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Abstract In this work, the process parameters optimiza-
tion problems of abrasive waterjet machining process are
solved using a recently proposed metaheuristic optimiza-
tion algorithm named as Jaya algorithm and its posteriori
version named as multi-objective Jaya (MO-Jaya) algo-
rithm. The results of Jaya and MO-Jaya algorithms are
compared with the results obtained by other well-known
optimization algorithms such as simulated annealing, par-
ticle swam optimization, firefly algorithm, cuckoo search
algorithm, blackhole algorithm and bio-geography based
optimization. A hypervolume performance metric is used to
compare the results of MO-Jaya algorithmwith the results of
non-dominated sorting genetic algorithm and non-dominated
sorting teaching–learning-based optimization algorithm.The
results of Jaya and MO-Jaya algorithms are found to be
better as compared to the other optimization algorithms. In
addition, a multi-objective decision making method named
PROMETHEE method is applied in this work in order to
select a particular solution out-of themultiple Pareto-optimal
solutions provided by MO-Jaya algorithm which best suits
the requirements of the process planer.
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Introduction

Abrasive waterjet machining (AWJM) process is a widely
used modern machining process which is characterized by a
number of input process parameterswhich significantly influ-
ence the process output parameters. The input parameters
are classified into four groups namely hydraulic parameters,
mixing and acceleration parameters, abrasive parameters and
cuttingparameters. Thehydraulic parameters are: pumppres-
sure, water-orifice diameter, water flow rate, etc. The mixing
and acceleration parameters are: focus diameter and focus
length, workpiece material composition and hardness. The
abrasive parameters are: particle hardness, particle shape,
particle size distribution, particle diameter and mass flow
rate. The cutting parameters are: impact angle, stand-off dis-
tance, number of passes, traverse rate, etc.

The performance of AWJM process is measured in terms
of the amount of material removed from the work-piece per
unit time, smoothness of the cut surface, geometry of the
cut in terms of kerf and taper angle, degree of accuracy
achieved, satisfying the prescribed geometrical tolerances
while machining, rate of wear of orifice and focusing tube.
These performance measures are significantly influenced by
the input process parameters. For instance, the depth of cut
is mainly influenced by abrasive flowrate, waterjet pressure,
traverse speed and stand-off distance. Increase in abrasive
flow rate increases the number of abrasive particles strik-
ing on the workpiece which increases the depth of cut. The
velocity of abrasive particles increases with the increase in
water jet pressure which increases the depth of cut. At high
stand-off distance the kinetic energy of the abrasive particles
decreases which reduces the depth of cut.

The waterjet pressure, stand-off distance and traverse
speed have a synergistic effect on kerf. At high waterjet pres-
sure and low stand-off distance the diameter of jet is almost
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equal to the diameter of the orifice which results in low kerf.
A low waterjet pressure and high stand-off distance flaring
increase the diameter of jet which increases the kerf. Increase
in the traverse speed decreases the jet interaction on a given
area of material, which leads to material erosion by fewer
abrasive particles. This reduces the depth of cut and increases
the kerf. However, very low traverse speed increases the pro-
duction time.

The surface roughness is mainly influenced by abrasive
flow rate, waterjet pressure, stand-off distance and size of
abrasive particles. As the stand-off distance increases the cut-
ting ability of the abrasive particles decreases due to decrease
in the kinetic energy and this increases the surface roughness.
Increase in abrasive flow rate reduces the surface roughness
because more number of impacts and cutting edges are avail-
able per unit area. As the size of the abrasives increases the
surface roughness increases due to formation of large size
crater on the surface of the work piece surface. Similarly,
the other performance measures of AWJM process such as
taper angle, geometry of cut, machining accuracy, etc. are
influenced by the input process parameters.

Thus, in the presence of multiple input process parame-
ters, selecting the best combination based only on the past
experience and judgement is difficult for the process plan-
ner. The improper selection of input process parameters may
result in poor material removal rate (MRR), low depth of cut,
poor geometrical accuracy, poor surface finish and high wear
rate of orifice and focusing tube. This may affect the quality
of the machined workpiece, effectiveness and efficiency of
the process. Therefore, selection of optimal combination of
input parameters for AWJM process is a matter of concern
for process engineers and researchers. Thus, there arises a
need to apply optimization algorithms for determining the
optimal combination of input process parameters.

The output process parameters of AWJM process are
expressed by means of regression models which are devel-
oped by the researchers based on the data gathered by means
of actual experimentation on AWJM process. These regres-
sion models are mathematical functions of input process
parameters which help in precise mapping of the output
process parameters corresponding to a particular set of
input parameters. Therefore, the researchers have identified
the strong need for developing such rigorous mathematical
models which form a relationship between input process
parameters and output process parameters. Furthermore,
these models can be effectively used to form optimization
models. These optimization models may be solved using
a number of optimization techniques. However, traditional
optimization techniques tend to provide a local optimum
solution in scenarios where the size of the search space is
large, a number of variables are to be handled,multiple objec-
tives are to be achieved and a number of constraints are to be
satisfied simultaneously. Therefore, researchers have devel-

oped a number of population based optimization algorithms
known as the advanced optimization algorithms such as
genetic algorithm (GA), particle swarm optimization (PSO)
algorithm, simulated annealing (SA), cuckoo search (CS)
algorithm, fire fly (FF) algorithm, black hole (BH) algorithm,
biogeography based optimization (BBO) algorithm, cuckoo
search algorithm (CSA), teaching–learning-based optimiza-
tion (TLBO) algorithm, etc. These algorithms are found to
perform well in such complex optimization scenarios which
involve a number of variables, multiple objectives and a
number of constraints (Rao and Kalyankar 2014). AWJM
process is a multi-input process which requires optimiza-
tion of multiple objectives. Therefore, it is observed that
number of researchers have used the advanced modeling
techniques such as response surface methodology (RSM),
Taguchi’s method, artificial neural networks (ANN), fuzzy
logic, etc. in order to formulate the process models and
advanced optimization algorithms to optimize the input pro-
cess parameters of AWJM processes. Such works carried out
by various researchers are summarized in Table 1.

It is observed that a number of nature-inspired population
based optimization algorithms such as GA, SA, ABC, PSO,
CS, COA, FF, BH, BBO, TLBO, etc. have been applied by
the researchers for optimizing the input process parameters
of AWJM process. However, the main limitation of these
nature-inspired population based optimization algorithms
is the need for setting of common control parameters like
population and number of generations. In addition to com-
mon control parameters, these nature-inspired optimization
algorithms require setting of their own algorithm-specific
parameters. For instance, the GA requires tuning of algo-
rithm specific parameters such as cross-over probability,
mutation probability, selection operator, etc. The PSO algo-
rithm requires tuning of algorithm-specific parameters such
as inertia weight, cognitive and social coefficients. The SA
algorithm requires tuning of initial temperature and cooling
rate. The ABC algorithm requires algorithm-specific param-
eters such as number of scout bees, number of onlooker
bees, number of employed bees, limit, etc. The CS algorithm
requires tuning of levy flight constant and selection probabil-
ity. The BBO algorithm requires tuning of algorithm-specific
parameters such as habitatmodification probability,mutation
probability, maximum species count, maximum migration
rates andmaximummutation rate. The FF algorithm requires
tuning of algorithm-specific parameters such as attractive-
ness at source, randomness coefficient and absorptivity
index.

The common control parameters and algorithm-specific
parameters for any algorithm are required to be selected
meticulously to achieve effective performance of the algo-
rithm, to avoid convergence at local optima and to minimize
the computational effort. In order to determine the best
combination of common control parameters and algorithm-
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Table 1 Summary of AWJM
process parameters optimization
review

S. No. Author/year Objective(s) Methodology

1 Jain et al. (2007) Material removal rate GA

2 Jegaraj and Babu (2007) Surface roughness Taguchi’s method, Neuro-fuzzy
approach

Kerf width

3 Srinivasu and Babu (2008) Depth of cut Neuro-genetic control strategy

4 Parikh and Lam (2009) Material removal rate ANN

Taper angle

5 Kok et al. (2011) Surface roughness Genetic expression programming

6 Zain et al. (2011a) Surface roughness ANN-SA

7 Zain et al. (2011b) Surface roughness SA-GA

8 Vundavilli et al. (2012) Depth of cut Fuzzy-GA

9 Pawar and Rao (2013) Material removal rate TLBO

10 Aydin et al. (2014) Kerf taper angle ANN

11 Liu et al. (2014) Depth of penetration RSM

Surface roughness

12 Yue et al. (2014) Material removal rate RSM

13 Yusup et al. (2014) Surface roughness ABC algorithm

14 Ergur and Oysal (2015) Cutting speed ANN

15 Mohamad et al. (2015) Surface roughness CS algorithm

16 Huang et al. (2015) Material removal rate TLBO algorithm, CS algorithm

17 Jagadish and Ray (2015) Surface roughness Fuzzy logic

20 Santhanakumar et al. (2015) Surface roughness RSM

Taper angle

21 Jagadish and Ray (2016) Surface roughness RSM

Process time

22 Mellal and Williams (2016) Surface roughness COA, Hoopoe heuristic

23 Santhanakumar et al. (2016) Surface roughness RSM, grey relational analysis

Striation zone

Striation angle

24 Shukla and Singh (2016a) Kerf top width Taguchi’s method, PSO algorithm,
FA, SA, CS, BH algorithm, BBO
algorithm and NSGA

Surface roughness

25 Shukla and Singh (2016a) Kerf FA

Surface roughness

specific parameters for any optimization algorithm the user is
required to perform a number of computational trials. There-
fore, there is a need to develop an advanced optimization
algorithm which is free from algorithm-specific parameters.

Recently, Rao (2016) has proposed a new metaheuris-
tic optimization algorithm which does not require tuning of
any algorithm-specific parameters for its working and it is
namedas Jaya algorithm. In order to implement the Jaya algo-
rithm the user is only required to tune the common control
parameters like population size and number of generations.
In addition to algorithm specific parameter-less control, other
distinctive features of Jaya algorithm are simplicity and ease
of implementation, as the solutions are updated using a single

equation. The effectiveness of Jaya algorithm was proved on
a number of constrained and unconstrained benchmark func-
tions and engineering optimization problems (Rao 2016; Rao
and Waghmare 2016).

