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Abstract
The angular distortion is one of the most common types of distortions frequently observed in laser weld assembling processes,
which leads to a decline in welding joints’ quality and additional costs of rework. Therefore, it is of great importance to control
and reduce the welding-induced angular distortion by selecting appropriate welding process parameters. The challenge is how
to predict the welding-induced angular distortion in the whole process parameter design domain accurately and efficiently. To
address this challenge, a variable-fidelity approximation modeling approach is developed in this paper, where two different
levels of fidelity data are integrated for predicting the angular distortion in the laser welding process. In the proposed approach,
a three-dimensional thermo-mechanical finite element model is developed as a low-fidelity model, while the laser welding
experiment is taken as a high-fidelity model. A low-fidelity radial basis function (RBF) model is constructed based on the
sample data from the finite element simulation. Then a linear tuning strategy is introduced to bring the low-fidelity RBF
model as close as possible to the data from the laser welding experiment. Finally, the variable-fidelity approximation model is
constructed by adopting a scaling function to calibrate the remaining differences between the tuning low-fidelity approximation
model and the high-fidelity data. Two types of validation approaches are adopted to compare the prediction accuracy of the
variable-fidelity approximation model with those of the single-fidelity approximation models solely constructed with laser
welding experiment or finite element simulation. Results illustrate that the prediction ability of the developed variable-fidelity
approximation model outperforms those of the single-fidelity approximation models.

Keywords Welding-induced distortion · Finite element analysis · Laser welding experiment · Radial basis function · Process
parameter

Introduction

Laserwelding (LW), as a promising advancedmanufacturing
technology, has been widely used in the aerospace, ship-
building, energy, and automotive industries (Liu et al. 2016;
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Zhou et al. 2016b, 2017b). It is prominent over other joining
technologies due to its significant advantages such as a high
degree of automation, enhanced joint strength, high energy
density, and a narrowheat-affected zone (Huang andKovace-
vic 2009; Chaki et al. 2015; Jiang et al. 2016; Saravanan
et al. 2017; Zhou et al. 2018). However, one of the major
issues of laser welding is welding-induced distortion during
the LW process, which significantly decreases the quality
of the welding joints, especially in strength and dimensional
accuracy. Therefore, additional post-weld treatments are usu-
ally required to correct the welding-induced distortions for
a satisfactory level of joint strength and dimensional accu-
racy of the welded structures (Islam et al. 2015). Post-weld
treatments are always time-consuming, costly, and practical
only in the most critical applications. For industrial appli-
cations where the cost budget is critical, the best practice
is to minimize or control the welding-induced distortions
by selecting the appropriate laser welding process param-
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eters. The challenge is how to predict the welding-induced
angular distortions in the process parameter space accurately
and efficiently. A promising way is to adopt approximation
model, which are also termed as metamodel since they pro-
vide “model of model”, fitting the relationships between the
output responses and input process parameters (Benyounis
and Olabi 2008; Shan and Wang 2010; Zhou et al. 2017c).

In a broad sense, these methods can be divided into two
types: physical experiments based approximation modeling
andfinite element simulation based approximationmodeling.
In the first approach (Murugan and Gunaraj 2005; Pal et al.
2010; Sudhakaran et al. 2012; Narwadkar and Bhosle 2016;
Adamczuk et al. 2017), laser welding experiments conducted
at the sample points generated by some design of experiment
methods. Next, approximation models are constructed to fit
the relationship between the input process parameters and
the welding-induced angular distortion. Finally, the accu-
racy of the developed approximation model is verified. If the
accuracy level of the approximation model can meet the pre-
defined requirement, it will be used for predicting the angular
distortion at any given laser welding process parameters.
For example, Murugan et al. (Murugan and Gunaraj 2005)
conducted a five-factor five-level central composite rotatable
design for gas metal arc (GMA) welding on structural steel
plates (IS:2062). Based on the obtained experimental data,
a second-order polynomial surface regression (PSR) model
was developed to correlate angular distortion with multipass
GMA process parameters. Sudhakaran et al. (Sudhakaran
et al. 2012) conducted five-factor five-level central composite
rotatable design for gas tungsten arc (GTA) welding on 202-
grade stainless plates and predicted the angular distortion at
different process parameters by adopting a PSR model. Nar-
wadkar et al. (Narwadkar and Bhosle 2016) applied Taguchi
method to generate three levels and three factors sample plan
for metal inert gas (MIG) welding on Fe410WA steel, then
a simple mathematical model is developed for predicting the
angular distortion. The main shortcoming of these methods
is that the required laser welding experiments for approxi-
mation modeling are time-consuming and costly due to the
highly nonlinear and non-smooth relationships between pro-
cess parameters and angular distortion.

On the other hand, in the finite element simulation based
approximation modeling approach, the welding-induced
angular distortions at the generated sample points, which are
used to construct the approximation model, are obtained by
running computational simulation model (Islam et al. 2014;
Tian et al. 2014; Islam et al. 2015; Lostado et al. 2015; Rong
et al. 2016). For example, Islam et al. (Islam et al. 2015)
developed an inexpensive deformation prediction framework
for lap joint fillet weld by integrating FEM and quadratic
PSR. Then this framework was successfully combined with
genetic algorithms for identifying promising process param-
eters with minimum weld deformation. Tian et al. (2014)

applied back-propagation neural network (BPNN) for the
prediction of angular distortion generated in GTA bead-on-
plateweldingprocess,where the angular distortion for S304L
stainless steel was simulated using FEM. Rong et al. (2016)
built BPNN based on FEM data to predict the angular dis-
tortion of the welded structures in no gap butt joint and then
used it to decrease the weld distortion. To some extent, these
methods make it possible to predict the distortion at pro-
cess parameters with considerably less computationally and
cost demands. However, due to the differences between the
results from simulations and experiments, constructing the
approximation model based on the data from computational
simulation model may result in an impractical relationship
between process parameter and angular distortion. For exam-
ple, Rong et al. (2015) built an approximation model based
on the finite element model for predicting the angular dis-
tortion of tungsten inert gas arc welding, demonstrating that
there exist large differences between the predicted values and
the actual results.

