
Journal of Intelligent Manufacturing (2018) 29:707–717
https://doi.org/10.1007/s10845-018-1390-2

Maintenance optimization in failure-prone systems under imperfect
preventive maintenance

A. Khatab1

Received: 10 July 2017 / Accepted: 2 January 2018 / Published online: 5 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
In the majority of the existing preventive optimization models only costs related to maintenance actions are accounted for,
while breakdown and operational costs are usually ignored. Liao et al. (J Intell Manuf 21(6):875–884, 2010) proposed a
preventive maintenance model to deal with this shortcoming. In the present paper, we revisit and discuss the results provided
in Liao et al. (2010) and point out some inconsistencies in the maintenance optimizationmodel proposed therein. Accordingly,
we develop a new maintenance optimization model and discuss some of its main cost components. Furthermore, optimality
conditions are also formally investigated and a solution method is provided. Numerical experiments are conducted to illustrate
the validity of the proposed approach and results are compared with those provided in the original paper by Liao et al. (2010).
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Introduction

The growing importance and necessity of the maintenance
activity inmany industrial fields has led to an increasing inter-
est in the development and implementation of maintenance
optimization models for stochastic deteriorating systems.
The original known results of replacements and mainte-
nance policies were summarized and extensively discussed
in Barlow and Proschan (1996). Since that, many papers and
books appeared in the literature (Jardine et al. 2006; Wang
and Pham 2006; Gertsbakh 2005; Nakagawa 2008). Many
maintenancemodels have also beendeveloped to include pro-
duction scheduling constraints (Haoues et al. 2016;Aghezzaf
et al. 2016; Zied et al. 2014; Liao 2013; Ben-Daya andRahim
2001).

Traditional preventive maintenance (PM) models assume
that the system after PM is either as good as new (i.e., perfect
PM or replacement) or as bad as old (i.e., minimal repair).
Themore realistic and generalized approach is to assume that
the system after PM lies somewhere between as good as new
and as bad as old, which is called imperfect PM. Multiple

B A. Khatab
abdelhakim.khatab@univ-lorraine.fr

1 Laboratory of Industrial Engineering, Production and
Maintenance (LGIPM), Lorraine University/National School
of Engineering, Metz, France

maintenance optimization models in systems under imper-
fect PM have been reported in the literature. Malik (1979)
introduced the age reduction PMmodel according to which a
system becomes younger whenever it undergoes a PM. Nak-
agawa and his co-authors (Nakagawa 1986, 1988) [see also
(Nakagawa andMizutani 2009;Nakagawa2008)] introduced
the concept of hazard rate increased factor according towhich
the failure rate increases with PM. Lin et al. (2000) the hybrid
failure rate approach which combines failure rate adjustment
and age reduction approaches. This hybrid model is used as a
modeling approach in Lin et al. (2001) for repairable systems
with two categories of failure modes, namely the maintain-
able and non-maintainable failure modes. Only the system
failure rate corresponding to the maintainable failure mode
is altered whenever PM actions are performed. In line with
the work of Lin et al. (2001), El-Ferik and Ben-Daya (2006)
developed an age-based hybrid model for systems with two
categories of failure modes and discussed the existence and
uniqueness of optimal imperfect PM policy. The authors in
Khatab et al. (2017), Khatab (2015) proposed a PMoptimiza-
tionmodel for a systemsubject to stochastic degradations that
undergoes PM whenever its reliability reach a given thresh-
old. Zhang et al. (2015) proposed an imperfect maintenance
model that is applicable to systems whose sensor informa-
tion can bemodeled by stochastic processes. Liu et al. (2012)
proposed a three-step approach selecting the best imperfect
maintenance model for a given situation: a goodness-of-fit

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-018-1390-2&domain=pdf
http://orcid.org/0000-0003-1166-3806


708 Journal of Intelligent Manufacturing (2018) 29:707–717

test, a Bayesian approach for selecting the most adequate
model among several competitive candidates, and a frame-
work that incorporates the model selection results into the
PM decision making. Recently, Zhang and Xie (2017) devel-
oped an ameliorated improvement factormodel for imperfect
maintenance and its goodness of fit to give practical grounds
to the imperfect maintenance model. One common feature
of most applications of the imperfect maintenance models is
that they deal only with new systems.

As pointed out by Liao et al. (2010), the majority of the
existing PM optimization models only consider costs related
to maintenance actions. However, the breakdown due to a
system’ failure may induce economic losses. Furthermore,
operational conditions of the system becomes worse with
time and may then impact system reliability, product quality
and delivery time. Consequently, both breakdown and oper-
ational costs must be accounted for in maintenance decision
making. To deal with this shortcoming, Liao et al. (2010)
integrated a sequential imperfect maintenance policy into
a maintenance model for a continuously monitored system
subject to degradation. The hybrid hazard rate approach of
Lin et al. (2000) is used to model imperfect PM. A mainte-
nance optimizationmodel is then proposedwhere breakdown
and operational cots are explicitly accounted for. The sys-
tem undergoes PM whenever its reliability reaches a given
threshold level R0. In the case where the system fails before
reaching the threshold R0, a minimal repair is then carried
out. After a number N of PM cycles, the system is replaced
by a new one. The objective of the maintenance optimization
problem consists then on finding the joint optimal reliabil-
ity threshold R0 together with the optimal number N of PM
cycles to minimize the total expected total cost rate in the
infinite time span.

