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Abstract Weld quality management is currently one of the
most concerning issues in the manufacturing industry. In this
paper, a novel method is proposed for weld defect classifi-
cation based on the analytical hierarchy process (AHP) and
Dempster–Shafer (DS) evidence theory. First, to overcome
the problem of traditional DS methods, which weigh every
feature equally in classification, a method is proposed based
on AHP to calculate the weight of features (WF) of a weld
defect, which can then be utilized in classification. Then, an
improved method based on DS evidence theory is presented
to improve the accuracy of classification, which includes cal-
culation of the standard value of features based on frequency
histograms analysis and an improved Dempster’s rule for
combination based on WF. A case study on the classifica-
tion of steam turbine weld defects is provided to illustrate
and evaluate the proposed techniques. The results show that
the proposed method increases the correct recognition rate
of classification with limited samples, making DS evidence
theory applicable to weld defect classification.
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Introduction

In the manufacturing industry, radiographic testing (RT) is
an important non-destructive testing technique for finding
defects present inside a material. Radiographic images used
in the classification of weld defects are of great significance
for weld quality management, reliability, and large-scale
equipment safety (Zahran and Al-Nuaimy 2002; Silva and
Mery 2007a). Additionally, the results of weld inspection
provide useful information for identifying potential problems
in the fabrication process, which is necessary for improving
welding operations (Liao 2009; Zapata et al. 2012). There-
fore, improving the efficiency and accuracy of weld defect
classification is an important technical problem.

In current weld quality management, many efforts have
been devoted for developing an automated inspection sys-
tem to improve the accuracy and efficiency of RT (Silva and
Mery 2007b; Liao 2003). An automated RT system usually
includes the following four steps (Liao 2009; Shen et al.
2010), as shown in Fig. 1. (1) Image preprocessing mainly
includes noise reduction and image enhancement. Noise
reduction smoothes the RT images, and image enhancement
improves the contrast and highlights the defects and details
in RT images. Image enhancement usually includes con-
trast enhancement and edge enhancement methods (Gu et al.
2013; Mu et al. 2013) such as the histogram transforma-
tion method (Zahran et al. 2013), gray level transformation
method (Gao and Hu 2014), and fuzzy enhancement method
(Movafeghi 2015). (2) Defect segmentation finds and iso-
lates weld defect regions from the rest of the radiographic
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Fig. 1 Process of automated RT system

image, providing the foundation of feature extraction and
defect classification in automated RT systems (Nacereddine
et al. 2006, 2013). (3) Feature extraction obtains a set of
features—generally including edge-based and region-based
features—that can describe the characteristics of the weld
defects (Shen and Gao 2010). (4) Defect classification, i.e.,
defect pattern classification, which classifies defects accord-
ing to the extracted defect features, is the focus of this paper.

It should be noted, there are many other methods rele-
vant to weld quality management, such as thermal image
analysis, ultrasonic testing (UT), and pulsed thermography
(PT). For example, Sreedhar et al. (2012) proposed an online
weld-monitoring system based on thermal image analysis
via infrared cameras for tungsten inert gas (TIG) welding.
Salchak et al. (2016) proposed a method for classifying pos-
sible defects with corresponding dimension limits based on
UT. Du et al. (2008) developed a UT-based weld defect
classification method by integrating a discriminant tracing
algorithm and a probabilistic neural network. Zhu et al.
(2017) developed an improved feature extraction algorithm
for eddy current PT to realize automatic defect identification.
RT, UT, and PT each have limitations, e.g., defects lying in
certain planes cannot be detected by some of the methods.
Because RT is widely used in current practical applications,
especially in the turbine manufacturing industry, this paper
focuses on RT and its application.

In recent decades, many studies have been performed on
the classification of weld defects (Silva and Mery 2007a, b),
and several methods have been applied to the classification
of defects: fuzzy systems, artificial neural networks (ANNs),
and support vector machines (SVMs) (Zhang et al. 2005).
For example, Liao (2003) proposed a fuzzy expert system
approach for defect classification, for which the most impor-
tant step is acquisition of fuzzy rules. Zapata et al. (2010)
proposed an adaptive-network—based fuzzy inference sys-
tem for classification of weld defects. Fuzzy systems have a
tradeoff between accuracy and interpretability, i.e., the accu-
racy can be improved but at the cost of interpretability. Wang
and Liao (2002) proposed a method based on a multi-layer
perceptron (MLP)-ANN with 12 features for defect classifi-
cation. Lim et al. (2007) selected an optimal set of features
from 25 features using a statistical approach and then used an
MLP-ANN to classify the defects. ANNs can achieve good
performance with a large number of training samples, but
they can make judgment errors with only a small number

