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Abstract
Materials informatics employs techniques, tools, and theories drawn from the emerging fields of data science, internet,
computer science and engineering, and digital technologies to the materials science and engineering to accelerate materials,
products and manufacturing innovations. Manufacturing is transforming into shorter design cycles, mass customization, on-
demand production, and sustainable products. Additive manufacturing or 3D printing is a popular example of such a trend.
However, the success of this manufacturing transformation is critically dependent on the availability of suitable materials
and of data on invertible processing–structure–property–performance life cycle linkages of materials. Experience suggests
that the material development cycle, i.e. the time to develop and deploy new material, generally exceeds the product design
and development cycle. Hence, there is a need to accelerate materials innovation in order to keep up with product and
manufacturing innovations. This is a major challenge considering the hundreds of thousands of materials and processes, and
the huge amount of data onmicrostructure, composition, properties, and functional, environmental, and economic performance
of materials. Moreover, the data sharing culture among the materials community is sparse. Materials informatics is key to the
necessary transformation in product design and manufacturing. Through the association of material and information sciences,
the emerging field of materials informatics proposes to computationally mine and analyze large ensembles of experimental
and modeling datasets efficiently and cost effectively and to deliver core materials knowledge in user-friendly ways to the
designers of materials and products, and to the manufacturers. This paper reviews the various developments in materials
informatics and how it facilitates materials innovation by way of specific examples.
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Introduction

Emerging technologies and products from smart phones, per-
sonal healthcare devices to electric cars are dependent on the
development and availability of suitable materials (Phillips
and Littlewood 2016). Materials play an enabling role in
clean water, air, energy and environment, human health and
wellbeing, smart living and transportation, and safety and
security (Dima et al. 2016). Several types of improved mate-
rials are needed for innovative products, while not every
application requires a radically new material. They include
light-weight materials, energy materials, biomaterials, food
packaging materials, nanocomposites, electronic materials,
thermoelectric materials, polymers, metals, ceramics, soft
materials, and materials for extreme environments (Dean
1990).
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Drawing parallels to the human genome, the materials
genome comprises all the elements in the periodic table (de
Pablo et al. 2014). However, we do not yet fully under-
stand how function emerges from assembling appropriate
atoms in the right way as well as how to precisely make
the designed material. Until recently, an extensive trial and
error approach has been the main mode of developing new
materials. Moreover, the data generated is often not shared
with others in efficient and effective modes, thus leading
to loss of information, underutilization of materials infor-
mation, redundancy of experiments and longer cycles of
materials development (Jain et al. 2016). One of the earlier
and main challenges that have been tackled by the material
community is the accessibility of data through the devel-
opment of high-throughput computation and combinatorial
experiments, where data sharing in shortening the innova-
tion cycles has been recognized as a key enabler (Kalidindi
and De Graef 2015; Puchala et al. 2016). Mathematical and
statistical methods are needed to extract patterns that can
be leveraged for material discovery, design and optimization
(Rajan 2015).

The discovery and optimization of materials is time-
consuming, labor intensive, complex and expensive. A new
consumer product from invention to widespread adoption
takes about 2–5years, but doing the same for a new mate-
rial takes about 15–20years. There is a need for matching
materials innovation with the accelerated pace of new prod-
uct designs and shorter cycles of manufacturing (Kalidini et
al. 2016; Panchal et al. 2013). Product designers need precise
information on materials functional performance and envi-
ronmental impact. With the availability of cheaper sensors
and faster communication technologies, vast amounts of data
on in situ service performance of the products and materials
can be easily collected. Emerging information, computation,
communication technologies which include big data ana-
lytics, algorithms, data mining, artificial intelligence (AI),
machine learning, industrial internet or internet of things
(IIoT), high performance computing and cloud computing
are presenting unique opportunities to materials design and
materials selection based on the functional performance
requirements. They can be employed to analyze larger and
larger volumes of materials related data collected via ubiqui-
tous sensors and industrial internet of things, and created by
combinatorial materials science, high throughput analytical
techniques, computational materials science based on accu-
rate electronic structure methods, and materials property and
failure prediction software and tools (Kalidindi et al. 2010).

In the footsteps of bioinformatics and the successful accel-
eration of genomics, material science and engineering can
benefit from a large scale, collaborative and interdisciplinary
approach to the design, development, selection and appli-
cation of materials and processes leveraging the developing
information, computation and communication technologies.

We refer to such a holistic approach as materials infor-
matics (Rajan and Seeram 2018). Materials genome, real
time materials informatics, hierarchical materials informat-
ics, web-based materials data sharing, etc. are other names
appearing in the literature. Mulholland and Paradiso (2016)
described it as algorithmically analyzing materials data
across the product life cycle, i.e. selection, manufacturing
and certification with a focus on reducing time to market for
new advanced materials technologies. Rodgers and Cebon
(2006) and Wang et al. (2014) described it as the application
of computational methodologies to processing and interpret-
ing scientific and engineering data concerning materials. In
our broader view, the materials informatics employs tech-
niques, tools, and theories drawn from the emerging fields
such as data science, internet, computer science and engi-
neering, and digital technologies to the materials science and
engineering to accelerate materials, products and manufac-
turing innovations.

On a limited scale, a few materials databases, precursors
to the current day material informatics, already exist. Major
impetus for the materials informatics came from the materi-
als genome initiative (MGI) of USA launched in 2011. As a
part of MGI initiative, the US National Science Foundation,
Department of Defense, Department of Energy, and National
Institute of Standards and Technology (NIST), funded sev-
eral individual projects as well as large scale centers. The
overarching goal is to accelerate the discovery and devel-
opment of new and improved materials at a fraction of
the cost (National Science and Technology Council 2011;
McDowell andKalidindi 2016). TheMGI infrastructure plat-
form encompasses computational tools, experimental tools,
and digital data. Accelerated materials design and deploy-
ment is envisaged by: (1) developing effective and reliable
computational methods and software tools, (2) develop-
ing high-throughput experimental methodologies to validate
theories and to provide reliable experimental data to the
materials databases, and (3) establishing reliable and widely
applicable databases and materials informatics tools.

The goal of this emerging field is to achieve high-speed
and robust acquisition, management, multi-factor analyses,
and dissemination of diverse materials data. This encom-
passes more specialized earlier developments such as mate-
rials property databases, combinatorial materials synthesis,
materials data management, process modeling, life cycle
inventory, life cycle impact assessment, andproduct life cycle
management. Proponents of materials informatics see its
analogy to the bio-informatics which applies software tools
for understanding the biological data. It led to the person-
alized medicine based on the deciphered human genome.
Moreover, the data storage technologies are highly devel-
oped. For example, the European Bioinformatics Institute
stores approximately 20 petabytes of data, and the Euro-
pean Organization for Nuclear Research (CERN) stores over
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200 petabytes. Hence, the materials informatics community
believes that it has the potential to provide deeper under-
standing and derive greater insights by applying lessons
learned from data gathered on one type of material to others.
They see the benefits of materials informatics in terms of
accelerated insertion of materials, thereby saving millions of
dollars otherwise needed for the conventional way of mate-
rials development. It breaks down the barriers between data
management, quality standards, data mining, exchange, and
storage and analysis, as a means of accelerating scientific
research in materials science.

The structure of this review paper is as follows. Fol-
lowing the Introduction, second section briefly describes
web-based materials informatics platforms that are contin-
uously and quickly growing-up to form the solid ground
of the newly emerging materials informatics field. Materi-
als informatics integrates materials science and engineering
and artificial intelligence with the hub of machine learning
and big data. Machine learning is an additional tool to the
global materials community. Third section concisely intro-
duces data-drivenmaterials designbyusingmachine learning
approaches, where machine learning methods are tersely
described in first subsection, descriptor selection in second
subsection, the newly developed technique of adaptive mate-
rial design in third subsection, and model explainability of
machine learning in fourth subsection. The state-of-the-art
applications of material informatics are overviewed in fourth
section. Future directions of material informatics are briefly

discussed in fifth section. Finally, sixth section gives the con-
clusions.

Web-basedmaterials informatics platforms

Materials informatics trend is web-based platforms and data
infrastructurewithwhich it is easy to search for specificmate-
rials information from anywhere in the world and anytime.
The materials informatics, mainly from the academic institu-
tions and governmental organizations, are free to use; while
the commercial ones, from professional societies and pri-
vate companies, are pay for a license and pay per usage.
Various facets of materials science and engineering involves
generating reliable data and information during materials
synthesis, processing, modeling and characterization at vari-
ous length scales, materials changes and performance during
the fabrication of products and service life of the product, and
consequences of action taken at the end-of-life of product.
These facets ofmaterials science and engineering lead to high
volumes and heterogeneity of data.Moreover, the data comes
from diverse sources in different formats. The web-based
materials informatics platforms to support data generation,
acquisition, storage, mining, processing, management, and
visualization services. The multi-faceted nature of materials
informatics is illustrated in the schematic shown in Fig. 1.
Table 1 lists the various materials informatics efforts around
the world. The sections to follow will describe the details of
these efforts.