The present paper revisits the maintenance model devel-
oped in Liao et al. (2010). It aims to remedy some
inconsistencies reported in Liao et al. 2010. A new main-
tenance optimization model is then developed and fully
discussed. Furthermore, optimality conditions are also dis-
cussed through two propositions and their proofs to show
the existence and uniqueness of an optimal solution. These
results are then used to build up a fix-and-optimize numerical
procedure to compute the optimal solution of the opti-
mization problem. The present work assume cost structures
adopted in Liao et al. (2010) but is still general to deal
with other cost structures. Using the data set in Liao et al.
2010, numerical experiments are then conducted and fully
discussed. The results of these experiments are compared
to those obtained in Liao et al. (2010). The overall results
obtained demonstrate the accuracy and the validity of the
proposed maintenance optimization model.

The remainder of the paper is organized as follows.
Acronym, notations and the main working assumptions are
listed in section “Acronym, notation and assumptions”. Sec-

tion “Maintenance optimization model” is devoted to the
problem definition and modeling. The fundamental prin-
ciples and the relevant cost components of this decision-
making problem are developed and thoroughly discussed.
The resulting optimization problem is proposed and analyt-
ically discussed in section “The mathematical optimization
model”. This section presents the main theoretical contri-
butions. Section “Solution method” presents a numerical
procedure to solve the proposed optimization model. The
validity and accuracy of the proposed approach is demon-
strated on a comprehensive test case in section “Test case”.
Conclusions and future works are drawn in section “Con-
clusion”. Proofs of the two propositions and the lemma are
reported in appendices A, B and C.

Acronym, notation and assumptions

Acronym:

PM: Preventive maintenance

Notation:

N Number of PM cycles, a decision variable
λk(t) Failure rate of the system during the kth PM

cycle
Xk Calendar age of the system right before the kth

PM
Yk Effective age of the system right before the kth

PM
Tk Duration of the the kth PM cycle
R0 Reliability threshold, a decision variable
ak , bk The respective age reduction and adjustment

coefficients of the kth PM
Cr Replacement cost
Cp Imperfect PM cost
Cm Minimal repair cost
Ci Cost component of the operational cost (i =

0, 1, 2)
Cb Breakdown cost
δk Total operational cost incurred during the kth

PM cycle
E[MC] Expected total maintenance cost
E[OC] Expected total operational cost
E[BC] Expected total breakdown cost
J (R0, N ) Expected total cost rate, the objective function
E[C] Expected total cost in a replacement cycle
E[T ] Expected duration of a replacement cycle

Assumptions

1. The system is new at the beginning of each replacement
cycle.

123



Journal of Intelligent Manufacturing (2018) 29:707–717 709

2. the planning horizon is infinite.
3. The system is failure-prone and its lifetimes are charac-

terized by a continuous and increasing failure rate.
4. The times spent in PM, minimal repair and replacement

are negligible.

Maintenance optimizationmodel

Let us consider a system with stochastic deterioration. As
in Liao et al. (2010), the system is designed to operate for
N PM cycles. At the end of the N th cycle, the system is
replaced by a new and identical one. The system undergoes
PM whenever its reliability reaches a threshold level R0. In
the case where the system fails before reaching the threshold
R0, a minimal repair is then carried out. A minimal repair
only restores the system to a working condition but does not
improve the system’s reliability (Wang and Pham 2006). PM
actions are imperfect and modeled according to the hybrid
hazard rate model proposed by Lin et al. (2000). The objec-
tive is to find the optimal values of two decision variables,
namely the reliability threshold R0 and the number N of PM
including the replacement,whichminimize the expected total
cost rate J (R0, N ) over an infinite time horizon.

According to the above maintenance strategy, the system
is subjected to a regenerative process starting and ending at
the instants of the replacement operations. It follows from
the theory of renewal reward processes that the long-run
expected total cost per unit of time J (R0, N ) is the aver-
age total cost E(C) in a replacement cycle divided by the
average length E(T ) of that cycle:

J (R0, N ) = E[C]
E[T ] . (1)

The expected total cost E[C] in a cycle is defined as:

E[C] = E[MC] + E[OC] + E[BC], (2)

where E[MC], E[OC] and E[BC] refer, respectively, the
expected total maintenance/replacement cost, the expected
total operational cost and the expected total breakdown cost.
In what follows, these costs are fully defined and discussed.
Their respective expressions are revisited, especially those
corresponding to maintenance operations and breakdown
costs.