The AWJM process is a multi-input process requiring
simultaneous optimization of the multiple responses. (Rao
2011; Rostami and Neri 2017). Therefore, there arises a
need to formulate the multi-objective optimization prob-
lems (MOOPs) and determine the Pareto-efficient set of
solutions. These MOOPs can be effectively solved using a
priori approach such as weighted sum, ε-constraint method,
achievement scalarizing function, etc. However, in a pri-
ori approach, in order to obtain a set of distinct solutions,
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it is required to run the algorithm independently for each
set of weights. Another approach to solve MOOPs is, a
posteriori approach, in such approach it is not required
to assign the weights to the objective functions prior to
the simulation run and multiple tradeoff (Pareto-efficient)
solutions for a MOOP is obtained in a single run of sim-
ulation. The decision maker can then select one solution
from the set of Pareto-efficient solutions based on the
requirement or order of importance of objectives. Keep-
ing in view of the advantages of the posteriori approach,
researchers have developed posteriori versions of well-
known optimization algorithms such as multi-objective dif-
ferential evolution (MODE), non-dominated sorting genetic
algorithm (NSGA), multi-objective particle swarm opti-
mization (MOPSO), etc. These posteriori multi-objective
optimization algorithms have been widely applied by the
researchers to solve the multi-objective optimization prob-
lems in thefield of engineering and science (Zhou et al. 2011).
Chandrasekaran et al. (2010) proposed a posteriori multi-
objective optimization algorithm based on clonal selection
for solving engineering optimization problems. Falco et al.
(2016) used multi-objective evolutionary algorithm for opti-
mizing personalized touristic itineraries. Yu et al. (2016)
proposed a prediction-based multi-objective evolutionary
algorithm (MOEA) with NSGA-II for oil purchasing and
distribution.

In this work a posteriori population based multi-objective
version of the Jaya algorithm is applied to solve the MOOP
of abrasive water-jet machining processes and is named
as “Multi-objective Jaya algorithm (MO-Jaya)” algorithm.
Similar to the Jaya algorithm, the MO-Jaya algorithm does
not require tuning of any algorithm-specific parameters
for its working. This averts the risk of algorithm get-
ting trapped into local optima or slow convergence rate
due to improper tuning of algorithm-specific parameters by
the user. Furthermore, in the MO-Jaya algorithm the solu-
tions are updated only in a single phase using a single
equation. Therefore, the MO-Jaya algorithm is simple in
implementation. TheMO-Jaya algorithm has already proved
its effectiveness in improving the performance of a number
of modern machining processes and has shown better perfor-
mance as compared to other optimization algorithms such
as GA, NSGA, NSGA-II, BBO, NSTLBO, PSO, SQP and
Monte Carlo simulations (Rao et al. 2017). Therefore, in the
present work the MO-Jaya algorithm is applied to solve the
input process parameters optimization problems of AWJM
process.

The Jaya and MO-Jaya algorithms are described in
“Optimization methodology” section. A computer code for
MO-Jaya algorithm is developed in MATLAB R2009a. A
computer system with a 2.93GHz processor and 4GB RAM
is used for execution of the program.

Optimization methodology

Jaya algorithm

The Jaya algorithm mimics the behavior exhibited by bio-
logical species to survive and succeed in their respective
habitats. There are a million of different species available in
our eco-system. However, a common behavior exhibited by
most of the species is to imitate the most successful member
in the group at the same move away from the unsuccessful
member of the group. Similarly, in the Jaya algorithm the
solutions in the current population are analogous to a group
of certain species. The most successful member in the group
is analogous to the best solution,while, themost unsuccessful
member in the group is analogous to the worst solution.

In the Jaya algorithm P initial solutions are randomly
generated obeying the upper and lower bounds of the pro-
cess variables. Thereafter, each variable of every solution is
stochastically updated using Eq. (1). The best solution is the
one with maximum fitness (i.e. best value of objective func-
tion) and the worst solution is the one with lowest fitness (i.e.
worst value of objective function).

Op+1,q,r = Op,q,r + αp,q,1(Op,q,best − abs(Op,q,r ))

−αp,q,2(Op,q,worst − abs(Op,q,r )) (1)

Here best and worst represent the index of the best and worst
solutions among the population. p, q, r are the index of iter-
ation, variable, and candidate solution. Op,q,r means the qth
variable of r th candidate solution in pth iteration. αp,q,1 and
αp,q,2 are numbers generated randomly in the range of [0, 1].
The random numbers αp,q,1 and αp,q,2 act as scaling factors
and ensure exploration. The absolute value of the variable
(instead of a signed value) also ensures exploration. Figure 1
shows the flowchart for Jaya algorithm.

An improtant feature of the Jaya algorithm which ensures
convergence is the selection procedure. Once every solution
is modified based on Eq. (1), the fittness of new solutions
(Op+1) is evaluated based on the objective function. There-
after, the fitness of every new solution is compared with
its respective parent solution (Op) and the new solution is
selected for the next iteration, if and only if its fitness is bet-
ter than the parent solution. If the fitness of the new solution
is better than the parent solution then the parent solution is
discared and replaced by the new solution. However, if the
fitness of the new solution is not better than the parent solu-
tion then it is discarded and the parent solution is kept as it
is and taken to the next iteration. This type of selection pro-
cedure ensures selection of only superior solutions in every
iteration of the Jaya algorithm. Therefore, in each iteration of
Jaya algorithm the solutions always move closer to the best
solution and thus convergence is achieved.
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Fig. 1 Flowchart for Jaya
algorithm

MO-Jaya algorithm

The MO-Jaya algorithm is a posteriori version of Jaya algo-
rithm for solving MOOPs. The solutions in the MO-Jaya
algorithm are updated in the similar manner as in the Jaya
algorithm based on Eq. (1). In the interest of handling prob-
lems in which more than one objective co-exist the MO-Jaya
algorithm is embedded with dominance ranking approach
and crowding distance evaluation approach (Deb et al. 2002;
Rao 2015).

In theMO-Jaya algorithm, the superiority among the solu-
tions is decided according to the non-dominance rank and
value of the density estimation parameter i.e. crowding dis-
tance (ξ ). The solution with highest rank (i.e. rank = 1) and
largest value of ξ is chosen as the best solution. On the other
hand the solution with the lowest rank and lowest value of ξ

is selected as the worst solution. Such a selection scheme is
adopted so that solution in less populous region of the objec-
tive space may guide the search process. Once the best and
worst solutions are selected, the solutions are updated based
on the Eq. (1).

After all the solutions are updated, the updated solutions
are combined with the initial population so that a set of 2P
solutions (where P is the size of initial population) is formed.
These solutions are again ranked and the ξ value for every
solution is computed. Based on the new ranking and ξ value
P good solutions are chosen. Theflowchart ofMO-Jaya algo-
rithm is given in Fig. 2.

In the case ofMO-Jaya algorithm, in each iteration, all the
initial solutions in the population are updated according to

Eq. (1) to obtain the new solutions. Thereafter, a combined
population is formed by combining initial solutions and the
new solutions. Now from the combined population, good
solutions are selected based on the non-dominance rank and
crowdingdistance value andonly the good solutions are taken
to the next iteration. Such a selection procedure prevents the
inferior solutions (i.e. lower rank solutions) from entering
into the next iteration. As the algorithm progresses, the num-
ber of non-dominated solutions in the population increases.
This ensures that, in every iteration of MO-Jaya algorithm,
the solutions always move towards the Pareto-optimal set in
every iteration. Finally, the algorithmconverges at the Pareto-
optimal set.

For every candidate solution theMO-Jaya algorithm eval-
uates the objective function only once in each iteration.
Therefore, the total no. of function evaluations required by
MO-Jaya algorithm = population size × no. of iterations.
However, when the algorithm is run more than once, then
the number of function evaluations is to be calculated as:
no. of function evaluations = no. of runs × population size
× number of iterations. The methodology used for ranking
of solutions, computing the crowding distance and crowding
comparison operator are described in the following subsec-
tions.

Ranking methodology

The approach used for ranking of solutions is based on the
non-dominance relation between solutions and is described

123



2106 J Intell Manuf (2019) 30:2101–2127

Fig. 2 Flowchart for MO-Jaya
algorithm

Constrained dominance sorting, non-dominance
sorting and crowding distance computation

Yes

Report non-dominated 
set of solutions

Is the termination 
criterion satisfied?

Initialize population size, number of variables and termination 
criterion

Constrained dominance sorting, non-dominance
sorting and crowding distance computation

Modify solution based on best and worst solutions

Select best and worst solutions based on non-
dominance rank and crowding distance assignment 

Combine modified solutions with the initial 

as follows. In an M objective optimization problem, P is the
set of solutions to be sorted and n = |P|.
Domination A solution x1 is said to dominate another solu-
tion x2 if and only if fi (x1) ≤ fi (x2) for all 1 ≤ i ≤ M and
fi (x1) < fi (x2) for at least one i,where i ∈ {1, . . .., M}
(when all objectives are to be minimized).
Non-domination A solution x∗ in P is non-dominated if
there does not exist any solution x j in P− which dominates
x*

Similarly, every solution in P is competeswith every other
solution and the not dominated solution are removed from
P and assigned rank one. The remaining solutions in P are
again sorted in the sameway and the not dominated solutions
are removed and assigned rank two. Unless all the solutions
in P receive a rank this procedure is continued. A group of
solutions with same rank is known as front (F)

Computing the crowding distance

The crowding distance (ξ j ) is an estimate of the density of
the solutions in the vicinity of a particular solution j . For a

particular front F , let l = |F | then for each member in F , ξ
is calculated as follows.

Step 1: Initialize ξ j = 0
Step 2: Sort all solutions in F the set in the worst order of

objective function value fm .
Step 3: In the sorted list of mth objective assign infinite

crowding distance to solutions at the extremes of the sorted
list (i.e. ξ1 = ξl = ∞), for j = 2 to (l − 1), calculate ξ j as
follows:

ξ j = ξ j + f j+1
m − f j−1

m

f max
m − f min

m
(2)

where, j represents a solution in the sorted list, fm is the
objective function value of mth objective of j th solution,
and are the highest and the lowest values of themth objective
function in the current population. Likewise, ξ is computed
for all the solutions in all Fs

In the case of MOOPs there exists more than one optimal
solution. Therefore, the aim is to find a set of Pareto-efficient
solutions. In MO-Jaya algorithm in order to avoid cluster-
ing of solutions about a single good (higher rank) solution,
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the good solutions in the isolated region of the search space
are identified based on the ξ value, and a solution with a
higher rank and higher ξ value is considered as the best solu-
tion in the next generation. Thus, the other solutions in the
population will be directed towards the good solution which
lies in the less populous (isolated) region of the search space
in the next generation. This will prevent the algorithm from
converging to single optimum solution and ensure diversity
among the solutions. For this purpose a solution from the
more isolated region of search space is given more prefer-
ence than the solution in the crowded region of the search
space. In the MO-Jaya algorithm, among the two competing
solutions i and j , primarily, the solution with a higher rank
is preferred. If the two solutions have equal rank then the
solution with a higher ξ value is preferred.

Improved preference ranking organization method for
enrichment evaluations

Selecting one solution out-of the multiple Pareto-optimal
solutions provided by the MO-Jaya algorithm, based on the
decision maker’s order of importance to the objectives, is a
multi-criteria decision making (MCDM) problem. The mul-
tiple Pareto-optimal solutions are treated as alternatives and
the objectives form the selection criteria. Rao and Patel
(2010) proposed a multi-criteria decision making method
named as improved preference ranking organization method
for enrichment evaluations (improved PROMETHEE) and
demonstrated its effectiveness in solving various decision
making problems in the manufacturing environment.

