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Abstract In this study, the impact of information sharing on
bullwhip effect (BWE) is investigated using a four-echelon
supply chain simulation model where each echelon shares
some of the customer demand forecast information with a
retailer, the lowest echelon. The level of the demand forecast
shared at each echelon is represented as information sharing
rate (ISR). Four different levels of ISR are considered to eval-
uate its impact on BWE. A full factorial design with 64 cases
is used, followed by statistical analysis. The results show
that (1) overall, higher ISR more significantly reduce BWE
than lower ISR at all echelons; (2) further, the impact of ISR
is not same between echelons. The ISR at an echelon where
BWEismeasuredhas the highest impact.However, its impact
decreases at downstream echelons; (3) BWE is affected by
not only the magnitude but also the balance of ISR’s across
echelons, while the former has three times more impact than
the latter; (4) lastly, we demonstrate that a highly unbalanced
ISR may cause reverse bullwhip effect (RBWE), particu-
larly when the level of unblance at downstream echelons is
high and the uppermost echelon where BWE is measured
has the highest ISR. Based on this demonstration, we derive
a functional relationship between ISR’s and RBWE using
regression analysis. We believe that results from this study
provide useful implications and insights for better coordina-
tion and collaboration in a supply chain.
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Introduction

Orders in a supply chain are sensitive to demand change.
Small changes in a customer order can create a progressive
increase in order variation as the order information passes
upstream in the supply chain. This phenomenon is referred to
as the bullwhip effect (BWE). In the operations management
discipline, BWE has been negatively described because it is
partly responsible for inefficiencies such as a high inventory,
a low service level, a low quality, and an increased opera-
tion cost, etc. Further, managing BWE to prevent or reduce
the inefficiencies requires a significant amount of effort. For
these reasons, among many BWE related topics, identifying
its root causes and preventing or mitigating its impact have
been focused. Several operational causes for BWE have been
identified using analytical or simulation approaches, some
of which include rationing and shortage gaming, time delay,
demand signal, order policy, and poor coordination (Hall and
Saygin 2012).

The rationing and shortage gaming refers to a situation
where a manufacturer tries to ration its products, in case of
shortage in supply. Accordingly, customers fear the conse-
quence of the shortage, exaggerate their needs, and order
more thanwhat they actually need,which distorts the demand
upstream (Devika et al. 2016). Several studies demonstrate
that the time delay such as the longer manufacturing or
supplier lead-time from upstream to downstream signifi-
cantly contributes to BWE (Hussain et al. 2012; Hussain and
Saber 2012; Paik and Bagchi 2007). Both demand signal
processing with the customer demand forecast and specific
order policies to control inventories have been considered
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important too. Thus, many studies identify and evaluate
the impact of the different order policies and forecasting
methods on BWE (Barlas and Gunduz 2011; Dejonckheere
et al. 2004; Disney and Towill 2003a; Disney and Lam-
brecht 2008). The poor coordination has been recently more
focused. According to Arshinder et al. (2008), the supply
chain coordination (SCC) is the activity of managing depen-
dencies among the members in the supply chain. Thus, it
requires the joint effort of the members working together
towards mutually agreed goals. They consider it as a pre-
requisite to integrate the operations of the members. To
implement the integration, the members need to share infor-
mation and should be able to explain the impact that their
actions have onothermembers. For this reason, SCChas been
mainly studied from the information sharing perspective.
Particularly, sharing the customer demand or its forecasting
information has been significantly focused. As a conse-
quence, many studies identify and propose the information
sharing among members as one of the most effective reme-
dies to mitigate the impact of BWE (Paik and Bagchi 2007;
Dejonckheere et al. 2004; Cannella and Ciancimino 2010;
Hussain et al. 2012). All of these studies conclude that infor-
mation distortion increases BWE while information sharing
mitigates it. In addition to the operational causes, some stud-
ies investigate BWE from a network structure perspective.
The ‘number of echelons’ or the ‘number of intermedi-
aries’ has been particularly focused. It has been known that
BWE increases as the number of echelons increases (Dis-
ney and Lambrecht 2008; Paik and Bagchi 2007). Thus,
reduction of intermediaries is also recommended to mitigate
BWE.

Although sharing information and reducing the number of
the echelons have been considered as effective remedies to
mitigate BWE, the detailed relationship between these two
factors-information sharing and echelons-regarding BWE
has not been fully studied. As previously discussed, SCC
requires information sharing among the members. Thus, for
better coordination or reduction of BWE, some of the impor-
tant questions such as “what information to share?”, “how
to share information?”, and “whom to share with” need to
be answered. The first question has been already thoroughly
investigated-most of the studies aforementioned share the
customer demand forecast (CDF) information between ech-
elons. However, relatively little research has dealt with other
two questions. Thus, we attempt to provide some answers
for these two questions. We note that the answers are related
to both the level of information and the position of the
echelon where information is shared since the impact of
information sharing may be different from echelon to ech-
elon. Hence, if we quantify the impact of the information
sharing level on BWE for all echelons, it would be able
to provide significantly meaningful answers to the under-
researched questions.

In the study,we consider a serially connected four-echelon
supply chain. The retailer echelon, serving the customer,
forecasts its demand using the customer’s actual demand.
Then, all other upstream echelons estimate their demand
using either CDF through collaboration with the retailer or
their own direct forecasting method based on the replen-
ishment orders from their immediate downstream echelon.
Thus, we can define the level of the CDF shared, referred to
as the information-sharing rate (ISR), at each echelon. For
example, if ISR is x%, it means that the echelon uses CDF
provided by the retailer by x% and its own forecasting infor-
mation by (100– x)% to estimate its owndemand. In thisway,
ISR represents the degree of CDF shared at each echelon. If
an echelon fully shares CDF with the retailer, x is 100%. If x
is zero, it means that the echelon conducts its own indepen-
dent forecasting without any information sharing with the
retailer. Since each echelon may have a different ISR level,
a combination or distribution of ISR’s across echelons may
have a different impact on BWE.We define a combination of
ISR’s across all echelons as an information-sharing mode.