Maintenance cost

Cost of a replacement is denoted as Cr , and costs of PM
and minimal repair are, respectively, denoted by Cp and
Cm . PM actions are imperfect and modeled according to the
hybrid hazard rate model (Lin et al. 2000). The principle

of this imperfect PM model is shown in Fig. 1 where Xk

(k = 1, 2, . . . , N ) are the instants where the PM actions
(including the final replacement) are performed on the sys-
tem. In this figure, Tk = Xk − Xk−1 represents the time
interval between the (k − 1)th and the kth PM actions, with
X0 = 0 meaning that the first PM instant is measured from
time 0 when the system was new. Accordingly, one may
observe that Xk = ∑k

i=1 Ti represents the time to perform
the kth PM.

To evaluate the failure rate of the system subjected to PM,
let us first evaluate the effective age, hereafter denoted by
Yk , of the system right before it undergoes the kth PM. The
effective age Y1 corresponds to the time T1 = X1 to reach
the instant of the first PM. The effective age Y2 is obtained
as Y2 = a1Y1 + T2 where a1 is the age reduction coeffi-
cient of the first PM, and so on. We then have the following
generalized recursive equation:

Yk = ak−1Yk−1 + Tk, (3)

where ak (k ≥ 1) stands for the age reduction coefficients
such that 0 ≤ a1 < a2 < · · · < 1 with a0 = 0 and Y0 = 0.

Now let us evaluate the failure rate of the system in each
PM cycle, i.e. within the time interval [Xk−1, Xk). In the
first PM cycle, the failure rate is equal to λ1(t). After the
first PM (k = 1) the failure rate becomes b1λ1(a1Y1) when
it was λ1(Y1) right before the first PM. Thus in the PM cycle
[X1, X2), the failure rate is expressed as b1λ1(a1Y1 + t)
for all t ∈ [0, X2 − X1) (i.e. t ∈ [0, T2)) where b1 is the
adjustment coefficient of the PM. Following the previous
reasoning, the failure rate after the second PM (k = 2)
becomes b2b1λ1(a2Y2) when it was b1λ1(Y2) right before
the second PM. It follows that the failure rate of the system
during the third PM cycle, i.e during the time interval [0, T3)
is b2b1λ1(t + a2Y2) for all t ∈ [0, T3). More generally, the
failure rate λk(t) of the system during the kth PM cycle (i.e.
before performing the kth PM) is:

λk(t) = Bk−1λ1(t + ak−1Yk−1) if k > 1 and t ∈ [0, Tk),
(4)

where Bk−1 = ∏k−1
i=1 bi with B0 = 1 and 1 ≤ b1 ≤ b2 ≤

· · · .
Since PM times Tk (k = 1, 2, . . .) correspond to instants

where the system’s reliability reaches the threshold level R0

it follows that:

R0 = exp

(

−Bk−1

∫ Yk

ak−1Yk−1

λ1(t)dt

)

, (5)

which implies that:

ln(R0) = −Bk−1

∫ Yk

ak−1Yk−1

λ1(t)dt . (6)
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Fig. 1 Illustration of the hybrid hazard rate approach of imperfect PM

The expected total maintenance cost E[MC] incurred for
minimal repair cots and PM including replacement costs dur-
ing a renewal cycle is:

E[MC] = Cr + (N − 1)Cp

+Cm

N∑

k=1

(

Bk−1

∫ Yk

ak−1Yk−1

λ1(t)dt

)

, (7)

where Bk−1
∫ Yk
ak−1Yk−1

λ1(t)dt = ∫ Tk
0 λk(t)dt represents the

expected number of failures occurring during the kth PM
cycle. From the result of Eq. (6), the expected total mainte-
nance cost becomes:

E[MC] = Cr + (N − 1)Cp − NCm ln(R0). (8)

Operational cost

In line with the work in Liao et al. (2010), the operational
cost structure used to describe the cost incurred during the
operating process is denoted as Co(k, t) and composed of
three cost components such that:

Co(k, t) = C0 + k · C1 + t · C2, (9)

whereC0 is a fixed cost rate, k ·C1 is a cost rate related to the
number of PM performed on the system, and t · C2 is a cost
rate related to the cumulative operating time of the system.