Now in this work the improved PROMETHEE method is
employed to select the best solution out-off the set ofmultiple
solutions provided by MO-Jaya algorithm for optimiza-
tion problems of modern machining processes. Like other
MCDM techniques, the improved PROMETHEE method
also employs pairwise comparison of the alternatives with
respect to a particular criterion. If a1 and a2 are the two
alternatives, then, the improved PROMETHEE method uses
a preference function (Pi ) to translate the difference between
the evaluations obtained by two alternatives (a1 and a2) in
terms of a particular criterion into a preference degree rang-
ing from 0 to 1 which is mathematically expressed by Eqs.
(3) and (4).

Pi,a1a2 = Gi [ci (a1) − ci (a2)] (3)

0 ≤ Pi,a1,a2 ≤ 1 (4)

where,Gi is a non-decreasing function of the observed devi-
ation (ci (a1) − ci (a2)) between two alternatives a1 and a2
over the criterion ci ; i represents a particular criterion. Fur-
ther, the multiple criteria preference index is evaluated as the
weighted average of preference functions Pi which is math-
ematically expressed by Eq. (5).

�a1a2 =
M∑

i=1

wi Pi,a1,a2 (5)

where, wi is the weights assigned by the decision maker to
each criterion and M is the total number of selection criteria.∏

a1a2 is the overall preference index of alternative a1 over
alternative a2. The next step is to evaluate the leaving flow,
entering flow and the net flow for a particular alternative a,
which belongs to the set of alternatives A, using the following
equations.

ϕ+(a) =
∑

x∈A

∏

xa

(6)

ϕ−(a) =
∑

x∈A

∏

xa

(7)

ϕ(a) = ϕ+(a) − φ−(a) (8)

where, ϕ+(a)is called the leaving flow, ϕ−(a) is called the
entering flow and ϕ(a) is called net flow. An alternative a1
out-ranks alternative a2 if ϕ(a1) > ϕ(a2). The improved
PROMETHEE method provides complete ranking of alter-
natives from best to worst using the net flows.

Performance measure

In order to compare the quality of Pareto-fronts obtained by
optimization algorithms the hypervolume metric is used in
this work. Hypervolume gives the volume (area in the case
of bi-objective optimization problems) of the search space
which is dominated by a Pareto-front obtained by a particular
algorithm with respect to a given reference point. Therefore
for a particular algorithm a higher value of hypervolume
is desirable which indicates the quality of the Pareto-front
obtained by the algorithm.

Mathematically, for a Pareto-front containing Q solutions,
for each solution i belongs to Q, a hypervolume vi is con-
structed with reference point W and the solution i as the
diagonal corners of the hypercube. Thereafter the union of
these hypercubes is found and its hypervolume is calculated
as follows.

HV = volume

⎛

⎝
|Q|⋃

i=1

vi

⎞

⎠ (9)

A superior Pareto-front is characterized by three important
criteria which are as follows: (1) quality of solutions i.e. solu-
tions in a Pareto-front should be superior in terms of objective
function values, (2) diversity among the solutions i.e. the
solutions in a Pareto-front must be uniformly distributed as
much as possible and (3) pertinence i.e. a Pareto-front must
contain as many number of solutions as possible so as to
give maximum possible choices to the decision maker. The
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hypervolume is one such performance indicator which com-
pares two sets of Pareto-optimal solutions on the basis of
the all three aforementioned performance criteria simulta-
neously (Zitzler and Thiele 1999; Rostami and Neri 2017).
Therefore, in the present work, the hypervolume indicator is
used for comparison of Pareto-fronts obtained by MO-Jaya
algorithm with the Pareto-fronts obtained by other optimiza-
tion algorithms.

Case studies

This section describes three optimization case studies of
AWJM process. Single objective and multi-objective opti-
mization problems are formulated based on the regression
models developed by previous researchers and the same are
solved using Jaya algorithm and multi-objective Jaya algo-
rithm, respectively, and the results are reported.

Case study 1

In the case of AWJM process, Kerf is an important perfor-
mance characteristic as it directly governs the geometry of
the cut produced by the abrasivewaterjet. For superior quality
of the machined components it is required to achieve a uni-
form cut within the prescribed geometrical tolerances. Thus,
the minimization of Kerf is desirable. On the other hand a
superior surface finish in the machined components is desir-
able in order to minimize the effect of wear and friction. For
this purpose minimization of mean surface roughness Ra in
machined components is desirable. Kechagias et al. (2012)
showed that Kerf andRa are mutually conflicting in nature
and are largely influenced by input process parameters such
as material thickness ‘A’ (mm), nozzle diameter ‘B’ (mm),
stand-off distance ‘C’ (mm), traverse speed ‘D’ (mm/min).
Kechagias et al. (2012) developed precise regression mod-
els based on actual experimental data in order to map the
relationship between the input process parameters with Kerf
and Ra. However, as Kerf and Ra govern the quality of the
machined components inAWJMprocess, besides developing
regression models, it is important to determine the combina-
tion of input process parameters that will provide a trade-off
between Kerf and Ra. For this purpose, in the present case
study, the regression models developed by Kechagias et al.
(2012) are used to formulate a multi-objective optimization
problem and the same is solved using MO-Jaya algorithm.

Objective functions

Minimize Kerf = 0.86068−0.068333 × A + 0.61131 × B

+ 0.0021518 × C−0.0020416 × D

− 0.3596 × A × B + 0.0030106

×B × C + 0.0019143

×B × D−1.0143E − 5 × C × D (10)

Minimize Ra = −11.106 + 10.211 × A + 15.169

×B + 0.0047057 × C + 0.011813 × D

− 10.331 × A × B + 0.01012 × B

×C−0.0074535

× B × D + 7.1924E − 6 × C × D (11)

Process parameters

0.9 ≤ A ≤ 1.25 (12)

0.95 ≤ B ≤ 1.5 (13)

20 ≤ C ≤ 96 (14)

200 ≤ D ≤ 600 (15)

The Kerf and Ra are mutually conflicting performance mea-
sures as the process parameter setting which may give a
minimum value of Kerf may increase Ra . The process
parameter settingwhichmay lead tominimum Ra may simul-
taneously increase Kerf. Therefore, it is necessary to achieve
a trade-off between Kerf and Ra in order to achieve the best
performance of the AWJM process. Therefore, in this work
MO-Jaya algorithm is applied to simultaneously optimize
Kerf and Ra and achieve multiple trade-off solutions.

In order to set the population size for MO-Jaya algo-
rithm, computational experiments are conducted by varying
the population size from 10 to 70 in a step size of 10. It is
observed that the population size of 50 and maximum num-
ber of iterations equal to 100 provided the best result for
MO-Jaya algorithm (i.e. maximum number of function eval-
uations = 50 × 100 = 5000). The Pareto-efficient set of
solutions obtained by MO-Jaya algorithm in a single simu-
lation run is reported in Table 2. Fifty optimal combinations
of input process parameters like material thickness, nozzle
diameter, stand-off distance and traverse speed are provided
in Table 2 along with the corresponding values of Kerf and
Ra.

Now, in order to show the effectiveness of MO-Jaya algo-
rithm, the results of MO-Jaya algorithm are compared with
the non-dominated sorting teaching–learning-based opti-
mization algorithm (NSTLBO) algorithm. The NSTLBO
algorithm is a posteriori version of TLBO algorithm. Similar,
to the MO-Jaya algorithm the NSTLBO algorithm does not
require tuning of any algorithm-specific parameters and pro-
vides a set of multiple Pareto-optimal at the end of every
simulation run. Furthermore, the NSTLBO algorithm has
been found successful in solving the multi-objective opti-
mization problems of machining processes such as turning
process, wire-electric-discharge machining process, focused
ion beam micro-milling process, micro wire-electric dis-
charge machining process and laser cutting process (Rao
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Table 2 Pareto-efficient
solutions obtained using
MO-Jaya algorithm for case
study 1

S. No. A (mm) B (mm) C (mm) D (mm/min) Kerf (mm) Ra (μm)

1 1.25 0.95 96 600 0.6921 8.4285

2 1.25 0.95 92.7855 600 0.6955 8.3686

3 1.25 0.95 87.8395 600 0.7008 8.2764

4 1.25 0.95 83.6259 600 0.7054 8.1979

5 1.25 0.95 71.2818 600 0.7186 7.9679

6 1.25 0.95 67.2073 600 0.723 7.892

7 1.25 0.95 62.2831 600 0.7283 7.8002

8 1.25 0.95 59.2725 600 0.7315 7.7441

9 1.25 0.95 56.6518 600 0.7343 7.6953

10 1.25 0.95 52.4845 600 0.7388 7.6176

11 1.25 0.95 46.6444 600 0.7451 7.5087

12 1.25 0.95 45.5529 600 0.7463 7.4884

13 1.25 0.95 37.8658 600 0.7545 7.3452

14 1.25 0.95 28.8233 600 0.7642 7.1767

15 1.25 0.95 24.5764 600 0.7688 7.0975

16 1.25 0.95 20 600 0.7737 7.0122

17 1.25 0.95 20 570.634 0.7862 6.8691

18 1.2499 0.95 20 555.663 0.7926 6.796

19 1.25 0.95 20.2853 546.765 0.7962 6.7579

20 1.2498 0.95 20 532.189 0.8027 6.6815

21 1.25 0.95 20 519.823 0.8078 6.6213

22 1.2499 0.95 20 502.323 0.8153 6.5359

23 1.25 0.95 20 498.555 0.8169 6.5176

24 1.25 0.95 20 482.706 0.8236 6.4403

25 1.2499 0.95 20.9497 475.656 0.8269 6.4227

26 1.2495 0.95 20 461.017 0.8331 6.3343

27 1.25 0.95 20 446.646 0.839 6.2645

28 1.25 0.95 20 420.606 0.8501 6.1375

29 1.25 0.95 20 410.757 0.8543 6.0895

30 1.2499 0.95 20 395.311 0.8609 6.0142

31 1.2499 0.95 20 391.606 0.8625 5.9961

32 1.25 0.95 20 376.661 0.8688 5.9232

33 1.25 0.95 20 366.559 0.8731 5.874

34 1.2499 0.95 20 343.304 0.8831 5.7606

35 1.2449 0.95 20 303.481 0.9021 5.5644

36 1.2499 0.95 20 286.065 0.9074 5.4815

37 1.25 0.95 20 262.191 0.9176 5.3651

38 1.25 0.95 20 246.143 0.9244 5.2868

39 1.2498 0.95 20 225.369 0.9333 5.1855

40 1.25 0.95 20 203.816 0.9424 5.0804

41 1.2197 0.95 20 200 0.9565 5.0498

42 1.1761 0.95 20 200 0.9743 5.0325

43 1.1571 0.95 20 200 0.9821 5.025

44 1.1294 0.95 20 200 0.9935 5.014

45 1.0803 0.95 20 200 1.0136 4.9945

46 1.0408 0.95 20 200 1.0298 4.9789

47 0.9931 0.95 20 200 1.0494 4.96
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Table 2 continued
S. No. A (mm) B (mm) C (mm) D (mm/min) Kerf (mm) Ra (μm)

48 0.9808 0.95 20 200 1.0544 4.9551

49 0.9456 0.95 20 200 1.0688 4.9411

50 0.9042 0.95 20 200 1.0858 4.9247

et al. 2016). The NSTLBO algorithm had provided better
results as compared to the other well-known optimization
algorithms such as GA, PSO, NSGA-II and iterative search
method (Rao et al. 2016). Therefore, considering the effec-
tiveness ofNSTLBOalgorithm in solving themulti-objective
optimization problems of machining processes, in this work
the NSTLBO algorithm is applied to solve the optimization
problems of AWJM process and the results are compared
with the results of MO-Jaya algorithm.