Most previous studies have focused on only two informa-
tion sharingmodes-no sharing, ISR = 0, and full sharing, ISR
= 1.00, across all echelons. Of course, it is the most desir-
able for all members to have the full sharing mode. However,
this is not an always-possible option due to some financial
and non-financial issues. For example, sharing information
requires an expensive investment in information technology.
The investment in information technologies accounted for
more than 50% of the capital expenditures in the United
States when Yao and Zhu (2012) write their paper. Further,
a non-financial issue such as the mutual trust among mem-
bers in a supply chain also prevents the full sharing (Youn
et al. 2012; Almeida et al. 2015). Thus, there is a need to
analyze the diverse impact of ISR’s with both full and partial
information sharing modes on BWE.

To explore the answers to the two under-researched ques-
tions for better collaboration, we present the following
objectives to accomplish in this study: (1) investigate the
impact of various ISR’s at each echelon on BWE and quan-
tify it. We know that information sharing affects BWE, and
its impact may vary at the position of echelons. Thus, under-
standing the impact of ISR and its relationshipwith echelon’s
position provides useful insights on our questions since it
shows more options and knowledge for better coordination;
(2) analyze the impacts of the magnitude of ISR and its level
of balance across echelons on BWE. The magnitude and bal-
ance level of ISR are represented by the average and degree
of the variation of ISR’s across the echelons, respectively.
While the first objective focuses on an individual echelon,
the second one on the entire supply chain. The magnitude
and balance level are helpful to decide the priority for SCC;
finally, (3) attempt to explain the occurrence of reverse bull-
whip effect (RBWE) with ISR at each echelon, and explain
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ISR as a cause of RBWE. To the best of our knowledge, there
has been very limited amount of research on these objectives.
Particularly, the second and third objectives are not discussed
in the relevant literature. Thus, the results of the study will
provide meaningful insights on the impact of the information
sharing and its implementation for successful coordination.

To achieve the three objectives mentioned above, we use
a system dynamics simulation approach to model the supply
chain consisting of a retailer, a wholesaler, a distributor, and
a producer. To simulate the model, we adopt the ‘shock lens’
(Towill et al. 2007) perspective, implying that an unexpected
and intense change is introduced to the customer demand to
infer on the performance of the supply chain. A full factorial
design is used to evaluate BWE for all possible ISR combi-
nations. Eventually, we apply the linear regression analysis
and corresponding Analysis of Variance (ANOVA) method.

The rest of the paper is organized as follow: A literature
review on information sharing in a supply chain is presented
in the next section. Detailed description on the model is out-
lined in Supply chain simulation modeling section, followed
by Design of experiments. The results of the simulation
model are explained inResults and analysis section, followed
by Implications and discussion section. Then, Conclusions
are presented, followed by References and “Appendix A”
explaining the acronyms.

Literature review

We focus on the demand or CDF information sharing to be
aligned with the scope of the study.

Lee et al. (1997) show that demand sharing reduces
BWE generated by demand signal processing. Following
their research,many researchers demonstrate the information
sharing with an inventory ordering policy to be an effec-
tive remedy to reduce BWE. Chen et al. (2000a, b) prove
that BWE exists in a two-echelon serial supply chain with
the order-up-to inventory policy, and it increases with the
lead-time being longer and forecasting being less smooth.
Dejonckheere et al. (2004) compare the order-up-to policy
with the smoothing replenishment order (SRO) policy in a
four-echelon serial model. They show that BWE increases at
both policies when CDF is not shared. However, with CDF
shared, the reductionofBWEismore significant in case of the
SRO policy, particularly at higher echelons. Quyang (2007)
applies the system control theory to a serial supply chain and
shows that BWE occurs at an echelon whose inventory gain,
defined as the marginal change in the steady-state inventory
position for a unit change in the steady-state replenishment
order at the echelon, is positive regardless of the informa-
tion sharing. He also shows that the information sharing can
reduce BWE. Barlas and Gunduz (2011) use a three-echelon
serialmodelwith a simple exponential smoothing forecasting

method to evaluate BWE under three different order policies:
an order-up-to-S level, an anchor-and-adjust, and an order-
point s, order-up-to-S level, referred to as (s, S) policy. They
demonstrate that sharing the CDF information significantly
reduces BWE across all order policies. Chatfield et al. (2004)
examine the effects of the stochastic lead-times, information
sharing, and information quality in a four-echelon simula-
tionmodel with the order-up-to-S level policy. They consider
four different settings of the information quality based on the
availability of the lead-times and customer demand informa-
tion. They conclude that the lead-time variability exacerbates
BWE, and both information sharing and information quality
are highly significant for the BWE reduction. Cho and Lee
(2012) develop theBWEmeasure and expression for the two-
echelonmodelwith a seasonable demand. They show that the
replenishment lead-time must be less than the seasonal cycle
to reduce BWE. Wright and Yuan (2008) demonstrate that
the double exponential smoothing forecasting methods such
as Holt’s and Brown’s reduce BWE more significantly than
the simple exponential smoothing method, particularly when
they are used with an appropriate ordering policy.

Hussain et al. (2012) and Hussain and Saber (2012) eval-
uate the impact of the production time delay, time to average
sales, time to adjust inventory, time to adjust WIP, and the
concept of information enrichment percentage at each eche-
lon (for information sharing level). Through simulation study
with the Automatic Pipeline Feedback Order-Based Produc-
tion Control System, they demonstrate that the production
time delay, time to adjust inventory and the information
sharing level are sensitive to BWE in the same order of
the magnitude. Costantino et al. (2014) analyze BWE and
inventory stability in a multi-echelon supply chain through
simulation. They identify that the lack of the information
sharing is the most significant root cause of the BWE on
top of a poor forecasting and a high safety stock, and show
that it has a high interaction with inventory control parame-
ters. Cannella andCiancimino (2010) evaluate three different
four-echelon supply chain configurations with the SRO pol-
icy, each of which has a different scope of the information
sharing (i.e., traditional configuration without any informa-
tion sharing; information exchange configuration with the
demand forecast shared; synchronized configurationwith the
echelon inventory information shared in addition to all infor-
mation shared in the information exchange configuration).
Their results show that the synchronized configuration has
the highest fill rate, the smallest system-wide zero replen-
ishment, and the smallest system-wide average inventory as
well as the lowest level of BWE among three configurations.