According to the cost structure defined in Eq. (9), the
expected total operational cost E[OC] incurred during the
overall replacement cycle is computed as:

E[OC] =
N∑

k=1

δk, (10)

where δk = ∫ Tk
0 Co(k, t)dt is the expected total operational

cost incurred during the kth PM cycle.
Following the cost function in Eq. (9) together with the

fact that Tk = Yk −ak−1Yk−1 [see Eq. (3)], the expected total
operational cost E[OC] can also equivalently be computed
as:

E[OC] =
N∑

k=1

(

C0 + kC1

+C2

2
(Yk−ak−1Yk−1)

)

(Yk−ak−1Yk−1). (11)

Breakdown cost

In contrast to the computation approach used in Liao et al.
(2010), the expected total breakdown cost E[BC] is charged
not only once per PM cycle but rather every time the system
undergoes a maintenance action being a minimal repair or a
PM including a replacement. Therefore, if one consider the
kth PMcycle, the corresponding breakdown cost is computed
as the product of breakdown cost by the sum of the expected
number of failures occurring in that PM cycle and a PM
performed at the end of the kth PM cycle . Accordingly, we
suggest the following total expected breakdown cost E[BC]
incurred during a renewal cycle such that:
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E[BC] = Cb

(

N +
N∑

k=1

∫ Tk

0
λk(t)dt

)

, (12)

where the term NCb refers to the breakdown cost du to the
sum of (N−1) imperfect repair and a perfect repair (replace-
ment activity at the end of the N th PM cycle), and the term
Cb

∑N
k=1

∫ Tk
0 λk(t)dt refers to the breakdown cost as a con-

sequence of minimal repair carried out during N PM cycles.
Combining the results of Eqs. (4)–(6), the total expected

breakdown cost is computed as:

E[BC] = NCb(1 − ln(R0)). (13)

According to Eqs. (8), (11) and (13), the expected total
cost E[C] in a replacement cycle is then computed as:

E[C] = Cr + (N − 1)Cp − NCm ln(R0)

+ NCb(1 − ln(R0)) +
N∑

k=1

(

C0 + kC1

+ C2

2
(Yk − ak−1Yk−1)

)

(Yk − ak−1Yk−1). (14)

Length of a replacement cycleE(T )

At the beginning of a replacement cycle, a new system is put
into operation and will undergo a series of N PM cycles. At
the instant of the N th PM, the system is renewed. The length
of this replacement cycle is therefore the sum of the times
between the PM actions. We then have:

E(T ) =
N∑

k=1

Tk, (15)

From Eq. (3) we have that Tk = Yk − ak−1Yk−1. Therefore,
the expected length E(T ) of a replacement cycle becomes:

E(T ) =
N−1∑

k=1

(1 − ak)Yk + YN . (16)

Themathematical optimizationmodel

The optimization problem considered is to find the deci-
sion variables defining the optimal joint maintenance strat-
egy

(
R∗
0 , N

∗) which minimize the expected total cost rate

J (R0, N ) = E[C]
E[T ] . According to Eqs. (14) and (16), the

cost rate function J (R0, N ) proposed is then computed as:

J (R0, N ) = Cr + (N − 1)Cp − NCm ln(R0) + NCb(1−ln(R0))
∑N−1

k=1 (1 − ak)Yk + YN

+
∑N

k=1

(
C0 + kC1 + C2

2 (Yk − ak−1Yk−1)
)

(Yk − ak−1Yk−1)

∑N−1
k=1 (1 − ak)Yk + YN

.

(17)

The optimization problem in Eq. (17) contains a contin-
uous decision variable R0 in addition to a discrete decision
variable N . Unfortunately, the optimal solutions that mini-
mize Eq. (17) are in general difficult to obtain analytically
even for simple lifetime distributions. Nevertheless, in what
follows, some useful properties are derived to build a fix-
and-optimize numerical method to minimize Eq. (17). Two
propositions will be developed to help in building the
proposed solution method. The first proposition examines
conditions under which the optimal N exists when the relia-
bility threshold R0 is fixed. The second proposition focuses
on the evaluation of the optimal value of R0 in the case where
te number N of PM cycles is fixed.

Proposition 1 (N∗when R0 isfixed)For fixed values of R0, if
δk+1
Tk+1

>
δk
Tk

(k ≥ 1), the optimal number N∗ of PM is unique,
finite and it is solution of:

1

TN∗
<

J (R0, N∗)
Cp + Cb − (Cm + Cb) ln(R0)

<
1

TN∗+1
. (18)

Proof See Appendix A. ��

In the above proposition, the ratio δk
Tk

represents the total
expected operational cost rate incurred during the kth PM
cycle. The assumption according towhich δk+1

Tk+1
>

δk
Tk

(k ≥ 1)
means that the total expected operational cost rate increases
by the increasing of the number of PM. This assumption is
reasonable since the operational cost increases by the increas-
ing of both operational time and the number of imperfect PM
performed during the replacement cycle.

The result of the following Lemma 1 will be used later
in Proposition 2. The lemma computes the partial derivative
∂Yk
∂R0

.

Lemma 1 The partial derivative ∂Yk
∂R0

is given by:

∂Yk
∂R0

= −1

Bk−1λ1(Yk)R0
, (19)

where we recall that Bk = ∏k
i=1 bi with B0 = 1.