of training samples. Zhang et al. (2005) utilized asymmet-
rical SVMs to classify weld defects. Li (2009) employed
an SVM to classify a local defect embedded in a homoge-
neous copper-clad laminate surface.Adirectmulticlass SVM
(DMSVM) for classifying defects has also been proposed
(Shen et al. 2010). The SVM-based methods have good gen-
eralization, but their performance depends on the selected
defect samples and defect features. In addition, there are
some methods that integrate different classification theories.
For example, You et al. (2015) developed a laser weld defect
classification method by integrating a feed-forward neural
network and an SVM. Fan et al. (2016) proposed a solder
bump recognition method integrating fuzzy theory and an
SVM. Mu et al. (2013) proposed a weld defect classifica-
tion method based on principal component analysis (PCA)
and an SVM, which is more effective than traditional SVM
methods. Generally, these methods belong to machine learn-
ing/data mining techniques, and classification accuracy is
greater in such techniques. Ultimately, all of the aforemen-
tioned methods cannot give the probability that a weld defect
would belong to a certain type owing to the small differences
between some types of weld defects.

Dempster–Shafer (DS) evidence theory (Pohl and Gen-
deren 1998), which can address the uncertainty associated
with classification, is currently being introduced to the field
of pattern recognition. For example, Hong et al. (2012) pro-
posed amethod for fault diagnosis based on amodular neural
network and DS theory. Liu et al. (2011) introduced an
approach for glass defect identification based on DS evi-
dence theory. Gao et al. (2012) applied DS evidence theory
to fuse different features in image subcategory classification.
DS evidence theory has also been applied to fault condi-
tion diagnosis (Pan et al. 2011), which can combine multiple
features to decide the fault condition type. In fact, the clas-
sification of weld defects is a process of multi-information
fusion, i.e., DS theory can be applied to fuse the different
weld defect features (henceforth called evidence) for classi-
fication.

However, there are several problems in applying DS to
weld defect classification. The first problem is the calcula-
tion of weighting factors for each feature when using features
as the evidence, i.e., each feature of a defect has a different
contribution for classification, whereas traditional methods
assign features equal weighting. To handle this problem, the
analytic hierarchy process (AHP) is used in this work. AHP
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(Saaty 1980, 1990) is a decisionmethod that can split the ele-
ments related to the decision into different hierarchies such
as goals, principles, and programs (Maruthur et al. 2013).
Furthermore, AHP combines qualitative analysis with quan-
titative analysis, so it can effectively solve complex decision
problems whose objects and criteria are difficult to quantify
(Hafizan et al. 2016). In order to promote the scientific nature
of weight prediction and avoid the contradiction between
weight prediction and actuality due to subjectivity, AHP can
be used to calculate theweight of features (WF) before apply-
ing a DS-based method. The second problem is the standard
value of feature (SVF) identification for elements in the frame
of discernment. The value of each feature (e.g., length, aspect
ratio) for a certain type of defect varies, so it should be
decided before using theDSmethod. The third problem is the
calculation of the combined rules for multi-evidence cases.
This issue is crucial to the success of applying DS methods;
in contrast, traditional methods do not utilize weighting fac-
tors for features, so they cannot be directly applied to the
classification of weld defects.

To overcome the aforementioned problems, a novel
method based on AHP and DS evidence theory is proposed
for weld defect classification. First, a method based on AHP
is proposed to calculate the WF for weld defects. Then, an
improved method based on DS evidence theory that includes
calculation of the SVF based on frequency histogram analy-
sis (FHA) and an improved Dempster’s rule of combination
based on theWF is presented. Finally, a case study involving
the classification of steam turbine weld defects is provided
to illustrate the proposed techniques. This method enables
application of DS theory to weld defect classification, and
it classifies weld defect types with better performance than
traditional methods.

The paper is organized as follows. “Feature selection”
section describes the features that are used in this paper.
“Calculation ofWF based onAHP” section discusses theWF
based on AHP. “Improved DS method for weld defect clas-
sification” section introduces the improved DS method for
weld defect classification. “Weld defect classification case
study” section describes the weld defect classification case
study. “Results” section presents the results of the case study.
“Discussion” section discusses how the proposed method
compares to other classification methods. Finally, “Con-
clusion” section presents the conclusions on the proposed
method and gives suggestions for future research.

