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Abstract In this paper a novel approach to design robust
fault diagnosis systems in mechanical systems using his-
torical data and computational intelligence techniques is
presented. First, the pre-processing of the data to remove
the outliers is performed with the aim of reducing the clas-
sification errors. To accomplish this objective, the Density
Oriented Fuzzy C-Means (DOFCM) algorithm is used. Later
on, the Kernel Fuzzy C-Means (KFCM) algorithm is used to
achieve greater separability among the classes, and reducing
the classification errors. Finally, an optimization process of
the parameters used in the training state by the DOFCM and
KFCM for improving the classification results is developed
using the bioinspired algorithm Ant Colony Optimization.
The proposal was validated using the DAMADICS (Devel-
opment and Application of Methods for Actuator Diagnosis
in Industrial Control Systems) benchmark. The satisfactory
results obtained indicate the feasibility of the proposal.
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Introduction

In modern industries there are higher and increasing require-
ments associated with the efficiency of processes, the quality
of the products and the fulfillment of environmental and
industrial safety regulations (Hwang et al. 2010; Venkata-
subramanian et al. 2003a).

Mechanical systems exist in almost all manufacturing
industries, and a large part of the faults that occur in these
industries are associated with this type of systems (Aydin
et al. 2014). In general, the faults have an unfavorable impact
in the productivity, the environment and the safety of opera-
tors. In an industrial context, safety is associated with a set
of specifications or standards that manufacturers must meet
in order to reduce the accident risks. With this purpose, it
is important to incorporate automatic control and supervi-
sory systems into industrial processes, allowing satisfactory
operation of these through compensating the effects of per-
turbations and changes that might occur in them. Therefore,
in order to guarantee that the operation of a system satisfies
performance specifications, the faults need to be detected and
isolated, being these tasks associated to the fault diagnosis
systems (Isermann 2011).

In general form, the fault diagnosis methods can be clas-
sified into two categories: models-based methods (Camps
Echevarría et al. 2014b, a; Ding 2008; Patan 2008; Venkata-
subramanian et al. 2003a, b) and process history-basedmeth-
ods (Fan andWang 2014; Bernal de Lázaro et al. 2016, 2015;
Pang et al. 2014; Sina et al. 2014). In the first approach,
the diagnosis tools use models which describe the operation
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of the processes. These tools are based on the residue gen-
eration obtained from the difference between the measured
variables in the real process, and the values of the same vari-
ables obtained from the model. This type of methods entails
an elevated knowledge about the characteristics of the pro-
cesses, their parameters, and operation zones. However, it is
usually very difficult to achieve due to the current complexity
of the industrial processes. In mechanical systems there are
several applications where these techniques have been used
(Karami et al. 2010; Kourd et al. 2012).

On the other hand, the approaches based in historical data
do not need a mathematical model, and they do not require
much prior knowledge of the process parameters (Choud-
hary et al. 2008; Wang and Hu 2009). These characteristics
constitute an advantage for complex systems, where relation-
ships among variables are nonlinear, not totally known, and
therefore, it is very difficult to obtain an analytical model
that describes efficiently the dynamics of the process. In the
case of mechanical systems, some techniques has been used
to fault diagnosis. For example, Motor Current Signature
Analysis (MCSA) is the most widely used method to detect
various motor faults (Sharifi and Ebrahimi 2011). In order
to extract fault features of large-scale power equipment from
strong background noise, a fault diagnosis method based on
the Wavelet de-noising was proposed (Liu et al. 2016), and
broken rotor bar faults were detected using a nonlinear time
series analysis (Silva et al. 2008).

Among the various techniques used in fault diagnosis of
mechanical systems the use of computational intelligence
tools as Neural networks (Hou et al. 2003), Support Vector
Machines (Hu et al. 2007), and Fuzzy logic (Bocaniala et al.
2005; Rodríguez Ramos et al. 2016) are emphasized. In addi-
tion, there has been a significant increase in the use of the
fuzzy clusteringmethods in recent years (Bedoya et al. 2012;
Botia et al. 2013; Jahromi et al. 2016; Seera et al. 2015; Xu
et al. 2016).

Fuzzy clustering techniques are very important tools of
unsupervised data classification (Gosain and Dahika 2016).
They can be used to organize data into groups based on sim-
ilarities among the individual data. Fuzzy clustering deals
with the uncertainty and vagueness existing in a wide variety
of applications, as for example: image processing, pattern
recognition, object recognition, modeling and identification
(Jiang et al. 2016; Kesemen et al. 2016; Leski 2016; Saltos
and Weber 2016; Thong and Son 2016b; Vonga et al. 2014;
Zhang et al. 2016). The main focus of all fuzzy clustering
techniques is to improve the clustering by avoiding the influ-
ence of the noise and outlier data.