For the purpose of comparison, the sameproblem is solved
using NSTLBO algorithm with a population size of 50 and
maximum number of function evaluations equal to 5000.
The Pareto-fronts obtained by MO-Jaya and NSTLBO algo-
rithms are shown in Fig. 3. TheMO-Jaya algorithm achieved
a higher hypervolume as compared to NSTLBO algorithm
(HVMO-Jaya = 1.4235; HVNST LBO = 1.352). The MO-Jaya
and NSTLBO algorithms required 1800 and 2200 function
evaluations, respectively to converge at the Pareto-optimal
set of solutions. The CPU time required by MO-Jaya and
NSTLBO algorithms is 5.822 and 8.6183s, respectively to
perform 5000 function evaluations.

The MO-Jaya algorithm has provided 50 Pareto-optimal
solutions for the optimization problemconsidered in this case
study. The user is now required to choose one solution out-of
the 50 solutions provided by MO-Jaya algorithm based on
his order of preference to Kerf and Ra . This forms a deci-
sion making problem with 50 alternatives and two selection
criteria i.e. Kerf and Ra . Both the criteria are considered as
non-beneficial criteria. To demonstrate the applicability of
the improved PROMETHEE method, three different sets of
weights are considered and the best choice corresponding to
each of the considered set of weights provided by improved
PROMETHEE method is shown in Table 3. The steps of the
improved PROMETHEE method for evaluating the alterna-
tives are shown in the “AppendixA”. In Table 3, three optimal
combinations of input process parameters are providedwhich
correspond to different sets of weights; w1 and w2 represent
the weights assigned toKerf and Ra , respectively. By chang-
ing the values of weights three decisionmaking scenarios are
formed. Scenario 1 and scenario 2 are formed by assigning
high importance to Kerf and Ra , respectively. Scenario 3
is formed by assigning equal importance to both the crite-
ria. The choice of the best alternative provided by improved
PROMETHEE method out-of the 100 alternatives in each
of the decision making scenario is shown in Table 3. The

Fig. 3 Pareto-fronts obtained by MO-Jaya and NSTLBO algorithms
for case study 1

weights assigned to the criteria in this work are only for
the purpose of demonstration. However, the decision maker
may choose any set of weights based on his interests andmay
select the best alternative using the improved PROMETHEE
method.

Case study 2

In the case of AWJM process, depth of penetration ‘DOP’
and surface roughness ‘Ra’ are considered as important per-
formance parameters. This is mainly because DOP directly
corresponds to the material removal rate which governs the
machining time and efficiency. On the other hand, Ra of the
machined components governs the productionquality. There-
fore, maximization of depth of penetration and minimization
of surface roughness is desirable in order to achieve produc-
tion efficiency and product quality. However, Liu et al. (2014)
showed that depth of penetration and surface roughness are
mutually conflicting in nature and depend upon a number
of process parameters such as traverse speed ‘A’ (mm/s),
pressure ‘B’ (MPa), stand-off distance ‘C’ (mm), tilt angle
‘D’ (degree), surface speed ‘E’ (m/s) and abrasive flow rate
‘F’ (g/s). Liu et al. (2014) had developed precise regression
models for DOP(μm) and Ra(μm) considering the afore-
mentioned process parameters based on actual experimental
data. Now considering the importance of DOP and Ra and
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Table 3 The best choice
provided by PROMTHEE
method corresponding to
different set of weights for case
study 1

S. No. Weights assigned to the criteria Best choice provided by PROMTHEE method

Process parameters Criteria/responses

w1 w2 A B C D Kerf Ra

1 0.9 0.1 1.25 0.95 96 600 0.6921 8.4285

2 0.1 0.9 1.2197 0.95 20 200 0.9565 5.0498

3 0.5 0.5 1.25 0.95 20 203.816 0.9424 5.0804

their mutually conflicting nature, it is important to achieve a
trade-off between the two. Therefore, in the present work, a
multi-objective optimization problem is formulated based on
the regression models developed by Liu et al. (2014) and the
same is solved using MO-Jaya algorithm in order to obtaine
trade-off between DOP and Ra .

Objective functions

Maximize DOP = 671.17 − 1107.08A−1.03B−8.49D

+ 13.27F − 2.11AB − 35.74AC

− 42.93AF + 0.028BD + 0.89CF

+ 2666.77A2 (16)

Minimize Ra = 33.17 + 0.023E

+ 1.53F − 1.49AC−0.12AD−1.87AF

+ 0.00084BD − 0.0029BE−0.0051BF

+ 0.0086CD + 0.066CE

+ 0.061CF + 0.011DE

− 0.014DF−0.081EF + 8.23A2

− 0.00019B2 − 0.029C2 + 0.0027D2

+ 0.079F2 (17)

Process parameters

0.1 ≤ A ≤ 0.5 (18)

200 ≤ B ≤ 320 (19)

2 ≤ C ≤ 10 (20)

60 ≤ D ≤ 90 (21)

2 ≤ E ≤ 8 (22)

5 ≤ F ≤ 11.67 (23)

Desirability function approach was used by Liu et al.
(2014) in order to optimize DOP and Ra simultaneously
and two trade-off solutions were provided. In the present
work the MO-Jaya algorithm is applied for simultaneous
optimization of DOP and Ra . In order to see whether any
improvement in the results is obtained, the solutions obtained
byLiu et al. (2014) usingdesirability approach are considered
as it is and the same are comparedwith the solutions obtained

usingMO-Jaya algorithm. In order to select a population size
for MO-Jaya algorithm computational experiments are con-
ducted by varying the population size from 20 to 70 with a
step size of 10. A population size of 50, a maximum number
of iterations equal to 100 (i.e. maximum number of function
evaluations equal to 50,000)is chosen for MO-Jaya algo-
rithm. The Pareto-efficient set of solutions obtained using
MO-Jaya algorithm in a single simulation run is shown in
Table 4.

For the purpose of comparison the same problem is
solved by NSTLBO algorithm. The Pareto-fronts obtained
by MO-Jaya and NSTLBO algorithms are shown in Fig. 4
and the quality of the Pareto-fronts is judged based on the
hypervolumemetric. Although, the Pareto-fronts obtained by
MO-Jaya and NSTLBO algorithms overlap each other The
MO-Jaya algorithm obtained a higher value of hypervolume
(HVMO-Jaya = 15, 335) as compared to NSTLBO algorithm
(HVNSTLBO = 15,100). MO-Jaya and NSTLBO algorithms
required 1250 and 1500 function evaluations, respectively, to
converge at thePareto-efficient set of solutions. TheMO-Jaya
and NSTLBO algorithms required a CPU time of 9.305 and
10.789s, respectively, to perform 5000 function evaluation.

Table 5 gives optimum process parameter combination
suggested by desirability approach and its comparison with
the results of MO-Jaya algorithm. It is observed that the
results of MO-Jaya algorithm are better than the results
obtained using desirability approach in terms of DOP and
Ra .

The MO-Jaya algorithm has provided 50 Pareto-optimal
solutions for the multi-objective optimization problem con-
sidered in this case study. The decisionmaker is now required
to choose one out-of the 50 alternative solutions with DOP
and Ra as selection criteria. This forms a decision making
problem with two criteria and 50 alternatives where DOP
is the beneficial criteria and Ra as non-beneficial criteria.
To demonstrate the applicability of improved PROMETHEE
method, three different set of weights are considered. The
steps in the improved PROMETHEE method are similar
to those discussed in “Optimization methodology” section.
The best choice corresponding to each of the considered set
of weights provided by improved PROMETHEE method is
shown in Table 6.
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Table 4 Pareto-efficient
solutions obtained using
MO-Jaya algorithm for case
study 2

S. No. A (mm/s) B (MPa) C (mm) D (◦) E(m/s) F (g/s) DOP (μm) Ra(μm)

1 0.5 320 2 60 7.9998 11.6667 34.7405 19.2594

2 0.5 319.977 2 60 7.9768 11.3381 36.8575 19.479

3 0.5 319.954 2 60 7.9821 10.2838 43.6302 20.2079

4 0.5 319.877 2 60 7.9859 8.5269 54.9327 21.8237

5 0.5 319.929 2 60 7.9773 7.7453 59.9251 22.6951

6 0.3175 320 2 60 7.9974 11.6486 66.5803 23.8781

7 0.3021 319.893 2 60 7.9464 11.6608 77.4081 24.3598

8 0.2909 320 2 60 8 11.67 86.1082 24.5893

9 0.286 320 2 60 7.9963 11.6404 90.0126 24.731

10 0.2582 319.936 2 60 7.9937 11.67 115.171 25.503

11 0.2513 320 2 60.0095 7.9966 11.648 121.982 25.6894

12 0.2445 320 2 60 7.9895 11.67 129.094 25.8799

13 0.2188 320 2 60 8 11.67 157.873 26.5937

14 0.2172 320 2 60 8 11.6697 159.756 26.6386

15 0.2051 320 2 60 8 11.67 174.669 26.9848

16 0.1993 320 2 60 8 11.6698 181.977 27.149

17 0.185 319.871 2 60 7.9673 11.67 201.058 27.6179

18 0.1704 319.798 2 60 7.9691 11.5537 220.579 28.0439

19 0.164 320 2 60 8 11.67 230.94 28.174

20 0.1537 320 2 60 8 11.67 246.487 28.4771

21 0.1477 320 2 60 7.9999 11.6694 255.85 28.6554

22 0.143 320 2 60.0249 8 11.67 263.182 28.8055

23 0.1358 320 2 60 7.9998 11.67 274.859 29.0083

24 0.129 319.888 2 60.3551 8 11.5482 285.044 29.3982

25 0.1203 319.737 2 60 7.9945 11.3572 297.6 29.4782

26 0.1124 319.906 2 60 8 11.67 314.298 29.7213

27 0.1029 320 2 60 7.9857 11.018 324.377 29.9233

28 0.1 319.718 2 60 7.9999 11.6699 336.471 30.1268

29 0.1 320 2.4625 60 7.9987 11.67 339.747 30.768

30 0.1 320 3.1277 60 8 11.67 344.278 31.7277

31 0.1 320 3.7105 60 8 11.67 348.248 32.5487

32 0.1 320 4.4709 60 8 11.6698 353.426 33.5901

33 0.1 320 5.2604 60 8 11.67 358.807 34.6359

34 0.1 320 6.2743 60 8 11.6676 365.679 35.9249

35 0.1 320 7.1021 60 7.9985 11.6685 371.33 36.9354

36 0.1 320 8.2773 60.933 8 11.67 379.798 38.8396

37 0.1 320 10 60 8 11.6471 390.686 40.1389

38 0.1 320 10 62.5995 8 11.67 392.316 41.71

39 0.1 320 10 64.9763 8 11.6509 393.091 43.1527

40 0.1 320 10 67.8263 8 11.67 394.773 44.9483

41 0.1 320 10 71.5128 8 11.67 396.505 47.3211

42 0.1 320 10 72.3868 8 11.67 396.916 47.8944

43 0.1 320 10 74.7276 8 11.67 398.016 49.4502

44 0.1 320 10 76.7611 8 11.6689 398.953 50.8252

45 0.1 320 10 76.9298 8 11.6699 399.049 50.9408

46 0.1 320 10 82.3488 8 11.67 401.598 54.7204

47 0.1 320 10 83.5923 8 11.67 402.183 55.6101
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Table 4 continued
S. No. A (mm/s) B (MPa) C (mm) D (◦) E(m/s) F (g/s) DOP (μm) Ra(μm)

