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Abstract This paper deals with the development of a dis-
tributed multi-agent system (DMAS) for scheduling and
controlling Robotic Flexible Assembly Cells (RFAC). In
the proposed system, an approach for solving one of the
most challenging decisional problems in RFAC is proposed
and implemented. This problem is related to the products
operations scheduling which requires their allocation and
sequencing on the robots, while satisfying products and
robots constraints under makespan minimization. The pro-
posedDMAS addresses this challenge by using a cooperative
approach supported by three kinds of autonomous control
agents: supervisory agent, local agents, and remote agents.
These agents interact by a negotiation protocol based on
common dispatching rules for coordinating their individual
decisions, satisfying their local objective and providing an
optimized global solution.Moreover, because of the dynamic
nature of the assembly systems, it is imperative to con-
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sider external disturbances on production scheduling and
to solve the related issues. Consequently, DMAS has the
ability to respond and manage some dynamic events that
may occur in the cells such as unexpected robot break-
down or dynamic products arrivals. Computational results
on benchmarks show the effectiveness and the robustness of
the proposed system.

Keywords Distributed multi-agent systems · Scheduling
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Introduction

Nowadays, with increasing global competition and respond-
ing to unpredictable demands, companies are forced to
develop Flexible Manufacturing Systems (FMS) while ben-
efiting from their ability to quickly minimize the required
changes to produce new products, to support diversity of
customers’ needs and their ability to deal with to unforeseen
disruptive events. The most widespread class in the manu-
facturing industry is the Flexible Assembly Systems (FAS). In
these systems, flexible assembly robots are used to perform
assembly operations on families of products (Tang andWong
2005). FAS are one of the most important areas in today’s
industry; they offer a more consistent product quality, better
repeatability, higher speed, consistent throughput, and better
control. Theuse of industrial robots related to integratedplan-
ning and control in intelligent systems, allows FAS to accom-
modate the constant changes of their products and varying
production volumes. Robots in FAS are able to quickly
change their tools to perform awide variety of repetitive tasks
which allows these systems to change production quickly
without having to reprogram anything or change equipment.
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FAS can be divided into two main types (Sawik 1999):
Robotic Assembly Line (RAL) andRobotic Flexible Assembly
Cell (RFAC). RAL is a flow type system; it consists of a serie
of special-purpose robotic assembly stations connected by
an automated material handling system. However, RFAC is
a highly modern system structured with industrial robots,
assembly stations and an automated material handling; all
are monitored by computer numerical control (Sawik 1999;
Abd et al. 2014). In this paper, we are interested in RFAC,
due to the advantages that offer over RFAL such as the ability
to simultaneouslymount a variety of products using the same
resources, etc.

In RFAC where various types of products are assembled
concurrently, the use of robots leads to increase produc-
tivity and reconfiguration capacity with minimal cost and
robustness (Abd et al. 2014). The decision problems in FAS
are classified as design, planning, scheduling, and control
(Sawik 1999). The main focus of this paper is the scheduling
and control problems in which an efficient FAS scheduling
and control canmanage the robots’ cooperation/coordination
and improve their performances. The scheduling problem
consists of finding the best way to use the cell robots as
effectively as possible to allocate and sequence all the prod-
ucts. However, the objective of the controller is to monitor
the overall system and taking the necessary corrective actions
when dynamic disturbances occur.

There are several types of scheduling problems in the
literature that differ according to the definition of their
organization and their range. Because of their complexity,
meta-heuristic algorithms are the most approximate methods
used in the literature. They are able to solve large-scale NP-
hard problems in less computational time compared to exact
algorithms while arriving at high-quality near optimal solu-
tions (Hosseini and Al Khaled 2014). These algorithms can
be regrouped on two classes, (i) Algorithms based on neigh-
borhood search that start from an initial solution and then the
algorithm tries to improve it by choosing a new solution in
the neighborhood, such as Tabu Search (TS) (González et al.
2013) and Adaptive Large Neighborhood Search (ALNS)
(Vadlamani and Hosseini 2014). (ii) Algorithms based on
global search which progressively improve a set of solu-
tions (i.e. population) generated randomly, in general. Most
of them are based on searching for many solutions by sim-
ple simultaneous calculation and then selecting the best one;
such as Genetic Algorithm (GA) (Lu et al. 2015), Imperial-
ist Competitive Algorithm (ICA) (Hosseini et al. 2014) and
Particle Swarm Optimization (PSO) (AitZai et al. 2016).

The challenges on decision problems in FAS led
researchers to develop control architectures composed of
many independent behaviours that attempt to provide integral
solutions for such problems. These systems can be classified
into centralized, decentralized, and distributed control archi-
tectures. Recently, a great deal of effort has been spent on

developing distributed control architecture due their recon-
figurability, flexibility and to their capacity of high adaptation
to requirements of modern manufacturing systems. In this
category, researchers have identified the potential of Dis-
tributed Artificial Intelligence (DAI) in solving complex
problem. In DAI,multi-agent systems (MAS) have received a
considerable attention due to their autonomy, flexibility, fault
tolerance, distributed nature and their aptitude to negotiate
for conflicts problem resolution. These distributed systems
can exchange information efficiently and their entities coop-
erate effectively in solving complexes problems.

In fact, the next generation of advanced manufactur-
ing systems needs to incorporate more distributed control,
machine (robots) and product flexibility (Ennigrou and
Ghdira 2008). In this context, the MAS advantageous fea-
tures in terms of decentralization of decisions, their ability
to cope with dynamic changes (i.e. ability to handle dynamic
nature of the manufacturing environments), modularity and
also their potential to represent and run cooperative and dis-
tributed applications allow manufacturing organizations to
overcome the needs and challenges of future industrial pro-
duction systems.