Feature selection

As highlighted in Fig. 2, there are generally five types ofweld
defects: porosity (PO), slag inclusion (SL), lack of penetra-
tion (LP), lack of fusion (LF), and crack (CR). The features of
weld defects can be categorized into two classes: edge-based

features and region-based features. Edge-based features are
principally centered on measured geometric properties, and
region-based features are focused on the intensity charac-
teristics. As shown in the white boxes in Fig. 2, the weld
defect area should be segmented before feature extraction
and feature selection. In this paper, seven defect features
were selected from previous works (Shen et al. 2010; Mu
et al. 2013), as shown in Table 1. These features can be used
for defect classification based on DS theory, i.e., the features
can be described as evidence and fused to determine the class
of a weld defect.

Calculation of WF based on AHP

In traditional classification methods, features are usually
weighted equally, and the obtained feature values are directly
used for defect classification. However, in the process of
defect classification, the role of each feature varies with the
defect type, i.e., different features have different weights in
defect classification. If the same weight is used for each fea-
ture, the classification accuracy may be reduced. In contrast,
assigning different weights to different features according to
the defect type improves the classification accuracy. There-
fore, the WF should be determined before applying the
DS-based method. In this paper, a method based on AHP
for calculating the WF is proposed. The specific process of
this method is as follows:

(1) The evaluation indexwi (i = 1, . . . , 7), which represents
the weight value of weld defect features, is deter-
mined. For example,w1, w2, . . . , w7 can be defined such
that they represent the weight values of L ,Ar, . . . ,Ku,
respectively, as shown in Table 1.

(2) The comparison matrix A is constructed as follows:

A =

⎡
⎢⎢⎢⎣

w1
w1

w1
w2

· · · w1
wn

w2
w1

w2
w2

· · · w2
wn· · · · · · · · · · · ·

wn
w1

wn
w2

· · · wn
wn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎤
⎥⎥⎦ ,

(1)

where ai j = wi/w j represents the pair-wise compari-
son of index wi relative to index wj. For simplicity, the
value of ai j was defined directly in this study, rather than
from wi , and ai j was set based on a 1-to-9 scale of rel-
ative importance, which is also called the Saaty scale.
Odd numbers (1, 3, 5, 7, 9) represent equal importance,
moderate importance, strong importance, very strong
importance, and extreme importance, respectively, and
even numbers (2, 4, 6, 8) represent intermediate values
between adjacent judgments (Hafizan et al. 2016).
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Fig. 2 Defect samples: a
porosity (PO), b slag inclusion
(SL), c lack of penetration (LP),
d lack of fusion (LF), and e
crack (CR)

Table 1 Defect features
Feature Feature type Formula

L Length Edge –

Ar Aspect ratio Edge Ar = L
H

Sp Sharpness Edge Sp = A1+A2
A

Re Roughness of defect edge Edge Re = 1
L

L∑
i=1

|hi+1 + hi−1 − 2hi |

Rr Roughness of defect region Region Rr = 1
A

L−1∑
i=1

hi −1∑
j=1

∣∣∇2 f
∣∣

Sk Skewness Region Sk = 1
L

L∑
i=0

hi∑
k=0

∣∣∣∣
2
(
xk
3+xk

1−2xk
2

)
(
xk
3−xk

1

)
∣∣∣∣

Ku Kurtosis Edge Ku = 1
L

L∑
i=0

hi∑
k=0

xk
3−xk

2
xk
4−xk

1

Other features are described in References (Shen et al. 2010; Mu et al. 2013)
H width of defect area, L length of the defect area, A area of the defect (= L × W )

(3) In order to test the consistency of markings in matrix A,
the random consistency ratio (CR) is calculated as

C R = C I

RI
. (2)

In the formula, the coincident indicator (CI) is

C I = λmax − n

n − 1
, (3)

where λmax is the maximum eigenvalue of A and RI is a
reference value, i.e., an indicator of the impact of category i
on the reference area. The CR ranges from zero to one, and
it can be used to determine the consistency of the judgment
entries. It is widely agreed that the comparison matrix, A, is

acceptable if CR < 0.1. Otherwise, the comparison matrix
should be revised.