Proof See Appendix B ��

Proposition 2 (R∗
0 when N isfixed) For fixed values of N , the

optimal value of the reliability threshold R∗
0 is solution of:
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ln(R0) = (Cr − Cp) + N (Cp + Cb

N (Cb + Cm)

+
∑N

k=1 (kC1 + C2(Yk − ak−1Yk−1))(Yk − ak−1Yk−1)

N (Cb + Cm)

−
⎛

⎝1 −
∑N

k=1
(kC1+C2(Yk−ak−1Yk−1))(ak−1bk−1λ1(Yk )−λ1(Yk−1))

Bk−1λ1(Yk−1)λ1(Yk )

N (Cb + Cm)

⎞

⎠

×
( ∑N−1

k=1 (1 − ak)Yk + YN
∑N−1

k=1
1−ak

Bk−1λ1(Yk )
+ 1

BN−1λ1(YN )

)

(20)

Proof See Appendix C ��
In the case where N is fixed, Proposition 1 provides a

necessary condition to be satisfied for any optimal values of
N . Proposition 2 also provides a necessary condition that
R0 must satisfy when N is fixed. In the following section,
the results of these propositions will be used to build up a
fix-and-optimize numerical solution method.

Solutionmethod

Ageneral approach forminimizingEq. 17 based on the above
propositions is as follows. For each value of R0 solution
of Eq. 20 from Proposition 2 is calculated as a function of
the remaining decision variable N . This solution is unique
because the logarithm function is monotonous. Finally, using
Eq. (18) from Proposition 1, a unique value of N can be
computed. An optimal solution is the solution (R0, N ) that
has the least expected cost rate value. The pseudo-code of
the proposed algorithm is given below.

Algorithm 1 Pseudo-code for the minimization of Eq. (17)
1: Input data: λ1(t), Cr , Cp , Cm , Cb, C0, C1, C2, and coefficients ak

and bk .
2: Set ΔR: the step size used to loop through values of R0.
3: Set R0 = 1.
4: while R0 > 0 do
5: Using Eq. (20) of Proposition 2, compute R0 as a function of N .
6: Using Eq. (18) of Proposition 1, solve for N and compute the

value of the objective function J ∗(R0, N ).
7: Store the current values of J ∗(R0, N ), R0, and N
8: R0 = R0 − ΔR
9: end while
10: Select the lowest value of J ∗(R0, N ) and its corresponding deci-

sion variables R0 and N from all the data stored in Step (7).
11: Set R∗

0 = R0, N∗ = N , and J ∗(R0, N ) = J (R∗
0 , N

∗)

In contrast to the initial work by Liao et al. (2010), in
our solution approach no restrictions are made on the search
intervals of both decision variables R0 and N . Indeed, in the
above algorithm, no upper limit had to be specified for the
search for the optimal number of PM cycles, nor a restricted
range of reliability threshold had to be imposed for the search

of the optimal reliability threshold. The computation of the
optimal solution ismoregeneral and formally performedwith
respect to the results of Propositions (1) and (2).

The following section investigates a test case to illustrate
our proposed approach. The above algorithm is implemented
and the obtained mathematical model is solved in order to
derive maintenance decisions. The results are compared with
those obtained in the original paper (Liao et al. 2010).

Test case

In this section, numerical experiments are conducted. To
compare our results to those obtained by Liao et al. (2010),
all the input data are the same as those used in Liao et al.
(2010). Accordingly, the proposed approach is applied in a
systemwhose lifetimes areWeibull distributedwith the shape
parameter β and the scale parameter η set, respectively, to
β = 5 and η = 200. Its corresponding failure rate λ1(t) is
then given as:

λ1(t) = β

η

(
t

η

)β−1

.

The other input data are set as follows. Costs related to main-
tenance, namely replacement, imperfect PM, minimal repair
costs and breakdown cost are set to Cr = 5000, Cp = 1200,
Cm = 2000 andCb = 500, respectively. The operational cost
components are set to C0 = 4, C1 = 1.2 and C2 = 0.05.
Finally, the values of the adjustment factors bk and the age
reduction factors, kk (k = 1, 2, · · · ) of the imperfect PM
model are obtained from the following formula:

ak = 2k

5k + 9
, bk = 13k + 3

11k + 4
.

Experiment #1

In this experiment, we assume that the system is required to
operatewith a level of reliability not less than R0 = 90%(i.e.,
the systemmust undergo PMwhenever its reliability reaches
the threshold value R0 = 90%). In this case, the system reli-
ability level is an input parameter set by the decision-maker
rather a decision variable. The objective of the maintenance
decisionmaker is then to find the optimal value of the number
N .