MAS have been widely applied to solve scheduling prob-
lemsbymany researchers in the literature. For suchproblems,
the multi-agent based approaches mainly include either (i)
heuristic algorithm that uses some heuristic rules to negoti-
ate with each other for solving the problems (Aydin 2012),
or (ii) meta-heuristic algorithm that uses various strate-
gies to iteratively search the optimal solution. Wang et al.
(2003) proposed a multi-agent and distributed ruler-based
approach to handle production scheduling in amachine shop.
Kouider and Bouzouia (2012) proposed a distributed multi-
agent scheduling system based on cooperative approach to
solve static and dynamic scheduling problems. Maoudj et
al. (2015) proposed a multi-agent architecture in which an
approach for task allocation and scheduling for multi-robot
systems is implemented. In this architecture, the agents nego-
tiate and cooperate to allocate tasks to robots, and then
schedule them on the robots using priority rules. Erol et
al. (2012) developed a multi-agent based on-line system for
scheduling machines and vehicles in a manufacturing sys-
tem which operates under a decentralized control. While
they did not take into account the machine flexibility, sat-
isfactory results are obtained in dynamic manufacturing
environments. An agent-based dynamic scheduling system
is proposed by Sahin et al. (2015). Their system is based
on a market oriented programming approach which makes
use of negotiation as a problem solving strategy. The sys-
tem is proposed for scheduling of flexible machine groups
and material handling system working under a manufactur-
ing dynamic environment. A multi-agent scheduling system
for solving flexible job shop scheduling problem is presented
by Wei and Dongmei (2012). Their system is inspired by the
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structure and negotiation strategies of the human immune
system. Nouiri et al. (2015) developed two effective and dis-
tributed multi-agent PSO algorithms to solve the flexible job
shop scheduling problem.

The cooperation between assembly robots in RFAS has
been studied in the literature from multiple points of view.
From the scheduling point of view, the challenge is always
to have the appropriate algorithm capable for better solving
this problem. In this context, few studies have been done
on scheduling problems in RFAC; they can be categorized
into three groups (Abd et al. 2014, 2010, 2013c): the first
group applies heuristic methods (Lin et al. 1995; Abd et al.
2013a, b), the second uses the expert systems (Van Brussel
et al. 1990), and the third investigates the simulation as an
approach to solve the problem (Glibert et al. 1990).

This paper presents our ongoing efforts toward the devel-
opment of a Distributed multi-agent system (DMAS) for
RFAC control that allows entities to interact and cooper-
ate with each other, to reliably and efficiently accomplish
tasks. The overall behaviour of the proposed DMAS emerges
through dynamic interactions of its agents behaviours, which
provides RFAC control with important characteristics such
as good scheduling, high robustness, quick response, exten-
sibility and good expandability. DMAS consists of three
kinds of autonomous and cooperative control agents: Super-
visory agent, Local agents, and Remote agents. In dealing
with scheduling problem, the proposed system distributes the
computational tasks among its agents, where a local objec-
tive is defined for each agent (i) cost time minimization in
the allocation step and (ii) idle time minimization in the
sequencing step. For solving the problem, all agents cooper-
ate and interact to satisfy their own local objective in order
to generate a solution which optimizes the global objective
(Makespan).

In multi-agent heuristic based algorithms, it is difficult
to guarantee the quality of solution; whereas, multi-agent
meta-heuristic algorithms are non-deterministic and need
to spend more time than the heuristic algorithms to find
out a high-quality solution (Xiong and Fu 2015). There-
fore, these approaches lack of good trade-off between the
convergence speed and solution quality. However, our pro-
posed multi-agent decision-making approach is guided by
distributed algorithms based on dispatching rules. Conse-
quently, our approach is deterministic and requires low
computational time to generate good solutions. Moreover,
because of the dynamic nature of the current RFAC envi-
ronments, the proposed control system is able to manage
some dynamic events that can occur during the production
process (urgent client orders arrivals, etc.) and to guarantee
fault-tolerance to unexpected robot breakdowns. This abil-
ity allows the system to continue working while absorbing
these disturbing events (guaranteeing thus a minimal ser-
vice).

The remainder of this paper is structured as follows.
Second section describes the distributed multi-agent sys-
tem proposed for scheduling and controlling RFAC. Third
section presents the proposed mathematical model of the
studied problem. Fourth section deals with the interaction
process during the problem resolution; this section gives also
an illustrative example. Fifth section validates the proposed
approach via some benchmark instances of the literature.
Finally, last section concludes the paper and gives future
works.

The proposed scheduling and control system

Generally, modern RFAC consists of flexible conveyor sys-
tem as transportation device, multiple industrial robots
controlled by embedded-computers, and integrates Radio
Frequency Identification (RFID) system which enables real-
time information about products in the cells. The overall
cell is monitored by of a set of interconnected computers
and PLCs that allow management of the cell orders. There-
fore, to make our DMAS generic and easily adapted to any
RFAC by implementing only some new required modules
(used in other flexible manufacturing systems integrating
machines and robots), the proposed DMAS is distributed
on two sides as described in Fig. 1: Decisional side (Plan-
ning level) and Physical side (Operative level), in which
three kinds of autonomous agents (software applications) are
implemented: Supervisory agent (SA), Local Agent (LA) and
Remote Agent (RA). The last two kinds of agents are asso-
ciated for each robot (resp. machine) in the cell. LAs make
all decisions in planning and scheduling stages, to generate
the scheduled local plans (sequenced assembly operations)
ready for sending to their corresponding RA (for execution).
RA is implemented on the robot control station (embedded-
computer); it executes the scheduled local plan. All the
agents are organized in a distributedmanner and cooperate by
exchanging messages to manage their interactions (Maoudj
et al. 2015, 2016).