To make a trade-off between high accuracy and low
expense, this paper proposes a variable-fidelity approxima-
tion modeling approach for predicting the welding-induced
angular distortion in the laser welding process. In the
variable-fidelity approximation modeling approach, a three-
dimensional thermo-mechanical finite element model is
developed as a low-fidelity model, in which a large num-
ber of samples are evaluated to provide a general trend of
the relationship between process parameters and angular dis-
tortion. Whereas, the physical welding experiment is taken
as a high-fidelity model, in which a small number of sam-
ples are conducted to enhance the prediction accuracy of
the approximation model. Specifically, a low-fidelity radial
basis function (RBF) model is firstly constructed based on
the sample data from the finite element model. Then, a lin-
ear tuning strategy is introduced to bring the low-fidelity
RBF model as close as possible to the data from the physical
welding experiments. Finally, the variable-fidelity approx-
imation model (VFAM) is obtained by adopting a scaling
function to calibrate the differences between the tuning low-
fidelity approximation model and the high-fidelity data. The
variable-fidelity approximation model can be used to predict
the angular distortion if its prediction accuracy is achieved.

The rest of the paper is organized as follows. In Sect. 2,
a detailed description of the proposed approach is pre-
sented. In Sect. 3, the details of the high-fidelity laser
welding experiments are provided. The low-fidelity three-
dimensional FEM and simulation, including geometry mod-
eling, thermo-mechanical analysis, and simulation results are
presented in Sect. 4. In Sect. 5, the implementation of the
proposed approach and a comparison between the single-
fidelity approximation modeling approach and the proposed
approach are discussed in details. Finally, the concluding
remarks and future work are given in Sect. 6.
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Fig. 1 Schematic plot of laser welding process

The proposed approach

Problem definition

Figure 1 demonstrates the schematic diagram of the fiber
laser keyhole welding process. Generally, the weld distor-
tions are mainly caused by the changes of the temperature
field of the welding pool during the welding process. The
illustration of the angular distortion is plotted in Fig. 2.
According to numerous actual tests and surveys (Park and
An 2016; Rong et al. 2017), the angular distortion of the
fiber laser keyhole welding is mainly influenced by three
welding process parameters including the laser power (LP),
the welding speed (WS), and the laser focal position (LFP).
Considering these circumstances (Sathiya et al. 2009;Ghosal
and Chaki 2010; Sathiya et al. 2012; Rossini et al. 2015;
Gao et al. 2016; Zhou et al. 2016): (a) Low laser power and
high welding speed go against the flowing of molten metal,
which can result in incomplete fusion, imperfections of filled
groove or even spatter; (b) excessive large focal position will
reduce the laser absorptivity and cause the root concavity and
incompletely filled groove (Singh et al. 2014), the following
boundaries are used for welding process parameters

2(kW) ≤ LP ≤ 3(kW), 2.5 (m/min) ≤ WS ≤ 3 (m/min),

−2(mm) ≤ LFP ≤ 0(mm) (1)

The proposed variable-fidelity approximation
modeling approach

The goal of the proposed variable-fidelity approximation
modeling approach is to predict the angular distortion by
integrating the data from both low-fidelity finite element
simulation and high-fidelity physical experiment. The low-
fidelity finite element simulation and the high-fidelity phys-
ical experiment are regarded as white box models (Li et al.
2009). They are just used for obtaining the angular distor-
tion under some process parameters. That is to say, they are

Angular distortion

Fig. 2 The illustration of angular distortion

not directly used to find the relationships between the laser
welding process parameters and angular distortion. Figure 3
demonstrates the framework of the proposed variable-fidelity
approximation modeling approach. As a start, two sam-
pling sets, Xh = {

xh1 , xh2 , . . . , xhM
}
with a small number

of samples, Xl = {
xl1, x

l
2, . . . , x

l
N

}
with a large number of

samples, for high-fidelity and low-fidelity models are gen-
erated using the design of experiment (DOE) approach. It
should be noticed that the term “a large number of samples”
and “a small number of samples” imply the relative meaning
of sample amount by comparing with each other. Then high-
fidelity laser welding experiments will be conducted at the
sample set Xh to obtain the angular distortions. The details
of the implementation of the laser welding experiment are
presented in Sect. 3. At the same time, the low-fidelity finite
element simulationwill be performed at the sample set Xl for
obtaining the angular distortions. The detailed descriptions of
the three-dimensional FEM and simulation, including geom-
etry modeling and thermo-mechanical analysis are presented
in Sect. 4.

In view of modeling the relationships between the laser
welding process parameters and angular distortion, they are
regarded as black-box functions because we just use the
obtained data to approximate the relationships. Based on the
two different levels fidelity data, a low-fidelity RBF model
is constructed. Then, a linear tuning strategy is introduced to
make the low-fidelity RBF model close to the high-fidelity
data. The obtained tuning approximation model is taken as a
base approximation model and is mapped to the high-fidelity
data by using a scaling function. Finally, the variable-fidelity
approximationmodel can be expressed by the tuning approx-
imation model and the scaling function. The variable-fidelity
approximation model is defined as

yv f (x) = ŷl,tuned(x) + d(x) = c0 + c1 ŷl(x) + d(x) (2)

where ŷl is the constructed low-fidelity RBF model, ŷl,tuned
(x) = c0 + c1 ŷl(x) is the tuning low-fidelity approximation
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Fig. 3 The framework of the proposed approach

model, c0 and c1 are the introduced tuning parameters, and
d(x) denotes the scaling function which is used to map the
difference between the high-fidelity data and the tuning low-
fidelity approximation model ŷl,tuned(x).

