real-life data set obtained from aMexican extrusion
manufacturing company is used for the empirical analysis. Experimental results demonstrate that k nearest-neighbor and
support vector regression methods (with a linear kernel and with a radial basis function) are especially suitable for predicting
the inner and outer diameters of an extruded tube based on the evaluation of 15 extrusion and pulling process parameters.

Keywords Regressionmodels ·Extrusion process · Product quality prediction · Support vector regression ·Knearest-neighbor

Introduction

Tubings and pipes aremanufactured using differentmethods,
but extrusion is probably the most efficient one. This com-
plex thermoforming process involves heating a raw material
(usually plastic, metal, polymer, concrete or ceramic) and
forming a final ring-shaped product. A primary advantage of
extrusion over othermanufacturing processes is its capability
to create a very complex cross-sectional profile object (Oberg
et al. 2012).However, extrusion processing compressesmany
interdependent input parameters (both process and system
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variables) and output parameters. Process variables refer to
the operating conditions that can be controlled and manipu-
lated directly, whereas the system variables are determined
by the process parameters and have an impact on the output
parameters (Chevanan et al. 2007).

Unlike the cyclic techniques such as injection molding
or blow molding, extrusion is a steady-state or continuous
process. Thismeans that, for example, a change in the param-
eters of the extruder will disrupt the steady-state process
condition with a non-negligible effect on the quality of the
extruded product. Therefore, all input parameters must be
identified, controlled and monitored to guarantee success in
the extrusion process sincemanufacturing quality prediction,
control, and monitoring are critical (Khan et al. 2014). Com-
mon deficiencies of extruded products are related to visual
or geometrical characteristics (e.g., diameter variations, color
changes and rough surface) and physical ormechanical prop-
erties (e.g., elasticity and rigidity).

Several intelligent and soft computing models (Witten
et al. 2011) have been applied to a large variety of manufac-
turing processes, such as production, fault detection, process
planning and monitoring, machine maintenance, and qual-
ity prediction and control (Charaniya et al. 2010; Choudhary
et al. 2008; Harding et al. 2006; Köksal et al. 2011; Kusiak
2006; Pratihar 2015; Yin et al. 2015). In particular, the use of
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these techniques for machinery fault detection and product
quality prediction has received increasing attention over the
last years.

Krömer et al. (2010) showed the ability of genetic pro-
gramming to evolve fuzzy classifiers on a real-world problem
for detecting faulty products in an industrial production pro-
cess. Multi-layer perceptron neural networks were employed
to predict errors in mold surface roughness (Erzurumlu and
Oktem 2007) and the product quality in awave soldering pro-
cess (Liukkonen et al. 2009). Support vector machines (Jiang
et al. 2013) and radial basis function neural networks (Zhang
et al. 2014) were used to predict the quality of propylene
polymerization in industrial processes. Chien et al. (2007)
applied the K-means clustering algorithm and decision trees
for the detection of defects in semiconductor manufacturing.
The rough set approach was applied to find out solder defects
in printed circuit boards (Kusiak and Kurasek 2001). Quality
prediction in plastic injection molding processes was tack-
led using back-propagation neural networks (Sadeghi 2000),
support vector machines (Ribeiro 2005) and genetic algo-
rithms (Meiabadi et al. 2013). A combined method based on
artificial neural network and particle swarmoptimizationwas
proposed to improve the mechanical performance of poly-
mer products (Xu et al. 2015). Adly et al. (2015) presented a
simplified subspace regression algorithm for accurate iden-
tification of defect patterns in semiconductor wafer maps.
Two evolutionary fuzzy ARTMAP neural networks were
designed by Tan et al. (2015) to deal with the class imbal-
ance problem in semiconductor manufacturing operations.
Ghorai et al. (2013) developed a visual inspection system
to localize defects on hot-rolled steel surfaces employing
some kernel classifiers, such as the support vector machine
and the vector-valued regularized kernel function approxima-
tion. Wu et al. (2017) introduced a method based on random
forests for toolwear prediction and compared its performance
with that of support vector regression and feed-forward back-
propagation neural networks. Wang et al. (2018) presented a
comprehensive survey of deep learning algorithms for smart
manufacturing.