Fig. 1 Web-based materials informatics platforms are built on data infrastructure and analytic tools stated on the left side of the schematic. Data is
generated and fed from the tools and means indicated on the right side of the schematic
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Table 1 Materials informatics efforts around the world (Kalidindi et al. 2016a, b)

Materials informatics (compatible with Windows,
Mac OS X, and Linux)

Host

AFLOWLIB AFLOW consortium, Duke University

ASM medical materials database ASM International

CALPHAD (calculation of phase diagrams) for
metallic alloys

National Institute of Standards and Technology, NIST

CHiMaD NIST (National Institute of Standards and Technology) Center for Hierarchical
materials design (CHiMaD) at Northwestern University, Argonne National
Laboratory and The University of Chicago

Citrine informatics—thermoelectric materials US based private repository for materials data spanning from development to
manufacturing

Granta material intelligence A private company at Cambridge, UK

Harvard clean energy project on organics for
photovoltaic and electronics

http://cleanenergy.molecularspace.org/

Materials common-based on phase equilibria,
microstructures and mechanical properties of
metals and alloys

Department of Energy funded PRISMS (Predictive Integrated Structural
Materials Science) Center at the University of Michigan, USA

Materials project (MP) Lawrence Berkeley National Laboratory

MatNavi—metals, polymers, ceramics National Institute of Material Science of Japan (NIMS Japan)

NanoMine for nanocomposites Northwestern University

Novel materials discovery (NoMaD) Europe http://nomad-repository.eu/cms/

Open quantum materials database (OQMD) Northwestern University

OpenKIM project on interatomic potentials University of Minnesota

www.matweb.com Web based materials property platform

Since 2011, a number of projects for data curation have
been initiated. The Materials Project at Lawrence Berkeley
National Laboratory, the OpenKIM project on interatomic
potentials at theUniversity ofMinnesota, theNIST (National
Institute of Standards and Technology) Center for Hierar-
chical Materials Design (CHiMaD) at Northwestern Uni-
versity, Argonne National Laboratory and The University
of Chicago, and the materials common at the University of
Michigan PRISMS (Predictive Integrated Structural Materi-
als Science) Center funded by the Department of Energy are
to name a few examples. Efforts are also made to develop
protocols for annotation of the materials data, data struc-
tures, archiving data on the web such that the value of the
data is maintained over time, and the web-based database
remains available for reuse and preservation. For example,
the National Institute of Standards and Technology (NIST)
facilitated efforts on data curation by developing a phase-
based materials ontology for ensuring consistency among
disparate phase-based materials community (NIST 2013).
They adopted unified modeling language (UML) and XML
schema for this purpose. The database infrastructure is based
on NoSQL as well as other standard relational technologies.
They also adopted traditional APIs, Web APIs (REST), and
data exchange facilities and formats (XML, JSON,BSON) to
provide flexible data access to the web-based databases, scal-

ability and access to new tools of big data analytics, machine
learning and artificial intelligence.

Novel materials discovery, NoMaD is a European mate-
rials database. The National Institute of Material Science of
Japan (NIMS Japan) maintains MatNavi database. MatWeb
is another searchable online material database with data
cataloged from several manufacturers and suppliers. The
Materials Intelligence system from Granta Design, Cam-
bridge, UK is a commercial platform that integratesmaterials
data with a variety of software tools and provides Ashby
charts for different types of materials. The US based Cit-
rine Informatics offers private repositories for materials
data spanning from development to manufacturing. The
Citrine Informatics created a web-based database using a
machine-learning-based recommendation engine for iden-
tifying new thermoelectric materials using a large body of
experimental thermoelectric characterization data and first-
principles-derived electronic structure data as the training
set. In other words, it provides datasets collated from multi-
ple sources and data-driven material design tools.

National Institute of Standards and Technology (NIST)
has developed phase diagram based CALPHAD (CALcula-
tion of PHAseDiagrams) formetallic alloymaterials as a part
of MGI (Kaufman and Ågren 2014). It captures both exper-
imental and computational data related to thermodynamics,
kinetics diffusion,molar volume, elastic properties, electrical
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conductivity, thermal conductivity and interfacial energies.
In recent years, it is being developed into OpenCalphad
(OC), an informal international collaboration of scientists
and researchers interested in the development of high qual-
ity software and databases for thermodynamic calculations
using the CALPHAD. The materials common by PRISM
at the University of Michigan focuses on phase equilibria-
microstructures-mechanical properties of metals and alloys
(Puchala et al. 2016).Materials Commons is being developed
as platform for use by the global materials community for
accelerating the prediction of materials phenomena. Other
databases include Citrine Informatics’ system, NanoHuB,
the National Data Service’s Materials Data Facility, and
the Crystallographic Open Database (COD) integrated with
computational ICSD.

The open quantum materials database (OQMD) and the
Materials Project (MP) utilize results from density functional
theory computational methods coupled with data analytics
for screening and discovery of promising material sys-
tems with enhanced properties for batteries and catalysts.
NanoMine developed by the researchers at the Northwestern
University focuses on nanocomposites materials informatics
in order to facilitate efficient material selection and design.
AFLOWLIB is a large database (about 1,6M entries to date)
of electronic structure calculations performed at the level of
density functional theory. It ismaintainedbyDukeUniversity
and contains data produced by a consortium of 14 research
groups distributed over three continents. AFLOWLIB con-
tains data for about 70% of the compounds whose crystal
structures are reported in the ICSD repository, in addition to
several libraries of hypothetical new phases, including binary
and ternary intermetallic, Heusler alloys, etc.

Diverse stakeholders of nascent materials informatics
field such as the private entities (Citrine Informatics and
Springer Nature Nano), non-profit societies (ASM Interna-
tional, ASME, ASTM), and government agencies (NIST) are
shaping standards for open data frameworks, systems, and
ontologies that flexibly accommodate data for purposes of
record keeping, easy retrieval via web searches, and analysis.
In order to encourage progress via open competition, NIST
and Citrine Informatics hostedMaterials Data Challenge and
Materials Hackathons respectively.

It is to be noted that the aforementioned materials infor-
matics infrastructure are in early stages of development and
not yet reached the stage of easily and flexiblymeet the needs
of a variety of users and products.

Table 2 provides information on various software
approaches for data formats, data security, data dissemination
strategies, data analysis and visualization. They are helpful
to curate, share and mine materials data from scientific liter-
ature and diverse sources for further insights. Currently the
data formats used in materials science and engineering are

very diverse and hence, pose challenges to creating easy to
use databases.

Table 3 lists various software that have been widely used
for modeling and simulation to predict materials properties.
Life cycle assessment and life cycle engineering related soft-
ware and web-based databases are listed in Table 4. These
lists are not meant to be exhaustive but provide a sampling
of global efforts in this direction.

Machine learning

As indicated in Fig. 1, machine learning and datamining play
an essential role in emerging materials informatics. Machine
learning is developed along with the development of com-
puter science and now becomes an important subfield of
computer science. Machine learning gives computers the
ability to learn from data and make predictions based on
data (Samuel 1967). Mitchell (1997) defined machine learn-
ing as “A computer program is said to learn from experience
E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
by P, improves with experience E.” In materials informat-
ics, machine learning algorithms learn from existingmaterial
data,which include input information representedbydescrip-
tors and output responses that are usually material properties
or/and performance of interest, in order to design and dis-
cover newmaterialswith improved targeted properties or/and
performance. Sincematerial data are usually sparse, adaptive
design with feedback from experiments or/and computa-
tions has been proposed to enhance the ability of machine
learning. After the introduction of machine learning algo-
rithms, the descriptor selection, adaptive material design,
and machine learning model explainability are described in
reader-friendly manner with successful cases of materials
machine learning approaches.

Machine learning algorithms for materials
informatics

Regarding learning style (Brownlee 2013), there are three
categories in machine learning algorithms, called super-
vised learning (Decision Tree, Boosting, Artificial Neural
Network, Support VectorMachine, etc.), unsupervised learn-
ing (Clustering, Associate Rules, etc.), and semi-supervised
learning (Friedman 2001). Supervised learning uses labeled
data to train a machine learning model, where the data is
called training data and the trained model will have the
capability to predict the relationship between targeted prop-
erties and features. On the other hand, unsupervised learning
clusters only unlabeled data. In semi-supervised learning,
unlabeled data are used alongwith the labeled data to improve
the accuracy of the models on the training data.
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Table 2 Software tools and methods for management of entire data life cycle (Dima et al. 2016; Jain et al. 2016; Le and Winkler 2016; Puchala
et al. 2016).