The Fuzzy C-Means (FCM) algorithm (Bezdek 1981), is
one of the most widely used algorithm for clustering due to
its satisfactory results for overlapped data. Unlike k-means
algorithm , it considers the possible membership of the data
points to more than one cluster . FCM algorithm obtains very

good results with noise free data but are highly sensitive to
noisy data and outliers (Gosain and Dahika 2016).

Other similar techniques are PossibilisticC-Means (PCM)
(Krishnapuram and Keller 1993) and Possibilistic Fuzzy C-
Means (PFCM) (Pal et al. 2005). They analyze each cluster
as a possibilistic partition. However, PCM fails to find opti-
mal clusters in the presence of noise (Gosain and Dahika
2016) and PFCM does not yield satisfactory results when
data set consists of two clusters which are highly unlike
in size and outliers exist (Gosain and Dahika 2016; Kaur
et al. 2013). Noise Clustering (NC) (Dave 1991; Dave and
Krishnapuram 1997), Credibility Fuzzy C-Means (CFCM)
(Chintalapudi and Kam 1998), and Density Oriented Fuzzy
C-Means (DOFCM) (Kaur 2011) algorithms were proposed
specifically to work efficiently with noisy data.

The clustering output depends upon various parameters
such as distribution of data points inside and outside the
cluster, shape of the cluster and linear or non-linear sepa-
rability. The effectiveness of the clustering method strongly
relies on the choice of the metric distance adopted. FCM
uses Euclidean distance as the distance measure, and there-
fore, it can only be able to detect hyper spherical clusters.
Researchers have proposed other distance measures such
as, Mahalanobis distance measure, and Kernel based dis-
tance measure in data space and in high dimensional feature
space, such that non-hyper spherical/non-linear clusters can
be detected (Zhang and Chen 2003, 2004).

Another common problem of fuzzy clustering methods is
that their performance depend significantly on the initializa-
tion of their parameters. In many occasions, it is necessary
to make multiple runs of the algorithm in order to obtain
good results which is time consuming, and not always the
obtaining of the best solution is guaranteed.

In order to overcome these problems, in this paper a new
fault diagnosis methodology in mechanical systems using
fuzzy clustering techniques is proposed. The methodology
consists of three basic steps. First, the pre-processing of data
to remove outliers is performed. To achieve this goal the
DOFCMalgorithm is used. Second, the classification process
is developed. For this, the Kernel Fuzzy C-means (KFCM)
algorithm is used to obtain a better separability among classes
and therefore, the classification results are improved. Finally,
a third step is used to optimize the parameters m (factor
that regulates the fuzziness of the resulting partition) and
σ (bandwidth and indicates the degree of smoothness of
the Gaussian kernel function) of the algorithms used in the
previous stages using Ant Colony Optimization (ACO) algo-
rithm.

The main contribution of this paper is the obtaining of
a robust fault diagnosis scheme in mechanical systems, that
adequately combines fuzzy clustering algorithms to solve the
drawbacks of this type of technique when the data is affected
by noise and outliers, and improving the classification by
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using kernel tools whose parameters are optimized to obtain
the best results.

The organization of the paper is as follows: in “Gen-
eral description of the principal tools used in the proposal”
section is presented the general characteristics of the tools
used in the proposed methodology. In “Proposal of classifi-
cation methodology using computational intelligence tools”
section, a description of the new classification methodology
using fuzzy clustering techniques is presented. The “Bench-
mark case study: DAMADICS” section presents the case
study used to validate the proposed methodology, as well as
the experiment design. In “Analysis anddiscussionof results”
section, an analysis of the obtained results is performed.
A comparison with recent fuzzy clustering algorithms is
performed in “Comparison with other fuzzy clustering algo-
rithms” section. Finally, the conclusions are presented.

General description of the principal tools used in
the proposal

Density Oriented Fuzzy C-Means (DOFCM)

The algorithm attempts to decrease the noise sensitivity in
fuzzy clustering by identifying outliers before the clustering
process. The DOFCM algorithm creates c+1 clusters with c
good clusters and one cluster of noise. This algorithm identi-
fies outliers before the construction of the clusters, based on
the density of data set, as it is shown in Fig. 1.

The neighborhood of a given radius of each point in a
data set has to contain at least a minimum number of other
points. DOFCM defines a density factor, called the neigh-
borhood membership, which express the measure density of
an object in relation to its neighborhood. The neighborhood
membership of a point i in X is defined as:

Mi
neighborhood = ηineighborhood

ηmax
(1)

whereηineighborhood is the number of points in the point neigh-
borhood i; ηmax is the maximum number of points in the
neighborhood of any point in the data set.