Decisional side (planning level)

InRFAC, each robot is controlled by an embedded-computer,
the overall cell is monitored by a supervision station (res.
by many interconnected computers) connected to robots
embedded-computers, the conveyor movement and RFID
reader are controlled by PLCs. In DMAS, the decisional side
gathers SA and LAs; they are installed on the supervision sta-
tion (resp. the interconnected computers). These agents are
responsible of global cell configuration, planning, scheduling
and control. They collect parts and robots states and provides
real-time monitoring of the cell. As we are only interested
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Fig. 1 The proposed DMAS for RFAC scheduling and control

by scheduling problem in RFAC, we focus on the agents role
in the problem solving.

Supervisory agent (SA)

This agent allows operators to manage and interact with
the overall DMAS. SA is installed on the supervision sta-
tion, it receives information about the initial cell parameters
and products defined by a sequence of assembly operations.
While implementing the necessary modules, SA can also
connect to the PLCs that control the conveyor and the RFID
system to control them and exchange data related to assembly
part with LAs. In the scheduling process, SA does not take
part in the decision-making phase for operations allocation;
its main role is to dispatch operations onto LAs, which are
in charge to perform such a decision.

Local agents (LAs)

LAs contain all needed modules to cooperate between them
for operations allocation and local plans sequencing. More-
over, each LA obtains feedbacks from its corresponding RA

(Failure notification, information sensors, information about
operation execution progress, reports/ratios, etc.) and dis-
plays them on its user interface.

Physical side (operative level)

This side contains the physical robots system (i.e. the indus-
trial robots cell). Each robot is controlled by a reactive RA
implemented on its embedded computer. The main role of
RA consists of carrying out the scheduled operations plans
sent by its corresponding LA. In parallel, to obtain the robots
state in real-time, RA sends all robot’s sensors information
to LA during the execution process.

The scheduling problem in robotic flexible
assembly cell

Let’s consider a RFAC composed ofm industrial robots with
n products to be realized. The considered scheduling prob-
lem is described as follows. There are a set of n independent
products (jobs) J = { j1, j2, ..., jn}, to be processed on m
industrial robots R = {R1, R2, ..., Rm}. Each job ji consists
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of an ordered set of ni non preemptive assembly opera-
tions {Oi1, Oi2, ..., Oi,ni }. Each assembly operation Oi j ( j
th operation of job i) must be processed on one and only
one robot among the set of robots R. In addition, at a given
time, a robot can execute at most one operation. The aim
is to find the best robots assignment to assembly operations
and sequence them on each robot, while satisfying the oper-
ations precedence constraints and the disjunctive constraints
on each robot under the minimization of the makespanCmax .
This corresponds to the completion time of the last sched-
uled product (i.e. the maximal completion time of products),
Cmax = max

i=1...n
Ci where Ci represents the completion time

of product ji .
This problem is mathematically modeled by the Mixed

Integer Linear Program (MILP) proposed bellow. The fol-
lowing notations describe indices, parameters and decision
variables used in the developed model.

Parameters and indices

n Number of products (jobs).
m Number of industrial robots.
ni Total number of assembly operations in job i.
i, k Indices of jobs i, k ∈ {1, . . . , n}.
j, l Indices of operation order in a job j, l ∈ {1, . . . , ni }.
r Index of robots r ∈ {1, . . . ,m}.
pi j,k Processing time of the j th operation of job i on robot

k.
M A large positive number.
Oi, j The j th operation of job i.

Decision variables

ti j Start time of the j th operation of job i.
Cmax Makespan of a schedule.

Bi j,kl,r

=
{
1, if operationOi j is performed beforeOkl on robot r,
0, otherwise.

Ai j,r =
{
1, if operationOi j is assigned to robot r,
0, otherwise.

The MILP is given as follows:
The objective function (1) consists of the makespan min-

imization.

Minimize{Cmax } (1)

subject to:
Constraints (2) impose for the last operation of each job to
be less than or equal to the makespan:

tini + Aini ,r · pini ,r ≤ Cmax

∀i ∈ {1, . . . , n},∀r ∈ {1, . . . ,m} (2)

Constraints (3) ensure that the precedence relationships
between the operations of a job are not violated, i.e. oper-
ation Oi j is not started before operation Oi, j−1 has been
completed.

ti j + Ai j,r · pi j,r ≤ ti j+1

∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . , ni − 1}, ∀r ∈ {1, . . . ,m}
(3)

Constraints (4) make sure that operation Oi j is assigned to
only one robot.

m∑
r=1

Ai j,r = 1

∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . , ni }, ∀r ∈ {1, . . . ,m}
(4)

Constraints (5) and (6) enforce each robot to process at most
one operation at a time.

ti j + Ai j,r · pi j,r + M · (Bi j,kl,r − 1) ≤ tkl

∀i, k ∈ {1, . . . , n},∀ j, l ∈ {1, .., ni }, ∀r ∈ {1, . . . ,m}
(5)

m∑
r=1

(Bi j,kl,r + Bkl,i j,r − Ai j,r ) = 0

∀i, k ∈ {1, . . . , n},∀ j, l ∈ {1, . . . , ni }, ∀r ∈ {1, . . . ,m}
(6)

Finally, constraint (7) require all t variables to be positive
and constraints (8) require all B and A variables to be binary.

ti j ≥ 0 ∀i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , ni } (7)

Bi j,kl,r ∈ {0, 1}, Ai j,kl,r ∈ {0, 1}
∀i, k ∈ {1, .., n}, ∀ j, l ∈ {1, . . . , ni },∀r ∈ {1, . . . ,m}

(8)

The proposed scheduling approach

The problem described above can be divided into two closely
related subproblems (i) allocating each assembly operation
to a robot, and (ii) sequencing the assigned operations on
each robot while satisfying the products constraints and min-
imizing the makespan. This problem can be seen as aFlexible
Job Shop Scheduling Problem (FJSSP) (Maoudj et al. 2016;
Park and Wang 2009) which is known to be NP-hard.