Rong et al. (2008) use a four-echelon serial model with
the base order function fromSterman (1989), which is funda-
mentally equivalent to the SRO policy in Dejonckheere et al.
(2004) and Cannella and Ciancimino (2010). They study the
impact of the two smoothing parameters-one for the inven-
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Fig. 1 A four-echelon supply chain

tory level error and the other forWIP error-on theBWE.They
define RBWE as the phenomenon where an order variance at
any upstream echelon is smaller than that at downstream ech-
elons. Further, they identify twoways to generate RBWE: (1)
overweighting the smoothing parameter for the WIP error,
the difference between the target WIP level and the actual
WIP level; and (2) overreactions to upstream capacity shock.

Some coordination-based BWEmitigation strategies have
also been proposed. Disney and Towill (2003b) suggest a
vendor-managed inventory system as a tool to reduce BWE.
In their system, a vendor is responsible for managing its cus-
tomer’s inventory through the relevant customer’s inventory
and demand information. They demonstrate through a sim-
ulation study that the vender-managed inventory system can
reduce 50% of the BWE compared to the traditional supply
chain configuration.Cannella et al. (2015) show that a coordi-
nated, decentralized linear supply chain, where all echelons’
inventory, demand, and order information are available to
their upstream members, can significantly avoid BWE by
reducing information distortion. Costantino et al. (2014) are
one of the very few studies that deal with the role of limited
collaboration using CDF information. They consider only
two information sharing modes-no sharing and full sharing.
Using the two modes, they investigate six different combi-
nations of collaboration. Eventually, they demonstrate that
more benefits-reduction of BWE-are generated when the
information sharing starts from downstream echelons rather
than from upstream echelons.

While most of the studies mentioned above implicitly
assume only two levels of ISR at an echelon-no sharing
(ISR = 0.00%) or full sharing (ISR = 100%), Hussain et al.
(2012) and Hussain and Saber (2012) consider the partial
sharing, (ISR = 50%), too. Their studies further assume that
all echelons should have the same ISR. Because of this fur-
ther assumption, they cannot evaluate the detailed impact of
ISR’s and their relationship with the position of echelons on
BWE. We release the assumption in this study.

Supply chain simulation modeling

The present study uses a system dynamics simulation
approach to accomplish the objectives previously presented.
A traditional four-echelon supply chain consisting of a
retailer, a wholesaler, a distributor, and a producer is used

(see Fig. 1). At each period t , each echelon, i (i = 1, . . ., 4),
receives an order (a dotted line arrow) from its immediate
downstream echelon, i − 1. Note that a customer is rep-
resented as i = 0. Each echelon also attempts to satisfy
an incoming order as soon as possible using its own avail-
able on-hand inventory (a solid line arrow), and then issues
a replenishment order (a dotted line arrow) to its immediate
upstream echelon, i + 1. If an echelon does not have enough
inventory, a partial fulfillment of the order is allowed, and
the remaining portion of the order is backlogged without any
loss.

We use ‘iThink’ modeling software with the following
assumptions:

• The stocking capacity at any echelon is unlimited.
• The transportation capacity between adjacent echelons is
unlimited.

• The uppermost echelon (a producer) places an order to an
unlimited source (supplier), so there is no backlogging in
the uppermost echelon.

• Each echelon works independently and estimates its
demand by forecasting with the replenishment orders
from its immediate downstream echelon and/or by shar-
ing the retailer’s CDF. Note that the retailer directly
forecasts its demand using actual customer demand infor-
mation.

• There is no time delay between any order receipt and the
order shipment if inventory is available.

The following notations are defined for echelon i at time t :

L Ii (t) local inventory or on-hand inventory
Wi (t) work-in-progress (WIP) or inventory in transit
Ai (t) actual quantity of shipment delivered from an

upstream echelon to i th echelon
Si (t) actual quantity of shipment delivered to a down-

stream echelon from i th echelon
Bi (t) backlog of orders
Ii (t) net inventory or inventory level with consideration

of backlogs
Di (t) actual demand
̂Di (t) demand forecasted based on the simple exponential

smoothing method
d̂i (t) demand estimate from ̂Di (t) with consideration of

ISR
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Oi (t) replenishment orders to be placed to an upstream
echelon

TWi (t) target WIP level
T Ii (t) target inventory level
T pi physical production/distribution lead-time between

immediate echelons
T ci cover time for inventory control to control the safety

stock level
Twi smoothing WIP parameter
T yi smoothing inventory parameter
α smoothing constant in a simple exponential smooth-

ing forecasting
I SRi information sharing rate

The important elements of the model are described as fol-
lows:

• Demand the customer demand at each period t , D0 (t),
has 4 units per time for t < 140, and surges to 8 units
per time after that using the shock lens perspective. Note
that the same step function is used in Sterman (1989).

• Forecasting each echelon uses a simple exponential
smoothing method when it forecasts its demand, ̂Di (t),
at each period, t .

• Timedelay an echelonhas productionor distribution lead-
time from its upstream echelon when the inventory is
delivered. A simple built-in DELAY function in ‘iThink’
is used.

• Order policy an echelon has a SRO policy, which is an
extension of the inventory and order based production
control system model by Towill (1982) and Automatic
Pipeline, Inventory and Order Based Production Control
System by Simon et al. (1994). The SRO policy is a gen-
eral case of the linear production rule, and it has been
shown to be robust and stable compared to other order-
up-to policies. It has three components: forecast on the
order from the downstream echelon, the smoothed WIP
error, and the smoothed inventory level error.

The Eqs. (1)–(15), define the different states at each echelon
i in each period t .