Fig. 1 Identification of outliers with the DOFCM algorithm

If the point q is in the point neighborhood of the point i ,
q will satisfy:

q ∈ X |dist (i, q) ≤ rneighborhood (2)

where rneighborhood is the radius of neighborhood, and
dist (i, q) is the distance between points i and q. Calcula-
tion of neighborhood radius is done in the similar way to
(Ester et al. 1996).

Neighborhood membership of each point in the data set X
is calculated using Eq. (1). The threshold value α is selected
from the complete range of neighborhood membership val-
ues, depending on the density of points in the data set. The
point will be considered as an outlier if its neighborhood
membership is less than α. Let i be a point in the data set X ,
then{
Mi

neighborhood < α then i outlier
Mi

neighborhood ≥ α then i non-outlier
(3)

α can be selected from the range of Mi
neighborhood values

after observing the density of points in the data set and it
should be close to zero. Ideally, a point will be classified as
outlier only if there is no other point in its neighborhood, i.e.,
when neighborhood membership is zero or threshold value
α = 0. However, in this scheme, a point is considered as
an outlier when its neighborhood membership is less than α,
where α is a critical parameter to identify the outlier points.
Its value depends upon the nature of data set, i.e., taking into
account the density of the data set, then, its value will vary
for different data sets.

After identifying the outliers, the process of clustering
begins. DOFCM reformulates FCM objective function as:

JDOFCM (X;U, v) =
c+1∑
i=1

N∑
k=1

(μik)
m (dik)

2 (4)

where, the distances are defined by,

d2ik = (xk − vi )T Ai (xk − vi ) ,∀k, i = 1 . . . c (5)

Membership function μik is modified as:

μik =
{ 1∑c

j=1(dik/d jk)
2/(m−1) if non-outlier

0 if outlier
(6)

To update the centroid, DOFCM algorithm uses Eq. (7) as
FCM algorithm. For the constraint on fuzzy membership,
DOFCM algorithm uses Eq. (8). The DOFCM algorithm is
presented in Algorithm 1.

vi =
∑N

k=1

(
μm
ikxk

)
∑N

k=1 μm
ik

(7)
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0 ≤
c∑

i=1

μik ≤ 1, k = 1, 2, . . . , N (8)

Algorithm 1 Density Oriented Fuzzy C-Means (DOFCM)
Input: data with outliers X, c, ε > 0, m > 1, I tr_max
Output: data without outliers Xp
Identification of the outliers:
Calculate neighborhood radius.
Calculate ηineighborhood according to (2).
Select ηmax .
Calculate Mi

neighborhood according to (1).
With the given value of α, identify outliers according to (3).
Clustering process:
Initialize U to random fuzzy partition.
for l = 1 to l = I tr_max do
Update classes centers according to (7).
Calculate the distance dik according to (5).
Update U according to (6).
Verify stopping criterion.

end for

Kernel Fuzzy C-Means (KFCM)

KFCM represents the kernel version of FCM. This algorithm
uses a kernel function for mapping the data points from the
input space to a high dimensional space, as it is shown in
Fig. 2.

KFCM algorithm modifies the objective function of FCM
using the mapping � as:

JK FCM =
c∑

i=1

N∑
k=1

(μik)
m ‖�(xk) − �(vi)‖2 (9)

subject to:

c∑
i=1

μik = 1, k = 1, 2, . . . , N (10)

where ‖�(xk) − �(vi)‖2 is the square of the distance
between �(xk) and �(vi). The distance in the feature space
is calculated through the kernel in the input space as follows:

Fig. 2 KFCM feature space and kernel space

‖�(xk) − �(vi)‖2 = K(xk, xk) − 2K(xk, vi)

+K(vi, vi) (11)

If the Gaussian kernel is used, then K(x, x) = 1 and
‖�(xk) − �(vi)‖2 = 2 (1 − K(xk, vi)). Thus Eq. (4) can
be written as:

JK FCM = 2
c∑

i=1

N∑
k=1

(μik)
m ‖1 − K(xk, vi)‖2 (12)

where,

K(xk, vi) = e−‖xk−vi‖2/σ 2
(13)

Minimizing Eq. (12) under the constraint shown in Eq. (10),
yields:

μik = 1∑c
j=1

(
1−K(xk,vi)
1−K(xk,vj)

)1/(m−1)
(14)

vi =
∑N

k=1

(
μm
ikK(xk, vi)xk

)
∑N

k=1 μm
ikK(xk, vi)

(15)

The KFCM algorithm is presented in Algorithm 2.

Algorithm 2 Kernel Fuzzy C-Means (KFCM)
Input: data without outliers Xp, c, ε > 0, m > 1, σ , I tr_max .
Output: fuzzy partition U, class centers V.
Initialize U to random fuzzy partition.
for l = 1 to l = I tr_max do
Update the centers of classes according to (15) forGaussian kernels.