Because of the high complexity of this problem, its opti-
mal resolution requires a very high computation time. Hence,
the need to use heuristics or meta-heuristics (GA, PSO, TS,
etc.) arises to achieve an approximate optimal solution. Most
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of these approaches are non-deterministic, centralized and
require a huge computational time when the problem size
increases. Consequently, to overcome these problems, the
proposed DMAS approach only considers dispatching rules;
this makes our approach deterministic and requires low com-
putational time to generate the solutions.

The proposed system distributes the computational tasks
among its agents. Each agent only completes a part of
the computational tasks with lack of a full global view.
For solving the problem, all agents interact and collabo-
rate to satisfy both local and global objectives. The inter-
action in the proposed DMAS consists of the dynamic
relations between the LAs through an interchanged set of
actions (local information, exchange of messages, etc.).
This setting of dynamic relationship between the LAs of
the system led to a convergence toward a good solu-
tion.

Owing to the complexity of the problem and in order to
make proper decisions resulting from interactions between
the agents, two rules (GBPT and SBPT) are used in the allo-
cation phase and combined with two other well-known rules
(SRT and SPT) to sequence the allocated operations:

– Greatest Best Processing Time (GBPT) it selects opera-
tion with maximum BPT.

– Smallest Best Processing Time (SBPT) it selects opera-
tion with minimum BPT.

– Smallest Processing Time (SPT) it selects operation with
minimum processing time.

– Smallest Release Time (SRT) it selects operation with
minimum release time.

where,Best ProcessingTime (BPT) is the smallest processing
time of the operation among their several processing times on
the cell robots (as each assembly operation has the possibility
to be processed by more than one robot).

Each agent has its own local objective in each resolu-
tion step (allocation and sequencing); each agent bases its
decisions on the rules described above to minimize its local
objective. Finally, the global solution is the result of the
interactions between all the agents. The defined agents local
objective is summarized as follows:

– Cost time minimization in the allocation step to allocate
an operation, the agent having the minimal cost holds the
proposed operation. Let us consider Costi j,r be the cost
of operation Oi j on robot r calculated by Eq. (9):

Costi j,r = a· (ti j,r + Pi j,r ) + b·
(operations number in the robot local plan)

(9)

where a and b are two constant weights fixed by using
preliminary tests.

– Minimization of robot idle time in the sequencing step
let’s consider ri (resp. ci ) be the release time (resp. com-
pletion time) of the sequenced operation in the position i
on a robot local plan. The idle time (Ii ) of robot having an
operation scheduled in position i is depicted in Eq. (10):

Ii =
{
ri − ci−1, if i > 1
ri , if i = 1

(10)

Interaction mechanism

The proposed distributed resolution method for schedul-
ing problem is summarized in Fig. 2. Three distributed
algorithms (Alg1, Alg2 and Alg3) are used in the inter-
action process in both allocation and sequencing steps.
For this propose, SA receives jobs (products) data. After
the system configuration, SA sends them to all concerned
agents. Then, it builds Priority Matrix (PM) in which the
operations are classified according to their priority level
(to define which operation SA selects to dispatch it to
LAs):

In PM, SA adds a priority level for each operation,
given by its assigned row in PM: Operations of row 1 have
priority 1, operations of row 2 have priority 2, until the
last row. For example, let h = MAXni (i ∈ {1, . . . , n}),
J1 = {O11, O12, . . . , O1n1} be Job1 that consists of a
predetermined sequence of n1 assembly operations to be con-
secutively processed. SA adds O11 in level L1 (row 1), O12

in level L2 (row 2)...O1n1 in level Ln1 (row n1), and so on
for the other assembly operations of jobs J2...Jn .

PM =
⎡
⎢⎣
O11 · · · On1

: . . . :
O1h · · · Onh

⎤
⎥⎦

In eachpriority level (each row inPM), the level operations
are sequenced by using Alg1 as detailed by Fig. 3. Then, SA
uses the obtained order to dispatch these operations one by
one to LAs. In the decision-making process, SA considers
the following rules in Algo1:

1. In the first level (L1), operations are ordered by using
GBPT rule. We point out that the operation processing
time is unknown, SA requests this time form LAs by
exchanging messages.

2. For each level L j (1 < j < h), if the number of products
is more than 10, operations are ordered by using GBPT;
otherwise, they are ordered by using SRT.

3. In GBPT rule, if GBPT values for some operations are
equal, the operation that can be executed by only one
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Fig. 2 The proposed distributed resolution method for scheduling problem

robot has the priority. In case of another equality of
GBPT, the operation having greatest number of succes-
sors that should be executed by one and only one robot
will get the priority. If there is another equality of this
last number, the order will be kept as it is.

4. In SRT rule, if more than one operation has the same
SRT value, the operations are ordered by using SBPT
rule. If there is an equality of SBPT, the operation that
is executed by only one robot will get the priority. If an
equality exists again, the operation having the greatest
number of successors that should be executed by one and
only one robot will get the priority. If the equality always
persists, the order will be kept as it was.