(4) If CR < 0.1, according to Eqs. (2) and (3), the matrix
weight values, wi , are

wi = vi∑n
i=1 vi

, (4)

where vi = n

√
n∏
j

ai j . Therefore, the list of weights is

Windex = {w1, w2, . . . , wn,} . (5)

Thus, Windex can be used as the WF during weld defect clas-
sification.
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Selecting features and determining relationships between
features are key steps when using AHP. If the selected fea-
tures are not reasonable, or the relationships between features
are not correct, as shown in Eq. (1), the results of AHP will
be inaccurate. Thus, to ensure the rationality of the hierarchy
and the accuracy of defect classification, the selected features
and the relationship between features should be reasonable
and correct.

Improved DS method for weld defect classification

Brief introduction of DS evidence theory

DS theory is an important method in uncertainty reasoning
first introduced by Dempster (1968) and later extended by
Shafer (1976); it plays vital roles in the representation and
fusion of uncertain information and the study of random sets
(Han et al. 2014). DS theory is widely used in fields such as
information fusion, pattern recognition, and decision analy-
sis. DS theory is defined as follows.

If� represents a finite set of elements, which is commonly
known as the frame of discernment, the power set 2� is the
set of all subsets of �, including itself and the null set ϕ.
The basic probability assignment (BPA), m(A), also known
as the mass function, is assigned to an individual in a subset
of the power set. The BPA, m(A), is defined on the bounded
interval [0,1], and it satisfies

{
m(ϕ) = 0,∑
A⊆�

m(A) = 1. (6)

The belief function (Bel) is a function of each subset A of�,
and Bel(A) is a measure of one’s belief that proposition A is
correct. It is defined as follows:

Bel(A) =
∑
B⊂A

m(B)(∀A ⊂ �). (7)

Dempster’s rule of combination, which provides an approach
through which several belief functions can be determined in
the same �, is defined as

m joint (C) = (m1 ⊕ m2) (C)

=
{ 1

1−K

∑
A1∩A2=C m1(A1)m2(A2), ∀C ⊂ �, C �= ϕ,

0, C = ϕ,

(8)

where K is the normalization factor,

K =
∑

A1∩A2=ϕ

m1(A1)m2(A2) < 1, (9)

which denotes the degree of conflict between A1 and A2, with
0 representing no conflict and 1 representing total conflict.
If K is too large, Dempster’s rule of combination will fail.
With Eqs. (8) and (9), the fusion vector R is

R = [r1, r2, . . . , rN ] , (10)

where ri (i = 1, 2, . . . , N ) represents the output of each class
in the frame of discernment,�. To assist in numeric decision-
making for weld defect classification, the “decision rule” is
formulated as follows: if ri > η (i = 1, 2, . . . , N ) and ri is
the maximum, then target S is of class Xi . In this study, the
threshold η is set as 0.50.

The following example serves to describe the detailed
steps of the calculation of R. Supposing a frame of dis-
cernment � = {A1, A2, θ} where each proposition in �

symbolically represents two weld defects classes (i.e., A1

represents PO and A2 represents SL), and θ represents the
uncertainty of a defect belonging to Ai , three BPAs (m1, m2,
and m3) are considered in this frame of discernment:

m1 < A1, A2,θ > = m1 < 0.8, 0.1, 0.1 >,

m2 < A1, A2,θ > = m2 < 0.6, 0.3, 0.1 >,

m3 < A1, A2,θ > = m3 < 0.75, 0.2, 0.05 > .

Then, the new BPA, mjoint, is calculated based on m1 and m2

with Eqs. (8) and (9):

K =
∑

A1∩A2=ϕ

m1(A1)m2(A2)

= m1(A1)m2(A2) + m1(A2)m2(A1)=0.24 + 0.06 = 0.3,

mjoint(A1) = m1(A1)m2(A1) + m1(A1)m2(θ) + m1(θ)m2(A1)

1 − K

= 0.48 + 0.08 + 0.06

1 − 0.3
= 0.8857,

mjoint(A2) = m1(A2)m2(A2) + m1(A2)m2(θ) + m1(θ)m2(A2)

1 − K

= 0.03 + 0.03 + 0.01

1 − 0.3
= 0.1,

m(θ) = m1(θ)m2(θ)

1 − K
= 0.01

1 − 0.3
= 0.0143.