Figure 2 depicts the expected total cost rate J (R0, N )

versus the number N of PM cycles. The optimal value is
found to be N∗ = 5 meaning that the system undergoes 4
imperfect PM actions and then is replaced at the end of the
5th PM cycle. The optimal solution suggests to operate the
system under the following maintenance plan. This mainte-
nance plan is different from that found in Liao et al. (2010)
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Fig. 2 Total expected cost rate J (R0, N ) versus the number of PM
cycles: case of Experiment #1

Table 1 Optimal PM intervals: case of Experiment #1

k 1 2 3 4 5

Tk 127.52 107.67 96.67 89.31 83.76

which suggested an optimal maintenance of N = 8 PM
cycles, resulting then in a difference of three additional PM
cycles.

The optimal PM intervals are given in Table 1. The first
PM is performed at time T1 = 127.52 , i.e. 127.52 time
units after the system is put into operation. The second PM
is performed T2 = 107.67 time units after the first one and
so on. The replacement of the system is done T5 = 83.76
time units after the 4th PM. From Table 1, one may observe
that the time intervals between PM and replacement actions
decrease as the number of PM performed increases. This
result is due to the fact that a PM action not only reduces
the effective age of the system but also changes the slope of
the failure rate. Thus, the more the system ages the more fre-
quent the PM actions are. This results in an non-periodic
maintenance strategy which is indeed practically reason-
able and more suitable for deteriorating industrial systems.
The optimal expected total cost rate induced by the sug-
gested maintenance plan is C(R0, N∗) = 36.90 (see also
Fig. 2).

Experiment #2

In this experiment, the maintenance optimization problem
is solved with the same input data used in Experiment #1
except that the reliability level R0 is nowconsidered as a deci-
sion variable rather than a predetermined value. Applying the
algorithm in section “Solution method” with ΔR0 = 1%,

Fig. 3 Total expected cost rateJ (R0, N∗) versus the reliability thresh-
old R0: case of Experiment #2

Fig. 3 shows the variation of the minimum expected total
cost rate J (R0, N∗) obtained for different values of the reli-
ability threshold R0. One may observe that Fig. 3 is convex
and so that it is different from Fig. 2 in Liao et al. (2010). In
our case, one may observe the explicit trade-off between the
total expected cost rate and the reliability threshold. Indeed,
in the casewhere the reliability threshold is set to a highvalue,
this implies that more frequent PM actions need to be carried
out. The resulting total expected cost rate becomes thenmore
important. Similarly, a low value of the reliability threshold
allows a long and an uninterrupted use of the system but
with, however, an increased risk of failures which increase
the number of minimal repair, and by the way increases the
expected total cost rate. An appropriate reliability thresh-
old is then required to ensure a balance between the total
expected costs of maintenance, breakdown in addition to the
total expected operational cost.

The optimal values found for the decision variables R0

and N are, respectively, 81% and 5. The resulting optimal
maintenance plan consists to perform 4 PM actions and a
replacement at the instant of the 5th PM. Time intervals
between consecutivemaintenance actions are shown in Table
2. Once again, from Table 2, one may also observe that the
time intervals to PMactions are decreasing as the PMnumber
increases, due to the hybrid hazard rate model. The resulting
total expected cost rate is J (R∗

0 , N
∗) = 36.07.

Table 2 Optimal PM intervals: case of Experiment #2

k 1 2 3 4 5

Tk 146.48 123.68 111.05 102.59 96.22
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Conclusion

This paper aimed in revisiting the maintenance optimization
model developed in Liao et al. (2010). The system studied is
stochastic deteriorating and operate under imperfect mainte-
nance. Thework contributes to the current state of knowledge
on systems’ maintenance by incorporating operational and
breakdown costs into the development of an optimal imper-
fect maintenance strategy for a system subject to stochastic
degradation. Imperfect PM action are carried out whenever
the system’s reliability reaches a given threshold. After a
number of PM actions, the system is then replaced with
an identical one. A mathematical model was developed to
determine the optimal maintenance policy to minimize the
long-run expected total cost. Two decision variables were
considered: the reliability threshold and the number of PM
intervals.

The present paper highlights some inconsistencies in the
initial work (Liao et al. 2010). A new optimization model
is then developed and fully discussed. Optimality conditions
were also discussed and resulted in two propositions. These
results were then used in a fix-and-optimize numerical pro-
cedure to determine the optimal solution of the problem.
Using the data set in Liao et al. (2010), numerical experi-
ments were then conducted and fully discussed. The results
of these experiments are compared to those obtained in Liao
et al. (2010). The overall results obtained demonstrate the
accuracy and the validity of our approach.

The present work can be extended to deal with more
general repair process instead of minimal repair carried out
between instants of PM. This work can also be extended to
include warranty and inspection aspects. An interesting issue
would then be to consider a bi-variate (age and usage) model
to assess the actual reliability or condition of the system.