With regards to the particular case of product quality pre-
diction in extrusion processes, we can pay attention to a set of
works that have employed some soft computing techniques.
For instance,WuandHsu (2002) combined thefinite-element
approach, a polynomial network and a genetic algorithm to
develop a method for the design of the optimal shape of
an extrusion die. Li et al. (2004) adopted the cooperation
between a three-layer back-propagation neural network and
a genetic algorithm to set up the system and optimize the
technical parameters in the semi-solid extrusion of compos-
ite tubes and bars. Yu et al. (2004) proposed a strategy based
on a fuzzy neural-Taguchi network and a genetic algorithm
to determine the optimal die gap programming of extrusion
blowmolding processes. Oke et al. (2006) optimized the flow

rate of the plastic extrusion process in a plastic recycling
plant with the application of a neuro-fuzzy model. González
Marcos et al. (2007) introduced improvements in the rubber
extrusion process by predicting the characteristics of rubber
with a multi-layer perceptron neural network. Sharma et al.
(2009) suggested a model of forward mapping for hot extru-
sion process using the ANFIS neuro-fuzzy approach. Hsiang
et al. (2012) investigated the optimal process parameters that
maximize the multiple performance characteristics index for
hot extrusion of magnesium alloy bicycle carriers through
a fuzzy-based Taguchi method. Ramana and Reddy (2013)
proposed to make use of clustering, naïve Bayes, and deci-
sion trees to predict and improve the final product quality
in a plastic extrusion process. Zhao et al. (2013) employed
a Pareto-based genetic algorithm for optimization of port-
hole extrusion die. Support vector regression models and
multi-layer perceptron neural networks were compared for
the prediction of specific properties of rubber extruded
mixtures (Urraca Valle et al. 2013). Carrano et al. (2015)
employed an evolutionary computing algorithm to optimize
the operational and screw geometrical parameters of a sin-
gle screw polymer extrusion system. One-class classification
methods were used by Kohlert and König (2015) for yield
optimization of an extrusion process in a polymer film
industry. Chondronasios et al. (2016) introduced a feature
extraction technique based on gradient-only co-occurrence
matrices to detect blisters and scratches on the surface of
extruded aluminum profiles using a two-layer feed-forward
artificial neural network.

Themain purpose of this paper, therefore, is to analyze the
performance of some regression models in the prediction of
product quality (regarding the inner and outer diameters) in
a tubing extrusion process. From an application perspective,
the novelty of this study is on the specific solution proposed
for product quality control in a plastic tube manufacturing
plant. To the best of our knowledge, there are no previous
reports that analyze the use of parameters taken from the
extrusion and pulling processes to predict the inner and outer
diameters of an extruded tube using the regression methods
considered here.

Henceforth the paper is organized as follows. “Description
of the tubing extrusion process” section describes the tub-
ing extrusion process of a Mexican manufacturing company,
which provided us with the database used for the subsequent
empirical analysis. “Regression models” section introduces
the bases of the regression models that will be explored
in this study. Next, “Experimental set-up” section presents
the experimental set-up and the performance evaluation cri-
teria used in the experiments, while the results are given
and discussed in “Results and discussion” section. Finally,
“Conclusions and future work” section summarizes the main
conclusions and outlines some possible avenues for future
research.
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Fig. 1 Extrusion process. Process parameters that determine the quality
of the tube: [1–4] zone temperatures, [5] melting temperature, [6–9] die
temperature, [10] revolutions per minute of the screw, and [11] base
hopper temperature

Fig. 2 Pulling process. Process parameters that determines the quality
of the tube: [1–2] tank temperature, [3] vacuumpressure, and [4] tension
of the pulling mechanism

Description of the tubing extrusion process

This section provides a general description of the tube extru-
sion process used by a manufacturing company located in
Ciudad Juárez (Chihuahua, Mexico). Thus the extrusion pro-
cess consists of two stages. In the initial phase, the plastic
is fed into the heating chamber of the extruder to melt it
(see Fig. 1). Once molten, the plastic is pushed by a screw
device through the shaped die, which forms the plastic into
a tube-shaped form.

In the second phase depicted in Fig. 2, the extruded tube
is pulled by a mechanism through a water tank or a blowing
system to cool it down and get the final form.

A defect can be defined as a deviation of the product char-
acteristics from the specifications set upby themanufacturing
process (Khan et al. 2014), or the difference between the
desired product and the resulting product (Dhafr et al. 2006).
It can be caused by a single source or the cumulative effect
of several factors, which may arise at any stage of the extru-
sion process. Some defects can be found in extruded parts
such as the rough surface, the extruder surging, the thickness
variation, the uneven wall thickness, the diameter variation,
and the centering problem. In this work, the extruded tube
quality was defined regarding the inner diameter (ID) and
the outer diameter (OD), as shown in Fig. 3. Although other
characteristics could affect the quality of the product (e.g.,
length of the tube, wall thickness, or color uniformity), the
only functional requirements for this application correspond
to the inner and outer diameters because these are the critical
characteristics that were stated by the customer.