Purpose Tool or method Description

Data verification, data
formatting

• ESTEST framework for validation and verification of electronic
structure codes—Qbox, Quantum Espresso, Siesta, ABINIT, and
The Exciting Code

To ensure that the data is sensible and relevant,
information is verified and formatted according
to specifications. For data exchange to happen,
different software may require specific formats
before they can be interpreted properly

• Comma-Separated-Values (CSV) format for tabular data

• HDF5 and netCDF formats for complex datatypes

• Yet Another Markup Language (YAML), Extensible Markup
Language (XML) and JavaScript Object Notation (JSON) for
structured meta data

• ChemML and MatML are for more scientific specifications

• UrXML to format XML in non-XML documents

• Materials Information File (MIF) as a structured material data
format

• Binary Large Object (BLOBs) to store large data objects as
binary or character data

Data curation, data
security

• SQL for table structured databases—MySQL As data is collected and represented in a database
management system, ongoing maintenance of
data is necessary. This includes ensuring the
authenticity and integrity of data through
proper data security measures

• NoSQL for document-oriented databases—MongoDB,

• Hypertext Transfer Protocol Secure (HTTPS) for secure data
communication over the web

• Antivirus protection to prevent data-stealing—McAfee,
Symantec, Kaspersky

• Encryption for authentication and authorization—BitLocker

• Virtual Private Network (VPN) for secure connection in
organizations

• Data backup solutions to prevent data loss—Acronis, Backblaze,
IBM Backup

Data sharing, data
centralization, data
dissemination

• ZIP archive for compressed file download Technical aspects that allow for efficient data
transfers, coupled with repositories where data
are predominantly collated and tools that
encourage collaboration for proper
dissemination of shared data

• REpresentational State Transfer (REST) or RESTful web
services for client-server resources exchange

• Hypertext Transfer Protocol (HTTP) as the foundation for data
communication over the web

• Uniform Resource Locator (URL) as web address to access web
resources

• NGINX for resource efficient web services

• Open Archives Initiative Protocol for Metadata Harvesting
(OAI-PMH)

• Source-code repositories—Git, Mercurial, Subversion

• E-collaboration tools—Jupyter, Galaxy, Pegasus, KNIME,
Orange, and gUSE

• Collaborative platforms—Materials Data Curation System
(MDCS); NIST Materials Resource Registry (NMRR); Materials
Commons; Citrine Informatics

• ChemSpider search engine for the Chemistry community

• DSpace open source repository application
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Table 2 continued

Purpose Tool or method Description

Web interface,
computational
algorithms, data
visualization

• Frameworks for web development such as Django, Flask,
Pyramid, Laravel, Ruby on Rails

Existing frameworks that help in deploying
web-based interfaces for user interaction.
Computation methods and algorithms are
introduced to transform data into valuable
information which can be further illustrated
through visual representation of data

• E-science gateway—MATIN based on HUBzero

• User interaction via a graphical user interface (GUI) or a
representational state transfer application programming interface
(REST API)

• MATLAB Neural Network Toolbox

• Rotation forest algorithm

• Evolutionary algorithms—SourceForge genetic algorithms;
HeuristicLab; AMALGAM; NSGA-II; RosettaCode; GPLAB

• Data analysis tools—R, SciPy, NumPy, Scikit-learn,
StatsModels, Pandas, MATLAB

• Data visualization tools—Chart.js, Tableau, Visual.ly, D3.js,
Google Charts, CartoDB

Table 3 Materials modeling and simulation software

Common names of software

DS Solid Works

LS-Dyna (Ansys)

Autodesk-ALGOR and PLASSOTECH

COSMOSWorks

SpaceClaim 3D

ABAQUS (Simulia)

Matlab (MAthWorks)

Pam-Crash (ESI)

Mathematica

LAMMPS

DICTRA

MICRESS

Python-basedmaterials knowledge systems (PyMKS)

According to the format similarity or the function sim-
ilarity, machine learning algorithms are divided into eight
groups: dimensionality reduction, regression, decision tree,
Bayesian algorithm, clustering, artificial neural network,
deep learning, and ensemble, in which the four groups of
dimension reduction, regression, classification, and cluster-
ing are commonly used in materials informatics. Dimension
reduction includes initial and final feature selections, and fea-
ture transformation. Feature selection aims to reduce features
in high-dimensional space to low-dimensional space and to
find a subset, which influence mostly to the targeted prop-
erties, from the initial feature set or/and to rank the initial
features based on the influence. Regression and classifica-

Table 4 Life cycle assessment software and databases

Software and databases Provider

Boustead Model 5 Boustead Consultants (www.boustead-
consulting.co.uk)

Carbon Calculator Carbon Trust, London (www.carbontrust.
com)

CES Eco’12 Granta Design, Cambridge, UK (www.
grantadesign.com)

EarthSmart www.earthshiftglobal.com

Eiloca Carnegie Mellon Green Design Institute,
USA (www.eiloca.net)

GaBi-LCA software
system

PE International, Germany (www.gabi-
software.com)

GHG Protocol
Organization

http://www.ghgprotocol.org/Third-Party-
Databases

GREET US Department of Transport (www.
transportation.anl.gov)

KCL-Eco 3.0 KCL, Finland (www.kcl.fi)

LCA Calculator IDC, London, UK (www.lcalculator.com)

MIPS Wuppertal Institute (www.wupperinst.org)

Okala Ecodesign Guide Industrial Design Society of America
(www.idsa.org/okala-ecodesign-guide)

OpenLCA GreenDelta (www.openlca.org)

SimaPro-LCA software
system

PRé Consultants (www.pre.nl),
Netherlands https://simapro.com/

Team (EcoBilan) PricewaterhouseCoopers (www.
ecobalance.com)

tion algorithms are usually used for macro or micro-level
material properties predictions. Clustering is used as outlier
detection. More attention should be paid to outliers because
they might be caused by noises or new inventions. Popu-
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Table 5 Popular machine learning algorithms used in materials informatics

Algorithm Category Popular algorithms

Dimensionality
reduction

Dimensionality
reduction

Principal Component Analysis (PCA), Principal Component Regression (PCR), Partial Least
Squares Regression (PLSR), Sammon Mapping, Multidimensional Scaling (MDS), Projection
Pursuit, Linear Discriminant Analysis (LDA), Mixture Discriminant Analysis (MDA), Quadratic
Discriminant Analysis (QDA), Flexible Discriminant Analysis (FDA)

Regression Regression Ordinary Least Squares Regression (OLSR), Linear Regression, Logistic Regression, Stepwise
Regression, Multivariate Adaptive Regression Splines (MARS), Locally Estimated Scatterplot
Smoothing (LOESS), Ridge Regression, Least Absolute Shrinkage and Selection Operator
(LASSO), Elastic Net, Least-Angle Regression (LARS)

Decision tree Regression and
classification

Classification and Regression Tree (CART), Iterative Dichotomiser 3 (ID3), C4.5 and C5.0
(different versions of a powerful approach), Chi-squared Automatic Interaction Detection
(CHAID), Decision Stump, M5, Conditional Decision Trees

Bayesian Regression and
Classification

Naive Bayes, Gaussian Naive Bayes, Multinomial Naive Bayes, Averaged One-Dependence
Estimators (AODE), Bayesian Belief Network (BBN), Bayesian Network (BN)

Artificial neural
network

Regression and
classification

Perceptron, Back-Propagation, Hopfield Network, Radial Basis Function Network (RBFN)

Deep learning Regression and
classification

Deep Boltzmann Machine (DBM), Deep Belief Networks (DBN), Convolutional Neural Network
(CNN), Stacked Auto-Encoders

Clustering Clustering k-Means, k-Medians, Expectation Maximization (EM), Hierarchical Clustering

Ensemble Regression and
classification

Boosting, Bootstrapped Aggregation (Bagging), AdaBoost, Stacked Generalization (blending),
Gradient Boosting Machines (GBM), Gradient Boosted Regression Trees (GBRT), Random
Forest

lar machine learning algorithms in materials informatics are
described in Table 5.

It might be a great challenge in machine learning how
to choose an optimal algorithm with appropriate fitting of
available data without overfitting or under fitting. For exam-
ple, Raccuglia et al. (2016) conducted five machine learning
models of decision tree (C4.5), random forest (size 100 and
1000), logistic regression, k-nearest neighbors (k = 1, 2, and
3) and support vector machine (SVM) (Vapnik 1995, 1998)
on 3955 chemical reaction with 273 descriptors per reaction.
Their results indicated that the SVMmodel yielded the high-
est classification accuracy (74.1%) over the others based on
15-cross-validation tests (Efron 1983).