Calculate the distances according to (11).
Update U according to (14).
Verify stopping criterion.

end for

Proposal of classification methodology using
computational intelligence tools

The classification scheme proposed in this paper is shown in
Fig. 3. It presents an off-line learning or training stage and an
online recognition stage. In the training stage the historical
data of the process are used to train (modeling the functional
stages through the clusters) the fuzzy classifier. After the
training, the classifier is used online (recognition) in order
to process every new sample taken from the process. The
result intends to offer information about the system state to
the operator in real-time.

The clustering methods create the classes based on a mea-
sure of similitude by bringing together the data acquired
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Fig. 3 Classification scheme using fuzzy clustering

by a Supervisory Control and Data Acquisition System
(SCADA). These classes can be associated to functional
states. When fuzzy classifiers are used in the classification
process, each sample is compared with the center of each
class using a measure of similitude to determine the mem-
bership degree of the sample to each class. In general, the
highest membership degree determines the class to which
the sample is assigned, as it is showed in Eq. (16).

Ci = {i : max {μik} ,∀i, k} (16)

Off-line training

In the first step, the center of each known classes v = v1, v2,

. . . , vN is determined by using a historical data set repre-
sentative of the different operation states of the process. A
set of N observations (data points) X = [x1, x2, . . . , xN ]
are classified into c+1 groups or classes using the DOFCM
algorithm. The c classes represent the normal operation con-
ditions (NOC) of the process, and the faults to be diagnosed.
They contain the information to be used in the next step. The
other remaining class contains the data points identified as
outliers by the DOFCM algorithm, and they are not used in
the next step.

In the second step, the KFCM algorithm receives the set
of observations classified by the DOFCM algorithm in the c
classes. TheKFCMalgorithmmaps these observations into a
higher dimensional space in which the classification process
obtains better results of satisfactory classifications. TheFig. 4
shows the procedure described in steps 1 and 2.

Finally, a third step to optimize the parameters of the algo-
rithms used in steps 1 and 2 is implemented. In this step, the

Fig. 4 Procedure performed by the DOFCM and KFCM algorithms

parametersm and σ are estimated to optimize a validity index
using an optimization algorithm . This will allow to obtain an
improved U partition matrix, and therefore, a better position
of the centers of the classes that characterize the different
operation states of the system. Later, the estimated values
of m in Eqs. (4, 12) and σ in Eq. (13) will be used during
the online recognition, and it will contribute to improve the
classification of the samples obtained by the data acquisition
system from the system.

The validity measures are indexes allowing to evaluate
quantitatively the result of a clustering method and com-
paring its behavior when its parameters vary. Some indexes
evaluate the resulting U matrix, while others are focused on
the geometric resulting structure. The partition coefficient
(PC) (Li et al. 2012; Pakhira et al. 2004;Wu and Yang 2005),
which measures the fuzziness degree of the partition U, is
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used as validity measure in this case. Its expression is shown
in the Eq. (17).

PC = 1

N

c∑
i=1

N∑
k=1

(μik)
2 (17)

If the partition U is less fuzzy, the clustering process is bet-
ter. Being analyzed in a different way, it allows to measure
the degree of overlapping among the classes. In this case,
the optimum comes up when PC is maximized, i.e., when
each pattern belongs to only one group. Likewise, minimum
comes up when each pattern belongs to each group.

Therefore, the optimization problem is defined as:

max {PC} = 1

N

c∑
i=1

N∑
k=1

(μik)
2

subject to:

mmin < m ≤ mmax

σmin ≤ σ ≤ σmax

In many scientific areas, and in particular in the fault
diagnosis field, bio-inspired algorithms have been widely
used with excellent results (Camps Echevarría et al. (2010);
Liu and Lv 2009; Lobato et al. 2009) to solve optimization
problems. They can efficiently locate the neighborhood of
the global optimum in most occasions with an acceptable
computational time. There is a large number of bio-inspired
algorithms, in their original and improved versions. Some
examples are Genetic Algorithm (GA), Differential Evo-
lution (DE), Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO) among others. In this proposal,
the typical ACO algorithm was used to obtain the optimum
values of the parameters m and σ after a comparison with
PSO and DE algorithms.

On-line recognition

In this stage the fuzzy clustering algorithms are modified and
the updating of the center of each class is not developed. The
principal reason for doing this modification is to avoid the
incorrect displacement of the center of each class due to an
unknown fault of small dimensions with a high latency time.

When an observation k arrives, the DOFCM algorithm
classifies it as outlier or as good observation taking into
account the results of the training. Then, if the observation k
does not belong to the outlier class, the distances between the
observation and the class centers determined in the training
stage are calculated. Next, the fuzzy membership degree of
the observation k to each one of the c classes is obtained.
The observation k will be assigned to the class where it has

the highest membership degree. The approach used in this
stage by using DOFCM-KFCM without the updating of the
centers of the classes is described in Algorithm 3.