48 0.1 320 10 85.4051 8 11.67 403.035 56.922

49 0.1 320 10 88.2527 8 11.6697 404.367 59.0187

50 0.1 320 10 90 8 11.67 405.194 60.3269

Fig. 4 Pareto-fronts obtained by MO-Jaya and NSTLBO algorithms
for case study 2

Case study 3

In the case of AWJM process, in order to improve the qual-
ity of the machined components it is important to achieve
a uniform cut within the prescribed geometrical tolerances.

The geometry of the cut is mostly governed by Kerf top
width ‘Ktw’ and taper angle. Thus, in order to achieve a
uniform cut it is important to maximize the Ktw and mini-
mize the taper angle. Shukla and Singh (2016a) studied the
influence of input process parameters such as traverse speed
‘x1’ (mm/min), stand-off distance ‘x2’ (mm), and mass flow
rate ‘x3’ (gm/sec) on Ktw and taper angle and developed
regression models. Shukla and Singh (2016a) used these
regression models to formulate an optimization problem.
Shukla and Singh (2016a) optimized Ktw and taper angle
separately using PSO, SA, FA, BH, CSA and BBO algo-
rithms. Furthermore, Shukla and Singh (2016a) optimized
Ktw and taper angle, simultaneously, using NSGA algo-
rithm. Now in order to see whether any further improvement
in the results can be achieved this case study is consid-
ered in the present work. The same optimization problem
is solved using Jaya and MO-Jaya algorithms and the results
are compared with the results reported by Shukla and Singh
(2016a).

Objective functions

Maximize Ktw = 12.7538 − 0.0974x1 + 0.0913x2

− 1.0424x3+0.0002x21−0.0289x22

Table 5 Comparison of results obtained by desirability approach and MO-Jaya algorithm for case study 2

S. No. Technique A B C D E F DOP Ra

1. Desirability approach (Liu et al. 2014) 0.1 317.75 9.78 72.96 4.63 11.15 384.69 49.298

MO-Jaya 0.1 320 10 72.3868 8 11.67 396.916 47.8944

% Improvement obtained by MO-Jaya algorithm 3.17% 2.84%

2. Desirability approach (Liu et al. 2014) 0.1 320 3.36 82.18 7.59 11.67 356.2852 45.5338

MO-Jaya 0.1 320 10 67.8263 8 11.67 394.773 44.9483

% Improvement obtained by MO-Jaya algorithm 10.80% 1.28%

The values in bold indicate better performance of the algorithm

Table 6 The best choice provided by PROMTHEE method corresponding to different set of weights for case study 2

S. No. Weights assigned to the criteria Best choice provided by PROMTHEE method

Process parameters Criteria/responses

w1 w2 A B C D E F DOP Ra

1 0.9 0.1 0.1 320 10 60 8 11.6471 390.686 40.1389

2 0.1 0.9 0.5 320 2 60 7.9998 11.6667 34.7405 19.2594

3 0.5 0.5 0.1 319.718 2 60 7.9999 11.6699 336.471 30.1268
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Table 7 Results of single objective optimization for case study 3

Optimization method Performance parameter Optimum value Traverse speed Standoff distance Mass flow rate No. of iterations

PSO Ktw 2.8840 162.1396 4.9354 3.4964 20

Taper angle 1.0916 185.7086 1.0044 2.2047 220

FA Ktw 2.9127 160.4309 5 3.5 180

Taper angle 1.0672 197.382 1.0002 2.2509 370

SA Ktw 2.9136 160.3618 5 3.5 680

Taper angle 1.0720 193.1769 1.017576 2.1858 270

CSA Ktw 2.9184 160.0015 5 3.4990 5

Taper angle 1.0692 193.8616 1.0178 2.2549 760

BH Ktw 2.8698 160.8471 4.6944 3.4480 150

Taper angle 1.0794 193.8199 1.0311 2.2647 620

BBO Ktw 2.9187 160.0017 5 3.5 10

Taper angle 1.0621 194.7495 1.0066 2.2479 15

Jaya Ktw 2.9187 160 5 3.5 2

Taper angle 1.0539 192.679 1 2.2957 6

The values in bold indicate better performance of the algorithm. The results of PSO, FA, SA, CSA, BH and BBO are obtained from Shukla and
Singh (2016a)

+ 0.12011x23 + 0.0016x1x2

+ 0.0032x1x3 (24)

Minimize taperangle = 26.0879 − 0.2401x1 + 0.5024x2

− 2.2168x3+0.0006x21−0.0884x22
0.3657x23 + 0.0024x1x2

+ 0.0028x1x3 (25)

Process parameter bounds

160 ≤ x1 ≤ 200 (26)

1 ≤ x2 ≤ 5 (27)

1.5 ≤ x3 ≤ 3.5 (28)

Shukla and Singh (2016a) optimized Ktw and taper angle
individually using PSO, SA, FA, BH, CSA and BBO algo-
rithms. Now Jaya algorithm is applied to individually opti-
mize Ktw and taper angle. For this purpose a population size
of 25, maximum number of iterations equal to 20 (i.e. max-
imum number of function evaluations equal to 500) and the
number of independent runs equal to 10 are selected for Jaya
algorithm. Shukla and Singh (2016a) did not provide the size
of initial population used for PSO, FA, BH, CSA and BBO
algorithms, therefore, themaximumnumber of function eval-
uations required by these algorithms cannot be determined.

The results of Jaya algorithmare comparedwith the results
of algorithms such as PSO, FA, BH, CSA and BBO (Shukla
and Singh 2016a) and are reported in Table 7.The optimal
combination of input process parameters such as traverse
speed, stand-off distance and mass flow rate obtained by
different algorithms are shown in Table 7 along with the cor-

responding optimum values ofKtw and taper angle. It can be
observed that the Jaya algorithm could achieve the best value
of Ktw in only 2 iterations which is much better as compared
to the number of iterations required by PSO, SA, FA, BH,
CSA and BBO algorithms.

The Jaya algorithm could achieve a value of taper angle
which is better than the best value of taper angle obtained
by Shukla and Singh (2016a). The Jaya algorithm required
only 6 iterations to obtain the minimum value of taper angle
which is much better as compared to the number of iterations
required by PSO, SA, FA, BH, CSA and BBO algorithms
(refer Table 7). Furthermore, the Jaya algorithmwas executed
10 times independently and the mean, standard deviation
(SD) and CPU time required by Jaya algorithm for 10 inde-
pendent runs is recorded and the same is compared with
mean, SD and CPU time required by BBO algorithm in
Table 8. It is observed that the Jaya algorithm achieved the
same value of Ktw and taper angle for all 10 independent
runs. Therefore, Jaya algorithm has shown more consistency
and robustness and required less CPU time as compared to
BBO algorithm. Figures 5 and 6 give the convergence graph
of Jaya algorithm for Ktw and taper angle, respectively.

In order to achieve multiple trade-off solutions for Ktw
and taper angle in AWJM process Shukla and Singh (2016a)
used NSGA considering a population size of 50 and max-
imum number of iterations as 1000 (i.e. maximum number
of function evaluations as 50,000). The algorithm specific
parameters required by NSGA were chosen by Shukla and
Singh (2016a) as follows: sharing fitness 1.2, dummy fitness
50. However, the values of crossover and mutation param-
eters required by NSGA were not reported by Shukla and
Singh (2016a). Now, the same problem is solved using MO-
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Table 8 Mean, standard deviation and CPU time required by BBO and
Jaya algorithms for case study 3

Ktw Taper angle

BBO Jaya BBO Jaya

Mean 2.9135 2.9187 1.1019 1.0539

SD 0.0045 0 0.0035 0

CPU time 0.5112 0.417 1.1220 0.4166

The values in bold indicate better performance of the algorithm. The
results of BBO are obtained from Shukla and Singh (2016a)

Fig. 5 Convergence graph of Jaya algorithm for maximization of Ktw
(case study 3)

Jaya algorithm andNSTLBOalgorithm (Rao et al. 2016). For
fair comparison of results the maximum number of function
evaluations for MO-Jaya and NSTLBO algorithms are main-
tained same as that of NSGA. For this purpose a population
size of 100 and maximum number of iterations equal to 500
and 250 are chosen for MO-Jaya and NSTLBO algorithms,
respectively. The Pareto-efficient set of solutions obtained
by MO-Jayaalgorithm in a single simulation runis reported
in Table 9. In Table 9, optimal combinations of input pro-
cess parameters such as traverse speed, stand-off distance
and mass flow rate are provided, each solutions corresponds
to a trade-off between Ktw and taper angle. Figure 7 shows
the Pareto-front obtained by NSGA,MO-Jaya and NSTLBO
algorithms. In order to judge the quality of the Pareto-front
obtained by the three algorithms the hypervolume (HV) met-
ric is used (Zitzler and Thiele 1999). The value of HVmetric
achieved by MO-Jaya algorithm is higher than the NSTLBO
andNSGA (HVMO-Jaya = 2.6028;HVNSTLBO = 2.5995 and
HVNSGA = 2.5516).

NSGA used 50,000 function evaluations to converge at
the Pareto-efficient set of solutions. Only for fair comparison
of results the maximum number of function evaluations for
MO-Jaya andNSTLBOalgorithms aremaintained as 50,000.
However, the MO-Jaya and NSTLBO algorithms required
700 and 1600 function evaluations, respectively to con-

Fig. 6 Convergence graph of Jaya algorithm for minimization of taper
angle (case study 3)

verge at the Pareto-efficient set of solutions. The CPU time
required by MO-Jaya and NSTLBO algorithms to perform
50,000 function evaluations is 77.086 and 80.67 s, respec-
tively.However, theCPU time requiredNSGA is not reported
by Shukla and Singh (2016a).