The remainder of this section will describe the proposed
variable-fidelity approximation modeling approach in more
details.

Construct the low-fidelity RBF model

The low-fidelity RBF model is constructed based on the
data from the finite element simulation. Suppose f l ={
f l1, f l2, . . . , f lN

}
is the angular distortions vector obtained

by running the finite element simulations at the low-fidelity
sample set Xl = {

xl1, x
l
2, . . . , x

l
N

}
, a low-fidelity RBF

model for weld distortion prediction can be expressed
as,

ŷl(x) =
N∑

p=1

wl
pφl

(∥∥∥x − xlp

∥∥∥
)

(3)

where x is the process parameter, N is the number of sample

points in Xl , xlp is the pth sample point in Xl , and
∥∥∥x − xlp

∥∥∥
denotes the Euclidean distance between the process parame-
ter x and the pth low-fidelity sample points, which is defined
as,

∥∥∥x − xlp

∥∥∥ =
√

(x − xlp)
T (x − xlp) (4)

φl(•) represents the radial basis functions. Commonly used
radial basis functions are (Wang et al. 2014; Chen and Kuo
2017; Zhou et al. 2015, 2017a)

(1) Bi-harmonic φl (r) = r ; (2) Thin-plate spline φl (r) =
r2 log(r);

(3) Multiquadric φl (r) = √
r2 + υ2 (4) Cubic φl (r) =

(r + υ)3

(5) Gaussian φl (r) = e− (
υr2

)
(6) Inverse-multiquadric

φl (r) = 1√
r2+υ2

where υ is a constant value and 0 < υ ≤ 1
The unknown interpolation vector wl is obtained by min-

imizing the sum of the squares of deviations, which is
expressed as,
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J1 =
N∑

s=1

⎡

⎣ f (xls) −
N∑

p=1

wl
pφl

(∥∥∥xls − xlp)
∥∥∥
)
⎤

⎦

2

(5)

Once the above optimization is solved, the interpolation vec-
tor wl can be obtained as,

wl =
(
�T

l �l + �l

)−1
�T

l f l (6)

where �l are zero except for the regularization parameters
on the diagonal.�l is a design matrix. Due to the advantages
of less parameter setting and excellent overall performance,
the Gaussian radial basis function is used as the radial basis.
Then the design matrixes �l can be expressed as,

�l =

⎛

⎜⎜⎜⎜⎜⎜
⎝

e−
(
υ·∥∥xl1−xl1

∥∥)2
e−

(
υ·∥∥xl1−xl2

∥∥)2 · · · e−
(
υ·∥∥xl1−xlN

∥∥)2

e−
(
υ·∥∥xl2−xl1

∥∥)2
e−

(
υ·∥∥xl2−xl2

∥∥)2 · · · e−
(
υ·∥∥xl2−xlN

∥∥)2

...
...

. . .
...

e−
(
υ·∥∥xlN−xl1

∥∥)2
e−

(
υ·∥∥xlN−xl2

∥∥)2 · · · e−
(
υ·∥∥xlN−xlN

∥∥)2

⎞

⎟⎟⎟⎟⎟⎟
⎠

(7)

Tuning the low-fidelity RBF model

In this work, a linear tuning strategy is introduced to bring
the low-fidelity RBF model close to the high-fidelity data.
Suppose f h = {

f h1 , f h2 , . . . , f hM
}
is the weld distortions

vector obtained by conducting laser welding experiments
at the high-fidelity sample set Xh = {

xh1 , xh2 , . . . , xhM
}
, in

the linear tuning strategy two tuning parameters c0 and c1
are introduced and the minimization optimization problem
is formulated as,

min : L(c0, c1) = ∑M
i=1

[
f h(xhi ) − (c0 + c1 ŷl(xhi ))

]2

s.t . l0 ≤ c0 ≤ u0, l1 ≤ c1 ≤ u1
(8)

where L(c0, c1) represents the loss function in a square sense,
xhi is the i th sample points in Xh , f h(xhi ) is the weld dis-
tortion from high-fidelity model at xhi , M is the number of
high-fidelity sample points in Xh , and l0, u0, l1, and u1 are
the boundary constraints for tuning parameters, which rep-
resent the prior knowledge of the global constant bias and
multiplicative scaling between low-fidelity and high-fidelity
data. This is very helpful to avoid the over-fitting problem in
conventional linearity when there is no enough data. Differ-
ent types of tuning parameters c0 and c1 can be selected, such
as the constant term, the linear term, and the quadratic term.
In this work, the tuning parameters c0 and c1 are assumed to
be unknown but fixed as a constant to simplify the modeling
procedure.

Several approaches are available for determining these
two tuning parameters, e.g., the cross-validation, the least

square method, and the maximum likelihood estimation.
Owning to its convenience and easy application ability, the
least square method is used in this work.

Once the optimal tuning parameters c∗
0 and c

∗
1 are obtained

by solving the optimization problem in Eq. (8), the tun-
ing low-fidelity approximation model ŷl,tuned(x) can be
expressed as,

ŷl,tuned(x) = c∗
0 + c∗

1 ŷl(x) (9)

Difference calibrated using a scaling function

The obtained tuning low-fidelity approximationmodel in Eq.
(9) will not be enough to fit the high-fidelity laser weld-
ing experiment when the data are far from sufficient to
explore the behavior of the weld distortion on the space of
the process parameters. Therefore, it is quite necessary to
account for the remaining discrepancy between the tuning
low-fidelity approximation model and the high-fidelity data.
The remaining discrepancy d = {d1, d2, . . . , dm} between
the high-fidelity responses and the obtained tuning low-
fidelity approximation model can be calculated as,

di (x
h
i ) = f h(xhi ) − (c∗

0 + c∗
1 ŷl(x

h
i )), i = 1, 2, . . . M (10)