Appendix A: Proof of Proposition 1

When the values of R0 is fixed, the expected total cost rate
function becomes a discrete uni variate function of N and is
denoted here simply as J (N ). To alleviate the notations, we
further write the expected total cost rate function as:

J (N ) = α + Nγ + ϕ(N )

ψ(N )
,

where:

α = Cr − Cp,

γ = Cp + Cb − (Cm + Cb) ln(R0),

ϕ(N ) =
N∑

k=1

δk, and ψ(N ) =
N∑

k=1

Tk .

A number N of PM is optimal if it satisfies the following
two conditions:

1. J (N ) < J (N − 1), and
2. J (N ) < J (N + 1).

The first condition implies that:

J (N ) <
α + (N − 1)γ + ϕ(N − 1)

ψ(N − 1)
,

Noting that δN = ϕ(N ) − ϕ(N − 1) and ψ(N ) = ψ(N −
1)+TN , then the above equation can equivalently be written
as:

J (N ) <
a + Nγ + ϕ(N )

ψ(N ) − TN
− γ + δN

ψ(N ) − TN
,

and then we have:

J (N ) −
(
a+Nγ +ϕ(N )

ψ(N )

)
ψ(N )

ψ(N )−TN
< − γ + δN

ψ(N ) − TN
,

which in turn leads to:

J (N )

( −TN
ψ(N ) − TN

)

< − γ + δN

ψ(N ) − TN
,

From the fact that ψ(N ) > TN (i.e., any PM interval is
always smaller than the sum of all PM intervals), the above
equation finally gives:

J (N ) >
γ + δN

TN
.

Since δN ≥ 0, then we get:

J (N ) >
γ

TN
. (21)

A similar procedure can be followedwith condition (2) above
to get:

J (N ) <
γ

TN+1
. (22)

Combining inequalities (21) and (22) gives the result of
Proposition (1):

1

TN
<

J (N )

γ
<

1

TN+1
.

Now let us show that if the condition δk+1
Tk+1

>
δk+1
Tk+1

, then a
number N which is solution of the above inequality is unique
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and finite. To do so, let us return back to conditions (1) and
(2) above. From condition (1), it follows that:

J (N ) − J (N − 1) < 0.

Substituting J (N ) and J (N − 1) by their respective values
and computing the difference J (N ) − J (N − 1), we have:

J (N ) − J (N − 1) = α + Nγ + ϕ(N )

ψ(N )

−α + (N − 1)γ + ϕ(N − 1)

ψ(N − 1)
,

From the fact that ψ(N −1) = ψ(N )−TN and ϕ(N −1) =
ϕ(N ) − δN the above equation can be simplified as:

J (N ) − J (N − 1)

= γ (ψ(N ) − NTN ) + (ψ(N )δN − TNϕ(N )) − αTN
ψ(N − 1)ψ(N )

.

(23)

Since J (N ) − J (N − 1) < 0 together with the fact that
ψ(N ) is positive valued, it follows that the numerator of the
above equation is negative. This implies that:

ξ(N ) <
α

γ
,

where the discrete function ξ(N ) is defined as:

ξ(N ) = γ (ψ(N ) − NTN ) + (ψ(N )δN − TNϕ(N ))

γ TN
.

By considering condition (2) and following the same reason-
ing as done from condition (1), condition (2) is written as:

ξ(N + 1) >
α

γ
.

The function ξ(N ) as defined above is increasing in N .
Indeed, computing the difference ξ(N + 1) − ξ(N ), we get:

ξ(N + 1) − ξ(N ) = ψ(N ) (TN − TN+1)

TNTN+1

+ψ(N )

(
δN+1

TN+1
− δN

TN

)

.

All Tk terms are non-negative. Furthermore, the term TN −
TN+1 is positive because the imperfect PMmodel used guar-
antees that TN > TN+1 as, by definition of the hybrid failure
rate, each PM interval is shorter than its predecessor. This
together with the assumption stating that δk+1

Tk+1
>

δk
Tk
, it fol-

lows that ξ(N + 1) − ξ(N ) is strictly positive for all values
of N . Hence the discrete function ξ(N ) is strictly increasing.

Now, it will be shown that the solution is finite as well.
On one hand, by definition of the hybrid failure rate, the
term ψ(N ) − NTN is positive. On the other hand, the term
ψ(N )δN − TNϕ(N ) is equivalently computed as:

ψ(N )δN − TNϕ(N ) =
N∑

k=1

(TkδN − TN δk)

=
N∑

k=1

TkTN

(
δN

TN
− δk

Tk

)

From the assumption stating that δk+1
Tk+1

>
δk
Tk

for all k ≥ 1,
it follows that the term ψ(N )δN − TNϕ(N ) is also positive.
Therefore, the discrete function ξ(N ) is such that:

γ ξ(N ) >
ψ(N ) − NTN

TN
.

From the fact that ψ(N ) > T1 + (N − 1)TN , the above
inequality implies that:

γ ξ(N ) >
T1 + (N − 1)TN − NTN

TN
,

which can also be written as:

γ ξ(N ) >

(
T1
TN

− 1

)

.