L Ii (t) = L Ii (t − 1) + Ai (t) − Si (t) (1)

I Ti (t) = I Ti (t − 1) + Si+1 (t) − Ai (t) (2)

Wi (t) = I Ti (t) + Bi+1 (t) (3)

Si (t) = min {L Ii (t), Di (t) + Bi (t)} (4)

Bi (t) = Bi (t − 1) + Di (t) − Si (t) (5)

Ii (t) = L Ii (t) − Bi (t) (6)
̂Di (t) = ̂Di (t − 1) + α

(

Di (t − 1) − ̂Di (t − 1)
)

(7)

d̂i (t) = (1 − I SRi )̂Di (t) + I SRi ̂D1 (t) for i > 1 (8)

d̂i (t) = ̂Di (t) for i = 1 (9)

Di (t) = Oi−1 (t) for i > 1 (10)

TWi (t) = T pi d̂i (t) (11)

T Ii (t) = T ci d̂i (t) (12)

Oi (t) = d̂i (t) + (TWi (t) − Wi (t))/Twi

+ (T Ii (t) − Ii (t))/T yi (13)

Oi (t) ≥ 0 (14)

Si+1 (t) = Oi (t) for i = 4 (15)

For simplicity and consistency, our simulation time is
modeled as discrete time (DT), set to one. Thus, all states
are updated at every DT = 1.00.

At each period t , the local inventory (on-hand inventory)
at echelon i , L Ii (t), is determined by the arrival quantity
of shipment from its upstream echelon, Ai (t), and the ship-
ment quantity of goods to a downstream echelon, Si (t) (Eq.
1). In-transit inventory, I Ti (t), represents the inventory-
in-transportation from an upstream echelon, Si+1 (t) −
Ai (t) (Eq. 2). The WIP, Wi (t), includes the inventory-in-
transportation and the backlogged quantity, items ordered
but not processed yet, at an upstream echelon (Eq. 3). If
there is any inventory available, orders are shipped immedi-
ately to a downstream echelon whenever requested. Actual
delivery quantity is constrained by the inventory availability,
L Ii (t), and shipment requirement, Di (t) + Bi (t) (Eq. 4).
Any unfulfilled portion of an order, Di (t) − Si (t), is added
to the backlogged orders (Eq. 5). Equation (6) defines the
net inventory or inventory level. Equation (7) shows the sim-
ple exponential smoothing forecast for the demand based on
replenishment orders from a downstream echelon.

Equation (8) indicates that each echelon’s demand esti-
mate is affected by sharing the percentage between retailer’s
CDF, ̂D1 (t), and its own forecast, ̂Di (t). For example, if
retailer’s CDF is shared 100% with a current echelon (i.e.,
I SRi = 1.00), the final demand estimate at the echelon
becomes ̂D1 (t). However, when none of the CDF informa-
tion is shared, the echelon should conduct its own forecasting
using the simple exponential smoothing method, ̂Di (t).

Since the retailer forecasts its demand from the actual cus-
tomer demand information, there is no difference between
the demand forecast , Di (t), and the demand estimate, d̂i (t)
(Eq. 9). Equation (10) represents that the replenishment order
from a downstream echelon, Oi−1 (t), becomes the demand,
Di (t), at a current echelon.Equations (11) and (12) define the
target WIP and target inventory level, respectively. Since the
target WIP, TWi (t), and the target inventory, T Ii (t), use the
demand estimate, d̂i (t), they are also affected by ISR at each
echelon.Note that the information sharingpolicyused inWIP
and the inventory level in this study makes more sense than
what the previous studies have used in their SRO policies.
For example, Dejonckheere et al. (2004) and Cannella and
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Ciancimino (2010) use the same policy but their target WIP,
TWi (t), and the target inventory level, T Ii (t), are updated
using the forecast information at each echelon without using
the CDF information. Our rationale is that if CDF informa-
tion is available, it is reasonable to apply it to the target values,
developing more accurate replenishment order policy. Equa-
tion (13) is the order quantity decided by the SRO policy.
As described before, it consists of the final demand estimate,
the smoothed WIP error, and the smoothed inventory level
error. All target values are determined in Eqs. (11) and (12).
All order quantity should be non-negative (Eq. 14). Equation
(15) describes the unlimited raw material supply condition
at the producer since any quantity of the order required by
the producer,O4 (t), will be supplied from the supplier.

Design of experiments

We design a full factorial set of experiments to analyze and
quantify the impact of the ISR on the BWE at each echelon.
We consider four levels of I SRi -0.00, 0.33, 0.67, 1.00-for
each echelon (i = 2, 3, 4), indicating the information sharing
level with the retailer. Note that I SRi will be used in Eq. (8).
Consequently, the target WIP, the target inventory, and the
quantity of the orders, given in Eqs. (11)–(13), respectively,
are also updated. Total 64 (4 × 4 × 4) cases (or information
sharing modes) are generated from the full factorial design.
The first four columns in Table 1 display all of those six-four
cases.

The following operational parameters are used for the sim-
ulation:

• simulation duration, T = 257 time units; warmup dura-
tion = 50 time units. Thus, the effective simulation
duration during which the statistical information is col-
lected is 208 time units; after the warmup period, demand
is 4 units for t < 90 (note that it was 140 before the
warmup) and surges to 8 units after that. During the
warmup period, the impact of the initial state variables is
eliminated.

• values of the production/distribution lead-time, cover
time for inventory control, and smoothing constant
in the simple exponential smoothing forecasting are
[T pi , T ci , α] = [2, 3, 1/3] for all i .

• values of smoothing WIP parameter, Twi , and smooth-
ing inventory parameter, T yi , are [Twi , T yi ] = [2T pi ,
2T pi ] = [4, 4] for all i .

• values of initial state variables are [Wi (0), L Ii (0),
Bi (0)] = [T pi d̂1 (0), T ci d̂1 (0), 0] = [8, 12, 0] for all
i .

Note that since the impact of T pi , T ci , α, Twi , and T yi
has been discussed in many previous studies, these values

are fixed. The selection of the parameter values has been
done according to Cannella and Ciancimino (2010) since
they demonstrate that these settings are one of the best com-
binations in the SRO policy.