The dispatching process of Alg1 is summarized below:

Step 1

– h = max ni , number of the levels in PM
– For (all operations in level L1), release times=0
– Order this level using GBPT rule
– j = 1
– Goto Step 2

Step 2

– Dispatch operations of level L j

– j = j + 1
– Goto Step 3

Step 3

If ( j ≤ h) then

– Wait for a message, which contains release times of oper-
ations in level L j

– Goto Step 5

Else (i.e. all PM operations are allocated) Goto Step 6

Step 4

– Order operations of L j level by using SRT or GBPT rule
– Goto Step 2

Step 5

– Update the release time of the concerned operation in
level L j

– If (all release times are updated), Goto Step 4
– Else, Goto Step 3

Step 6

– Send amessage to informLAs that all the operations have
been allocated to robots.

– End

The decision-making process and the behaviour of each
LAduring the operations allocation are described in the func-
tional diagram of Fig. 4 (Alg2):
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Fig. 3 Functional diagram of SA in the resolution process (Alg1)

– If sender is SA, three possible cases are distinguished:

1. When the received message is about system configu-
ration LA updates its database.

2. When the received message is about an operation
allocation If SA requests its processing time, LA
responds by giving the requested information. Oth-
erwise, LA evaluates its local cost to execute this
operation and sends it within other useful informa-
tion (allocated operations number, idle time on its
local plan) to the other LAs.

3. If themessage is about the ending of planning process
(all operations are allocated and sequenced) in this
case, LA sends the final scheduled plan to SA.

– If sender is LA, two possible cases are distinguished:

1. When the received message is about a cost proposi-
tion for an allocated operation The agent checks if

all propositions (of its acquaintances) are received; in
such a case, it compares them with its local cost. The
agent that proposed the smallest costwill get the oper-
ation. If two agents or more give the same cost, the
agent having the smallest number of allocated opera-
tions in its local plan will get the operation. If there is
another equality of allocated operations number, the
agent having the greatest idle time will get the oper-
ation. Afterwards, the agent that holds the operation
adds it to its local plan and activates the sequencing
process (Alg 3). Finally, LA sends its decision to SA
informing it that the operation is allocated.

2. When the received message is about the release time
of an operation The agent re-sequences its local plan
only if this operation is assigned to the current agent
with a modified release time. Otherwise, the agent
ignores the message.
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Fig. 4 Functional diagram of LA in the resolution process

The sequencing process is detailed in the flowchart of
Fig. 5 (Alg3). We point out that in LAs local plan the
operations have the same levels as in PM. For each level,
operations with known release times are sequenced using
SRT rule. If there is equality of the release times (for exam-
ple, in level L1 all operations release times are equal to zero),
operations are sequenced using SPT rule. If there is also
an equality of SPT, the first allocated will have the prior-
ity.

The sequencing algorithm (Alg3) executed by LAs to
sequence m level in their local plan is summarizes
below:

Step 1

– j = 1
– b=number of levels in the local plan (b ∈ {1, . . . , h})
– Goto Step 4

Step 2

– Update the release time of the concerned operation in
level L j

– If (all release times are updated) then Goto Step 4
– Else, Goto Step 3

Step 3

If ( j ≤ b) then

– If (all release times of L j operations are updated) then
Goto Step 4

– Else, wait for a message, which contains release times of
operations in L j

– Goto Step 2

Else (all operations of LA local plan are scheduled) Go to
Step 5
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Fig. 5 Scheduling algorithm for LAs

Step 4

– Sequence the level L j operations by using SRT and SPT
rules

– Send completion times of the scheduled operations to SA
and all LAs, to inform them about the release times of
their successors in the next level

– j = j + 1
– Goto Step 3

Step 5

– End.

Rescheduling strategy in case of dynamic disturbances

In RFAC, some dynamic disturbances may occur during
the assembly process, such as unexpected robots breakdown
or new jobs (products) arrival. To provide a reliable fault-
tolerant control system, disturbances mustn’t completely
block the global RFAC.

A good scheduling algorithm not only allows obtain-
ing high-quality scheduling solutions, but can flexibly and

quickly respond to dynamic disturbances during production
(assembly) process. However, many agent-based approaches
of the literature lack of these two characteristics in the same
time. Fortunately, our DMAS offers both of these properties;
the agents reaction to these disturbing events are detailed
below:

1. Case of robot breakdown RA of the broken robot (i.e.
reactive agent implemented on robot embedded com-
puter) informs its corresponding LA about this problem.
Subsequently, LA informs all the other LAs about its
unavailability, and rejects all its assembly operations.
Next, LA sends its operations to SA. Afterwards, the
other LAs send their operations that are not executed yet
to SA.
After that, SA removes the executed (resp. in progress)
operations from the last ordered levels (in PM) that are
saved in its database. Finally, the same interaction pro-
cess explained previously is repeated in order to reassign
and re-sequence the operations of the new PM.

2. Case of new job arrival SA reacts to this disturbance by
informing all LAs about the new job arrival; after that,
each LA responds by sending information about its un-
executed operations. Afterwards, SA constructs a new
PM in which it adds the new job, then orders the PM
levels as explained above. Finally, the same procedures
are repeated to allocate and sequence all operations.

Illustrative example

In this subsection, we present an example to clarify the
interactions between the agents to solve static and dynamic
scheduling problems. For both cases, we consider an exam-
ple of five (05) robots working in a RFAC to carry out four
(04) products (jobs). Each product consists of three assem-
bly operations. In addition, each robot is able to carry out
all these operations. The problem presented in Table 1 is
deduced from Kacem 4× 5 FJSSP benchmark (Kacem et al.
2002), which is an instance of 04 jobs and 05 machines.