Fig. 3 Extruded tube. Quality indices: inner and outer diameters

To guarantee the quality of the manufactured tube (i.e.,
the inner and outer diameters have to be within design
specifications set by the customer), every process parame-
ter must be identified, controlled, and monitored throughout
the extrusion process. For example, in the extruder zone,
there are several input parameters that might yield signifi-
cant deviations in the characteristics of the product: the base
hopper temperature (BHT), the zone temperature (ZT), the
die temperature (DT), the melting temperature (MT), and the
revolutions per minute of the screw (SRPM). In the case of
the pulling stage, the set of parameters are the tank tempera-
ture (TT), the vacuum pressure (VP), and the tension of the
pulling mechanism (TPM).

In total, there are 15 process parameters that may produce
deviations in the functional requirements of the extruded
tube: four zone temperatures, four die temperatures, themelt-
ing temperature, the revolutions per minute of the screw, the
base hopper temperature, two tank temperatures, the vac-
uum pressure, and the tension of the pulling mechanism. As
a result, each sample will be described by these 15 input
parameters and the two output variables mentioned in the
previous paragraph (ID and OD).

Table 1 reports the main characteristics of the database
used in the empirical analysis: the attribute number, the
attribute description and some statistics, such as the mini-
mum and maximum values of the attribute, the mean and the
standard deviation.

It is important to point out that the different input param-
eters were measured and recorded using specific sensors
during the extrusion and pulling processes, and an opera-
tor collected the data at a fixed time. Analogously, the input
and output diameters of tubes were measured manually with
a vernier caliper by the operator. At each shift, these tasks
were carried out three times, thus obtaining a data set as the
one shown in the example of Table 2.

Regressionmodels

In this section, we briefly introduce the regression methods
that will be further applied to product quality prediction for
the tubing extrusion process just described.
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Table 1 Characteristics of the
tube-extrusion data set used in
the experiments

No. Description Minimum Maximum Mean Std. Dev.

Extrusion process

1 Zone 1 temperature (◦F) 435 448 440.68 2.39

2 Zone 2 temperature (◦F) 432 445 440.53 2.45

3 Zone 3 temperature (◦F) 429 463 433.69 4.09

4 Zone 4 temperature (◦F) 425 440 433.48 3.05

5 Melting temperature (◦F) 436 450 441.78 2.96

6 Die 1 temperature (◦F) 442 454 447.99 2.88

7 Die 2 temperature (◦F) 441 459 448.39 3.28

8 Die 3 temperature (◦F) 445 456 448.97 2.31

9 Die 4 temperature (◦F) 444 458 449.10 2.46

10 Revolutions per minute of the screw (rpm) 52 75 62.00 5.94

11 Base Hopper temperature (◦F) 46 80 58.50 7.84

Pulling process

1 Tank 1 temperature (◦F) 49 71 64.40 5.70

2 Tank 2 temperature (◦F) 0.2 10.1 1.01 6.23

3 Vacuum pressure (inHg) 59 65.6 61.42 1.42

4 Tension of the pulling mechanism (ft/min) 40 56 50.34 2.13

Output variables

1 Inner diameter (in) 0.227 0.233 0.230 0.001

2 Outer diameter (in) 0.228 0.331 0.328 0.014

Table 2 An example of collected data for the tubing extrusion process

Time ZT1 ZT2 ZT3 ZT4 MT DT1 DT2 DT3 DT4 SRPM BHT TT1 TT2 VP TPM ID OD

1 438 437 431 434 442 448 451 452 455 64 71 62 1.58 63.4 47 0.228 0.327

2 441 439 452 437 450 452 457 453 455 68 78 56 3.05 61.7 51 0.230 0.311

.

.

.

t 440 443 461 429 444 445 452 448 448 70 74 60 1.83 64.0 52 0.229 0.330

Let T = {(x1, a1), . . . , (xn, an)} ∈ (x × a)n be a data set
of n independent and identically distributed (i.i.d.) random
pairs (xi , ai ), where xi = [xi1, xi2, . . . , xiD] represents an
instance in a D-dimensional feature space and ai denotes the
continuous target value associated to it. The aimof regression
is to learn a function f : y → a to predict the value a for a
new sample y = [y1, y2, . . . , yD].