Descriptor selection

In machine learning, descriptors are called features or attrib-
utors as well. Many attributors of atoms and electrons
are widely used as descriptors in materials informatics,
especially in high-throughput computation based materials
informatics. Actually there are multiple types of descrip-
tors. In chemical reaction based material synthesis, reactants
and reaction conditions are naturally descriptors as inputs
and the responses are products of the chemical reaction. In
metal forming, descriptors could be raw metal composition
and microstructure, the shape and size of the raw metal, and
the metal forming conditions. In any circumstances, descrip-
tor selection is one of the most important steps in materials
data mining. Descriptors might be regarded the decisive

factors in the construction of mechanism-independent cor-
relations between the targeted properties and descriptors,
which will become guidance for materials design and dis-
covery. In mechanism-based analysis of data, descriptors are
well defined and targeted properties are explicitly or implic-
itly expressed in terms of descriptors, and the expressions
appear in analytic form or others. Descriptors are called vari-
ables in mechanism-based formulation and modeling, where
it is very much straightforward to identify whether these
variables are independent variables or not. In mechanism-
independent datamining, the situation is completely different
from the mechanism-based data analysis. Data mining deals
withmechanism unclear problems, where only data are avail-
able. The number of available materials data is much smaller
than the number of the virtual data in the search space. There-
fore, appropriate descriptorswith a statisticmodel (regressor)
might require less training data and render the trained statistic
model more power in prediction. The purpose of descriptor
selection in materials data mining is to find the most influ-
ential features for modeling of targeted properties without
redundancy so that descriptor selection should be carried out
in such a way that the dimensionality of input space can be
reduced without loss of important information.

Ghiringhelli et al. (2014) proposed four important proper-
ties of a descriptor. (1) A descriptor uniquely characterizes a
material as well as property-relevant elementary processes.
(2) Materials that are very different (similar) should be char-
acterized by very different (similar) descriptor values. (3)
The determination of the descriptor must not involve cal-
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culations as intensive as those needed for the evaluation of
the property to be predicted. (4) The number of descriptors
should be as low as possible (for a certain accuracy request).
To demonstrate how meaningful descriptors can be found
systematically, they took the energy difference between zinc
blende semiconductors and wurtzite and rocksalt semicon-
ductors as targeted property, where the energies of these
semiconductors were calculated ab initially. The goal of this
machine learning is to find descriptors that are able to classify
distinctly the zinc blende semiconductors from the wurtzite
and rocksalt semiconductors. For this purpose, few essential
atomic features were combined in physical sense manner to
form sums and absolute differences of homogeneous quan-
tities. The combined features were combined further and
further. Finally about 4500 feature candidates were formed
and each of the about 4500 feature candidates had still an
explicit expression of the essential atomic features. Then,
the least absolute shrinkage and selection operator (Tibshi-
rani 1996) was employed to select features from the about
4500 candidates, leading to the best (i.e., the lowest RMSE,
see “Appendix 1”) 1D, 2D and 3D features.

It should be emphasized again that domain knowledge
must be fully utilized in the initial selection of descriptors. As
described above, it might be good to select initial descriptor
candidates as many as possible in order to avoid any poten-
tial missing of some key descriptors or/and to find the right
format of descriptors. Initial descriptor candidates should be
carefully examined to check the correlations among them. A
Pearson correlation map is very often used to illustrate the
correlations among initial descriptor candidates. The Pearson
correlation map does not involve any regressors to analyze
correlations of descriptors. Another technique to analyze cor-
relations of descriptors without involving any regressor is
called minimal-Redundancy-Maximal-Relevance (mRMR)
(Peng et al. 2005) and has also great potential in materials
informatics.

Xue et al. (2017) used only three features to predict
the martensitic transformation temperatures of 1,652,470
compositions from initial 53 data. The three features were
selected from initial 16 feature candidates via two steps. First,
the Pearson correlation map was utilized to find the correla-
tions among these 16 initial feature candidates by using the
53 training data. The Pearson correlation map indicates two
highly correlated groups in the initial 16 feature candidates.
Based on the Pearson correlation map and domain knowl-
edge, Xue et al. (2017) selected 7 features from the initial
16 feature candidates. Second, the 7 features were further
selected by the so-called subset selection method via a linear
regressor of phase transition temperature versus descrip-
tor(s). The mean squared error (MSE) and R2 statistics (see
“Appendix 1”) were used to measure the fitting accuracy for
each regression model as a function of the number of fea-
tures with possible subset combination of descriptors used

to fit the model. The subset selection method selected the
final three features. Obviously, the subset selection method
involves a regressor and thereby the final selected features
might depend on the regressor involved. It is very popular
that feature selection is combined with regressor.

Xiong et al. (2015) combined the genetic algorithm (GA)
(Gen and Cheng 1997) with a support vector regression
(SVR) model to select descriptors in the study of desired
basal spacing of layered double hydroxides (LDH). The GA-
SVR method selected the subset of descriptors and trained
the model that was evaluated by the leave one out cross val-
idation (LOOCV) simultaneously. The minimal root mean
square error (RMSE) completed the training of the model
and selected 4 descriptors from the 19 candidates. Then
the machine learning gives the linear relationship between
the basal spacing (d) of LDH compounds with the four
descriptors and Xiong et al. (2015) verified this prediction
by synthesizing and characterizing a new Mg-Al-CO3 LDH
compound.

de Jong et al. (2016) conducted data mining on the
Voigt–Reuss–Hill (VRH) averages (see “Appendix 2”) of
elastic bulk modulus K and elastic shear modulus G of
1940 inorganic compounds, where data were obtained from
first-principles quantum mechanical calculations based on
Density Functional Theory (DFT). Based on the material
knowledge at the atomic level, they initially selected 17
descriptor candidates including 8 composition descriptors
and 9 structural descriptors for each compound. Then, de
Jong et al. (2016) used a statistical learning technique, called
the gradient boosting machine local polynomial regression
(GBM-Locfit), to select the most important descriptors with
Hölder means. The final GBM-Locfit model trained with the
1940 data determines four most useful descriptors for pre-
dicting bulk modulus K and shear moduli G, although the
order of the four most useful descriptors in the prediction of
bulk modulus K differs from that in the prediction of shear
modulus G. It is very impressive that none of themodels with
more than four descriptors had significantly better predictive
accuracy than these four-descriptorsmodels, concluded from
the comparison of prediction MSE and their associated stan-
dard errors. On the other hand, all other models with less than
four descriptors had significantly less predictive accuracy.

Adaptive design inmaterials informatics

In materials informatics, one great challenge is that available
dataset is usually small, while the search space of virtual
dataset is large. A data mining algorithm or model is usu-
ally trained with a small dataset, called training dataset, of
heterogeneously distributed data. Then, applying the trained
model to the search space of huge numbers of virtual data
may yield two distinct regions of exploration and exploitation
in the search space. Caution must be exercised in designing
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Fig. 2 Adaptive design approach integrating database, which is built
based on domain knowledge and includesmaterial data of targeted prop-
erties and descriptors, regressor, which is a statistics-based algorithm
to regress targeted properties versus descriptors, selector, which is also
a statistics-based algorithm to design new experiments or/and compu-
tations by optimizing the selection from exploration and exploitation
regions, and feedback experiments/computations

next experiment or/and computation with machine learning
results and the exploration and exploitation regions must be
considered in the design. Xue et al. (2016) developed an
adaptive design approach, as schematically shown in Fig. 2,
to address such a challengeof data sparseness and their results
show the success. The adaptive design approach adopts
iterative feedback that incorporates data mining, design,
and experiment (or/and computation). The adaptive design
approach starts with initial data, combines data mining,
experimental (or/and computational) design, and experiment
(or/and computation), and feeds the new experiment (or/and
computation) results back into the dataset. The iteration con-
tinues until the targeted properties are achieved. The success
of Xue et al. (2016) indicates that adaptive design approach
combining machine learning and experiment (or/and com-
putation) is able to accelerate new materials discovery with
targeted properties.

In the adaptive design approach, a database of interested
materialswith targeted properties to be pursued is an essential
and key ingredient. Reliability tests and descriptor selec-
tion are usually conducted in order to build-up an initial
dataset. Each data in the initial dataset contains the exper-
imentally measured (or/and numerically computed) material
information of properties (or/and performance) and descrip-
tors (or features called here). Careful examining all data in
the initial dataset is able to determine an appropriate size
of search space. If the search space is too small, the tar-
geted properties might be out of the research space, thereby
increasing the bias error. On the other hand, a too large
search space will make the estimation variance of machine
learning results big. Alternately, one may choose the search

space and then generate the initial dataset by designed exper-
iments or/and computations. A machine learning algorithm,
as a core ingredient in the adaptive design loop, is based on
a statistical inference model and trained with such an ini-
tial training dataset. The algorithm is called the regressor
here. The regressor after training builds up the mapping rela-
tionship with uncertainties between properties and features
and after that the regressor is often named as the trained
model. In general, the trained model is verified by cross-
validation using various data subsets (slits). In the adaptive
design approach, especially when the initial dataset is small,
the trained model is directly applied to the search space of
a virtual dataset. Except of the initial dataset, the properties
have not been measured in the virtual dataset, but predicted
by the trained model. Based on the initial dataset and the the-
oretical prediction from the regressor, a selector, as another
key ingredient in the adaptive design loop, designs the next
batch of experiments (or/and computations) by balancing the
trade-off between exploitation and exploration regions. Xue
et al. (2016) adopted few selectors including Min, Efficient
Global Optimization (EGO), and Knowledge Gradient (KG)
to recommend the next batch of experiments. Selector Min
greedily recommends the regressor predicted material in the
search space, i.e., a pure exploitation. The latter two selectors
recommend new materials for next experiment by consid-
ering both exploration and exploitation. This is essentially
the probability of improving the current best estimate of
the targeted property by sampling estimates in the search
space. The selector treats the uncertainties in the sampling
estimates. The algorithm of selector EGO maximizes the
‘expected improvement’. The EGO algorithm can automati-
cally move onto regions of higher uncertainty after the local
search space of lower uncertainty. Selector KG maximizes
the same ‘expected improvement’ as that used in selector
EGO with a minor change. The selector will determine,
under the constraints of experimental/computational capa-
bility, how many experiments (or/and computations) will
be conducted in the exploitation and exploration regions,
respectively. Thedesignedbatchof experiments (or/and com-
putations) is then conducted and the experimental (or/and
computational) results will be collected and put back into
the database. This is the end of the first cycle and also the
starting of second cycle of iterations. Obviously, the dataset
gets bigger after a cycle of iterations. The feedback from
the selector designed experiments (or/and calculations) will
definitely improve the subsequent machine learning model.