In the same manner, mjoint can be combined with m3 as:

K = mjoint(A1)m3(A2) + mjoint(A2)m3(A1)

= 0.11714 + 0.075 = 0.25214,

m
′
joint(A1) = mjoint(A1)m3(A1) + mjoint(A1)m3(θ) + m(θ)m3(A1)

1 − K
= 0.9618,

m
′
joint(A2) = 0.0373,

m
′
(θ) = m(θ)m3(θ)

1 − K
= 0.0143 × 0.05

1 − 0.25214
= 0.0009.
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Here, the fusion vector, R, is defined as

R = [r1, r2, r3] =
[
m

′
joint(A1), m

′
joint(A2), m

′
(θ)

]

= [0.9618, 0.0373, 0.0009] .

Finally, each r j ( j = 1, 2, 3) represents the output of each
class in the frame of discernment � = {A1, A2, θ} , and r j

represents the belief committed exactly to A j . This exam-
ple shows that the weld defect class is most likely class A1

(porosity) because r1 is the maximum value in the fusion
vector, R.

SVF identification in frame of discernment

Given N classes of weld defects and M features, the weld
defect class can be described as a standard class matrix, S0:

S0 =

⎡
⎢⎢⎢⎣

X1

X2
...

X N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1M

x21 x22 · · · x2M
...

... · · · ...

xN1 xN2 · · · xN M

⎤
⎥⎥⎥⎦ . (11)

In addition, the frame of discernment can be defined as � =
{X1, X2, . . ., XN}, where Xi represents the i-th class of weld
defect.

When using the DS method, the first problem is deciding
� by determining the SVF, xi j ( j = 1, 2, . . ., M), for X i.
Because the xi j have different values, some will be too large,
while others will be small, so it is necessary to develop a
reliable method for obtaining a standard xi j . Generally, the
value of feature xi j approximately obeys the normal distri-
bution, so a method was developed to calculate feature xi j

based on FHA (Dudewicz 1999). As shown in Fig. 3, FHA is
a statistical tool for presenting numerous data in a form that
clarifies the central tendency and the dispersion along the
scale of measurement. Many feature samples, xi j , were used
to construct the histograms, wherein each column represents
the frequency of a certain value of xi j . Then, the standard
deviation of xi j , which follows a normal probability distri-
bution (NPD), is calculated and used as an estimate of σ.
Finally, because ±3σ standard deviations includes 99.73%
of the population, most xi j are included for calculating the
SVF, xi j , and the mean value of samples (MVS) can be cal-
culated if the samples belong to ±3σ standard deviations;
otherwise, if samples are beyond the ±3σ standard devia-
tions, they should not be used for the calculation. Then, the
MVS can be used as the SVF, xi j , and the frame of discern-
ment � can be obtained, which is more reliable for defect
classification.

Fig. 3 Frequency histograms analysis (FHA) for feature xi j

Improved Dempster’s rule of combination based on WF

As shown in “Brief introduction of DS evidence theory”
section, the calculation of m is another crucial aspect that
determines whether DS evidence theory will succeed. In this
paper, the BPA, m, is calculated based on the WF of each
feature and the frame of discernment �; namely, the main
steps of calculating m are similar to the method proposed in
previous work (Jiang et al. 2016).

Supposing that the target weld defect, S, contains the test-
ing data that need to be classified, it can be defined as the
vector

S = [
s1, s2, · · · , s j , · · · , sM

]
, (12)

where s j represents the j-th feature of target weld defect S.
Based on Eqs. (11) and (12), the similarity matrix, P ,

which indicates the similarity of S to S0, can be obtained
as

P =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1M

p21 p22 · · · p2M
...

...
. . .

...

pN1 pN1 · · · pN M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

P1

P2
...

PN

⎤
⎥⎥⎥⎦ , (13)

where

pi j = 1/di j , (14)

and

di j = ∣∣s j − xi j
∣∣ i = 1, 2, . . . , N ; j = 1, 2, . . . , M . (15)

As shown in Eq. (13), a larger Pi indicates that the target
weld defect, S, more likely belongs to the i-th class of weld
defect. Conversely, a smaller Pi indicates that the target weld
defect, S, less likely belongs to the i-th class of weld defect.
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Fig. 4 Procedure for weld defect classification based on the proposed method

To obtain the BPA, m, the normalizing P is calculated via

p
′
i j = p ji

/ N∑
k=1

pkj , (16)

such that

P
′ =

⎡
⎢⎢⎢⎣

p
′
11 p

′
12 · · · p

′
1N

p
′
21 p

′
22 · · · p

′
2N

...
...