Nearest neighbor regression

One of the most popular and successful supervised learn-
ing methods corresponds to the nearest neighbor (NN) rule
due to its algorithmic simplicity and high prediction per-
formance. This non-parametric technique works under the
assumption that new samples share similar properties with
the set of stored instances and therefore, it predicts the out-
put of a new sample based on its closest neighbor.

The concept of the NN rule can be generalized for regres-
sion because the nearest neighbor method assigns a new
sample y the same target value as the closest instance in T ,
according to a particular dissimilarity measure (generally,
the Euclidean distance). An extension of this procedure is
the k-NN decision rule, in which the algorithm retrieves the k
closest instances in T . When k = 1, the target value assigned
to the input sample is the target value indicated by its nearest
neighbor. For k > 1, the k-NN regression model (k-NNR)
estimates the target value f (y) of a new input sample y by
averaging the target values of its k nearest neighbors (Biau
et al. 2012; Guyader and Hengartner 2013; Kramer 2011;
Lee et al. 2014):

f (y) = 1

k

k∑

i=1

ai (1)

where ai denotes the target value of the i-th nearest neigh-
bor.
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Distance-weighted k-NN regression

When the basic k-NN algorithm estimates the target value
for the new sample, it ignores some relevant information
that each of the k nearest neighbors might provide regard-
ing their distance (Batista and Silva 2009). To overcome this
shortcoming, Dudani (1976) proposed a weighting function,
which weights more heavily closer neighbors than distant
neighbors, depending on their corresponding distances to the
new sample.

In general, a weighting function has to work based upon
the premise that the weights should decrease with increas-
ing sample-to-neighbor distance (Dudani 1976). Let xi (i =
1, . . . , k) be the closest instances to an input sample y, and
let di = d(xi , y) be the distance between xi and y. A com-
mon weighting technique computes wi for the i-th nearest
neighbor as the inverse of its distance (Dudani 1976):

wi = 1

di
di �= 0 (2)

Another possible weighting function (Batista and Silva
2009) can be defined as

wi = 1 − di (3)

Once the weights wi have been computed, the distance-
weighted k-NNapproach for regression (k-NNRw) estimates
the target value as follows (Hall et al. 2009):

f (y) =

k∑
i=1

wi ai

k∑
i=1

wi

(4)

Linear regression

Multiple linear regression (LR) attempts to model the rela-
tionship between two or more independent variables (in this
case, the input attributes reported in Table 1) and an output or
response variable by fitting a linear equation to the observed
data (Draper and Smith 1998). Every value of the inde-
pendent variable is associated with a value of the response
variable. The general form of the multiple linear regression
equation can be written as follows:

f (y) = α +
D∑

j=1

βi yi + ε (5)

where α is a constant (the point where the regression line
intercepts the Y -axis), βi are the regression coefficients on
the independent variables yi , and ε is the residual or fitted
error.

The regression coefficients βi are estimated by curve
fitting based on the least square method with the aim of min-
imizing the fitted error (the difference between the observed
and estimated values). Equation 5 indicates how the average
response of the output variable changes with the independent
variables. Thus the LRmodel can be used to predict the target
value a from new observed values of y.

Support vector regression

The foundations of support vector machines are well-known
for both classification and regression problems. Smola and
Schlkopf (2004) published an excellent tutorial on support
vector machines for regression (SVR). The objective of the
SVR model is to define a linear regression function to map
the input data to a high-dimensional feature space, in which
input data can be separated easier than in the original input
space (Chou et al. 2017; Ma et al. 2003),

f (x) = WTΦ(x) + b (6)

where W is a weight vector, Φ(x) maps the input sample x
to the high-dimensional feature space, and b is a bias term.

The W and b can be obtained by solving an optimization
problem (Ma et al. 2003):

minimize
W,b

1
2W

TW + C
n∑

i=1
(ξi + ξ∗

i )

subject to ai − (WTΦ(x) + b) ≤ (ξi + ξ∗
i )

(WTΦ(x) + b) − ai ≤ (ξi + ξ∗
i )

ξi , ξ
∗
i ≥ 0, i = 1, . . . , n

(7)

where C is a regularization parameter, ξi and ξ∗
i are non-

negative slack variables to penalize for errors that are greater
than ε in magnitude

By introducing the Lagrange multipliers α, α∗, and a ker-
nel function K , the model form in the dual space can be
written as:

f (x) =
n∑

i=1

(αi − α∗
i )K (xi , x) + b (8)

The use of a kernel function allows to deal with feature
spaces of arbitrary dimensionality without having to com-
pute the mapping function Φ(x) explicitly (Yang and Shieh
2010). The kernels most commonly used are linear, polyno-
mial, sigmoid, and radial basis functions.