Algorithm 3 Recognition (DOFCM-KFCM)
Input: data Xk , class centers V, rneighborhood , nmax , α, m, σ .
Output: Current State.
for k = 1 to k = N do
Calculate ηineighborhood according to Eq. (2).

Calculate Mi
neighborhood according to Eq. (1).

if k /∈ Coutlier (according to Eq. (3)) then
Calculate the distances from the observation k to the center of
the classes according to Eq. (11).
Calculate the membership degree of the observation k to the c
good classes according to Eq. (14).
Determine to which class belongs the observation k using Eq.
(16).

end if
end for

Benchmark case study: DAMADICS

Process description

In order to apply the proposedmethodology to fault diagnosis
in the mechanical systems the DAMADICS benchmark was
selected. This benchmark represents an actuator (Bartys et al.
2006; Kourd et al. 2012) belonging to the class of intelligent
electro-pneumatic devices widespread in industrial environ-
ment. The experimental data of the DAMADICS benchmark
used in this paper was obtained from http://diag.mchtr.pw.
edu.pl/damadics/. This actuator is considered as an assem-
bly of devices consisting of:

• Control valve
• Spring-and-diaphragm pneumatic servomotor
• Positioner

The general structure of this actuator is shown in Fig. 5
The control valve acts on the flow of the fluid passing

through the pipeline installation. A servomotor carries out a
change in the position of the control valve plug, by acting on
fluid flow rate. A spring-and-diaphragm pneumatic servomo-
tor is a compressible fluid powered device in which the fluid
acts upon the flexible diaphragm, to provide linear motion
of the servomotor stem. The positioner is a device applied to
eliminate the control-valve-stemmiss-positions produced by
the external or internal sources such as: friction, clearance in
mechanical assemblies, supply pressure variations, hydrody-
namic forces, among others. A description of simulated faults
is shown in Table 1.
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Fig. 5 Structure of benchmark
actuator system

Table 1 Faults simulated in the DAMADICS

Fault Description

1 Valve clogging

7 Critical flow

12 Electro-pneumatic transducer fault

15 Positioner spring fault

19 Flow rate sensor fault

Table 2 Measured process variables

Description Symbol

Process control external signal CV

Inlet liquid pressure P1

Outlet liquid pressure P2

Stem displacement X

Liquid flow rate F

Process value PV

The set of measurements of 6 process variables shown
in Table 2, were stored with a sample time of 1 second.
For each one of the six process states (Normal operation
and the five faults) 300 observations were stored for a
total of 1800 observations. To this data set were added 300
new observations evenly distributed among the classes in
order to represent the possible outliers for each class. Fur-
thermore, white noise was added in the simulation to the
measurement and process variables in order to simulate the
variability presented in real world processes. The Fig. 6
shows a water level control loop in a tank with gravitational
outflow.

Experiments

Two sets of three experiments each one were developed.
First, the three experiments presented in Table 3 were per-

formed. In the first one, the step 1 (outliers determination) of
the proposed classification scheme was not applied. In this
experiment the KFCM algorithm was applied in the step 2.
The aim of this experiment was to analyze the effect of the
outliers in the final result of the classification process.

In second experiment only the DOFCM algorithm was
applied in step 1. The principal aim of this experiment was
to analyze the improvement in the performance of the clas-
sification process when a kernel function is introduced to
obtain a better separation of the classes.

For the third experiment the DOFCM algorithm was
selected to be applied in the step 1, and the KFCM algorithm
was applied in the second step, respectively. The principal
aim of this experiment was to analyze the results obtained
in the classification process when both algorithms are ade-
quately combined.

In these experiments the step 3 corresponding to the opti-
mizing of the parameters of the algorithms were not applied.
The values of the parameters used for the algorithms were:
I tr_max = 100, ε = 10−5, m = 2, σ = 1.

Later, similar experiments were performed but including
the step of optimizing the parameters of DOFCM andKFCM
algorithms with the aim of analyzing the influence of the
parameter selection (Param. Opt.) in the results of the classi-
fication process. These experiments are presented in Table 4.

It is necessary to highlight that to estimate the best param-
eters to be used in the DOFCM and KFCM algorithm
many optimization algorithms can be used. In this paper,
the results of three optimization algorithms in their typi-

123



1608 J Intell Manuf (2019) 30:1601–1615

Fig. 6 Water level control loop

Table 3 Experiments performed without step 3

Experiment Step 1 Step 2

1 – KFCM

2 DOFCM –

3 DOFCM KFCM

Table 4 Experiments performed with step 3

Experiment Step 1 Step 2 Step 3

4 – KFCM Param. Opt.