Since the relationship between the high-fidelity sample set
Xh and the remaining discrepancy vector d is not a priori, a
scaling function, which is specified as a line combination of
some radial basis functionswithweight factors, is formulated
as,

d̂(x) =
M∑

q=1

ws
qφs

(∥∥∥x − xhq

∥∥∥
)

(11)

where φs(•) is the selected Gaussian radial basis function

and
∥∥∥x − xhq

∥∥∥ denotes the Euclidean distance between the

process parameter x and the q th high-fidelity sample points,
which is defined as,

∥∥∥x − xhq

∥∥∥ =
√

(x − xhq )T (x − xhq ) (12)

In Eq. (11), ws are unknown weight factors, which can be
obtained by minimizing the sum of the squares of deviations

J2 =
M∑

i=1

[
f h(xhi ) − (c∗

0 + c∗
1 ŷl(x

h
i ))

−
M∑

q=1

ws
qφs

(∥∥∥xhi − xhq

∥∥∥
)
⎤

⎦

2

(13)
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To avoid repeating two very similar analyses, a weight
penalty term is added to the sum of the squares of devia-
tions. Then, the cost function is minimized as,

� =
M∑

i=1

[
f h(xhi ) − (c∗

0 + c∗
1 ŷl(x

h
i ))

−
M∑

q=1

ws
qφs

(∥∥∥xhi − xhq

∥∥∥
)
⎤

⎦

2

+
M∑

q=1

�q(w
s
q)

2 (14)

where � is the non-negative regularization vector, which is
used to control the additional weight penalty term.

To solve Eq. (14) for obtaining the values of unknown
weight factors, the partial derivatives of the cost function
related to each ws

q are calculated. The partial derivative at
q th coefficient can be expressed as,

∂�

∂ws
q

= 2
M∑

i=1

(
f h(xhi ) − (c∗

0 + c∗
1 ŷl (x

h
i ))

−
M∑

q=1

ws
qφs

(∥∥∥xhi − xhq

∥∥∥
) ) ∂

∑M
q=1 ws

qφs

(∥∥∥xhi − xhq

∥∥∥
)

∂ws
q

+2�qw
s
q (15)

Equating the above expression to zero leads to the equation

M∑

i=1

( f h(xhi ) − (c∗
0 + c∗

1 ŷl(x
h
i )))φs

(∥∥∥xhi − xhq

∥∥∥
)
+�qw

s
q

=
m∑

i=1

⎛

⎝
M∑

q=1

ws
qφs

(∥∥∥xhi − xhq

∥∥∥
)

φs

(∥∥∥xhi − xhq

∥∥∥
)
⎞

⎠ (16)

There are M such equations, for 1 ≤ i ≤ M , each represent-
ing one constraint on the solution.Whenmatrices and vectors
are adopted, the problem to obtain the unknown weight fac-
tors ws can be rewritten as,

�T
s �sw

s+�sw
s=�T

s d (17)

where �s is the design matrix is

�s =

⎛

⎜⎜⎜
⎝

φs
(∥∥xh1 − xh1

∥∥)
φs

(∥∥xh1 − xh2
∥∥) · · · φs

(∥∥xh1 − xhM
∥∥)

φs
(∥∥xh2 − xh1

∥∥)
φs

(∥∥xh2 − xh2
∥∥) · · · φs

(∥∥xh2 − xhM
∥∥)

.

.

.
.
.
.

. . .
.
.
.

φs
(∥∥xhM − xo1

∥∥)
φs

(∥∥xhM − xh2
∥∥) · · · φs

(∥∥xhM − xhM
∥∥)

⎞

⎟⎟⎟
⎠

(18)

�s are all zero except for the regularization parameters along
its diagonal.

�s =

⎛

⎜⎜⎜
⎝

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...

0 0 · · · �M

⎞

⎟⎟⎟
⎠

(19)

Solving Eq. (17), the unknown weight factors ws can be
obtained as,

ws =
(
�T

s �s + �s

)−1
�T

s d
T (20)

Finally, substituting Eq. (20) to Eq. (11), the scaling function
can be obtained.

Build the variable-fidelity approximation model

After the scaling function is constructed, the variable-fidelity
approximation model can be expressed as,

yv f (x) = c∗
0 + c∗

1

⎛

⎝
N∑

p=1

wl
pφl

(∥∥∥x − xlp

∥∥∥
)
⎞

⎠

+
M∑

q=1

ws
qφs

(∥∥∥x − xhq

∥∥∥
)

(21)

The prediction accuracy of the variable-fidelity approxima-
tion model should be checked before applying it to predict
the weld distortion at un-sampled laser welding process
parameters. Generally, two types of validation approaches
are available, one of which requires additional test points and
the other is not required (e.g., leave-one-out (LOO) cross-
validation approach and bootstrap approach). In this work,
validation approach via additional test points and the LOO
cross-validation error metric are adopted to demonstrate the
effectiveness of the proposed variable-fidelity approxima-
tion modeling approach. If the desired level of accuracy
of the constructed variable-fidelity approximation model is
not achieved, sample points from high-fidelity laser welding
experiments can be added because additional high-fidelity
samples can make a greater contribution to the prediction
accuracy of the constructed variable-fidelity approximation
model. The more high-fidelity samples, the more accurate
the variable-fidelity approximation model will be. While the
cost of the experiment will also increase.
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Table 1 The chemical
composition of stainless steel
316L (in weight)

Chemical elements C Si Cr Ni Mo Mn Cu S

Composition (%) 0.0019 0.35 17.07 11.95 2.04 1.68 0.14 0.007

Fig. 4 Laser welding equipment

Laser welding experiment

Material

The laser welding was conducted on a 3 mm-thick stainless
steel 316L plate. Table 1 shows the chemical composition in
weight percent of the base metal. The size of each specimen
is 100 × 80 × 3mm3. To eliminate the interference from
oxidation film and prevent the welding bead being polluted
by oil, the specimen had been pretreated and degreased with
acetone before welding.