The MO-Jaya algorithm has provided 100 Pareto-optimal
solutions for the multi-objective optimization problem of
AWJM process. The decision maker is now required to
choose one out-of the 100 alternative solutions with Ktwand
taper angle as selection criteria. This forms a decision
making problem with two criteria and 100 alternatives
considering Ktw and beneficial criteria and taper angleas
non-beneficial criteria. To demonstrate the applicability
of improved PROMETHEE method, three different set
of weights are considered. The steps in the improved
PROMETHEE method are similar to those discussed in
“Optimization methodology” section. The best choice cor-
responding to each of the considered set of weights provided
by improved PROMETHEE method is shown in Table 10.

Results and discussion

In the first case study, the results provided by MO-Jaya
algorithm are justifiable and analogous with the working of
AWJMprocess. In theAWJMprocess, at constant pressure as
the nozzle diameter increases the kinetic energy of the abra-
sive particles decreases. Therefore, the surface roughness and
Kerf increases with the increase in nozzle diameter. There-
fore in order to obtain a lower value of surface roughness
and Kerf the MO-Jaya algorithm has maintained the nozzle
diameter to its lower bound value in order to ensure that the
abrasive particles are discharged with a higher kinetic energy
from the nozzle.
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Table 9 Pareto-efficient
solutions obtained using
MO-Jaya algorithm for case
study 3

S. No. x1 x2 x3 Taper angle (◦) Ktw (mm)

1 192.8341 1 2.2969 1.054 1.4364

2 190.3569 1 2.3256 1.0575 1.4692

3 189.0174 1 2.3893 1.0646 1.4941

4 184.8933 1 2.4494 1.0963 1.5571

5 183.2294 1 2.4553 1.1135 1.5817

6 181.7402 1 2.3581 1.126 1.5926

7 183.1224 1 2.6216 1.14 1.6088

8 179.2901 1 2.3349 1.1615 1.6297

9 178.3591 1 2.4828 1.1835 1.6612

10 177.8894 1 2.536 1.1976 1.6759

11 176.6961 1 2.5357 1.2189 1.6958

12 177.2182 1 2.6921 1.2393 1.7109

13 175.1161 1 2.5117 1.2469 1.7202

14 175.9205 1 2.7512 1.2787 1.7427

15 174.0249 1 2.6695 1.2961 1.7614

16 171.902 1 2.5579 1.3245 1.7846

17 170.3026 1 2.3523 1.3534 1.7963

18 173.3885 1 2.8888 1.376 1.8122

19 169.3082 1 2.5461 1.39 1.8335

20 170.1231 1 2.7713 1.4141 1.8491

21 167.8296 1 2.5368 1.4308 1.8625

22 168.6643 1 2.7213 1.4397 1.8692

23 167.3267 1 2.6468 1.4618 1.8856

24 165.781 1 2.4384 1.4866 1.897

25 165.6612 1 2.548 1.4981 1.9091

26 164.5781 1 2.4693 1.527 1.9256

27 164.9521 1 2.6523 1.5363 1.9358

28 163.6484 1 2.5488 1.5646 1.953

29 161.9246 1 2.4196 1.6184 1.9825

30 163.1274 1 2.7874 1.6282 1.9934

31 160.903 1 2.5471 1.6628 2.0153

32 160 1 2.4136 1.6911 2.0277

33 160 1 2.7105 1.7223 2.053

34 160 1 2.8204 1.7502 2.0677

35 160.3105 1.1206 2.6007 1.7757 2.0684

36 160.0922 1 3.001 1.8118 2.0961

37 160 1 3.0497 1.8369 2.1077

38 160 1 3.111 1.8665 2.1206

39 160 1 3.153 1.8884 2.1299

40 160.4974 1 3.2392 1.9194 2.1398

41 160.2468 1 3.2538 1.9373 2.1487

42 160 1.1717 3.0692 1.9652 2.1606

43 160 1 3.3132 1.9839 2.1694

44 160.9715 1.2477 3.1271 2.0104 2.1735

45 160.3978 1 3.4275 2.0493 2.193

46 160 1 3.4407 2.0733 2.2052

47 160.1419 1.2956 3.1936 2.1078 2.2194

48 160 1.441 3.0533 2.1343 2.2305
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Table 9 continued
S. No. x1 x2 x3 Taper angle (◦) Ktw (mm)

49 160 1.1261 3.428 2.1519 2.2375

50 160 1.2261 3.3659 2.1754 2.2477

51 160 1.5655 3.0326 2.202 2.2588

52 160 1.4557 3.2306 2.2374 2.2742

53 160 1.4891 3.2233 2.2539 2.2811

54 160 1.2508 3.5 2.2913 2.2939

55 160 1.6316 3.2604 2.3633 2.327

56 160 1.7969 3.1443 2.3931 2.3403

57 160 1.9638 3.0159 2.4234 2.3532

58 160 1.5122 3.5 2.4592 2.3638

59 160 1.8912 3.2031 2.4785 2.3766

60 160 1.8239 3.2803 2.4874 2.3796

61 160 1.6459 3.4822 2.5264 2.3926

62 160 2.117 3.1381 2.5628 2.4139

63 160 2.2039 3.1078 2.591 2.4265

64 160 1.7834 3.5 2.6206 2.4322

65 160 2.0761 3.3131 2.6451 2.4474

66 160 2.6073 2.8463 2.6702 2.4622

67 160 2.7077 2.7865 2.6946 2.4729

68 160 2.5349 3.0574 2.7214 2.4856

69 160 2.2855 3.3213 2.7553 2.4959

70 160 2.9505 2.7807 2.7868 2.5168

71 160 3.0759 2.672 2.8067 2.5249

72 160 2.1918 3.5 2.839 2.5271

73 173.4034 5 2.6611 2.8604 2.5525

74 160 3.3135 2.6889 2.8864 2.5655

75 160 2.5849 3.3567 2.9157 2.5674

76 160 3.2944 2.8314 2.9162 2.5814

77 169.481 5 2.6634 2.9194 2.6011

78 167.0056 5 2.4094 2.9389 2.609

79 168.88 5 2.763 2.954 2.624

80 166.0315 5 2.667 2.9868 2.6491

81 163.9872 5 2.4796 3.0097 2.6606

82 165.0937 5 2.7381 3.0232 2.6724

83 163.3434 5 2.6442 3.0445 2.6867

84 162.0704 5 2.4139 3.0569 2.6876

85 163.0084 5 2.787 3.0851 2.7107

86 160 5 2.4514 3.1155 2.7254

87 160 5 2.7439 3.1538 2.7527

88 160.4855 5 2.8104 3.1577 2.7539

89 160 4.9389 2.9001 3.1995 2.7721

90 160 4.9319 2.9085 3.2024 2.7731

91 160 5 3.0448 3.2586 2.8024

92 161.5897 5 3.1958 3.2944 2.8118

93 160 5 3.1407 3.3059 2.8227

94 160 5 3.1851 3.3301 2.8329

95 162.227 4.8823 3.3429 3.369 2.8335

96 160 5 3.2683 3.3792 2.8533
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Table 9 continued
S. No. x1 x2 x3 Taper angle (◦) Ktw (mm)

97 160 4.9694 3.2964 3.3969 2.8587

98 160 5 3.3313 3.4198 2.8698

99 160 5 3.3725 3.448 2.8811

100 160 5 3.4936 3.5378 2.9168

Fig. 7 Pareto-fronts obtained by NSGA (Shukla and Singh 2016a),
MO-Jaya and NSTLBO for case study 3

As the traverse speed increase the faster passingofwaterjet
results in less number of abrasive particles impinging on the
workpiece surface, resulting into formation of a narrow slot
which reduces theKerf. However, at low traverse speed more
number of abrasive particles are available for eroding the
material from the workpiece which results in a lower surface
roughness. Accordingly, theMO-Jaya algorithm has selected
the lower bound value of traverse speed (i.e. 200mm/min)
to achieve a minimum value of Kerf (i.e. 0.691mm) and the
MO-Jaya algorithm has selected the upper bound value of
traverse speed (i.e. 600mm/min) to achieve minimum value
of surface roughness (i.e. 4.9247 μm). In order to obtain the
intermediate trade-off solutions the MO-Jaya algorithm has
appropriately selected the values of traverse speed within the
working range.

Shukla and Singh (2016b) developed their own regression
models for Kerf and Ra using the experimental of Kechagias
et al. (2012). However, the regression model developed by

Shukla and Singh (2016b) for Kerf provides negative value
ofKerf for the certain combination of process parameters the
values which lie on their respective bounds which is prac-
tically incorrect. In the case of Ra the regression model
developed by Shukla and Singh (2016b) is solved using
Jaya algorithm. The Jaya algorithm minimum value of Ra

obtained by Jaya algorithm is 4.431729μm which is lower
than the value of Ra obtained by Shukla and Singh (2016b)
which is 4.443μm. Furthermore, Shukla and Singh (2016b)
did not report the number of iterations and computational
time required by firefly (FA) algorithm to achieve the mini-
mum value of Ra . However, Jaya algorithm required only 6
iterations with a population size of 25 and maximum number
of iterations equal to 20 and a computational time of 0.052s
was required by Jaya algorithm to obtain the minimum value
of Ra (i.e. for x1 = 0.9000mm; x2 = 0.9500mm; x3 =
20mm; x4 = 200mm/min,; Ra− = 4.431729μm) using
regression model developed by Shukla and Singh (2016b).

In the second case study, the results ofMO-Jaya algorithm
show that, DOP increases as the traverse speed decreases.
This is mainly because at higher value of traverse speed the
abrasive particles that impinge on a target area are very less
which tend to reduce the DOP. Therefore to achieve maxi-
mumvalue ofDOP (i.e. 405.194μm) theMO-Jaya algorithm
has maintained the traverse speed to its lower bound (i.e.
0.1mm/s).According to Bernoulli’s principle as the waterjet
pressure increases the energy also increase which results in
higher DOP. Therefore to achieve the higher value of DOP
the MO-Jaya algorithm as maintained the waterjet pressure
to its upper bound value (i.e. 320 MPa). At lower value of
stand-off distance the particle interference increases which
reduces the energy and velocity of the particles impinging on
the workpiece surface. Therefore, in order to achieve a high
DOP the MO-Jaya algorithm has maintained the stand-off
distance to its upper bound value (i.e. 10mm).

Table 10 The best choice
provided by PROMTHEE
method corresponding to
different set of weights for case
study 3

S. No. Weights assigned to the criteria Best choice provided by PROMTHEE method

Process parameters Criteria/responses

w1 w2 x1 x2 x3 Ktw Taper angle

1 0.9 0.1 192.8341 1 2.2969 1.054 1.4364

2 0.1 0.9 160 5 3.4936 3.5378 2.9168

3 0.5 0.5 160 1 2.7105 1.7223 2.053
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As the abrasive flow rate increases the number of abra-
sive particles available for material removal also increases.
Therefore to achieve a higher DOP the MO-Jaya algorithm
has maintained the abrasive flow rate mostly close to the
upper bound. Although, the effect of surface speed and tilt
angle seems to be negligible on DOP. However, tilt angle
and waterjet pressure have a synergistic effect on DOP. It is
observed from the results of MO-Jaya algorithm that maxi-
mumDOP is achieved at higher tilt angle andhigher pressure.