Balachandran et al. (2016) compared several adaptive
design strategies, which were similar to the one adopted
byXue et al. (2016). The targeted propertieswere bulk, shear,
and Young’s moduli of 223 M2AX compounds, which were
obtained from first principles calculations. The ultimate goal
was to discover materials with the targeted properties in as
few cycles of iterations as possible. In addition to selectors of
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EGO and KG, Balachandran et al. (2016) also used the fol-
lowing four selectors: (1)Max: Chooses the highest expected
score from the regressor. (2) Max-A: Alternates between
choosing the material with the highest expected score and
the material with the most uncertain estimated score. (3)
Max-P: Maximizes the probability that a material will be an
improvement, without regard to the size of the improvement.
(4) Random: Chooses randomly an unmeasured compound.
Their results indicate that the KG design selector outper-
formed the purely exploitive selectors. There are always
uncertainties in the material data. These uncertainties come
from experimental errors (e.g., from processing conditions,
inherent instrumentation limitations), computational errors,
and the uncertainty of a regressor. The KG design selector is
able to handle these uncertainties and thus provide the best
design for next experiment or computation.

The prediction accuracy of a selector depends on the used
regressor. In this sense, a combination of regressor:selector
guides the next experiment or computation in the adap-
tive design. For example, Xue et al. (2016) investigated the
performances of several regressor:selector combinations by
cross-validation and based on the initial dataset, when regres-
sor:selector combinations were trained on randomly chosen
subsets from the initial dataset.Obviously, the best performed
regressor:selector combination should be adopted in the rec-
ommendation of new experiments or/and computation.

In brevity, adaptive design suggests feedback from new
experiment or/and computation which are recommended
by the best performed regressor:selector combination, i.e.,
the best machine leaning predication. The new experiment
or/and computation examine and verify the machine learning
predication and the feedback of new experiment or/and com-
putation results increases the database size dynamically with
the cycle number of iterations. Then, the used algorithms
of machine learning are trained again with the expanded
database in order to recommend next batch of experiments
or/and computations. The iterations are going on until the
targeted properties are finally achieved.

Model explainability of machine learning

When choosing a machine learning model, one usually faces
such a trade-off between accurate black-box models and less
accurate but easy-to-explain white-boxmodels.Many practi-
cal applications of machine learning demand that an adopted
model has the ability to explain why and how certain predic-
tions aremade. For example, comparingwith those black-box
learning models (i.e. artificial neural network, support vector
machine, etc.), rule learning (Fürnkranz et al. 2012) (i.e. RIP-
PER) is a white-box model that can learn set of rules from
the training data. Therefore, these two kinds of models might
be combined inmaterials informatics so that while-boxmod-

els are used to analyze the successful results generated from
black-box models in order to explain the successful results.

Raccuglia et al. (2016) used decision tree to explain the
SVM learning results. Although the used SVM model has
the best generalization performance (Raccuglia et al. 2016),
the SVMmodel is opaque and hard to interpret the predicted
results since the kernel function adopted in the SVM model
is nonlinear. Thus, a ‘model of the model’ of a decision tree
(Quinlan 1993) was constructed to re-interpret the machine
learning results of original SVMmodel. For the decision tree
construction, all data were relabeled with the predicted out-
comes of the SVM model. This meant that the entire set of
features used in the SVM model was available in the deci-
sion tree construction, where the feature sequence adopted
in if–then criteria was determined by using a C4.5 decision
tree algorithm (implemented in WEKA 3.7) to model those
predicted outcomes of successful results. It should be high-
lighted that chemical hypotheses to guide future experiments
can be generated from the flow chart of decision tree of
human-interpretable if–then criteria. The constructed deci-
sion tree explained the targeted compound type in either a
poly-crystalline or single-crystal form of templated vana-
dium selenites recommended from the SVM model. Three
hypotheses generated from the decision tree were about the
formation of templated vanadium selenites, categorized by
the molecular polarizability of the amine. The chart flow
and hypotheses provide guidance to future experiment with
respect to how to generate and construct building units and
how to avoid the undesirable building units.

It should be emphasized that all reliable materials data
either successful or failed ones are useful in the progress
of developing novel materials, since successful and failed
experiments will be both necessary in the determination of
boundaries between success and failure. Machine learning
treats data not only in a black box, as here the used SVMalgo-
rithm, but also can interpret data in a human-interpretable
if–then criteria manner, as here the used decision tree algo-
rithm. Thus, using machine learning in materials discovery
will greatly enhance the successful rate and considerably
improve the understanding of complex behaviors of mate-
rials as well.

Regarding the important aspects of machine learning
mentioned above, the following three aspects deserve more
emphasis for material informatics.

(I) Heterogeneous materials data integration. Materials
data, generally speaking, has the typical characteris-
tics of multi-sources and heterogeneity. These diverse
materials big data, if collected and fused into open and
accessible databases, will find applications in mate-
rials discovery, materials selection, materials failure
analysis and life prediction. Materials science and
engineering is very much concerned with the rela-
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tionship among materials processes, microstructure,
properties, and performance, called the processing–
structure–property–performance (PSPP) relationship.
Materials informatics tries to analyze materials data
to decipher the PSPP relationship via forward and
inverse models. The challenge lies in the materials data
sparseness. Most materials data are not big enough
and scatter greatly due to their characteristics of multi-
sources and heterogeneity. The diverse heterogeneous
materials data and databases must be integrated and
there are various levels to do the integration. Jain et al.
(2016) proposed three technical approaches in data
integration, which are data formats, data dissemination
strategies, and data centralization. Over the integrated
materials data and databases, knowledge based integra-
tionmight be carried out based on data semanticswhich
depends onknowledge representation formalisms, such
as semantic nets, frames, rules and ontologies. Cur-
rently, the ontologybased integration is themain stream
in the knowledge based integration.

(II) Online learning and dynamic learning. Onlinemachine
learning, opposed to traditional batch learning sce-
nario that generates the best predictor by learning the
entire training data, will perform the learning model
incrementally in which data becomes available in a
sequential order (Shalev-Shwartz 2011). In some cir-
cumstance, computational data or/and experimental
data are sequentially generated. Thus, it is possible for
machine learning algorithms to dynamically take the
online data in order to improve the computation or/and
experiment. The adaptive design approach takes the
dynamic learning so that the size of a studied database
grows continuously until the goal is achieved.

(III) Domain knowledge representation and utilization. In
machine learning, the domain knowledge (i.e., the
knowledge of materials science and engineering), is
still the core since the essential of materials informatics
is about transforming materials data and information
into academic knowledge and industrial applications.

High level domain knowledge guides each step in the
process and reduces the gap between information and
knowledge. A trustful discovery of new promising
materials, identification of anomalies, and scientific
advancement depends on the knowledge representa-
tion, retrieval, acquisition, management, knowledge
level modeling, etc., in the adopted machine learning.

Applications of material informatics

The materials informatics approach has been employed for
multiple purposes and is expected to open up more applica-
tions in the future. Some examples of these applications are
listed in Fig. 3 and illustrated in the following sections and
case studies.

Prediction of properties: design and discovery of
novel materials

Agrawal et al. (2014) and Agrawal and Choudhary (2016)
cited an example of steel fatigue prediction using Mat-Navi
database of NIMS, Japan. Materials informatics approach
yielded accurate results and gave confidence to further build
models based on experimental data to connect processing and
composition directly. About 4500 new stable inorganic com-
pounds were identified using materials informatics approach
andwere later confirmed experimentally. Thematerials infor-
matics was applied to optimize the microstructure of Fe-Ga
alloy (Galfenol) to match the target elastic, plastic and mag-
netostrictive properties. Asmentioned above, Raccuglia et al.
(2016) applied machine-learning algorithms-enabled mate-
rials informatics to synthesize templated vanadium selenites.
This work is significant as it can be extended to other
promising target candidates like zeolites for gas adsorption
purposes. In the past, the formation of such compounds is
not fully understood and they were developed primarily on
exploratory syntheses.Materials informatics approaches pro-
vide deeper insights of mobility, photovoltaic properties, gas

Fig. 3 Examples of applications
of materials informatics
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adsorption capacity or lithium-ion intercalation. Le andWin-
kler (2016) applied evolutionary algorithm to generate new
catalysts, phosphors, and electroceramicmaterials. Lookman
et al. (2016) applied materials informatics approach to dis-
cover new NiTi-based alloys Ti50Ni46:7Cu0:8Pd0:2Fe2:3 with
the smallest thermal dissipation. They used statistical infer-
ence and adaptive design for materials discovery with steps
(a) assembling a library of crystal structures and chemistries
and (b) defining the training space with a given number of
samples and features, and (c) building an inference model
using off-the-shelf pattern recognition tools, such as classi-
fiers and regressors based on linear or kernel ridge regression,
least squares regression, decision trees, Gaussian process
modeling or support vectors (Zhao et al. 2003).