Laser welding system

Figure 4 demonstrates the setup of laser welding used in
this work. The laser welder utilized here was a ytterbium-
doped fiber laser device (IPGYLR-4000) with the maximum
average power of the laser was 4000W. The continuous laser
travels through the optical fiber to the laser welder head.
The laser header is installed on the robot ABB IRB4400. A
focusing lens with the focal length of 250mm was placed
in the laser welder head. The focused laser irradiated on the
specimen. The radius of the light spot on the surface of the
specimen was about 0.3mm. The angle between the vertical
direction of the weldment and laser beam was set to be 80.
Argon was utilized as shielding gas during the welding with
a flow rate of 1.0m3/h.

The height vernier caliper shown in Fig. 5 was used to
measure the maximum welding angle distortion of welded
specimen with the off-line mode. To obtain the angle dis-
tortion of welded specimen, the following procedures were
performed. Firstly, the surfaces of the welded specimen and
measuring paw were cleaned with anhydrous alcohol. Sec-

ondly, the front, middle and rear positions of the welded
specimen were marked. Thirdly, the measuring pawl of the
height vernier caliper was placed on the surface of the three
marked points to read the angle distortions. Finally, the max-
imum angle distortion among these three points will be
selected as the angle distortion of welded specimen.

Finite element simulation

In this study, a three-dimensional thermo-mechanical finite
element model is developed as a low-fidelity model to simu-
late the angular distortion of the fiber laser keyhole welding
(Zhou et al. 2018). Due to complex changes in the actual
welding process, simplifying assumptions are made as fol-
lows,

1. The properties of material obey theMises yield criterion.
2. The yielding behavior of the plastic zone is subject to the

plastic flow criterion and strengthening criterion.
3. Elastic strain, plastic strain, and temperature strain are

inseparable.
4. The impacts of sticky and creep are not considered during

stress changing procedure.
5. The physical and mechanical properties of the material

vary with the temperature. The material properties are
isotropic.

Geometry modeling

Figure 6 shows the mesh employed for finite element sim-
ulation. Considering the symmetry of the model, the size
of the finite element model takes half of the true welding
workpiece to improve the computational efficiency in weld-
ing simulation. The computational domain has a dimension
of 100× 40× 3mm3. The welding heat source is applied on
the symmetrical surface to simulate the fiber laser keyhole
welding process. Since the changes of temperature and stress
fields are complex at the weld-forming region, the grids in
this region are refined. While as the increase of the distance
from the weld-forming region, the changes of the tempera-
ture field and the stress field will weaken. A proper coarser
mesh is adopted to effectively improve the computational
efficiency. The model contains 44,646 four-node hexagonal
elements and 36,308 nodes.

In the actual welding process, the workpiece is welded
under the free state without any fixture. While in the simula-
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Workbench

Welding workpiece

Height vernier 
caliper

Fig. 5 Angular distortion measurement platform

Grid refinement region

Symmetry plane

Fig. 6 Illustration of the 3D finite element model

tion process themodelmay be deformed due to the expansion
and contraction of the material. Therefore, it is necessary to
limit the degrees of freedom for some key nodes to prevent
rigid displacement of the model. As illustrated in Fig. 6, the
degrees of freedom in the z and y directions at point A are
limited. At point B, a constraint on the degrees of freedom
in the z direction is applied. The constraint on the degrees
of freedom in the x direction is applied to the line L1. A
symmetry constraint is also applied to the symmetric plane.

Thermo-mechanical analysis

Computational modeling laser welding is a coupled thermo-
mechanical problem. It contains several coupling phe-
nomena, such as nonlinear heat flow, weld pool physics,
non-linear material behavior at high temperatures, thermal
deformation, and mechanical distortion (Islam et al. 2015).
However, in the computational modeling of laser welding,
the general idea is to adopt a weakly coupled model, in
which a simplified heat input model is used to replace the
physics in the weld and the mechanical analysis is performed

independently of the thermal analysis. This method is com-
putationally effective and useful when the main purpose is to
study transient temperature, distortion, and stress fields other
than the complex physical properties of the metal. Since the
goal of this study is to investigatewelding-induced distortion,
a sequential coupling method is adopted. Only the influence
of the welding temperature field on the stress field is con-
sidered and the influence of the welding stress field on the
temperature field is ignored.

Thermal analysis

In the process of laser heat transfer, obtaining the welding
temperature field is a nonlinear transient heat transfer prob-
lem. The law of conservation of energy is the most basic
criterion in thermal analysis of laser welding. Therefore,
during the thermal analysis of weld pool, the force and dis-
placement are ignored and only the energy is considered. In
this step, the value of the temperature at each node is obtained
by the instantaneous heat conduction equation given below

ρCP

(
∂T

∂t
− v

∂T

∂x

)
= ∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂ y

(
ky

∂T

∂ y

)

+ ∂

∂z

(
kz

∂T

∂z

)
+ Q (22)

where ρ is the density of the material, CP is the specific heat
capacity and T is the instantaneous temperature, kx , ky , and
kz are thermal conductivities in the directions of x , y, and z,
Q is the rate of heat production within each unit volume, and
v denotes the welding speed.

The initial condition can be expressed as,

T (x, y, z, 0) = T0 (23)

where T0 is the initial temperature (T0 = 300K).
The boundary condition can be expressed by
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a=0.90
b=1.20
c1=0.98
c2=1.52
H=2.17
h=1.12

Fig. 7 Heat source model

kn
∂T

∂n
− q + h (T − T0) + σε

(
T 4 − T 4

0

)

= 0 (x, y, z) ∈ S t > 0 (24)

where S is the boundary to be calculated, kn is the thermal
conductivity on the boundary surface S, h is the convection
coefficient, ε is the radiation heat transfer coefficient, and q
is the heat flux on the boundary surface S.