. . .
...

p
′
M1 p

′
M2 · · · p

′
M N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

P
′
m1

P
′
m2

...

P
′
mM

⎤
⎥⎥⎥⎥⎦

. (17)

Then, P ′ can be defined as the BPA,m, of X j , which satisfies
Eq. (6):

⎡
⎢⎢⎢⎣

m1(X1) m1(X2) · · · m1(X N )

m2(X1) m2(X2) · · · m2(X N )
...

...
...

...

mM (X1) m M (X2) · · · m M (X N )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

P
′
m1

P
′
m2

...

P
′
mM

⎤
⎥⎥⎥⎥⎦

.

(18)

Considering theWF,whichwas calculated in “Calculation
of WF based on AHP” section, to account for the different
WFs in defect classification, Dempster’s rule of combination
was revised as follows:

m′
i (X) = wi · mi (X) (i = 1, 2, . . . M). (19)

Then, Dempster’s rule of combination from Eqs. (8) and (9)
are revised as:

m joint (C) = (
m′

1 ⊕ m′
2

)
(C)

=
{ 1

1−K

∑
A1∩A2=C

m′
1(A1)m′

2(A2) ∀C ⊂ �, C �= ϕ

0 C = ϕ
,

(20)

where

K =
∑

A1∩A2=ϕ

m′
1(A1)m

′
2(A2) < 1. (21)

The fusion vector, R, can be calculated based on m′
i (i =

1, 2, . . . M), and the main steps of the method can be
described as follows:

(a) Combining m′
1 with m′

2 using Eqs. (20) and (21) yields
m joint .

(b) Combining m joint with m′
3 using Eqs. (20) and (21)

yields a new m joint .
(c) Repeating step (b) for the remainingm′

i (i = 1, 2, . . . M)

yields the final fusion vector R.

In summary, the main steps of the weld defects classifi-
cation method based on AHP and DS evidence theory are
shown in Fig. 4. Firstly, several techniques, such as image
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Fig. 5 Automatic radiographic testing system (JD-RTD)

preprocessing, defect segmentation, and feature extraction,
are performed sequentially to obtain features for defect clas-
sification. Second, as shown in the dashed-line box in Fig. 4,
the procedure of the proposed method includes three steps:

(a) The WF of the selected features is calculated based on
AHP using Eqs. (1)–(5).

(b) The standard class matrix, S0, is calculated based on
FHA using Eq. (11).

(c) The weld defect is classified using an improved Demp-
ster’s method based on the S0 and WF of each feature.
Specifically, the BPA, m, is calculated using Eqs. (12)–
(18), and the fusion vector, R, is caluclated using
Eqs. (19)–(21).

Weld defect classification case study

To illustrate the effectiveness of the method proposed in this
paper, 172 samples covering 5 classes of weld defects were
selected: 32 PO, 41 SL, 38 LP, 35 LF, and 26 CR. The radio-
graphic images were provided by the Dongfang Turbine Co.,
Ltd, Sichuan, China, and the sampleswere produced from the
digitized radiographic images using an X-ray film scanner
(JD-RTD) that was developed in-house, as shown in Fig. 5.

With these five classes of weld defect, the weld defects’
frame of discernment can be defined as

� = {X1, X2, X3, X4, X5} , (22)

where X1, X2, X3, X4, and X5 represent PO, SL, LP, LF,
and CR, respectively. First, as demonstrated in “Calculation

of WF based on AHP” section, the comparison matrix, A,
can be obtained via AHP:

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L Ar Sp Re Rr Sk K u
L 1 0.5 4 3 0.33 5 6
Ar 2 1 5 3 0.5 6 7
Sp 0.25 0.2 1 0.5 0.17 2 3
Re 0.5 0.33 2 1 0.2 3 5
Rr 3 2 6 5 1 7 9
Sk 0.2 0.17 0.5 0.33 0.14 1 2
K u 0.17 0.14 0.33 0.2 0.11 0.5 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(23)

From Eqs. (2) and (3), C R = 0.034 < 0.1, which means
that the consistency is acceptable. Therefore, the WF can be
obtained via Eqs. (4) and (5):

W = {
w1 w2 w3 w4 w5 w6 w7

}

= { 0.17 0.24 0.06 0.1 0.37 0.04 0.03 }. (24)

For the frame of discernment, �, all 172 samples were
selected for calculation of the standard class matrix, S0, in
the frame of discernment based on the method described in
“SVF identification in frame of discernment” section; the
results of which are shown in Table 2.