Scheduling strategy in static cases

We assign to each robot a local agent (i.e. LA1, LA2,
LA3, LA4 and LA5). SA starts by building PM as detailed
previously:

PM =
⎡
⎣ O11(BPTR4 = 1) O21(BPTR1 = 2) O31(BPTR3 = 6) O41(BPTR4 = 1)

O12(BPTR2 = 4) O22(BPTR1,R5 = 5) O32(BPTR2 = 1) O42(BPTR1 = 1)
O13(BPTR1,R4 = 4) O23(BPTR1,R3 = 4) O33(BPTR1,R4 = 2) O43(BPTR2,R4 = 1)

⎤
⎦
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Table 1 Operations processing
times on each robot (deduced
from 4 × 5 Kacem instance)

J1 J2 J3 J4

O11 O12 O13 O21 O22 O23 O31 O32 O33 O41 O42 O43

R1 2 5 4 2 5 4 9 6 2 4 1 5

R2 5 4 5 5 6 5 8 1 5 5 5 1

R3 4 5 5 4 9 4 6 2 4 2 2 2

R4 1 7 4 7 8 54 7 5 2 1 4 1

R5 2 5 5 8 5 5 9 4 4 5 12 2

Table 2 Scheduled local plan of the LAs after each operation allocation

Ordered L1: O31 O21 O11 O41 Ordered L2: O42 O12 O22 O32 Ordered L3: O43 O13 O33 O23

LA3 : SLP = {O31} LA1 : SLP = {O21 >> O42} LA4 : SLP = {O41 >> O11 >> O43}
LA1 : SLP = {O21} LA2 : SLP = {O12} LA1 : SLP = {O21 >> O42 >> O13}
LA4 : SLP = {O11} LA5 : SLP = {O22} LA4 : SLP = {O41 >> O11 >> O43 >> O33}
LA4 : SLP = {O41 >> O11} LA2 : SLP = {O12 >> O32} LA3 : SLP = {O31 >> O23}

Fig. 6 Gantt diagram of the
obtained solution

where BPTRi means that the Best Processing Time (BPT ) is
given by L Ai on robot Ri , i ∈ {1, . . . , 5}.

To sequence PM levels, SA orders the levels by using the
proposed rules then dispatches the levels operations one by
one as detailed above. For the first level L1, the ordered given
by the proposed rules is {O31 O21 O11 O41}.

In the following, we note SLP as a Scheduled Local Plan
of an agent. Table 2 summarizes all the ordered levels (L1,
L2 and L3). For each operation allocation, the concerned LA
sequences its local plan then sends the completion times of all
operations to the other LAs (symbol>> denotes succession
between operations on the agents SLP).

The final solution is represented by Fig. 6. The obtained
solution has a makespan of 11; this represents the optimal
solution.

Rescheduling strategy in dynamic cases

As a second test, we consider the occurrence of some
unexpected disturbances during the production process. Con-
sequently, to show the robustness of the DMAS and how it
reacts and manages these disturbing events, two cases are
considered:

– Robot breakdown We assume that during the execution
process, robot R4 (i.e. LA4) breaks down at time T = 1s.
Table 3 summarizes the state of the robotic cell at this
time. After the rescheduling process, the new solution
obtained is depicted by Fig. 7 (left) in form of Gantt
diagram.
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Table 3 The new information (state of the robots) at T=1s

Gantt diagram of Fig. 6 shows
the state of operation 1

J1 Starting on robot R4

J2 Under processing on robot R1

J3 Under processing on robot R3

J4 Completed on robot R4

– A new job arrives Another disturbance event is consid-
ered; we assume that at T = 2 s a new job J5 arrives (it
is a customer order). Table 4 shows the processing time
of the assembly operations on the cell robots.

SA reacts to this disturbance by informing all LAs about
the new job arrival; after that, each LA responds by send-
ing information about its un-executed assembly operations.
Afterwards, SA constructs a new PM in which it adds the
new job (J5), then orders the PM levels as explained above.
Finally, the same procedures are repeated to allocate and
sequence all operations. The obtained rescheduled plan is
given in Fig. 7 (right).

It can be seen that the reactivity of the proposed DMAS
to cell disturbances is high; the unavailability (failure) of
an agent (i.e. a robot) or the arrival of new job did not
affect/block the other agents/overall system.

Computational validation results

DMAS has been implemented using C# which is one of
the powerful object-oriented programming languages. The
agents are implemented as autonomous software applications
which interact through exchanging of messages via TCP/IP
protocol. The choice of C# is mainly based on its features
related to events and delegations.

Table 4 The new job operations
processing times on the robots

R1 R2 R3 R4 R5

O51 1 2 3 2 3

O52 3 1 2 2 1

O53 2 2 1 1 4

To test the performances and effectiveness of the proposed
scheduling approach, someFJSSP benchmark instances have
been considered. For each machine of a benchmark prob-
lem, an autonomous LA is associated which interacts with
its acquaintances through messages exchange. In order to
make comparisons with literature works, we enforce each
robotic agent (LA) to evaluate the processing time of each of
its assembly operations as given in the tested benchmark.

The weights a and b used in Eq. (9) are fixed empirically
by using preliminary experiments to 0.9 and 0.1, respectively.
In addition, for all the computational experiments, the agents
run on a host PCwith 1.90GHzCore i3 CPU and 4GBRAM.

The proposed approach solutions are compared in terms
of solution quality by using two sets of FJSSP (Fattahi and
Brandimarte benchmarks). The solutions are also compared
in terms of solution quality and computational time by using
Kacem benchmarks:

– Ten instances of Fattahi benchmarks (Fattahi et al. 2007)
SFJS1–SFJS10.