Typically, the complex physics of heat generation or
weld pool is simplified considerably and replaced by a heat
input model. In this work, the previously developed body
heat source model, made by combining double-ellipsoids,
rotating-Gaussian, and a cone (Jiang et al. 2016), is adopted
for FEMsimulation. The illustration of the heat sourcemodel
is plotted in Fig. 7.

Thermo-physical properties of the material will change as
the temperature increases during the welding process, espe-
cially when the temperature between liquidus and solidus
(Islam et al. 2014). Therefore, thermo-physical properties of
stainless steel need to be set in the finite element simulation.
The specific heat capacity and thermal conductivity change
with temperature are listed in Table 2.

Mechanical analysis

After calculating the temperature field of fiber laser key-
hole welding, the thermal analysis units of the model are
transformed into the corresponding structural units. Then the
temperatures of the nodes are put into the structural model
as thermal loading to calculate the stress-strain field.

The stress-strain relationship of the material in the case of
elasticity and plasticity is

{dσ } = [D] {dε} − {C} dT (25)

where [D] is an elastic or plasticmatrix, {C} is a temperature-
related matrix, and {dε} is the total strain including elastic
strain, plastic strain, and thermal strain.

In the thermo-elastic finite element analysis of fiber laser
keyhole welding, the welding transient temperature field
analysis serves as the basis for the calculation of stress field.
The temperature increment is loaded on each element of the
finite element model to obtain the displacement increment of
each node on the unit. The strain increment can be expressed
as (Rong et al. 2017)

{dε}e = [D] {dδ}e (26)

where {dε}e is the strain increment of each unit and {dδ}e is
the displacement increment of the unit node.

Discussion of simulation results

The temperature field of fiber laser keyhole welding is
divided into two processes, the heat source loading pro-
cess and the cooling process. The heat source loading
process contains 160 time steps with there are 5 sub-steps
involved in each. The cooling process contains 840 steps.
The time integral method is used to calculate the heat bal-
ance equation. Figure 8 demonstrates the cloud plot of
the transient temperature field at a typical process param-
eter (LP = 3 kW,WS = 3m/min, LFP = −1mm).
Because the welding speed of fiber laser keyhole welding
is faster than those of the traditional welding techniques,
the smaller heat affected zone can result in a faster cooling
process.

Once the analysis results of temperature field of each
step are obtained, these results will be placed into the
calculation model of the stress field. Then, the angular
distortion can be obtained by adopting the time integral
method. Figure 9 shows the cloud plot of the distortion
after cooling. As illustrated in Fig. 9, bending distortions
occur along both sides of the welding bead. The distor-
tions at the edge of the sheet are significantly larger than
those of the welding region. This is because during the
loading process of the heat source, the extremely high heat
input makes the temperature of the fusion zone signifi-
cantly higher than the temperatures of the other areas of
the workpiece. The thermal expansion of the material is
hindered in producing plastic distortion. In the subsequent
cooling process, shrinkages with varying degrees occur.
Uneven transverse shrinkage finally results in angular dis-
tortion, whose direction is perpendicular to the welding
bead.
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Table 2 Temperature dependent thermal properties of stainless steel 316L

Thermal properties Temperature (K)

300 800 1300 1616 1660 1718 2000 2500 3000 3500

Conductivity (W/m · K) 15.91 22.46 29.01 33.15 33.67 30.62 35.07 42.95 50.83 58.71

Specific heat (J/g · K) 0.45 0.66 0.65 0.79 1.12 0.78 0.79 0.81 0.83 0.85

Fig. 8 Temperature field distributions during heating and cooling processes

Results and discussion

Design of experiments

The aim of the design of experiment (DOE) is to decrease
the effect of errors in simulation or experiments on the
responses, while allowing engineers to build an approxima-
tion model more efficiently. A lot of DOE approaches, such
as the Hammersley sequence sampling design (HSSD), uni-
form design (UD), faces centered design (FCD), and optimal
Latin hypercube sampling (OLHS), are available to gener-
ate sample points that can provide a good coverage of the

design space. In this study, the OLHS is adopted to spread the
points throughout the design space. The OLHS is a modified
LHS where the combination of factor levels for each fac-
tor is optimized, rather than randomly combined. The OLHS
allows the designer total freedom in selecting the number of
designs to run on an available computational budget (Zhou
et al. 2016). Specifically, the OLHS developed by Jin et al.
[36] is used, where an enhanced stochastic evolutionary algo-
rithm to evaluate the maximin distance criterion of points in
the searching space to obtain space filling sample points. For
the low-fidelity finite element model, 32 sample points are
generated, while the total number of sample points available
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Fig. 9 Displacement distribution after cooling

Fig. 10 The sampling plan generated by optimal Latin hypercube sam-
pling

for the high-fidelity laserwelding experiment is limited to 12.
The generated sampling plan is illustrated in Fig. 10. Table 3
summarizes the generated sample points and corresponding
low-fidelity and high-fidelity angular distortions.

The construction of the variable-fidelity
approximationmodel

Based on the sample data listed in Table. 3, the low-fidelity
RBF model ŷl(x) is constructed firstly. Figure 11a–c plot
the three-dimensional (3D) surfaces of the low-fidelity RBF
model for the angular distortion. To obtain the tuning param-
eters c0 and c1, the following minimization optimization
problem is solved,

min : L(c0, c1) =
M∑

i=1

[
f h(xhi ) − (c0 + c1 ŷl(x

h
i ))

]2

s.t . − 50 ≤ c0 ≤ 50,−5 ≤ c1 ≤ 5 (27)

The obtained optimal tuning parameters are c∗
0 = 50 and

c∗
1 = 0.9553. Then the tuning low-fidelity approximation
model ŷl,tuned(x) can be expressed as,

ŷl,tuned(x) = 50 + 0.9553ŷl(x) (28)

The three-dimensional surfaces of the tuning low-fidelity
approximationmodel for the angular distortion are also illus-
trated in Fig. 11d–f. As can be observed from Fig. 11, the
responses from the tuning low-fidelity approximation model
are a litter larger than the low-fidelity RBF model in some
process parameter region.