5 DOFCM – Param. Opt.

6 DOFCM KFCM Param. Opt.

cal structure were compared: DE (Camps Echevarría et al.
(2010)), ACO (Camps Echevarría et al. 2014a), and PSO
(Díaz et al. 2016). The parameters used by the DE algorithm
were: CR = 0.5, FS = 0.1, Z = 10 and they were obtained
from (Camps Echevarría et al. (2010)). In the case of ACO,
the parameters selected were k = 63, q0 = 0.5, Z = 50,
Cevap = 0.3, Cinc = 0.1 obtained from (Camps Echevar-
ría et al. 2014b). The parameters used by the PSO algorithm
were: population si ze = 20, wmax = 0.9, wmin = 0.4,
c1 = 2, c2 = 2 and they were obtained from (Camps
Echevarría et al. 2014b).

In all cases a search space of 1 < m ≤ 2 and 0.25 ≤ σ ≤
20were considered, and the following stop criteriawere used:

• Criterion 1: Maximum number of evaluations of the
objective function (Eval_max = 100).

• Criterion 2: (Error = 1 − PC) < ε = 0.00001

DE, PSO and ACO algorithms were ran 10 times and
the arithmetic mean of the parameters m, σ , and number
of evaluations of the objective function (Eval_Fobj) were
calculated in the experiments 4, 5 and 6. Results are shown
in Table 5.

In order to determine what algorithm (DE, PSO or ACO)
was better, Friedman’s non-parametric statistical test was
applied to the results obtained in experiments 4, 5 and 6.
The result indicates that there are no significant differences
in the results obtained by the 3 algorithms.

Finally, the ACO algorithm was selected, considering that
it uses less evaluations of the objective function to estimate
the parameters (See Table 5).

Analysis and discussion of results

Recognition stage

A very important step in the design of the fault diagnosis
system is to analyze theperformanceof the diagnosis process.
The most used criterion for this analysis is the confusion
matrix (CM).

The confusion matrix allows to visualize the performance
of the classifier in the classification process. Each CMrs ele-
ment of a confusion matrix for r �= s, indicates the number
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Table 5 Arithmetical mean of the parameters m, σ and Eval_Fobj

Experiment Algorithm

DE PSO ACO

m̄ σ̄ Eval_Fobj m̄ σ̄ Eval_Fobj m̄ σ̄ Eval_Fobj

4 1.8615 13.716 77 1.8845 13.970 87 1.8938 14.105 76

5 1.8591 13.684 74 1.8881 13.993 83 1.8939 14.095 69

6 1.8607 13.720 83 1.8906 13.985 92 1.8953 14.154 81

Table 6 Confusion matrix for experiment 1: KFCM (NOC: 350, F1:
350, F7: 350, F12: 350, F15: 350, F19: 350)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 289 11 14 17 13 6 82.57 17.43

F1 16 214 12 9 2 97 61.14 38.86

F7 7 6 307 15 13 2 87.71 12.29

F12 4 13 13 301 11 8 87.71 12.29

F15 6 67 64 11 185 17 54.57 45.43

F19 88 14 17 7 8 216 61.71 38.29

GEN 72 28

Bold values indicate the main diagonal is associated with the number
of observations successfully classified

of times that the classifier confuses a state r with a state s in
a set of L experiments. The results obtained from the appli-
cation of the proposed methodology to fault diagnosis in the
modified DAMADICS data set are presented next.

The confusion matrices shown in Tables 6, 7, 8, 9,10 and
11 were obtained using a cross validation process. Cross
validation divides the dataset into complementary subsets
(d), by performing the analysis on d − 1 subsets called the
training set, and validating the analysis on the other subset
called the validation set or testing set. To reduce variability
d rounds of cross-validation are performed using a different
partition as a validation set in each one. Finally, the valida-
tion results are averaged. Figure 7 shows the cross-validation
process for four partitions of the data set. In the experiments
implemented in the DAMADICS, the cross-validation was
performed with 10 partitions of the data set.

Table 8 Confusion matrix for experiment 3: DOFCM-KFCM (NOC:
300, F1: 300, F7: 300, F12: 300, F15: 270, F19: 300)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 300 0 0 0 0 0 100 0

F1 0 257 0 0 0 43 85.67 14.33

F7 0 0 276 2 22 0 92 8

F12 0 0 0 300 0 0 100 0

F15 17 0 59 7 184 3 68.15 31.85

F19 0 0 1 0 0 299 99.67 0.33

GEN 91.30 8.70

Bold values indicate the main diagonal is associated with the number
of observations successfully classified

Table 9 Confusion matrix for experiment 4: KFCM (NOC: 350, F1:
350, F7: 350, F12: 350, F15: 350, F19: 350)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 303 9 13 7 6 12 86.57 13.43