TomeasureBWE,many studies use the order rate variance
ratio, proposed by Chen et al. (2000b), which is appropriate
in a situation where the customer demand is stochastic and
stationary, and the long-term performance of the system is
used, referred to as the ‘variance lens’. Since we adopt the
‘shock lens’ perspective, a peak of the order rate is chosen to
measure an extreme behavior in the order pattern as described
in Towill et al. (2007). Dominguez et al. (2015) define a peak
of orders at each echelon-they define BWE as the range of
order changes at each echelon-to measure BWE and identify
the impact of the network structure on BWE using the ‘shock
lens.’ We adopt the similar approach. Thus, for the range
information, we need to observe themaximum andminimum
values of all orders at each echelon. The peak of orders at
echelon i is defined in Eq. (16) as:

Peak Oi = max{Oi (t)} − min{Oi (t)} for tε[50, 257] (16)

Results and analysis

Table 1 lists the results from the experiments. It shows ISR
for each echelon from wholesaler to producer. For example,
the first case, (1.00, 0.67, 0.33), indicates that the wholesaler,
the distributor, and the producer share the retailer’s CDF 100,
67, and 33%, respectively, for their own demand estimate,
according to Eq. (8). It also displays the range of the order
rates for each echelon (from O1RN for the retailer to O4RN
for the producer where RN stands for the ‘range’) and their
average (avg RN).

Before starting any statistical analysis, we first consider
four information-sharing modes with their corresponding
ISR at an echelon in the order of (I SR2, I SR3, I SR4). Case
62, (0.00, 0.00, 0.00), represents that none of the three ech-
elons shares the CDF with the retailer while Case 17, (1.00,
1.00, 1.00), fully shares it. Cases 18, (0.33, 0.67, 1.00), and
20, (0.67, 0.67, 0.67), are examples of the partial sharing.
Case 18 has a high variation in its ISR’s distribution-ISR is
highly unbalancedwith high ISR levels at upstreamechelons-
while in Case 20, all echelons share the same level of the
partial information. Note that the average ISR per echelon in
the two cases is identical in the value of 0.67. The order rates
at the producer are displayed over time (x-axis) in Fig. 2, and
the value of maximum orders at each echelon is displayed
in Fig. 3. From Fig. 2, we observe that the order rates at all
echelons oscillate around at t = 90 when the demand shock
occurs. In addition, the magnitudes of the oscillation are dif-
ferent in all cases. The wavelength of the peak is the smallest
with the full information sharing (Case 17) and the largest
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Table 1 The full factorial
design and its results

Case Wholesaler Distributor Producer Avg RN O1RN O2RN O3RN O4RN

1 1.00 0.67 0.33 9.993 7.000 8.170 10.310 14.490

2 1.00 0.67 0.00 10.590 7.000 8.170 10.310 16.880

3 0.67 0.33 0.67 11.340 7.000 9.400 13.620 15.340

4 0.33 0.000 0.33 15.420 7.000 10.630 17.960 26.090

5 0.33 0.67 0.00 12.675 7.000 10.630 12.580 20.490

6 0.67 0.00 0.67 12.420 7.000 9.400 15.800 17.480

7 0.67 0.00 1.00 11.433 7.000 9.400 15.800 13.530a

8 0.33 0.33 1.00 11.510 7.000 10.630 15.270 13.140a

9 1.00 0.00 0.33 11.970 7.000 8.170 13.650 19.060

10 0.33 0.33 0.67 12.450 7.000 10.630 15.270 16.900

11 0.67 0.67 1.00 9.640 7.000 9.400 11.440 10.720a

12 0.00 0.33 1.00 12.483 7.000 11.860 16.910 14.160a

13 0.00 0.33 0.00 16.875 7.000 11.910 17.030 31.560

14 0.00 1.00 0.33 11.218 7.000 11.910 10.940 15.020

15 0.67 0.00 0.00 15.193 7.000 9.410 15.950 28.410

16 0.67 0.33 0.33 12.283 7.000 9.410 13.710 19.010

17 1.00 1.00 1.00 8.180 7.000 8.170 8.670 8.880

18 0.33 0.67 1.00 10.455 7.000 10.660 12.650 11.510a

19 1.00 0.00 0.00 13.060 7.000 8.170 13.800 23.270

20 0.67 0.67 0.67 10.295 7.000 9.410 11.470 13.300

21 0.33 1.00 1.00 9.405 7.000 10.660 10.160 9.800a

22 0.00 0.00 0.33 17.465 7.000 11.910 20.240 30.710

23 0.00 1.00 1.00 10.048 7.000 11.910 10.940 10.340a

24 1.00 0.33 0.67 10.288 7.000 8.170 12.050 13.930

25 0.67 1.00 0.67 9.223 7.000 9.410 9.400 11.080

26 0.67 1.00 1.00 8.780 7.000 9.410 9.400 9.310a

27 0.00 1.00 0.00 11.860 7.000 11.910 10.940 17.590

28 0.00 0.67 1.00 11.260 7.000 11.910 13.810 12.320a

29 0.00 0.00 1.00 13.923 7.000 11.910 20.240 16.540a

30 0.00 0.67 0.33 12.985 7.000 11.910 13.810 19.220

31 0.33 0.33 0.00 14.990 7.000 10.660 15.370 26.930

32 0.67 1.00 0.00 10.230 7.000 9.410 9.400 15.110

33 0.00 0.67 0.00 13.973 7.000 11.910 13.810 23.170

34 0.33 0.33 0.33 13.560 7.000 10.660 15.370 21.210

35 0.67 0.33 0.00 13.208 7.000 9.410 13.710 22.710

36 1.00 0.67 0.67 9.410 7.000 8.170 10.320 12.150

37 1.00 0.33 0.00 11.863 7.000 8.170 12.050 20.230

38 0.00 0.33 0.33 15.013 7.000 11.910 17.030 24.110

39 0.67 1.00 0.33 9.718 7.000 9.410 9.400 13.060

40 0.33 1.00 0.67 9.895 7.000 10.660 10.160 11.760

41 1.00 0.00 0.67 11.173 7.000 8.170 13.800 15.720

42 0.00 0.33 0.67 13.663 7.000 11.910 17.030 18.710

43 0.33 0.00 0.00 17.335 7.000 10.660 18.100 33.580

44 0.33 0.00 1.00 12.730 7.000 10.660 18.100 15.160a

45 1.00 0.00 1.00 10.338 7.000 8.170 13.800 12.380a

46 1.00 0.33 0.33 11.068 7.000 8.170 12.050 17.050

47 1.00 1.00 0.67 8.585 7.000 8.170 8.670 10.500

48 0.00 0.00 0.67 15.245 7.000 11.910 20.240 21.830
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Table 1 continued
Case Wholesaler Distributor Producer Avg RN O1RN O2RN O3RN O4RN