As mentioned in Sect. 2.2.3, it is necessary to account
for the remaining discrepancy between the tuning low-
fidelity approximation model and the high-fidelity data when
the high-fidelity data are far from sufficient to explore the
behavior of the weld distortion on the space of the process
parameters. The differences between the tuning low-fidelity
approximationmodel and high-fidelity data are calculated by
Eq. (10) and are summarized in Table 4. The scaling func-
tion can be constructed by taking the high-fidelity sample set
and the remaining differences as inputs and output, which is
demonstrated in Fig. 12. As illustrated from Fig. 12, there
exist large remaining differences in the boundary area of
the process parameter domain. By using this scaling func-
tion to take the remaining differences into consideration, the
finally variable-fidelity approximationmodel can be obtained
as shown in Fig. 13. In the next subsection, two validation
approaches will be adopted to compare the prediction accu-
racy of the obtained variable-fidelity approximation model
with those of approximation models, which are constructed
with single-fidelity data.

Discussion of prediction accuracy of the
variable-fidelity approximationmodel

To measure the prediction ability of the variable-fidelity
approximation model, two validation approaches are intro-
duced. The first one is the leave-one-out cross-validation
approach, which does not require additional test points. The
basic processes of obtaining the relative LOO error for each
sample point can be divided into four steps.

Step 1: For the high-fidelity sample set Xh = {
xh1 , xh2 , . . . ,

xhM
}
, remove one of the sample points.

Step 2: Construct the approximation model based on the
remaining sample points Xh

−i = {
xh1 , xh2 , . . . , xhi−1,

xhi+1, . . . , x
h
M

}
and use it to predict the response

value for the omitted sample.
Step 3: Calculate the absolute values of the relative differ-

ence between the actual and predicted values for the
omitted sample.
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Table 3 The angular distortions
from two different fidelity
models

Low-fidelity data NO. LP (kW) WS (m/min) LFP (mm) δl (um)

1 2.87 3.37 −2 601

2 2.35 3.27 0 441

3 2.16 3.21 −2 461

4 2.74 2.66 −2 575

5 2.90 3.11 −1 572

6 2.58 3.24 −1 519

7 2.97 2.89 0 533

8 2.00 2.85 −1 396

9 2.52 3.34 −2 536

10 2.06 3.08 0 379

11 2.03 2.95 −1 402

12 2.94 3.31 0 548

13 2.26 3.18 −1 453

14 2.71 3.15 0 510

15 2.13 3.44 −1 424

16 2.65 2.69 0 499

17 2.68 2.79 −1 537

18 2.55 3.40 −1 513

19 2.61 3.05 −1 524

20 2.32 2.82 −1 467

21 3.00 2.73 −1 590

22 2.84 2.53 −1 563

23 2.48 2.50 −1 501

Low-fidelity data NO. LP (kW) WS (m/min) LFP (mm) δl (um)

24 2.45 2.60 −2 523

25 2.81 3.50 −1 588

26 2.10 2.56 −1 419

27 2.77 3.02 −2 581

28 2.39 2.92 0 450

29 2.23 2.63 0 414

30 2.29 3.47 −1 461

31 2.19 2.76 −2 468

32 2.42 2.98 −2 517

High-fidelity data NO. LP (kW) WS (m/min) LFP (mm) δh (um)

1 2.60 3.50 −1 620

2 2.50 3.43 −2 620

3 2.70 2.63 0 440

4 3.50 2.90 −1 320

5 3.20 3.30 −2 620

6 3.00 3.17 0 680

7 2.10 2.70 −1 720

8 3.10 2.50 −1 480

9 2.00 3.23 −1 700

10 2.90 2.83 −2 540

11 2.30 3.10 0 640

12 2.20 2.97 −2 700
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(a) 3D surface of low-fidelity RBF model with  
LFP=0mm

(b) 3D surface of low-fidelity RBF model with 
LFP=-1mm
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(c) 3D surface of low-fidelity RBF model with 
LFP=-2mm
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(d) 3D surface of tuning low-fidelity approximation model 
with LFP=0mm

(e) 3D surface of tuning low-fidelity approximation model 
with LFP=-1mm
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(f) 3D surface of tuning low-fidelity approximation model 
with LFP=-2mm
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Fig. 11 The 3D surfaces of the low-fidelity RBF model and the tuning low-fidelity approximation model

Table 4 The remaining
differences between the tuning
low-fidelity approximation
model and the high-fidelity data

1 2 3 4 5 6 7 8 9 10 11 12

δh (µm) 620 620 440 320 620 680 720 480 700 540 640 700

ŷl,tuned (µm) 551 559 534 710 689 587 451 634 436 630 460 502

d (µm) 69 61 −94 −390 −69 93 269 −154 264 −90 180 198
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(a) 3D surface for scaling function with LFP=0mm (b) 3D surface for scaling function with LFP=-1mm
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(c) 3D surface for scaling function with LFP=-2mm
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Fig. 12 The 3D surfaces of the scaling function for angular distortion

RELOO =
(
f̂ −i (xhi ) − f h(xhi )

)
/ f h(xhi ) (29)

where f h(xhi ) is the actual high-fidelity response value at

xhi , f̂ −i (xhi ) is the predicted value of xhi using the approx-
imation model constructed based on the sample set Xh

−i ={
xh1 , xh2 , . . . , xhi−1, x

h
i+1, . . . , x

h
M

}
.

Step 4: Repeat Step 1 to Step 3 until all sample points in the
high-fidelity sample set are considered.