F1 2 300 3 6 4 35 85.71 14.29

F7 6 11 313 3 2 15 89.43 10.57

F12 7 13 6 307 2 15 87.71 12.29

F15 18 61 61 6 191 13 54.57 45.43

F19 91 12 16 2 9 220 62.86 37.14

GEN 77.81 22.19

Bold values indicate the main diagonal is associated with the number
of observations successfully classified

Experiment 1

Table 6 shows the confusion matrix for experiment 1 where
the operation states NOC: Normal Operation Condition, and

Table 7 Confusion matrix for
experiment 2: DOFCM (NOC:
300, F1: 300, F7: 300, F12: 300,
F15: 300, F19: 300, O: 300)

NOC F1 F7 F12 F15 F19 O HR (%) E (%)

NOC 300 0 0 0 0 0 0 100 0

F1 8 211 10 6 4 60 0 70.33 29.67

F7 0 0 267 3 30 0 0 89 11

F12 0 0 1 299 0 0 0 99.67 0.33

F15 46 o 71 4 142 7 30 47.33 52.67

F19 0 0 1 0 0 299 0 99.67 0.33

O 0 0 4 0 0 0 296 98.67 1.33

GEN 86.38 13.62

Bold values indicate the main diagonal is associated with the number of observations successfully classified
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Table 10 Confusion matrix for
experiment 5: DOFCM (NOC:
300, F1: 300, F7: 300, F12: 300,
F15: 300, F19: 300, O: 300)

NOC F1 F7 F12 F15 F19 O HR (%) E (%)

NOC 300 0 0 0 0 0 0 100 0

F1 6 215 9 11 5 54 0 71.67 28.33

F7 0 0 300 0 0 0 0 100 0

F12 0 0 1 299 0 0 0 99.67 0.33

F15 55 0 52 4 145 20 24 48.33 51.67

F19 0 0 1 0 0 299 0 99.67 0.33

O 0 0 0 0 0 0 300 100 0

GEN 88.48 11.52

Bold values indicate the main diagonal is associated with the number of observations successfully classified

Table 11 Confusion matrix for experiment 6: DOFCM-KFCM (NOC:
300, F1: 300, F7: 300, F12: 300, F15: 276, F19: 300)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 300 0 0 0 0 0 100 0

F1 0 269 0 0 0 31 89.67 10.33

F7 0 0 300 0 0 0 100 0

F12 0 0 0 300 0 0 100 0

F15 14 0 9 5 241 7 87.32 12.68

F19 0 0 1 0 0 299 99.67 0.33

GEN 96.23 3.77

Bold values indicate the main diagonal is associated with the number
of observations successfully classified

Fig. 7 Cross validation process

the faults F1, F7, F12, F15 and F19 were considered. The
main diagonal is associated with the number of observations
successfully classified. Since the total number of observa-
tions per class is known, the accuracy or hit rate (HR),
and the overall error (E) can also be computed. The last
row shows the general value of the hit rate and the error
(GEN).

The results indicate the difficulty of the KFCM algorithm
to obtain satisfactory classification results in the presence of
outliers. This problem affects the correct classification of the
different operating states, principally of F1, F15 and F19.

Used algorithms
KFCM DOFCM DOFCM-KFCM

C
la

ss
ifi

ca
tio

n 
(%

)
60

70

80

90

100

72

86.38
91.30

Fig. 8 Global classification (%) obtained for the experiments 1–3

Experiment 2

Table 7 shows that the DOFCM algorithm classifies as out-
liers 296 observations of the 300 observations added to the
dataset (O class) by achieving a 98.67% of accuracy in this
classification part.However, although theDOFCMalgorithm
identifies the outliers correctly, it is not able to obtain good
results in the final classification due to overlaps between
classes. This is the case of faults F1 and F15.

Experiment 3

Step 1
The classification results of the step 1 in this experiment

are similar to those of the experiment 2 (Table 7). The 300
observations added as outliers were correctly identified in a
98,67%. Because 30 observations of F15 were classified in
class O, the class F15 is composed of 270 observations that
might be used in the next step.
Step 2

Table 8 shows the confusion matrix where the best clas-
sification results are achieved. These results are due to the
eliminations of the outliers in a first step, and the applica-
tion of the kernel function in the second step which allow to
achieve a greater separability of the classes.

The satisfactory outcomes obtained in this experiment
confirm the validity of the new methodology to fault diagno-
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Used algorithms
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Fig. 9 Global classification (%) obtained for the experiments 4–6

sis proposed in this paper using computational intelligence
techniques.

A summary of the global classification percentages
obtained for each experiment are shown in Fig. 8.