Experimental set-up

As already stated, this study aims to evaluate the performance
of some regression models for product quality prediction in
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the tubing extrusion process of a manufacturing plant. Thus
we conducted a pool of experiments on a data set with 260
samples that were collected using the procedure described
in “Description of the tubing extrusion process” section. It
has to be remarked that all input attribute values (process
parameters) were normalized to the range [0, 1].

We focused our study on the simple k-NNR (no weight-
ing), two weighted versions of k-NNR using Eqs. 2 and 3,
in the sequel called k-NNRw1 and k-NNRw2 respectively,
the LR model, the SVR technique with three different ker-
nels and the multi-layer perceptron (MLP) neural network.
The kernels used in the SVR model were a linear function
(SVR-1), a polynomial function of degree 2 (SVR-2) and a
radial basis function (SVR-RBF). For the regression algo-
rithms based on the k-NN rule, twenty-five odd values of k
(1, 3, . . . , 29) were tested. All regression models were taken
from the WEKA toolkit (Hall et al. 2009).

Following the standard strategy used to evaluate the per-
formance of regression models when databases are small-
or medium-sized, the 10-fold cross-validation method was
adopted (Buza et al. 2015; Hall et al. 2009; Hu et al. 2014).
The original data set was randomly divided into ten parts of
size n/10 (where n denotes the total number of samples in
the data set); for each fold, nine blocks were gathered as the
training set for learning the model, and the remaining fold
was used as an independent test set. Additionally, with the
aim of increasing the statistical significance of the experi-
mental scores, ten repetitions were run for each trial and the
results from predicting the output of test samples were aver-
aged across the 100 runs.

Evaluation criteria

In the framework of regression, the purpose of most per-
formance evaluation metrics is to estimate how much the
predictions (p1, p2, . . . , pn) deviate from the actual target
values (a1, a2, . . . , an). These metrics are minimized when
the predicted value for each test sample agrees with their
true value (Caruana and Niculescu-Mizil 2004). Two of the
most popular performance measures that have frequently

been employed to assess themodel performance in regression
problems are the root mean square error (RMSE),

RMSE =
√√√√1

n

n∑

i=1

(pi − ai )2 (9)

and the mean absolute error (MAE),

MAE = 1

n

n∑

i=1

| pi − ai | (10)

Both thesemetrics showhow far away the predicted values
pi are from the target values ai by averaging the magnitude
of individual errors without taking care of their sign.

Results and discussion

Since the quality product was predicted here using the
inner and outer diameters of the extruded tubes, the experi-
ments and the subsequent analysis of results were performed
according to these two physical quality indices. Hence, for
each database (i.e., the outer and inner diameter databases),
we compared the average of the two performance measures
(RMSE and MAE) achieved by each regression method.

Outer diameter database

Table 3 reports the average results in terms of RMSE and
MAE across the 100 runs for each regression technique. In
the case of the k-NNmethods, the values correspond to those
of the best k. Based on the root mean square error, one can
observe that the three k-NN algorithms, the linear support
vector (SVR-1) and the SVR-RBF obtained the lowest error
rates (very close to 0) when predicting the outer diameter. In
addition, the same behavior can be viewed in terms of MAE.

If we consider that the output values of the outer diameter
are in a range from 0.228 to 0.331, then all these regres-
sion models appear to be suitable for predicting the quality

Table 3 Average results in
terms of RMSE and MAE (with
standard deviations) on the outer
diameter database

RMSE MAE

k-NNR 0.0096912371 ± 0.0075398296 0.0030848789 ± 0.0021710948

k-NNRw1 0.0096563665 ± 0.0072890820 0.0030848789 ± 0.0021710948

k-NNRw2 0.0096912371 ± 0.0075398296 0.0030848789 ± 0.0021710948

LR 0.0138590570 ± 0.0194352190 0.0062838398 ± 0.0045738531

SVR-1 0.0099222666 ± 0.0101735078 0.0029027012 ± 0.0024793246

SVR-2 0.2603216450 ± 0.9783462937 0.0523638108 ± 0.1920644156

SVR-RBF 0.0095693860 ± 0.0103128854 0.0027710505 ± 0.0024827469

MLP 0.0130784745 ± 0.0076458498 0.0066302173 ± 0.0053236816
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Fig. 4 Outer diameter database: performance regressionmeasures with
k-NN regression models when varying k. (a) Root Mean Square Error.
(b) Mean Absolute Error

of extruded tubes. However, the small differences in both
RMSE and MAE results do not allow us to draw signifi-
cant conclusions about which method is the best numerical
prediction technique. In fact, even the LR and MLP models
could be applied to tackle this problem because their errors
were also close enough to 0.