Importantly, in particular in cases where the data about
materials have computational origin, the same dataset can
be shared and used to identify novel compounds poten-
tially relevant for completely different application spaces.
For instance, the AFLOWconsortium has constructed a large
library of Heusler alloys (a family of ternary X2Y Z , such
as Cu2MnSn), comprising all the possible chemical com-
positions obtainable with 52 elements in the periodic table.
This totals approximately 300,000 prototypes. The same
dataset was then used to search for low-thermal conduc-
tivity semiconductors (Carrete et al. 2014) and for novel
magnets (Sanvito 2017). In the first case an initial low-
throughput set of calculations was performed to extract the
lattice thermal conductivity of a small selected group of
32 compounds. Then in a second stage a machine learning
method was applied to a second group of 450 alloys using
the 32 as training set. Such second set was obtained by using
mechanical stability and other criteria from an original pool
of about 80,000 compounds (only half-Heuslerswere consid-
ered). The method finally identified a number of low-thermal
conductivity alloys and an empirical rule, which associates
low-thermal conductivity to the large average atomic radius
of the elements composing the alloy.

In the case of the magnets instead a full structural stability
analysis, ternary Hull diagrams, was carried out over 36,000
prototypes constructed from elements belonging to the 3d, 4d
and 5d periods. This identified about 230 stable compounds,
22 of which baring a finite magnetic moment in the ground
state. Then a simple regression based on available experimen-
tal data was conducted for estimating the magnetic critical
temperature, TC . The regression was conducted separately
for different classes of magnets, yielding a Slater-Pauling
curve in the case ofCo2YZalloys and the empirical Castelliz-
Konamata curves for X2MnZ alloys. The synthesis of four
alloys with predicted high-TC was attempted, resulting in the
discovery of Co2MnTi, a high-moment ferromagnet with a
TC = 940K.

Composite materials innovation

Transportation industry has been looking for light-weight
materials in their bid to design and build for the environ-
ment. Polymer composites are known for their high specific
mechanical properties and hence, are now widely used in
the aerospace industry. Automobile industry is emulating
the success of the aerospace industry. However, the vol-
umes of composites used in the automobile industry are very
high compared to the aerospace industry. Hence, for their
widespread use in the automobile industry, their environ-
mental credentials should be of significant importance.

Polymer composites are reinforced with either glass fibers
or carbonfibers. End-of-use disposal of glass and carbonfiber
reinforced composites poses considerable environmental and
health challenges. Moreover, the production processes used
in making these synthetic fibers are energy intensive. Corona
et al. (2016) analyzed the potential of using plant based natu-
ral fibers to replace synthetic fibers in composites. Using life
cycle assessment (LCA), they concluded that replacement
of glass fibers with flax fibers show a general reduction of
the environmental impact regardless of the type of applica-
tion. They also noted that better environmental performance
is possible when the combination of fiber and matrix is opti-
mal, and not when the natural fiber content is maximized.

Hervy et al. (2015) conducted LCA of nanocellulose-
reinforced advanced fiber composites. They investigated
the environmental impact of bacterial cellulose (BC)—and
nanofibrillated cellulose (NFC)-reinforced epoxy compos-
ites and benchmarked with other viable materials in the
same category, such as neat polylactide (PLA) and 30 wt.-
% randomly oriented glass fibre-reinforced polypropylene
(GF/PP) composites. BC- and NFC-epoxy composites have
higher global warming potential (GWP) compared to the
neat PLA and GF/PP. However, they found out from the
LCA results that the cradle-to-grave GWP of BC- and
NFC-composites could be lower than neat PLA when the
composites contain over 60% nanocellulose by volume. This
suggests that composites with high nanocellulose loading is
desirable to produce materials with “greener” credentials.
The global market for nanocellulose is estimated at ten bil-
lion dollars and the range of applications is growing. The
diverse uses include packaging materials, thickening agents,
high efficiency filters, automobile components, and mobile
electronic devices. LCA provides guidance to the product
designers on how best to use nanocellulose-based materials,
while improving the sustainability credentials of innovative
products.

Nanomaterials innovation

A variety of nanomaterials are already in use in several inno-
vative products. Carbon nanotubes (CNTs) and graphene are
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added to plastics. Nano-TiO2 is used in air filter systems.
Nano-silver is used in textiles. Nano-WC-Cobalt used in sin-
tered tools. Nano-copper in wood preservatives, nano-SiO2
as food additive, organic pigment in coatings, plastic nano-
beads in personal care products, and nanofibers in textiles are
some more examples. Bergamaschi et al. (2015) studied the
impact and effectiveness of risk mitigation strategies on the
insurability of nanomaterial production. They investigated
three different nanomaterials, namely ZrO2, TiO2 andmulti-
walled carbon nanotubes (MWCNT), to obtain an insight into
the future applications. They found that by altering the sur-
face chemistry andmicrostructure, it is possible tomodify the
hazardous nature of the nanomaterials. In other words, this
safety-by-design approach can be emulated in other nano-
materials.

Cerri and Terzi (2016) suggested toolsets to apply infor-
mation and communication technology (ICT) to improve
the life cycle sustainability of manufacturing. It comprises
two tools. One is the Life Cycle Optimization Tool that
minimizes the life cycle costs and life cycle environmental
impacts, according to technical constraints. The tool enables
the comparison of different technological solutions. Another
is the Life Cycle Data Tool to manage the data collected
from the data importing *.csv files acquired via the pro-
grammable logic controllers (PLCs) of the different stations
or machines using new QLM language. In line with the con-
cepts of Internet of Things (IoT) and Cyber-Physical System
(CPS), the proposed toolset are to be positioned between
the product lifecycle management (PLM) system and MES
(manufacturing execution system) with relatively minimal
interoperability constraints. Such ICT-based tools facilitate:
(1) real timemonitoringof the system; (2) automatic updating
of the database thus enabling life cycle cost and environmen-
tal evaluations; (3) enabling the comparisonbetween real data
and theoretical estimations; and (4) real time insights into
the operational behavior (failure rate, availability, reliability,
energy consumption, etc.) of the system. These advances are
enablers for scientists and engineers to innovate new materi-
als and manufacturing technologies.

Northwestern University researchers, Zhao et al. (2016)
described a material genome approach called NanoMine
for polymer nanocomposites. The NanoMine infrastructure
comprises material database, analysis and simulation tools.
It is an open, dynamic and data-driven web-based plat-
form with relational data on composition, microstructure
and properties of polymer nanocomposites. Statistical cor-
relations are developed to link processing conditions, quan-
tified microstructure information and macroscopic prop-
erty response, coupled with image analysis techniques and
physics-based simulations. The curated database holdsmate-
rials properties from the experiments as well as predictions
from the physics-based models of polymer nanocomposites.
Physical properties, nano- and micro-structures as well as

material processing conditions reported in the scientific liter-
ature are captured based on curation format and terminology.
The data is represented such that it is suitable for further
modeling and simulation studies, and used in the materials
design for innovative products. NanoMine adopted theMate-
rial Data Curator System (MDCS) proposed byNIST for data
entrywith pre-definedXMLschemaand customized rawpro-
cessing, structure and property (p–s–p) parameters so that
users can search and retrieve data to conduct their own anal-
ysis. It is also enabled with a graphical user interface (GUI).
For microstructural analysis, they developed the Niblack
Binarization tool which adopts a dynamic local threshold-
ing algorithm to convert input grayscale micrographs into
a binary image of separated phases of nanocomposites.
Using statistical tool, the binary images are deciphered into
quantitative volume fractions and distributions of fibers and
fillers. The reconstruction tool and algorithms recreate 3D
microstructural images or visualizations from 2D micro-
graphs. They also incorporated Finite Element Analysis
(FEA), a physics based continuum model, for the prediction
of viscoelastic and dielectric properties of nanocomposites.
The commercial software, COMSOL/Abaqus are used for
FEA and integrated with database using API and subroutine
scripts. It is to be noted that such clear mechanistic mod-
eling may not yet be available for other types of materials,
i.e. thermoelectrics, batteries, superconductors, and bioma-
terials. For such cases, it is reasonable to proceed with
phenomenological and empirical models rather than waiting
for the development of robust mechanistic models.