Figure 14 summarizes the comparison results amongvariable-
fidelity approximation model (VFAM), single-fidelity RBF
approximation model based on high-fidelity data (HFRB-
FAM), and single-fidelityBPNNapproximationmodel based
on high-fidelity data (HFBPAM). Since the single-fidelity
RBFapproximationmodel basedon low-fidelity data (LFRB-
FAM) and the single-fidelity BPNN approximation model
based on low-fidelity data (LFBPAM) do not use the high-
fidelity data, it is meaningless to valid them by using the
leave-one-out cross-validation approach.As canbe seen from
Fig. 14, the relative LOOerrors from the proposedVFAMare
smaller than ones from HFRBFAM at the most high-fidelity

sample points (9/12), which indicates that the prediction
accuracy of VFAM outperforms that of HFRBFAM. Com-
pared with HFBPAM, the proposed VFAM outperforms it at
all high-fidelity sample points, except for the relative LOO
errors at NO.3 and NO.7.

To further illustrate the merits of the proposed approach,
a comparison of the prediction accuracy among VFAM,
LFRBFAM, HFRBFAM, LFBPAM, and HFBPAM is made
by conducting additional laser welding experiments. Addi-
tional 5 test points within the design domain are generated
and summarized in Table 5. Taking the absolute values of
relative errors between test values and the predicted values
from LFRBFAM, HFRBFAM, LFBPAM, and HFBPAM as
the baseline, the bar-charts plotted in Fig. 15 shows the rela-
tive improvement percentages of the VFAM.As illustrated in
Fig. 15, the absolute values of relative errors are reduced by
a maximum of 96% and a minimum of 58% using the VFAM
compared to the LFRBFAM. Compared with LFBPAM, the
absolute values of relative errors are reduced by a maximum
of 93% and a minimum of 44% using the VFAM. This is
what we expected as the low-fidelity finite element simula-
tion results can only reflect the trend of angular distortion
changing of the process parameters. Notice that although the
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(a) 3D surface of variable-fidelity 
approximation model with LFP=0mm

(b) 3D surface of variable-fidelity 
approximation model  with LFP=-1mm
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(c) 3D surface of variable-fidelity 
approximation model with LFP=-2mm

A
ng

ul
ar

 d
ef

or
m

at
io

n(
um

)

WS(mm/s) LP(W)

Fig. 13 The variable-fidelity approximation model for angular distortion

Fig. 14 The comparison results
among HFRBFAM, HFBPAM,
and VFAM considering LOO
error metrics

HFRBFAM and HFBPAM are constructed using the high-
fidelity experimental data, their mean absolute value of the
relative error are still larger than theVFAMby about 15%and
40%, respectively. The reason is that the VFAM can make
full use of the data from low-fidelity finite elementmodel and
obtains desired accuracy of an approximation model with a
small amount of high-fidelity sample points.

Discussion of the contributes rates of process
parameters on angular distortion

Based on the constructed variable-fidelity approximation
model, the contribution rates of the process parameters and
their interactions contribution rates to angular distortion are
analyzed and summarized in Fig 16. In Fig 16, the positive
contribution rates indicate that their corresponding output
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Fig. 15 The comparison results
among VFAM, LFRBFAM,
HFRBFAM, LFBPAM, and
HFBPAM on additional test
points

Table 5 The additional test points

No. LP(kW) WS (m/min) LFP (kW) δh (um)

1 2.63 3.34 −1 640

2 2.18 2.68 −2 640

3 2.40 2.83 −2 680

4 2.10 3.00 −1 640

5 2.58 2.88 −2 640

response will increase with an increase in the discussed
process parameters; otherwise, decreases. The magnitude
of the bars demonstrated its degree of importance to the
bead geometrical characteristics. The symbol ∩ indicates
the interaction contribution rate to the output performance
for different combination types of process parameters. As
observed in Fig. 16, LP has the most significant positive con-
tribution rate to angular distortion, which accounts for nearly
70% of the total part. LFP has the most significant negative
contribution rate to angular distortion (about 22%), indicat-
ing that it will be very helpful to decrease the magnitude
of angular distortion by selecting a larger LFP. In terms of
the interactions between process parameters, the interactions
contribution rates of LP and LFP exhibits the strongest inter-
actions (about 3.2%), which is about 2 times more than that
of LFP∩WS. WS has positive contribution rates to angular
distortion, while its contribution is not obvious.

Conclusion

In this work, a variable-fidelity approximation modeling
approach is developed to predict the welding-induced angu-
lar distortion in the whole process parameter space. The
proposed variable-fidelity approximationmodeling approach
has been applied to predict the angular distortion of fiber
laser keyhole welding on 316L stainless steel. Two differ-
ent types of validation approaches are used to measure the

Fig. 16 Contribute rates of process parameters on angular distortion

prediction accuracy of the variable-fidelity approximation
model. Following conclusions can be drawn: 1) the variable-
fidelity approximation model, which can make full use of
the data from both the low-fidelity finite element model and
high-fidelity laser welding experiment, significantly outper-
forms the single-fidelity approximation models solely based
on low-fidelity or high-fidelity models. 2) by analyzing the
contribution rates of the process parameters and their inter-
actions contribution rates to angular distortion, it is found
that LP has the most significant positive contribution rates to
the angular distortion, LFP has the most negative contribu-
tion rate to the angular distortion, while the effect of WS on
angular distortion is relatively weaker.

Overall, the proposed variable-fidelity approximation
modeling approach provides a promising way to predict
welding-induced angular distortion in laser welding. It is
noted that this study does not assess the uncertainty, such
as variations of the process parameters and imprecise mea-
surements, associatedwith the prediction ofwelding-induced
angular distortion. Since the uncertainty may cause angular
distortion variation, adopting some uncertainty information
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quantification approaches, e.g., an efficient probability dis-
tribution function aggregation approach proposed by Cai et
al. (Cai et al. 2017), to consider the uncertainty during the
prediction of the angular distortionwill be investigated in our
future work.
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