49 0.33 1.00 0.33 10.465 7.000 10.660 10.160 14.040

50 0.33 0.67 0.67 11.188 7.000 10.660 12.650 14.440

51 0.00 1.00 0.67 10.603 7.000 11.910 10.940 12.560

52 0.33 0.00 0.67 13.888 7.000 10.660 18.100 19.790

53 0.33 0.67 0.33 11.985 7.000 10.660 12.650 17.630

54 1.00 0.67 1.00 8.870 7.000 8.170 10.320 9.990a

55 0.67 0.67 0.33 10.980 7.000 9.410 11.470 16.040

56 1.00 0.33 1.00 9.595 7.000 8.170 12.050 11.160a

57 0.67 0.67 0.00 11.700 7.000 9.410 11.470 18.920

58 0.00 0.67 0.67 12.075 7.000 11.910 13.810 15.580

59 1.00 1.00 0.33 9.030 7.000 8.170 8.670 12.280

60 0.67 0.33 1.00 10.590 7.000 9.410 13.710 12.240a

61 1.00 1.00 0.00 9.493 7.000 8.170 8.670 14.130

62 0.00 0.00 0.00 19.113 7.000 11.910 20.240 37.300

63 0.33 1.00 0.00 11.035 7.000 10.660 10.160 16.320

64 0.67 0.00 0.33 13.468 7.000 9.400 15.800 21.670

a Case for the reverse BWE
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Fig. 2 Order rates at the producer

with no information sharing (Case 62)-the peak in Case 62
is 2.9 times higher than that in Case 17. Note that Case 18
shows a more balanced and smaller oscillation than Case 20
notwithstanding that Cases 18 and 20 have the same ISR
average.

Figure 3 displays the maximum order rate at each echelon
for the same four information-sharing modes where x-axis
represents an echelon from downstream to upstream. We see
that the maximum order rate increases very slowly in case of
the full information sharing (Case 17), whereas the slope of
the line sharply increases when the information is not shared
(Case 62). It is interesting to compare the trends between
cases 18 and 20. We observe that the maximum order rate in

0
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30

40

1 2 3 4
echelon

Maximum orders at echelon

Case 62 (0,0,0)

Case 18 (0.33, 0.67. 1)

Case 20 (0.67, 0.67, 0.67)

Case 17 (1,1,1)

Fig. 3 Maximum order rate at each echelon

Case 20 is less than that in Case 18 from the retailer to the dis-
tributor, but at the producer, the trend is reversed. Rong et al.
(2008) discuss two different types of theRBWE: pureRBWE
(the order variability at downstream echelons consistently is
larger than that at upstream echelons) and non-pure RBWE
where a downstream echelon has higher BWE than any of
its upstream echelons. In the latter, the shape of the order
pattern resembles an umbrella. We observe it in Case 20. We
also recognize that a similar RBWE has been observed in
some previous studies but not investigated (Cannella et al.
2015; Cannella and Ciancimino 2010; Mushara and Chan
2012).
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Impact of ISR on BWE

Wefirst investigate the overall impact of ISR onBWE at each
echelon using the data in Table 1. Figure 4 displays the main
effect, the average BWE at each echelon, against ISR. It is
apparent that the average BWE decreases as ISR increases at
all echelons, confirming what Hussain et al. (2012) demon-
strate. Further, it also shows that the upstream echelons have
more benefit from the higher levels of ISR because BWE at
higher echelons decreases faster at higher ISR levels. This
observation indicates that sharing more CDF reduces BWE
for all echelons, and the benefit increases at upstream eche-
lons where higher BWE is observed.

ISR’s at downstreamechelons also affectBWEat upstream
echelons because BWE propagates from downstream to
upstream through the order quantity at each echelon. Thus,
if we quantify the impact of ISR’s at downstream echelons
on the upstream BWE, it can provide more insights on SCC.
We use the regression andANOVA approaches. Table 2 sum-
marizes the result for the BWE at the echelon of wholesaler
using the data in Table 1. The BWE observed at the whole-
saler is propagated from the retailer. It is directly affected
by its own ISR and may be indirectly affected by ISR’s at

its upstream echelons through the shipment from upstream
echelons. Thus, we include all of the ISR’s from three eche-
lons as explanatory variables for the BWE at the wholesaler.
In Table 2, the ‘variance inflation factor’ (VIF) is closer to
1.00, indicating the explanatory variables are not correlated
with each other. Note that ISR at the wholesaler, x2 j , is the
only significant factor (p-value < 0.000) among ISR’s from
all echelons. The negative coefficient of, x2 j , supports our
observation in Fig. 4 with the coefficient of determination,
R2 = 0.999. The ANOVA shows that almost all variation in
the BWE (99.995%) is explained by x2 j .

The same analysis is applied to the BWE observed at the
distributor, and its result is summarized in Table 3. The ISR’s
at wholesaler, x2 j , and distributor, x3 j , are the two significant
factors (p-value < 0.000) with R2 = 0.9652. Note that ISR
at the distributor has a higher impact on the BWE reduction
(coefficient: −7.203) than the ISR at the wholesaler (coeffi-
cient:−4.303). ANOVA shows that the majority of the BWE
variation is explained by the ISR at the distributor and the
ISR at the wholesaler (25.38%)

Table 4 summarizes the result for theBWEat the producer.
The regression analysis still has a high value of R2 = 0.8907,
and all ISR’s, x2 j , x3 j , x4 j , from all echelons are strongly sig-
nificant (p-value < 0.000). The ISR’s at upstream echelons
have a higher impact on the BWE and more significantly
contribute to the variation reduction as seen in the Sum of
Squares (SS) column.

The results from the three statistical analysis demonstrate
that BWE observed at an echelon is affected by ISR’s at the
current and its downstream echelons, and ISR at the cur-
rent echelon has the highest impact. However, we have not
observed any statistical evidence that the BWE is affected by
ISR’s at its upstreamechelons. Further, the impact diminishes
as it goes downstream. Thus, to reduce the BWE at a specific
echelon, we first need to increase the ISR at that echelon,
and then share information with an immediate downstream
echelon. The coordination priority decreases as we move
downstream.