NanoMine was built by surveying thirty representative
papers on polymer nanocomposites from the literature over
the past ten years.NanoMine is developed such that it enabled
property prediction for given composition of nanocomposites
andmaterial design to obtain a nanocomposite with specified
properties. Moreover, as more data from literature becomes
available, it is designed to be scalable so as to include more
types of nanocomposite materials, such as matrices and rein-
forcements with different geometry, chemistry and mixing
ratios. Moreover, the users can access the Representational
State Transfer (REST)API scripts that comewith theMDCS.
This enables smooth exchange of data between users and the
data resource. Further effort is needed to develop forward and
inverse models for PSPP relationships (Agrawal and Choud-
hary 2016).

Hierarchical materials informatics

The significant gap between materials science and design/
manufacturing is perhaps most clearly articulated in terms of
the vast differences in the length and time scales of the phe-
nomena studied. While design and manufacturing is largely
concerned with the predictions of the macroscale (effective)
properties and performance of the engineered components
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and devices, materials science and engineering is focused
on the fundamental understanding of the physical phenom-
ena occurring in the materials multiple length/structure (and
time) scales responsible for delivering these properties and
performance characteristics. Although the scientific bene-
fits of understanding multiscale materials phenomena have
been long appreciated, only recently have we begun to recog-
nize the tremendous potential economic benefits that could
accrue from rapid and seamless communication of the mate-
rials knowledge into the realm of design/manufacturing.

The afore-mentionedPSPP linkages denote a natural inter-
face for the communications between materials science and
design/manufacturing. In many ways, the PSPP linkages
can serve a function analogous to the APIs (application
program interfaces) used to specify interactions between
software components. In other words, a versatile and exten-
sile framework for PSPP linkages can help streamline the
communications between materials scientists and designers,
and can potentially create the critically needed interoper-
ability between the toolsets used by these two communities.
The central challenge in formulating such a framework for
PSPP linkages comes from the lack of a rigorous statisti-
cal approach for quantifying the hierarchical structure of
the material (spanning a multitude of length scales from the
atomic to macroscale).

Materials informatics can play a key role in addressing
the gap identified above. In particular, a specific branch of
materials informatics, called hierarchical materials informat-
ics (Kalidindi 2015), pays particular attention to data-driven
(objective) identification of the salient (statistical) measures
of the material internal structure, and their use in the estab-
lishment of high value, robust, and reliable PSP linkages
expressed as low-computational cost reduced-order models.
This was accomplishedmainly through the use of the formal-
ism of the n-point spatial correlations (Adams et al. 2012) for
quantifying the material internal structure, followed by the
use of dimensionality reduction approaches (e.g., principal
component analyses). Indeed, recent work has demonstrated
that a simple workflow template combining these two steps
with a suitable framework for formulating reduced-order
models (e.g., machine learning) produces highly reliable PSP
linkages. Most of the case studies reported can be broadly
separated into two groups: (1) communicating salient infor-
mation from lower length scales to the higher length scales
(referred as homogenization), and (2) communicating salient
information from higher length scales to lower length scales
(referred as localization).

In the homogenization direction, hierarchical materials
informatics approaches described above have been success-
fully employed in relating the complex porous structure
of transport layers in Polymer Electrolyte Fuel Cells to
their effective diffusivity (Çeçen et al. 2014), the two-
phase microstructures in a steel-inclusion material system

to their effective plastic properties (Gupta et al. 2015), the
development and demonstration of novel high throughput
experimental assays for recovering PSP linkages in dual-
phase steels (Khosravani et al. 2017), and the extraction of
reusable process-structure linkages from highly expensive
computational simulations of microstructure evolution in
ternary Ag-Cu-Al alloys using phase-field models (Yabansu
et al. 2017). In the localization direction, these approaches
have been successfully employed in predicting local thermo-
elastic stress and strain fields inmultiphase composite (Landi
et al. 2010; Landi and Kalidindi 2010) and polycrystals
(Yabansu et al. 2014 and Yabansu and Kalidindi 2015) local
plastic strain rate fields in a two-phase composite (Kalidini
et al 2010), and the local compositional fields in spin-
odal decomposition of metallic alloys (Brough et al. 2016).
Although the foundational elements of this emerging new
field of hierarchical materials informatics has been laid out
in this recent work, much additional work still needs to be
done in integrating these elements into an overall material
design and development workflow.

Design for environment

Increasingly new products are expected to be designed
for the environment with the goal of achieving minimal
or zero environmental impact; while meeting the product
functions, aesthetics, and costs. Lu et al. (2011) described
a process-based sustainable product development (SPD)
approach which incorporates life cycle quality (LCQ), life
cycle assessment (LCA), and life cycle cost analysis (LCC).
A methodology for an integrated life cycle approach to
Design for Environment (DfE) was proposed by Low et al.
(2014) to ensure that the eco-efficiency of a product over its
entire life cycle is considered in the design stage, thereby
avoiding the shifting of environmental burdens from one life
cycle stage to another. Life cycle evaluation tools such as
these allow the estimation of environmental and economic
impact of each stage of the product life cycle from cradle to
grave, i.e. from raw materials acquisition, through manufac-
turing, distribution and use, to finally disposal at end-of-life
(EoL).

Besides the intrinsic effect on the manufacturing stage
(e.g. selection of processes to manufacture product based
on materials used), distribution stage (e.g. weight of prod-
uct manufactured from materials used as a determinant of
transportation load) and use stage (e.g. functional efficiency
derived from materials used), materials informatics extends
to the EoL stage as well. For example, Astrup et al. (2009)
studied the environmental performance of plastic wastes of
different composition and highlighted its relevance on the
selection of EoL treatment, such as recycling, down-cycling
or incineration with energy recovery. Recycling is found
to be the preferable choice for single component and high
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purity plastic, whereas incineration with energy recovery is
preferable for mixture owing to the pre-treatment processes
required to reach appropriate quality for effective recycling.
This illustrates the need for evaluation of environmental per-
formance of a product over its entire life cycle and the role
materials informatics plays in the design for environment.

Furthermore, due to the sheer volumes of consumer prod-
ucts and their shorter life cycles, design for environment
and the role of materials informatics are being placed in a
bigger spotlight. Original equipment manufacturers (OEMs)
are on constant search for environmentally benign materi-
als and processes, and potential for reverse manufacturing or
closed-loop manufacturing, recycling, upcycling, and zero
waste. For OEMs of consumer electronics, in order to man-
age the thousands of components in each product and often,
their suppliers spanning the world, they resort to web-based
decision support and evaluation systems. Zhang et al. (2004)
reported a web-based system for reverse manufacturing and
product environmental impact assessment considering end-
of-life disposition of electronic products including desktop
computers, laptop and server. The searchable web-based sys-
tem is developed with Java Servlet and XML (eXtensible
Markup Language) which is capable of seamless integration
with other systems such as CAD and PDM. Eco-Indicator
99 was used to assess the environmental performance of the
product, and the material information is stored in the web-
based database. They reported that the system has been tested
by a major computer manufacturer. The web-based platform
facilitates information sharing by the manufacturers, recy-
clers and government agencies. It is a multi-tier decision
support and evaluation system for operations in remanufac-
turing and recycling include product disassembly, product
recycling,material assessment, environmental impact assess-
ment considering EoL dispositions, product evaluation, and
product and material information management. It resulted
in reducing environmental impacts by improved materials
selection and product design, and focusing on effective recy-
cling processes. Moreover the companies increased profits
by optimizing reverse production planning.

Waste-to-resource matching for enablement of
industrial symbiosis

Besides the obvious recycling of metals and plastics, other
types of wastes can be used as substitutes for raw materi-
als. This can create what is known as industrial symbiosis
whereby wastes (or by-products which are traditionally
regarded aswastes) are physically exchanged between differ-
ent companies from within and across industries. To enable
industrial symbiosis, the application of materials informat-
ics for waste-to-resource matching could play a significant
role (Song et al. 2015; Raabe et al. 2017). Through an ICT-
enabled collaboration platform, information and knowledge

about whether a waste is recyclable or transformable into a
useful resource can be captured and shared among the par-
ticipants of the industrial symbiosis network. And with the
right computationalmodels, algorithms and data, recommen-
dations for what to be exchanged and with whom to establish
the exchange can be provided to each participant based on
the economic and environmental viability of the exchanges.

However, there are challenges to the widespread use of
ICT-enabled systems for enabling industrial symbiosis at
present. In a survey by Grant et al. (2010), 17 of such sys-
tems were developed during the period 1997–2009. Of these
systems, nine are already inactive. The limited success of
these systems may be attributed to the challenge in codify-
ing the vast and growing amount of tacit knowledge applied
in the determination of waste-to-resource matches. Further-
more, in order to determine a waste-to-resource match,
enormous amount of data and information about the mul-
titude of wastes and resources will need to be processed and
analyzed—thus, making the task computationally expensive
and time-consuming.