At higher peripheral speed the workpiece chips are
cleaned effectively. This reduces the damage caused to the
workpiece surface due to formation of chips. Therefore,
to achieve minimum surface roughness the MO-Jaya algo-
rithm has maintained a higher value of peripheral speed
(i.e. 7.99m/s). As the pressure increases the jet diameter
increases, and the overlapping of larger effective jet pro-
duces smoother surface. As waterjet pressure is beneficial
for a DOP as well as Ra the Mo-Jaya algorithm has main-
tained waterjet pressure to its upper bound value (i.e. 320
MPa). The traverse speed and abrasive flow rate have a
synergistic effect on Ra . The results of MO-Jaya algo-
rithm show that minimum value of Ra is achieved at higher
value of traverse speed and higher abrasive flow rate (refer
Table 4).

In the third case study, the results provided by MO-Jaya
algorithm are logical and analogous with the working of
AWJM process. In the AWJM process, as the stand-off dis-
tance increases the divergence of jet before impingement
on the work-piece also increases due to the external drag
from the surrounding environment. Therefore, the kinetic
energy of the abrasive particles at the periphery of the jet
is less as compared to abrasive particles at the centerline of
the jet. Therefore, the material removal at the centerline is
higher as compared to the material removal at the periph-
ery. Thus, the kerf top width and taper angle increases with
increase in stand-off distance. Accordingly, the results of
MO-Jaya algorithm in Table 9 show that as the taper angle
and Ktw increases stand-off distance increases from 1 to
5mm.

At a constant nozzle diameter, as the mass flow rate
increases thekinetic energyof the abrasiveparticles increases.
This reduces flaring of abrasive waterjet and a jet of uniform
diameter is produced. High kinetic energy results in a nar-
row slot of uniform width. Therefore, as the mass flow rate
increases the kerf top width and taper angle decrease. How-
ever, as the mass flow rate increases beyond a certain critical
value kerf topwidth and taper angle increasewith the increase
in mass flow rate. Therefore, in order to achieve a trade-off
between kerf top width and taper angle the MO-Jaya algo-
rithm has appropriately varied the mass flow rate within the
given range.

In the AWJM process as the traverse speed increases the
faster passing of waterjet allows less number of abrasive par-

ticles to strike on the target material generating a narrow
slot which reduces the kerf top width and taper angle. As
the traverse speed decreases the number of abrasive particles
striking the target material also increases. This increases the
erosion of theworkpiecematerial at thewalls of the slot espe-
cially near the top surface which increases the Ktw and taper
angle. The results ofMO-Jaya algorithm (refer Table 9) show
that minimum value of taper angle is achieved for the value
of traverse speed close to the upper bound and a maximum
value of kerf top width is achieved for the value of traverse
speed close to the lower bound.

The maximum value of Ktw achieved by NSGA is
2.8768mm. However, the maximum value of Ktw achieved
by MO-Jaya algorithm is 2.9168mm which is 1.39% higher
than NSGA. The minimum value of taper angle achieved by
NSGA is 1.0884. Theminimumvalue of taper angle achieved
by MO-Jaya algorithm is 1.054 which is 3.16% lower than
NSGA.

Conclusions

The single-objective andmulti-objective optimization aspects
of abrasive waterjet machining process are considered in this
work. Three optimization case studies are formulated based
on the regression models developed by previous researchers.
The performance measures such as depth of cut, surface
roughness, kerf geometry and taper angle are optimized using
Jaya and MO-Jaya algorithms.

The Jaya algorithm andMO-Jaya algorithmhave provided
better results as compared to other optimization algorithms
such as SA, PSO, FA, CSA, BH, BBO, NSGA and NSTLBO
algorithms. In the case of multi-objective optimization prob-
lems the Pareto-fronts provided by MO-Jaya algorithm are
compared with the Pareto-fronts provided by NSGA and
NSTLBO algorithms. The MO-Jaya algorithm achieved a
higher value of hypervolume metric as compared to NSGA
and NSTLBO algorithms. Thus the quality of Pareto-fronts
provided by MO-Jaya algorithm is better than that of NSGA
and NSTLBO algorithms for the optimization problems con-
sidered in this work.

In case study 1, the MO-Jaya algorithm obtained better
results as compared to the NSTLBO algorithm requiring less
CPU time for its execution. In case study 2, the MO-Jaya
algorithm obtained better solutions as compared to NSTLBO
algorithm and desirability function approach. The CPU time
required by the MO-Jaya algorithm is less as compared to
NSTLBO algorithm. In case study 3, the Jaya algorithm
obtained better results as compared to BBO algorithm and
the CPU time required by the Jaya algorithm is lower than
that of BBO algorithm. The MO-Jaya algorithm obtained a
better Pareto-front as compared to NSGA within a very less
computational time.
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It is observed that, the working of Jaya and MO-Jaya
algorithms is dependent only on common control param-
eters like population size and number of generations and
there is no need of tuning of any algorithm-specific parame-
ters. The computational complexity ofMO-Jaya algorithm is
less as compared to NSTLBO, NSGA and BBO algorithms
because in these algorithms the solutions are updated in mul-
tiple phases. However, in the Jaya and MO-Jaya algorithms
the solutions are updated in a single phase using a single
equation. Therefore, the two main advantages of Jaya and
MO-Jaya algorithms are: (1) the Jaya and MO-Jaya algo-
rithms do not burden the user with the task of tuning the
algorithm-specific parameters. (2) The Jaya and MO-Jaya
algorithms are simple in implementation and require less
CPU time for their working.

The effects of the best and worst solutions in the current
population are considered simultaneously which gives a high
convergence speed to MO-Jaya algorithm without trapping
into local optima. The ranking mechanism based on the con-
cept of non-dominance relation between the solutions helps
MO-Jaya algorithm to maintain the good solutions in every
generation and guides the search process towards the Pareto-
optimal set.

Furthermore, an improved PROMETHEE method is used
to select a suitable solution from multiple Pareto-optimal
solutions provided by MO-Jaya algorithm based on his/her
order of preference. The improved PROMETHEE is a more
objective and logical selection approach as it allows the deci-
sion maker to systematically assign the values of relative
importance to the criteria based on his/her preferences. In the
improved PROMETHEE method the alternatives are evalu-
atedwith better accuracy as the values of the criteria and their
relative importance are considered simultaneously.

The Pareto optimal set of solutions provided by MO-Jaya
algorithm for the three case studies considered in this work
are helpful to the process planner as it contains a wide range
of optimal values. This enables the process planner to choose
a particular solution from the Pareto optimal set that corre-
sponds to a specific order of importance of objectives, in
order to achieve the desired outcome from the machining
process even in situations where the order of importance of
objectives is subjected to frequent changes. Thus, the results
presented in this work are useful for real production sys-
tems.
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Appendix A

Now the steps of the improved PROMETHEE method for
selection of an optimal solution from the set of Pareto-
optimal solution based on the order preference of the decision
maker are demonstrated. For the purpose of demonstration
the multi-objective optimization problem of AWJM process
described in “Optimization methodology” section is consid-
ered.

Step 1 A multi-objective decision making problem for
AWJM process is formulated by considering the
50 Pareto-optimal solutions provided by MO-Jaya
algorithm as alternatives and themultiple objectives
such asKerf and Ra are considered as selection crite-
ria.Both the criteria are considered as non-beneficial
criteria. Table 11 shows the objective data for multi-
objective decision problem of AWJM process. In
Table 11, the fifty solutions are considered as alter-
natives while Kerf and Ra are considered as two
attributes.

Step 2 The next step is to assign the weights of the crite-
ria based on the order preference of decision maker.
For the purpose of demonstration equal importance
is assigned to all the criteria (i.e. w1 = w2 =
0.5).However, if a decision maker wants to assign
unequal weights of relative importance to the cri-
teria then he/she may use the analytical hierarchy
process (AHP) method for determining weights of
relative importance, explained by Rao and Patel
(2010).

Step 3 After assigning the weights of relative importance
to the criteria next step is to select a preference
function. Rao and Patel (2010) had suggested six
preference functions namely, usual function, U-
shape function, V-shape function, level function,
linear function and Gaussian function. In this work
the V-shape function is used as the preference
function. For more details about calculating the val-
ues of preference indices using V-shape preference
function the readers may refer to Rao and Patel
(2010).

Step 4 Now each alternative is to be compared with every
other alternative and the preference indices are to
be calculated considering each criterion separately.
For the purpose of demonstration, the preference
indices resulting from pairwise comparison of 50
alternative solutions with respect to the criteria Kerf
and Ra are shown in Tables 12 and 13, respec-
tively.
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Table 11 Objective data for multi-objective decision making problem
of AWJM process (case study 1)

S. No. Kerf (mm) Ra(μm)

1 0.12453 0.00965

2 0.12865 0.00986

3 0.13199 0.00996

4 0.14191 0.01162

5 0.14245 0.02215

6 0.25179 0.02405

7 0.30999 0.02672

8 0.50426 0.04827

9 0.55058 0.05499

10 0.61636 0.06041

11 0.90452 0.10027

12 0.94074 0.1871

13 1.00145 0.11314

14 1.1047 0.13154

15 1.1201 0.1547

16 1.13644 0.13979

17 1.1776 0.18677

18 1.27649 0.15735

19 1.42355 0.19259

20 1.63417 0.21735

21 1.71198 0.23377

22 1.86777 0.3184

23 1.95525 0.27339

24 2.03185 0.46091

25 2.04793 0.41102

26 2.20527 0.34706

27 2.31194 0.35922

28 2.37081 0.36683

29 2.48563 0.57193

30 2.59749 0.42886

31 2.68204 0.44199

32 2.68784 14.11848

33 2.68928 16.81049

34 2.7032 15.3657

35 2.72314 15.59124

36 2.75357 16.42039

37 2.76576 17.6157

38 2.79858 20.06127

39 2.83591 20.83648

40 2.8454 18.59188

41 2.95533 20.57847

42 2.96352 20.85368

43 2.98885 22.47545

44 3.0121 21.81782

45 3.042 22.8327

46 3.06445 23.34057

Table 11 continued

S. No. Kerf (mm) Ra(μm)

47 3.07501 24.64366

48 3.08257 24.33128

49 3.08293 26.09632

50 3.10207 25.64056

Step 5 Once the preference values resulting from pairwise
comparison of each alternative with every other
alternative is calculated for each criteria separately,
the next step is to determine the weighted average of
the preference functions according to Eq. (5). The
weighted average of preference function values are
shown in Table 14.

Step 6 The values of leaving flow, entering flow and net
flow are calculated for each alternative according to
Eqs. (6), (7) and (8). Considering, the values of net
flow rank is assigned to each alternative following
the higher-the-better approach.The values of leav-
ing flow, entering flow, net flow and rank of each
alternative is shown in Table 14.