After obtaining the standard class matrix, S0, one weld
defect sample is selected as the target weld defect, S, and the
method described in “Improved Dempster’s rule of combina-
tion based onWF” section is applied to obtain the fusion vec-
tor R = [r1, r2, r3, r4, r5], where each r j ( j = 1, 2, . . . , 5)
represents the output of each Xi in the frame of discernment
� = {X1, X2, X3, X4, X5}, respectively. For each case anal-
ysis, each correct recognition rate (CRR(i)(i = 1, 2, 3)) is
determined by the maximum, second-maximum, and third-
maximum of R, respectively.

The following example illustrates the calculation of the
CRR. Four samples of defect type X1 (PO) are selected as the
target weld defects, S, and the result, R, is shown in Table 3,
in which the bold entries indicate the maximum values of Ri .

From Table 3, taking sample no. 1 as S, the fusion vector
is R = [r1, r2, r3, r4, r5] = [0.93987, 0.00448, 0.00206,
0.03830, 0.01532]; thus, r1 = 0.93987 satisfies the deci-
sion rule, as r1 > 0.5 and it is the maximum of the fusion
vector, so the target weld defect, S, can be correctly classified
as X1 (PO). Because there is only one target weld defect S
for which r1 is the maximum, the CRR(1) for classification
is:

CRR (1) = 1/4 = 25%.
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Table 2 Standard class matrix,
S0

S0 L Ar Sp Re Rr Sk Ku

X1 11.1200 1.0563 0.3452 1.7240 186.8909 0.0319 0.6450

X2 17.1227 2.3644 0.3907 1.2574 93.7009 0.0680 0.6417

X3 24.0450 13.0200 0.4943 0.3455 44.8030 0.0710 0.6584

X4 28.3810 5.6470 0.4310 0.9209 79.2498 0.0308 0.6406

X5 8.2130 22.1984 0.5010 0.3637 160.5996 0.0309 0.6510

Considering sample no. 2 of S, r1 = 0.19593 and r2 =
0.69580; this is a classification error in that S is classified
as SL with the decision rule. Moreover, because r2 > r1 >

r5 > r4 > r3, S is less likely to be a PO weld defect than
an SL weld defect. That is, if the classification is decided
by the second-maximum r1, the result is correct. Therefore,
the ri can be arranged in descending order, representing the
corresponding possibility that S is classified as X i. Because
r1 (0.19593) is the second-maximum,

CRR (2) = 1/4 + CRR (1) = 50%.

Considering sample no. 3 of S, CRR(3) can similarly be
calculated:

CRR (3) = 1/4 + CRR (2) = 75%.

Results

The resulting classifications of produced by the proposed
method are shown in Table 4, which includes 172 samples
covering 5 classes of weld defects. For LF and CR weld
defects, the proposedmethod has excellent performancewith
CRR(1) at 91.42 and 96.15%, respectively. Because LF and
CR weld defects differ greatly from the other weld defect
classes, they can easily be classified correctly by using the
WF. Because SL and LPweld defects are respectively similar
to PO and CR weld defects, the method has poor perfor-
mance with CRR(1) at 68.29 and 73.68% for SL and LP
weld defects, respectively. Ultimately, for PO, SL, and LP,
the proposed method has good performance with CRR(3) at
100%. This indicates that the method proposed in this paper
yields significant separability, so it is suitable for classifica-
tion of weld defects.

Discussion

Table 5 shows the aggregate CRR of the proposed method
for all test samples; additionally, the performance of the pro-
posed method is compared to those of the traditional DS
method [7, 27, DMSVM, PCA-SVM, and MLP-ANN. The
proposed method is more accurate than the traditional DS

Table 3 Examples of R

Sample no. Fusion vector R of S

r1 r2 r3 r4 r5

1 0.93987 0.00448 0.00206 0.03830 0.01532

2 0.19539 0.69580 0.00126 0.04245 0.06511

3 0.02901 0.87374 0.00451 0.08049 0.01226

4 0.00029 0.97915 0.01869 0.00172 0.00017

method because the CRR(1) and CRR(2) values obtained
using the former method are higher than those from the lat-
ter method. This result indicates that the technique combined
with the calculation ofWF based onAHP strongly influences
the results of the proposed method, i.e., reasonable weights
are assigned to different features through AHP and the pro-
posed technique improves the classification accuracy. For
example, as for the LF and CR weld defects, the features of
W, Ar, and Rr are very important factors in weld defect clas-
sification. Therefore, the CRR is higher when the WF of W,
Ar, and Rr are higher. Meanwhile, because FHA can capture
the feature’s distribution, the S0 calculated based on FHA
with few training samples can be more reliable for defect
classification, improving the performance of the proposed
method.