Table 2 ANOVA and regression analysis at the wholesaler

Analysis of variance Linear regression

Source Degree of
freedom (DoF)

Sum of squares (SS) Mean square (MS) F-ratio (F) p-value Coefficient T-value p-value VIF

Regression 3 124.127 41.376 397206.06 0.000** (11.9012) 3687.74 0.000**

Whsr (x2 j ) 1 124.127 (99.995%) 124.127 1191614.70 0.000** −3.73688 −1091.61 0.000** 1.00

Distr (x3 j ) 1 0.000 0.000 2.03 0.160 0.00488 1.42 0.160 1.00

Prodr (x4 j ) 1 0.000 0.000 1.45 0.233 −0.00412 −1.20 0.233 1.00

Error 60 0.006 (0.005%) 0.000

Total 63 124.133 (100%)

The number in () is for the constant factor in the regression
R2 = 0.999, ** p-value < 0.000
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Table 3 ANOVA and regression analysis at the distributor

Analysis of variance Linear regression

Source Degree of
freedom (DoF)

Sum of squares (SS) Mean square (MS) F-ratio (F) p-value Coefficient T-value p-value VIF

Regression 3 625.762 208.587 555.40 0.000** (19.095) 98.53 0.000**

Whsr (x2 j ) 1 164.552 (25.38%) 164.552 438.14 0.000** −4.303 −20.93 0.000** 1.00

Distr (x3 j ) 1 461.208 (71.14%) 461.208 1228.04 0.000** −7.203 −35.04 0.000** 1.00

Prodr (x4 j ) 1 0.002 0.002 0.01 0.938 −0.016 −0.08 0.938 1.00

Error 60 22.534 (3.48%) 0.376

Total 63 648.296 (100%)

The number in () is for the constant factor in the regression
R2 = 0.9652, ** p-value < 0.000

Table 4 ANOVA and regression analysis at the producer

Analysis of variance Linear regression

Source Degree of
freedom (DoF)

Sum of squares (SS) Mean square (MS) F-ratio (F) p-value Coefficient T-value p-value VIF

Regression 3 2140.9 713.62 162.99 0.000** (30.177) 45.61 0.000**

Whsr (x2 j ) 1 275.1 (11.45%) 275.13 62.84 0.000** −5.564 −7.93 0.000** 1.00

Distr (x3 j ) 1 793.0 (32.99%) 793.04 181.13 0.000** −9.446 −13.46 0.000** 1.00

Prodr (x4 j ) 1 1072.7 (44.63%) 1072.67 245.00 0.000** −10.985 −15.65 0.000** 1.00

Error 60 262.7 (10.90%) 4.38

Total 63 2403.6 (100%)

The number in () is for the constant factor in the regression
R2 = 0.8907, **p-value < 0.000

Table 5 ANOVA and regression analysis for magnitude and balance

Analysis of variance Linear regression

Source Degree of
freedom (DoF)

Sum of squares (SS) Mean square (MS) F-ratio (F) p-value Coefficient T-value p-value VIF

Regression 2 2121.1 1060.57 229.09 0.000**

ISR_Std 1 119.1 (4.96%) 119.07 25.72 0.000** −8.74 −5.07 0.000** 1.00

ISR_Avg 1 2002.1 (83.30%) 2002.08 432.46 0.000** −25.99 −20.80 0.000** 1.00

Error 61 282.4 (11.75%) 4.63

Total 63 2403.6 (100%)

R2 = 0.8825, **p-value < 0.000

Magnitude and balance of information sharing

It is often useful to understand the priority between the mag-
nitude and the level of the balance of ISR’s across echelons.
Particularly, when financial or non-financial issues exist, a
decision-maker often needs to choose one over the other.
Among 64 cases in Table 1, some cases have a high variation
between echelons (highly unbalanced) while others are well
balanced. For example, cases (1.00, 1.00, 1.00) and (0.67,
0.67, 0.67) are perfectly balanced without any variation since
all ISR levels are identical while cases (1.00, 0.00, 0.00) and
(1.00, 1.00, 0.00) are highly unbalanced.

We use the BWE observed at the producer as a response
variable with the arithmetic average and the standard devi-
ation of the ISR’s across echelons as two explanatory
variables. The average and the standard deviation measure
the magnitude and the level of balance (variation) of ISR’s
across the echelons, respectively. A higher average value rep-
resents higher magnitude whereas a lower standard deviation
value implies higher ISRbalance (lower variation) among the
echelons.

Table 5 displays the result of ANOVAand regression anal-
ysis. The regression equation explains 88.25% of the total
variation in the BWE (R2 = 0.8825). The two explanatory
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factors are strongly significant (p-value< 0.000) in reducing
theBWE.Specifically, the impact of themagnitude of the ISR
(coefficient: −25.99) is around three times higher than that
of the balance level of the ISR (coefficient: −8.74). Further,
the majority (83.30%) of the BWE variation is explained by
the magnitude of ISR. Thus, improving the overall magni-
tude of ISR is more effective than improving the balance of
ISR in terms of the BWE reduction.

ISR and reverse BWE

According to Table 1, themaximumpeak of the orders occurs
either at the distributor (15 cases) or at the producer (49
cases). That is, those 15 cases represent the presence of
RBWE. The RBWE is known to arise mainly due to disrup-
tion on the supply side (Özelkan and Çakanyıldırım 2009;
Rong et al. 2008) and overweight of the parameter for the
WIP error in the SRO policy (Rong et al. 2008). Overweight-
ing the parameter for the WIP error means that 1/Twi is
very large compared to 1/T yi in the SRO policy. In our
study, the two parameter values are set to be equal (i.e.,
Twi = T yi = 2T pi ). Since no finite capacity is consid-
ered in the model, there is no disruption on the supply side.
However, we can still observe the RBWE. Thus, it indicates
that there is another RBWE causing factor.