Table 14 shows that for equal importance to both the cri-
teria (i.e. w1 = w2 = 0.5) the improved PROMETHEE
method has suggested alternative solution no. 40 as the
first choice. Mainly for the purpose of demonstration equal
weights are considered for all the criteria. However, if a
decision maker wants to assign unequal weights to the cri-
teria then he/she may use the analytical hierarchy process
(AHP) method for determining weights of relative impor-
tance, explained by Rao and Patel (2010).

Appendix B

In order to demonstrate the working of MO-Jaya algo-
rithm, the multi-objective optimization problem formulated
in “Optimization methodology” section is considered in this
work. The objective functions are expressed by Eqs. (10) and
(11). The input process parameters and their respective upper
and lower bounds are expressed by Eqs. (12) to (15). For the
purpose of demonstration, a population size of five is con-
sidered and two iterations of MO-Jaya algorithm are shown
now. The randomly generated initial population is shown in
Table 15. The ranks are assigned to each solution based on the
ranking methodology discussed in “Ranking methodology”
section and crowding distance (CD) is computed as discussed
in “Computing the crowding distance” section. The solution
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Table 12 The preference values resulting from pairwise comparison of 50 alternative solutions with respect to the criterion Kerf

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0

44 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0

45 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0

46 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 0

47 1 1 1 1 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 0 0 0 0

48 1 1 1 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0 0 0 0 0 0

49 1 1 1 1 1 1 1 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0 0 0 0 0

50 1 1 1 1 1 1 1 1 1 1 1 1 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.05 0 0 0 0
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Table 13 The preference values resulting from pairwise comparison of 50 alternative solutions with respect to the criterion Ra

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1 1 1 1 1 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1 1 1 1 1 1 1 1 1 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

123



2124 J Intell Manuf (2019) 30:2101–2127

Table 14 Leaving, entering, net flow values and ranking of fifty alter-
natives

Alternatives ϕ+(a) ϕ−(a) ϕ (a) Rank

1 9.4612 14.6649 − 5.2037 49

2 9.2563 14.3016 − 5.0454 48

3 8.9376 13.7388 − 4.8012 47

4 8.6601 13.2633 − 4.6032 46

5 7.9303 11.6296 − 3.6993 44

6 7.712 11.0881 − 3.376 43

7 7.4722 10.4505 − 2.9782 40

8 7.3377 10.0702 − 2.7326 39

9 7.2169 9.7439 − 2.527 38

10 7.0294 9.2445 − 2.2151 37

11 6.7924 8.5574 − 1.765 36

12 6.7493 8.4347 − 1.6853 34

13 6.5015 7.5886 − 1.0871 33

14 6.3084 6.6487 − 0.3403 31

15 6.2493 6.2387 0.0106 30

16 6.2063 5.8295 0.3768 29

17 5.9927 5.28 0.7127 27

18 5.9116 5.0497 0.8618 26

19 5.8677 4.947 0.9207 25

20 5.8275 4.7411 1.0864 24

21 5.8096 4.5953 1.2143 23

22 5.7873 4.4253 1.362 21

23 5.7864 4.3909 1.3955 20

24 5.8024 4.2524 1.55 18

25 5.7594 4.2723 1.487 19

26 5.8751 4.1179 1.7572 17

27 5.9645 4.057 1.9075 15

28 6.1646 4.0169 2.1477 14

29 6.2549 4.0152 2.2397 13

30 6.42 4.0376 2.3825 12

31 6.4601 4.0443 2.4158 11

32 6.6469 4.0796 2.5673 10

33 6.7866 4.1181 2.6685 9

34 7.123 4.2476 2.8754 8

35 7.8158 4.6487 3.1671 6

36 8.2109 4.7418 3.4691 5

37 8.743 5.0614 3.6815 4

38 9.1207 5.3631 3.7576 2

39 9.5917 5.8414 3.7503 3

40 10.0937 6.3341 3.7596 1

41 10.1203 7.1329 2.9874 7

42 10.0506 8.197 1.8536 16

43 10.0315 8.6805 1.351 22

44 10.0088 9.4044 0.6044 28

45 10.0016 10.7089 − 0.7072 32

46 10.0403 11.8021 − 1.7618 35

Table 14 continued

Alternatives ϕ+(a) ϕ−(a) ϕ (a) Rank

47 10.1252 13.1616 − 3.0364 41

48 10.154 13.4979 − 3.3439 42

49 10.2364 14.4448 − 4.2084 45

50 10.3351 15.5388 − 5.2037 50

with the highest rank and highest CD value is the best solu-
tion and the solution with the lowest rank is selected as the
worst solution.

Now the new values of the variables are calculated accord-
ing to Eq. (1). For the purpose of demonstration, the random
numbers α1 and α2 for variable A are considered as 0.91
and 0.15, respectively. The random numbers α1 and α2 for
variable B are considered as 0.67 and 0.5, respectively. The
random numbers α1 and α2 for variable C are considered as
0.25 and 0.65, respectively. The random numbers α1 and α2

for variable D are considered as 0.36 and 0.75, respectively.
The new values of variables A, B,C and D are calculated and
are shown in Table 16 along with the corresponding values
of Kerf and Ra .

Now the new solutions are combined with the initial solu-
tions and a combined population is formed. The combined
population is shown in Table 17. The ranks and CD value are
determined for all the solutions in the combined population.
Now based on the ranks and CD value five good solutions are
selected from the combined population. These five solutions
which are shown in Table 18 will act as initial population for
the next iteration.
Iteration 2

The solutions selected at the end of the first iteration,
shown in Table 18 are used as initial population for the sec-
ond iteration.Now in the second iteration, the initial solutions
(Table 18) are modified according to Eq. (1) and are shown
in Table 19. For the purpose of demonstration the random
numbers α1 and α2 for variable A are considered as 0.54
and 0.29, respectively. The random number α1 and α2 for
variable B are considered as 0.48 and 0.37, respectively. The
random numbers α1 and α2 for variable C are considered
as 0.62 and 0.14, respectively. The random numbers α1 and
α2 for variable D are considered as 0.73 and 0.55, respec-
tively.

The combined population is shown in Table 20. Five good
solutions are selected from the combined population based
on the ranks and CDwhich are shown in Table 21. These five
solutions will act as initial solutions for the third iteration of
MO-Jaya algorithm.
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Table 15 Initial population
S. No. A B C D Kerf Ra Rank CD Status

1 1.1852 1.0036 30.7834 263.0452 1.0109 5.5867 1 ∞ Best

2 1.2170 1.1032 52.0539 588.2371 0.9848 7.3432 1 ∞
3 0.9444 1.2508 89.5959 582.8668 1.3421 8.6899 2 ∞
4 1.2197 1.4766 80.2078 394.1503 1.5503 7.2622 2 ∞
5 1.1213 1.4807 92.9214 520.1122 1.6285 8.2329 3 ∞ Worst

Table 16 New values of the
variables and objective
functions

S. No. A B C D Kerf Ra

1 1.1948 0.95a 20a 200a 0.9667 5.04

2 1.2024 0.95a 20.1724 522.262 0.8263 6.617

3 1.1370 0.9702 72.7312 514.797 0.8737 7.51

4 1.2031 1.1576 59.588 252.481 1.2126 6.241

5 1.1794 1.1610 77.3869 427.568 1.1762 7.264

aThis value has crossed the given range of the variable and hence it is assigned the bound value

Table 17 Combined population
S. No. A B C D Kerf Ra Rank CD

1 1.1852 1.0036 30.7834 263.0452 1.0109 5.5867 2 ∞
2 1.2170 1.1032 52.0539 588.2371 0.9848 7.3432 2 0.69798

3 0.9444 1.2508 89.5959 582.8668 1.3421 8.6899 4 ∞
4 1.2197 1.4766 80.2078 394.1503 1.5503 7.2622 4 ∞
5 1.1213 1.4807 92.9214 520.1122 1.6285 8.2329 5 –

6 1.1948 0.95 20 200 0.9667 5.04 1 ∞
7 1.2024 0.95 20.1724 522.262 0.8263 6.617 1 ∞
8 1.1370 0.9702 72.7312 514.797 0.8737 7.51 2 ∞
9 1.2031 1.1576 59.588 252.481 1.2126 6.241 3 ∞
10 1.1794 1.1610 77.3869 427.568 1.1762 7.264 3 ∞

Table 18 Selection of candidate
solutions based on
non-dominance rank and
crowding distance

S. No. A B C D Kerf Ra Rank CD Status

1 1.1948 0.95 20 200 0.9667 5.04 1 ∞ Best

2 1.2024 0.95 20.1724 522.262 0.8263 6.617 1 ∞
3 1.1852 1.0036 30.7834 263.0452 1.0109 5.5867 2 ∞
4 1.1370 0.9702 72.7312 514.797 0.8737 7.51 2 ∞
5 1.2170 1.1032 52.0539 588.2371 0.9848 7.3432 2 0.69798 Worst

Table 19 New values of the
variables and objective
functions

S. No. A B C D Kerf Ra

1 1.1883 0.95a 20a 200a 0.969 5.0373

2 1.1941 0.95a 20a 250.7244 0.945 5.2870

3 1.1812 0.95a 21.1198 200a 0.9756 5.0522

4 1.1450 0.95a 42.9326 244.603 1.0261 5.6064

5 1.2050 1.0297 32.1804 304.824 1.0097 5.8179

aThis value has crossed the given range of the variable and hence it is assigned the bound value
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Table 20 Combined population
S. No. A B C D Kerf Ra Rank CD

1 1.1948 0.95 20 200 0.9667 5.04 1 0.2211

2 1.2024 0.95 20.1724 522.262 0.8263 6.617 1 ∞
3 1.1852 1.0036 30.7834 263.0452 1.0109 5.5867 3 ∞
4 1.1370 0.9702 72.7312 514.797 0.8737 7.51 2 ∞
5 1.2170 1.1032 52.0539 588.2371 0.9848 7.3432 3 ∞
6 1.1883 0.95 20 200 0.969 5.0373 1 ∞
7 1.1941 0.95 20 250.7244 0.945 5.2870 1 1.34046

8 1.1812 0.95 21.1198 200 0.9756 5.0522 2 ∞
9 1.1450 0.95 42.9326 244.603 1.0261 5.6064 4 ∞
10 1.2050 1.0297 32.1804 304.824 1.0097 5.8179 3 0.84098

Table 21 Selection of candidate
solutions based on
non-dominance rank and
crowding distance

S. No. A B C D Kerf Ra Rank CD Status

1 1.2024 0.95 20.1724 522.262 0.8263 6.617 1 ∞ Best

2 1.1883 0.95 20 200 0.969 5.0373 1 ∞
3 1.1941 0.95 20 250.7244 0.945 5.2870 1 1.34046

4 1.1948 0.95 20 200 0.9667 5.04 1 0.2211

5 1.1812 0.95 21.1198 200 0.9756 5.0522 2 ∞ Worst
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