Although the CRR(1) of the proposed method is only
81.98%, CRR(2) is larger than the CRRs of DMSVM, PCA-
SVM and MLP-ANN. If the three largest values of ri are
used together to decide the classification of the weld defect,
CRR(3) is 100%. Additionally, an engineer sometimes needs
to instead be given the probability of a defect belonging to
the different categories—this accounts for someweld defects
that cannot be classified due to the similarity between differ-
ent types of defects, e.g., between LP and CR or between
PO and LF. Thus, the proposed method not only has good
classification performance, but it can also address the uncer-
tainty associated with weld defect classes, i.e., by calculating
the combinations of mass functions, the proposed method
determines the belief committed to a weld defect class. Addi-
tionally, because the proposed method is an information
fusion technique, it can be applied to some pattern recog-
nition problems, e.g., fault diagnosis, target recognition and
disease diagnosis.
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Table 4 Classification results of
weld defects

Target class (Actual #) Correct recognition rate of classification

CRR(1) (%) CRR(1,2) (%) CRR(1,2,3) (%)

PO (32) 87.5 90.63 100

SL (41) 68.29 87.80 100

LP (38) 73.68 89.47 100

LF (35) 91.43 100 –

CR (26) 96.15 100 –

Table 5 Comparison of
performance

Method Correct recognition rate of classification

CRR(1) (%) CRR(2) (%) CRR(3) (%)

Proposed method 81.98 93.02 100

Traditional DS method 78.49 88.37 100

DMSVM 88.95 – –

PCA-SVM 81.97 – –

MLP-ANN 87.21 – –

However, the classification method based on DS also has
some shortcomings. Thefirst is deciding the frameof discern-
ment �, i.e., deciding the SVF in the frame of discernment.
Generally, the SVF can greatly improve the separability of
elements in the frame of discernment. The second one is
calculating the BPA, m, which is important for achieving
higher defect classification accuracy. Additionally, as shown
in “Brief introduction of DS evidence theory” section, accu-
rate determination of m is essential for DS evidence theory
to succeed. Furthermore, eachmethod—includingDMSVM,
PCA-SVM, MLP-ANN, and the proposed method—has its
limitations, e.g., PO, SL, andLP could each only be classified
by some of the methods. Using two or more complementary
methods would be a good solution to this problem.

Conclusion

In this paper, a method for classifying weld defects based on
AHP andDS evidence theorywas proposed; this newmethod
mainly includes three novel contributions: (1) calculation of
the WF of a weld defect based on AHP, (2) determination of
the SVF in the frame of discernment, and (3) an improved
Dempster’s rule for combination. A case study of weld defect
classification was provided to illustrate the method and test
its effectiveness. The results show that the proposed method
can fuse different features to effectively make classifica-
tion decisions based on few training samples and that it has
better performance than traditional DS methods. Addition-
ally, although the CRR(1) of the proposed method is slightly
smaller than those of traditional methods, such as DMSVM
and PCA-SVM, its CRR(2) is significantly larger than the
CRRs of traditional methods. Notably, the proposed method

can address the uncertainty associated with weld defect clas-
sification, i.e., it can give the probability of a defect belonging
to different defect types if there is little difference between
the weld defects.

Futureworkwill focus on (1) studying themethod forweld
defect feature extraction and (2) calculation of themass func-
tion and combined rules of DS evidence theory. In this paper,
only seven features were used for classification; the CRR can
be significantly improved if additional suitable features can
be selected. Additionally, the mass function, also called the
BPA, is crucial for successfully applyingDS evidence theory,
so better combination rules could eliminate conflicts between
various forms of evidence. In fact, the classification error in
the proposed method mostly resulted from conflicts between
weld features. Therefore, the mass function and combination
rules should be investigated in future studies.
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