In Table 1, each value of the ISR is used 16 times at each
echelon. Thus, we can observe 16 cases with the ISR value at
the producer being 1.00 (i.e., ISR4 = 1.00). Note that RBWE
occurs in 15 cases out of the 16 cases (‘a’ mark is used in
Table 1 for RBWE). That is, the setting of ISR4 = 1.00
works as a necessary condition for the RBWE. Case 18 in
Fig. 3 is one of those 15 RBWE cases. Case 17, (1.00, 1.00,
1.00), is an exception even with I SR4 = 1.00 due to the per-
fect information sharing and balance. Thus, very little BWE
arises in the entire supply chain. The observation of the 15
cases suggests that theRBWEoccurwhen severe information
unbalance among downstream echelons and a very high ISR
at the upstream echelon exist. The unbalanced information
at downstream echelons triggers BWE and the BWE propa-
gates to upstreamechelons.During the propagation, theBWE
significantly decreases at the uppermost echelon where the
highest level of ISR is defined, generating the RBWE phe-
nomenon.

To investigate the functional relationship between ISR’s
at different echelons and the RBWE, we apply the multiple
linear regression equations. Let ŷ3 j and ŷ4 j be the BWE esti-
mate at the distributor and the producer, respectively. Then,
Eqs. (17) and (18) represent the regression equation for BWE
at the distributor (Table 3) and the producer (Table 4) with
ISR at each echelon, xi j , as an explanatory variable, respec-
tively.

ŷ3 j = 19.095 − 4.303x2 j − 7.203x3 j with R2 = 0.9652

(17)

ŷ4 j = 30.177 − 5.567x2 j − 9.446x3 j

−10.985x4 j with R2 = 0.8907 (18)

Since the coefficients of determination in both equations are
high enough, we claim that the difference ŷ3 j − ŷ4 j can
approximately represent the actual difference of the BWE in
our study. If the difference is non-negative, the RBWE arises.
The condition, ŷ3 j − ŷ4 j ≥ 0, generates the following Eq.
(19):

1.264x2 j + 2.243x3 j + 10.985x4 j ≥ 11.082 (19)

The equation suggests that for the occurrence of the RBWE,
ISR’s should be unbalanced with ISR’s at upstream echelons
being more weighted than ISR’s at downstream echelons.
Further, the overall functional value should be larger than
the threshold value, 11.082. In fact, among all 15 cases of
the RBWE in Table 1, 14 cases satisfy Eq. (19). The only
exception is Case 29, (0.00, 0.00, 1.00), which generates
10.985, less than 11.082. In addition, note that the 49 regular
BWE cases (64 total cases less 15 RBWE cases) should not
satisfy Eq. (19). In fact, all of those except Case 17, (1.00,
1.00, 1.00), do not satisfy it. Except for these two cases, Eq.
(19) fairly well represents the functional relationship for the
occurrence of RBWE.

Implications and discussion

This study provides several meaningful implications in terms
of the SCC and collaboration.

Firstly, overall, higher ISR per echelon reduces more
BWE, aligned with the results in Hussain et al. (2012) and
Hussain and Saber (2012).

Secondly, in addition to ISR level, the regression stud-
ies show that an echelon’s position also affects BWE. When
BWE arises at an echelon, ISR at the echelon has the highest
impact on the BWE, and its impact reduces at downstream
echelons.Our study shows that unequal ISR’sweights among
echelons may introduce RBWE when a certain condition
or relationship is met. That is, an unbalanced ISR may
cause RBWE, and by recognizing this relationship, decision-
makers may more effectively control and manage the SCC
with information sharing. For example, when RBWE occurs,
the echelon with the highest BWE should be provided with
the highest level of information sharing with the retailer.

Thirdly, the study confirms that both higher magnitude
and higher balance of the ISR across echelons contribute to
the reduction of BWE. The regression analysis shows that the
former is three times more effective than the latter in terms
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of the BWE reduction. Decision-makers should be aware of
this priority.

Lastly, our study shows that although ISR at each echelon
is a good indicator to predict and estimate the BWE/RBWE,
its capability to explain BWE reduces as the number of eche-
lons increases. For example, the coefficient of determination
of the regression analysis (R2) reduces from 99 to 89.07%
through 96.52% as the number of echelons increases from
two to four through three, respectively, indicating other fac-
tors may also affect BWE as the complexity of the supply
chain increases.

Conclusions

In our study, the effect of sharing the customer demand fore-
cast (CDF) information on the bullwhip effect (BWE) is
investigated using the multi-layered supply chain simulation
model. The four-echelon supply chain model consisting of a
retailer, a wholesaler, a distributor, and a producer is devel-
oped with the smoothing replacement order (SRO) policy
at each echelon. The retailer forecasts its demand with the
actual customer demand while the other echelons estimate
their demand with their own simple exponential smoothing
forecasting method and/or the CDF information from the
retailer. The information-sharing rate (ISR) at each echelon
represents the degree of the CDF information shared with
the retailer. We evaluate four levels of ISR at each echelon
and measure BWE using ‘shock lens’ perspective. After the
full factorial design and the corresponding experiments, the
regression and analysis of variance (ANOVA) approaches are
applied.

The linear regression analysis shows that improving over-
all ISR reduces BWE. In addition, the impact of BWE is
different from echelon to echelon. When BWE is observed,
ISR at an echelon where BWE is measured has the high-
est impact and the impact of the ISR decreases as it goes
downstream. Both the magnitude and balance of ISR among
echelons affect BWE reduction, and the magnitude has a
greater impact than the balance. We further show that highly
unbalanced ISR’s across echelons where the highest level
of ISR is observed at the uppermost echelon cause the
reverse bullwhip effect (RBWE) when a certain functional
relationship is met. Lastly, we demonstrate the functional
relationship between RBWE and ISR’s using the regression
analysis. We claim that the results from the study provide
useful implications and insights for better coordination and
collaboration in the supply chain.

The current study presents a good opportunity for future
research. Current study focuses on the linear structure of
the supply chain where one member of each echelon works
independently and the information flow is one-directional.
Thus, a very interesting research opportunity arises from the

extension of our work to a more complex network including
a convergent and assembly structure.
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ported by the National Institute of Food and Agriculture, U.S. Depart-
ment of Agriculture, under Project Number SCX 3130315.

Appendix A

BWE Bullwhip effect
CDF Customer demand forecast
ISR Information sharing rate
RBWE Reverse bullwhip effect
SCC Supply chain coordination
SRO Smoothing replenishment order
WIP Work-in-progress
ANOVA Analysis of variance
VIF Variance inflation factor
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