Figure 4 shows the performance measures for the three
versions of k-NN regressionwhen varying the value of k from
1 to 29. The graphical results suggest that when k increases,
the k-NNRw1 shows a steady behavior along the X -axis. In
the case of k-NNR and k-NNRw2 models, their error rates

increase alongwith the value of the parameter k. In summary,
it appears that k-NNRw1performed the bestwith all values of
k > 1, demonstrating the benefits of applying this technique
to predict the quality of extruded tubes concerning their outer
diameter.

Inner diameter database

As in the previous section, we analyzed the behavior of the
regressionmodels to predict the inner diameter of an extruded
tube. Table 4 shows the results of RMSE and MAE aver-
aged across the 100 runs for each technique. Results are
conceptually similar to those of the outer diameter database:
(i) the methods based on k-NN, the SVR-1 and the SVR-
RBF yielded very low error values (≈ 0); (ii) here MLP also
appears to be among the best performing algorithms; and (iii)
except the SVR-2 method, differences in the results of the
regression models seem not to be significant.

Figure 5 depicts the performance results for all versions
of the k-NN regression models as a function of k. One
can observe that k-NNRw1 achieved very similar perfor-
mance results regardless of the k value. In the case of plain
k-NNR and k-NNRw2, when k increases, the error rates
decreases slightly. These results suggest that the three k-NN
regression models are suitable for predicting the inner diam-
eter of extruded tubes, although the k-NNR and k-NNRw2
approaches seem to be the best techniques.

Conclusions and future work

The present paper has focused on predicting two qual-
ity indices in a tubing extrusion process. A thoroughly
experimental study has been carried out on a real-life data
set provided by an extrusion tube manufacturing plant
located in Ciudad Juárez (Chihuahua, Mexico). More specif-
ically, three k-NN regression methods (the straightforward
algorithm and two distance-weighted approaches), the lin-
ear regression model, three SVR configurations (SVR-1,

Table 4 Average results in
terms of RMSE and MAE (with
standard deviations) on the inner
diameter database

RMSE MAE

k-NNR 0.0010767157 ± 0.0001233918 0.0008922620 ± 0.0001050170

k-NNRw1 0.0012095069 ± 0.0001328387 0.0010122028 ± 0.0001120801

k-NNRw2 0.0010783177 ± 0.0001229690 0.0008940031 ± 0.0001048994

LR 0.0011882847 ± 0.0009202389 0.0009338954 ± 0.0002309976

SVR-1 0.0013502332 ± 0.0011949720 0.0009922225 ± 0.0002923969

SVR-2 0.1471915327 ± 0.5658384933 0.0296721074 ± 0.1110184843

SVR-RBF 0.0010781128 ± 0.0001270223 0.0008608249 ± 0.0001151820

MLP 0.0013352608 ± 0.0002263802 0.0010851685 ± 0.0001695045
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Fig. 5 Inner diameter database: Performance regression measures with
k-NN regression models when varying k. (a) Root Mean Square Error.
(b) Mean Absolute Error

SVR-2, and SVR-RBF), and a multi-layer perceptron have
been used to predict the inner and outer diameters of an
extruded tube based on the evaluation of 15 process param-
eters.

Experimental results suggest that distance-weightedk-NN
regression models along with the linear and the RBF-based
support vector regression methods were the most effec-
tive techniques for the prediction of extruded tube quality,
achieving RMSE and MAE rates close to 0. From our anal-
ysis when varying the k values, we found out that when k
increases, the performance regression rates are (almost) sta-
ble.

Future research will be mainly addressed to incorporate a
feature selection phase to remove any attribute that might be
considered noisy or irrelevant. Another avenue for further
investigation concentrates on developing some regression
algorithms based on the surrounding neighborhood concept.
Finally, we are also interested in analyzing the behavior of
ensembles of regression models.
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