We have that ξ(N ) is increasing in N , this together with the
fact that:

lim
N→+∞

(
T1
TN

)

= ∞,

it follows that,

lim
N→+∞ ξ(N ) = +∞.

In summary, we have that the function ξ(N ) is strictly
increasing and tends to +∞ as N tends to +∞. Thus, one
may conclude that there exist a finite andunique N∗ forwhich
conditions (1) and (2) are satisfied. Therefore, the first integer
satisfying these two conditions is the global minimum of the
expected total cost rate J (N ).

Appendix B: Proof of Lemma 1

Let us denote by H1(t) = ∫ t
0 λ1(x)dx , the cumulative failure

rate of the system at the start of a replacement cycle where a
system is new. From Eq. (6), we have that:

H1(Yk) = H1(bk−1Yk−1) − ln(R0)

Bk−1
.
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It follows that:

∂H1(Yk)

∂Yk
= − ∂

∂Yk

(
ln(R0)

Bk−1

)

= −
(

1

Bk−1

) (
∂ ln(R0)

∂R0

)(
∂R0

∂Yk

)

= −
(

1

Bk−1

) (
1

R0

) (
∂R0

∂Yk

)

. (24)

Since ∂H1(Yk )
∂Yk

= λ1(Yk), it follows that:

λ1(Yk) = −
(

1

Bk−1

)(
1

R0

) (
∂R0

∂Yk

)

,

then we get:

∂Yk
∂R0

= −1

Bk−1λ1(Yk)R0

Appendix C: Proof of Proposition 2

For fixed values of the number N of PM, the optimal value
of the reliability threshold R∗

0 is obtained by solving the fol-
lowing partial derivative:

∂J (R0, N )

∂R0
= 0.

Before starting the computation of the above partial deriva-
tive, one may observe that due to the operational cost
structure the total expected operational cost rate E[OC]

E[T ] is
such that:

E[OC]
E[T ] =

∑N
k=1

(
C0Tk + kC1TK + C2

2 T 2
k

)

∑N
k=1 Tk

= C0 +
∑N

k=1

(
kC1TK + C2

2 T 2
k

)

∑N
k=1 Tk

.

From the above equation, one may conclude that the term
induced by the fixed operational cost rateC0 has no impact on
the computation of the partial derivative ∂J (R0,N )

∂R0
. Accord-

ingly, writing the partial derivative ∂J (R0,N )
∂R0

and setting it
equal to 0 leads to the following equality:

∑N−1
k=1 (1 − ak)Yk + YN

∑N−1
k=1 (1 − ak)

∂Yk
∂R0

+ ∂YN
∂R0

=
Cr + (N − 1)Cp + NCb − N (Cm + Cb) ln(R0) + ∑N

k=1

(
kC1 + C2

2 (Yk − ak−1Yk−1)
)

(Yk − ak−1Yk−1)

N (Cm+Cb)
R0

+ ∂(
∑N

k=1

(
kC1+C2

2 (Yk−ak−1Yk−1)
)
(Yk−ak−1Yk−1))

∂R0

.

In the above equation, substituting the expression of the
partial derivative ∂Yk

∂R0
: ∂Yk

∂R0
= −1

Bk−1λ1(Yk)R0
, obtained from

Lemma 1, yields the following equality:

∑N−1
k=1 (1 − ak)Yk + YN

∑N−1
k=1

1−ak
Bk−1λ1(Yk )

+ 1
BN−1λ1(YN )

=
Cr + (N − 1)Cp + NCb − N (Cm + Cb) ln(R0) + ∑N

k=1

(
kC1 + C2

2 (Yk − ak−1Yk−1)
)

(Yk − ak−1Yk−1)

N (Cm + Cb) − ∑N
k=1

(kC1+C2(Yk−ak−1Yk−1))(ak−1bk−1λ1(Yk)−λ1(Yk−1))
Bk−1λ1(Yk−1)λ1(Yk)

,

which is equivalently written as:

( ∑N−1
k=1 (1 − ak)Yk + YN

∑N−1
k=1

1−ak
Bk−1λ1(Yk )

+ 1
BN−1λ1(YN )

)(

N (Cm + Cb)

−
∑N

k=1

(kC1 + C2(Yk − ak−1Yk−1))(ak−1bk−1λ1(Yk) − λ1(Yk−1))

Bk−1λ1(Yk−1)λ1(Yk)

)

= (Cr + (N − 1)Cp + NCb)

+
N∑

k=1

(

kC1 + C2

2
(Yk − ak−1Yk−1)

)

(Yk − ak−1Yk−1) − N (Cm + Cb) ln(R0).

Dividing each side of the above equation by the quantity
N (Cm + Cb), and performing some basic algebraic opera-
tions, we then obtain the result of the proposition.
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