Nevertheless, there is one of a few relatively more suc-
cessful systems that stood out: Core Resource for Industrial
Symbiosis Practitioners (CRISP). Developed by theNational
Industrial Symbiosis Program (NISP) in 2006, it can be con-
sidered as one of the most successful, complete and most
applied ICT-enabled platform in the domain of industrial
symbiosis with a track record of 15,000 projects (companies
served) resulting in £1.1 billion savings in total. The aim
was to establish a common tool for communication, collab-
oration and management together in a single place—linking
users across all 12 regions in the UK. The main functional-
ities include the identification of synergy opportunities, the
ability to draw on in-house expertise, the visibility of events
and activities in different regions and the potential to dissemi-
nate best practices. It also includes functionalities beyond the
pure opportunity identification and assessment such as rela-
tionship management, synergy management, data collection
and reporting, communication, collaboration (NISP 2015a).
Available information mentions the possibility of interfacing
via software integration of Microsoft SharePoint. The data
confidentiality charter reveals insights into the nature and use
of company data and information (NISP 2015b). Based on
these information,waste-to-resourcematches are determined
using an input-output matching algorithm to search through
a taxonomy or classification of wastes and resources. This
algorithm seems to be based on mimicking relationships of
previous known matches and data gathered from the 15,000
projects carried out all over the globe, which includes coun-
tries like Brazil, China, Mexico, South Africa, Canada and
across Europe.
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Future directions

The above mentioned examples support the notion that the
Materials Informatics is an essential bridge between mate-
rials science and design/manufacturing. This should not be
surprising because data and its transformation into informa-
tion, knowledge, and wisdom serve as the basic currency
for all transactions between cross-disciplinary fields. This
recognition gives the emerging field of Materials Informat-
ics a focus and a purpose that is likely to have a transformative
impact on the current practices in materials science and engi-
neering as well as design and manufacturing.

More advances can be expected in terms of cheaper sen-
sors, embedded systems, machine learning, cameras and
wireless communication interfaces necessary for faster and
ubiquitous data capture and ingestion (Kalidindi et al.
2016a, b). Multicomponent nature of the materials data
makes it heterogeneous and complex. There is a challenge
to aggregate data from multiple data sources into simplified
and searchable data, parse unstructured data and manage
the nuances of diverse datasets. Moreover, diverse users
have different needs. For example, a product designer or a
student may just want a single number (e.g. thermal con-
ductivity of a specific material) while an expert in the field
may want all the available raw data, specific assumptions
and calculations. Hence, the materials informatics approach
needs to accommodate heterogeneous data sets and diverse
user needs. Ontology-based approach of computer and infor-
mation sciences can be employed to limit complexity and
data curation, thereby formalizing the types, properties and
interrelationships of various materials data and information.
More importantly, the web-based data infrastructure should
be scalable, capable of handling multiple dynamic queries,
and flexible programmable access via application program-
ming interfaces (APIs) and learning tools by other users and
developers around theworld. In otherwords,material science
needs to determine which of the existing database technolo-
gies (relational, NoSQL, graph, image, and time series) need
to be leveraged.

Materials innovations, facilitated by materials selection
based on the life cycle engineering (LCE) and real time
materials informatics, innovative product designs, nanotech-
nology, additive manufacturing, and advanced manufactur-
ing technologies, enable better products with efficient use
of materials, and reduce time and cost of materials design
and deployment. Reuse, recycling, remanufacturing, cas-
caded use, redesign, novel waste processing, upcycling and
recovery of resources from waste are emerging mitigating
options. Circular economy, closed-loop manufacturing and
industrial symbiosis are closed-loop perspectives aimed at
zero waste of resources. Several factors pose challenges to
the desired resource efficiency goals. For example, there
are tens of thousands of materials with diverse functional

properties, real time performance, and eco-properties, which
are often used in combinations and thus, lead to huge vari-
eties of wastes. There is a need to pool, organize, analyze,
interpret, and search through vast amounts and diverse sets
of real time data on materials and various stages of the
product life cycle. For example, the use of this data in
the material selection process for new type of batteries,
and piezoelectric materials for energy recovery from waste
heat. Materials informatics or materials data science helps
to bridge the gap between multiscale models and multiscale
experiments. Serendipitously inexpensive sensors, faster and
cheaper computing power, cloud computing, open source
and user friendly apps, big data analytics, fast computational
algorithms, datamining,machine learning and artificial intel-
ligence are becoming available. These coupled with deep
knowledge of diverse manufacturing processes and mate-
rials will enable resource productivity, process efficiency,
improved environmental performance of products and per-
haps, zero waste. In a nutshell, this is about the materials
data-driven opportunities for the future of manufacturing.

Web-based materials informatics platforms are to be
developed further such that they are easily used by the
globally distributed materials community for accessing and
sharing data. Intuitive and visual interfaces are necessary for
distributed collaboration to provide visibility and foster trust
among stakeholders. Authenticity and traceability of data to
the original contributors while beefing up the cyber security
and cloud storage capability are necessary. Database plat-
form to cater to the development of new Apps will spur the
growth of new businesses.

The materials informatics community needs to work on
developing relevant international standards and codes which
provide guidance in areas such as materials data exchange,
security, design, use or performance of materials, products,
processes, services and systems so that they can enhance the
reliability of materials data infrastructure and confidence of
the users. Materials informatics community also needs to
identify and prioritize opportunities and gaps via scholarly
engagements.

Conclusions

Materials informatics is gaining traction with the materi-
als scientists, engineers, product designers, innovators, and
funding agencies. It is started asweb-based searchable repos-
itory ofmaterials data.Added functionalities and tools enable
selection ofmaterials, design ofmaterials, modeling, simula-
tion and prediction of properties, design for pre-set failure of
the product, and evaluation of materials. Further advances in
materials informatics assist in driving materials efficiency in
manufacturing, matching processes withmaterials, matching
materials with the service and environmental performance,
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and designing materials and products for recycling, upcy-
cling and zero waste. Materials efficiency coupled with
energy efficiency andwater efficiencywill contribute to over-
all resource efficiency in manufacturing, thereby enabling
transformation towards sustainable societies. It is hoped that
further research and development of materials informatics
will lead to greater efficiency in materials use, and uncover
fundamental knowledge of the basis of physical, mechanical,
electrical, electronic, chemical, biological, and engineering
properties. A wider expectation is that the materials infor-
matics will be developed to a point that it is intuitive and
easy to use. Moreover, with time, others can even develop
apps that makes it accessible to anyone involved in materi-
als and product development. While materials advancements
contribute to manufacturing advances and new products;
materials informatics will become the materials handbook
of modern times.
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Appendixes

Appendix 1: Mean squared error (MSE) and
R2 statistics

The predictability of a trained machine learning model is
usuallymeasured byRMSE (orMSE) and coefficient of deter-
mination (R2). Their definitions are given by

RMSE =
√∑n

i=1 (pi − ei )2

n

MSE =
∑n

i=1 (pi − ei )2

n

R2 = 1−
∑n

i=1 (ei − pi )2∑n
i=1 (ei − ē)2

where ei and pi are respectively the measured and predicted
values of a property in interest for test i, n is the number of
total tests, and ē = 1

n

∑n
i=1 ei .

Appendix 2: Voigt–Reuss–Hill (VRH) average

In linear elasticity, stress is linearly proportional to strain and
vice versa. This linear relationship is called Hooke’s law.

For anisotropic materials, Hooke’s law takes the forms of
σ ij = cijklεkl and εij = sijklσ kl, i, j, k, l = 1, 2, 3, where
σ and ε denote the stress and strain tensors, respectively,
c is the elastic constant tensor, and s is the elastic com-
pliance tensor. For isotropic materials, there are only two
independent elastic constants, although five elastic constants
are widely used. The five elastic constants are Young’s mod-
ulus Y, shear modulus G, bulk modulus K, Poisson ratio
ν, and Lame constant λ, and their relations are given by
Y = 2G(1+ ν),K = (3λ + 2ν)/3, v = λ/[2(G + λ)].
Based on the uniform stress assumption, the Voigt aver-
aged shearmodulus andLame constant are respectively given
by GVoigt = 1

30 (3cijij − ciijj) and λVoigt = 1
15 (2ciijj − cijij),

where the repeated i and j mean the summation over i and
j for i, j = 1 2, 3. Then, KVoigt is calculated from GVoigt

and λVoigt . The Voigt averaged elastic moduli are the upper
bounds of the elastic moduli. Based on the uniform stress
assumption, the Reuss averaged shear modulus and Young’s
modulus are respectively given by 1

GReuss
= 2

15 (3sijij − siijj)

andYReuss = 1
15 (2sijij + siijj), where the repeated i and jmean

the summation over i and j for i, j = 1 2, 3. Then, KReuss

is calculated from GRuess and YReuss. The Reuss averaged
elastic moduli are the lower bounds of the elastic moduli.
Voigt–Reuss–Hill average takes the mean of Voigt average
and Reuss average, meaning that

GVRH = 1

2
(GVoigt + GReuss),

KVRH = 1

2
(KVoigt + KReuss).
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