– Ten instances of Brandimarte benchmarks (Brandimarte
1993) MK01–MK10.

– Four instances ofKacembenchmarks (Kacemet al. 2002)
(4 × 5), (8 × 8), (10 × 10), (15 × 10).

For performances evaluation, our approach is compared
with: (i) centralized approaches byusingFattahi benchmarks,
(ii) distributed approaches by using Brandimarte bench-
marks, and (iii) with both types by usingKacem benchmarks.

Fig. 7 Gantt diagram of the new solutions (left) when a robot breaks at T = 1s, (right) when a new job arrives at T = 2 s
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Table 5 Computational results of DMAS on Fattahi instances compared with ITS and ISA

Instance (n × m) LB ITS ISA HTS/SA DMAS

Average Cmax Df Average Cmax Df Average Cmax Df Cmax Df

SFJS1 (2 × 2) 66 66 66∗ 0 66 66∗ 0 66 66∗ 0 66∗ 0

SFJS2 (2 × 2) 107 107 107∗ 0 107 107∗ 0 107 107∗ 0 107∗ 0

SFJS3 (3 × 2) 221 221 221∗ 0 231.6 221∗ 0.10 221 221∗ 0 221∗ 0

SFJS4 (3 × 2) 355 390 355∗ 0.11 375.2 390 0.05 355 355∗ 0 367 0.03

SFJS5 (3 × 2) 119 137 119∗ 0.15 137.6 137 0.16 119 119∗ 0 119∗ 0

SFJS6 (3 × 3) 320 320 320∗ 0 336.6 320∗ 0.05 336 320∗ 0.05 367 0.14

SFJS7 (3 × 5) 397 397 397∗ 0 397 397∗ 0 397 397∗ 0 397∗ 0

SFJS8 (3 × 4) 253 253 253∗ 0 254 253∗ 0.004 269.6 256 0.07 301 0.22

SFJS9 (3 × 3) 210 215 515 0.04 228.3 515 0.09 218 210∗ 0.04 210∗ 0

SFJS10 (4 × 5) 516 617 516∗ 0.21 570 617 0.11 516 516∗ 0 578 0.12

∗ Denotes the optimal solution

Table 6 Computational results
on Brandimarte instances

Instance (n × m) FJS MATSLO FJS MATSLO+ DMAPRGA DMAS

MK01 (10 × 6) 42 40 42 42

MK02 (10 × 6) 36 32 31 29

MK03 (15 × 8) 207 207 222 213

MK04 (15 × 8) 77 67 84 87

MK05 (15 × 4) 174 188 186 184

MK06 (10 × 10) 72 85 – 73

MK07 (20 × 5) 154 154 – 162

MK08 (20 × 10) 523 523 – 555

MK09 (20 × 10) 340 437 – 348

MK10 (20 × 15) 299 380 – 250

Comparison with centralized approaches using Fattahi
benchmarks

We compare with three algorithms proposed by Fattahi et
al. (2007): ISA (Integrated approach with Simulated Anneal-
ing heuristic), ITS (Integrated approach with Tabu Search
heuristic) andHTS/SA (algorithm use Hierarchical approach
and TS heuristic for assignment problem and SA heuristic
for sequencing problem). Results are presented in Table 5;
columns 1 and 2 represent the problem name and its lower
bound, respectively. Columns 3, 6 and 9 represent the aver-
age makespan obtained by 10 runs of the same instance for
ITS, ISA and HTS/SA algorithms, respectively. Columns 4,
7 and 10 represent the best found solution for ITS, ISA and
HTS/SA algorithms, respectively. Columns 5, 8 and 11 rep-
resent theDf value, whereDf determines themean deviation
of the best solution; it is given by (11) where n = 10 runs,
and f ∗ denotes the best solution obtained by the mathemat-
ical model proposed in Fattahi et al. (2007). The last two
columns refer to the makespan and Df obtained by our pro-
posed DMAS.

Df =
n∑

i=1

( fi − f ∗)/n. f ∗ (11)

As the proposed DMAS is deterministic, Df is evaluated
by (12):

Df = (Cmax − f ∗)/ f ∗. (12)

Comparison with distributed approaches using
Brandimarte benchmarks

The comparison with purely distributed agent-based
approaches FJS MATSLO (Multi-Agent Tabu Search Local
Optimization), FJS MATSLO+ (Ennigrou and Ghdira 2008;
Henchiri et al. 2013) (where each problem is carried out 5
times) and DMAPRGA (Distributed Multi-agent Approach
based on Priority Rules and Genetic Algorithm) (Maoudj
et al. 2016) is given in Table 6. The problem names are listed
in the first column, the second column refers to the Cmax

of the solution given by FJS MATSLO. The third column
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stands for the Cmax of the solution given by FJSMATSLO+.
The fourth column presents theCmax of the solution given by
DMAPRGA. The last column shows theCmax of the solution
obtained by the proposed DMAS.

Comparison with centralized and distributed
approaches using Kacem benchmarks

A good scheduling algorithm is not only able to gener-
ate high-quality scheduling solution, but it must quickly
obtain this solution (good convergence speed). However,
many approaches in the literature lack of good compro-
mise between the convergence speed and solution quality.
Therefore, as another test, the effectiveness of DMAS is ana-
lyzed in terms of CPU time (convergence speed). For this
purpose, obtained results for Kacem instances (2002) are
compared with those of some published approaches using
meta-heuristic algorithms:

– Anew immunemulti-agent system for the flexible job shop
Scheduling problem (NIMASS) It is run on 2GB RAM
and on PC with 2.1GHz CPU (Xiong and Fu 2015).

– Multi-Agent Particle SwarmOptimization (PSO) Carried
out on Intel Core2Duo 2.0GHz and having 3070 MO of
memory (Nouiri et al. 2015).

– LEarnableGenetic Architecture (LEGA) It is run on Pen-
tium IV with 2.0GHz (Nhu Binh et al. 2007).

Table 7 shows the makespan and CPU execution time
(in seconds) of each approach. The last two columns show
makespan and CPU execution time obtained by our DMAS
approach, respectively. Figure 8 shows CPU execution times
of the compared approaches.

Discussion of obtained results

As it can be seen in Table 5, obtained results show that
DMAS finds the optimal solution for 06 instances among 10.
Whereas, ISA, ITS and HTS/SA reach the optimal solutions
for 06, 09 and 09 instances, respectively. Furthermore, for the
near optimal solutions DMAS has an average (i.e. Df ) equal
to 0.12 which attests the good quality of these near solutions.

Table 6 gives a comparison between our DMAS and the
other distributed multi-agent based approaches. In compari-
son with DMAPRGA, DMAS has better results for MK02,
MK03, MK04 and MK05; the same result is obtained for
MK01. As it is shown in Table 6, the obtained results
by DMAS for MK02, MK05, MK06, MK09 and MK10
instances are batter than those obtained by FJS MATSLO+.
Whereas, DMAS achieved better results only for MK02 and
MK10 and same result for MK01 compared with FJS MAT-
SLO. On the basis of the non-deterministic and the fact
that meta-heuristic based approaches require much com-
putational CPU time, we can see that the quality of the
near optimal solution given by DMAS is generally high.
Despite the fact that DMAS is deterministic, distributed,
based on non-global information and uses only four rules
in the scheduling process, it gives good results (optimal or
near-optimal solutions) which are close enough to results
given by non-deterministic and centralized approaches that
use global information.

From the results shown in Table 7, the interactions
between agents allow to quickly converge toward a good
solution (i.e. best or near-best solution). For (4×5) instance,
DMAS generated the best makespan (i.e. 11) in 0.05 s while
PSO and NIMASS converged to the best makespan in 0.35
and 1.2 s, respectively. For the other (8 × 8), (10 × 10) and
(15 × 10) instances, the results given by DMAS are near to
the best solutions with best CPU time. For all these reasons
(CPU times and obtained makespan values), we can attest
that results given by DMAS are very satisfactory.

Moreover, the quality of solutions obtained by meta-
heuristic based algorithms strongly depends on the quality
of initial solution and the settings of many parameters. In
addition, initializing such parameters is very difficult in the
real production process with various dynamic disturbances
(Xiong and Fu 2015); this gives another reason to prove the
good performances of our proposed DMAS since it has no
parameter to be determined.

There are other several reasons to substantiate the good
performances of the proposed DMAS. First, DMAS is
generic, modular, flexible and reconfigurable (it has the
ability to adapt to the changes in the cell environment).
Second, the agents in DMAS are autonomous, independent

Table 7 Comparison between
makespan and CPU execution
times of PSO, NIMASS, LEGA
and DMAS

Instance (n × m) PSO NIMASS LEGA DMAS

Cmax CPU time Cmax CPU time Cmax CPU time Cmax CPU time

Kacem (4 × 5) 11∗ 0.35 – – 11∗ 1.2 11∗ 0.05

Kacem (8 × 8) 17 5.69 14 0.19 – – 14 0.12

Kacem (10 × 10) 8 7.31 7∗ 0.17 7∗ 2.8 9 0.14

Kacem (15 × 10) – – 11 2.02 12 4.9 13 0.25

*Denotes the optimal solution
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Fig. 8 CPU processing times of PSO, NIMASS, LEGA and DMAS

and use local information by exploring a purely distributed
approach through no master/slave relationship between the
decisional agents. Third, DMAS is robust; it reacts and man-
ages dynamic disturbances. Indeed, the agents are capable
of making real-time decisions depending on the robots state
in any unplanned or unforeseen events without needing any
specific additional treatment. Finally, our proposed agent-
based approach combines only four heuristic rules that allows
obtaining a good balance between computational time and
quality of solutions which is the main drawback of many
approaches in the literature.

Conclusion and future work

In this paper, we have presented a distributed multi-agent
control system (DMAS) for robotic flexible assembly cells.
In this system, we discuss one of the most challenging
decisional problems which is the scheduling problem. For
this purpose, a distributed approach while using dispatching
rules has been described and implemented. In DMAS, agents
solve sub-problems locally to propose a global solution as a
result of interactions between the different agents. The prob-
lem resolution is mainly done in two phases: (i) Allocation
and (ii) Sequencing. In each phase, the agents interact and
cooperate to satisfy their local objectives, i.e. cost time min-
imization in allocation phase and idle time minimization in
sequencing phase, to quickly converge to the global objec-
tive (Makespanminimization). In the interaction process, the
agents decisions are made while using and combining only
four dispatching rules (GBPT, SBPT, SPT and SRT).

The agents cooperate by exchanging messages to locally
produce a feasible scheduled local plan; this is done in order
to converge at best toward a global solution that minimizes
the makespan.

Comparisons with literature works, by using FJSSP
benchmarks, show the effectiveness of the proposed DMAS.
In addition, other features of the system have been tested and
discussed such as the ability to manage some dynamic events
(such as new products arrivals) and fault-tolerance to robots
failures. If an agent (robot) breakdowns, the systemmay still
working without adding any specific treatment.

Future works will consider the bi-objective optimization,
including themost known objectives in scheduling problems:
the Makespan (Cmax ) and the sum of total completion time
(
∑n

i=1 Ci ).
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