Experiment 4

Table 9 shows the confusion matrix for experiment 4. As in
experiment 1, the results indicate the difficulty of the KFCM
algorithm to obtain satisfactory results in the classification
in the presence of outliers. However, with the use of the opti-
mized parameters m and σ , the results of the operating state
classification are improved.

Experiment 5

Table 10 shows a similar behavior of the DOFCM algorithm
compared with experiment 2. However, with the use of the
optimized parameters m and σ , the classification results are
better.

Experiment 6

Step 1
The classification results of the step 1 in this experiment

are similar to those of the experiment 5 (Table 10). The
300 observations added as outliers were correctly identified.
Because 24 observations of F15 were classified in class O,
the class F15 is composed of 276 observations that might be
used in the next step.
Step 2

Table 11 shows the results after applying the KFCM algo-
rithm. The behavior of the DOFCM and KFCM algorithms
is similar compared with experiment 3. However, with the
use of the optimized parameters m and σ , the classification
results are better.

The excellent results obtained in this experiment con-
firm the validity of the new methodology to fault diagnosis
proposed in this paper using computational intelligence tech-
niques.
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Fig. 10 Performance indicator (%) obtained for each experiment

A summary of the global classification percentages
obtained for the experiments 4, 5, and 6 are shown in Fig. 9.

Comparing the results obtained in the first set of exper-
iments with the results of the second set, it is evident the
importance of selecting the best parameters for the DOFCM
and KFCM algorithms which support the necessity of the
stage 3 in the training process

Analysis of the number of false and missing alarms

In order to evaluate the quality of the fault detection process,
the number of false and missing alarms are usually analyzed.
According to Yin et al. (2012), these indicators called False
Alarm Rate (FAR) and Fault Detection Rate (FDR) can be
calculated by:

FAR = No. of samples (J > Jlim | f = 0 )

total samples ( f = 0)
(18)

FDR = No. of samples (J > Jlim | f �= 0 )

total samples ( f �= 0)
(19)

where J is the output for the used discriminative algorithms
by considering the fault detection stage as a binary classi-
fication process, and Jlim is the threshold that determines
whether one sample is classified as a fault or normal opera-
tion. The performance of a diagnosis system is satisfactory if
low values of the FAR indicator an high values of the FDR
indicator are obtained.

The results obtained for each experiment are summarized
inFig. 10,where it can be seen that in general formall variants
have satisfactory performances. The best results are obtained
in the experiment 6 which correspond with the application
of the fault diagnosis methodology proposed in this paper.

Comparison with other fuzzy clustering
algorithms

Recently, some fuzzy clustering algorithms with excellent
results have been proposed with the aim of improving the
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classification in different applications. A comparison with
some of these algorithms is developed in this section.

FC-PFS algorithm

Based on theory of picture fuzzy set (PFS), Thong and Son
(2016a) proposed a picture fuzzy model for clustering prob-
lem called FC-PFS, whichwas proven to get better clustering
quality than other relevant methods. Based on the FCM
algorithm, the picture fuzzy clustering algorithm (FC-PFS)
modifies the objective function to adapt the fuzzy clustering
on PFS (Thong and Son 2016a). The modification includes
two points. The first one inherits from FCM’s objective func-
tionwhere themembership degreeμ are replaced byμ(2−ξ )
which means that one data element belonging to a cluster has
both: high value of positive degree and low value of refusal
degree (Thong and Son 2016a). The second point is to add
the entropy information to the objective functionwhich helps
the algorithm to reduce the neutral and refusal degree of an
element to become a member of the cluster. The entropy
information plays an important role to enhance the clustering
quality (Thong and Son 2016a). The values of the parameters
used are: I tr_max = 100, ε = 10−5, m = 2 and α = 0.6
(where α ∈ (0, 1] is an exponent coefficient used to control
the refusal degree in PFS sets).

PFCA-CD algorithm

In the paper Thong and Son (2016b), is proposed a novel
picture fuzzy clustering algorithm for complex data called
PFCA-CD that dealswith bothmix data type and distinct data
structures. The idea of this method is the modification of FC-
PFS, using ameasurement for categorical attributes, multiple
centers of one cluster and an evolutionary strategy - Particle
SwarmOptimization (PSO). Therein, themultiple centers are
used to deal with complex structure of data because data with
complex structures have many different shapes that cannot
be represented by one center. The values of the parameters
used are: I tr_max = 100, ε = 10−5, m = 2, α = 0.6,
C1 = C2 = 1 (where C1,C2 ≥ 0 are PSO’s parameters.
Generally, C1,C2 are often set as 1).

DBWFCM algorithm

A new fuzzy clustering method called density-based
weighted FCM(DBWFCM) is proposed inLi et al. (2016). In
this algorithm, the weight of an object is decided by the den-
sity of the objects around this object. To more objects around
this object, the weight of this object is bigger. That means
the object that has bigger weight is more likely to be a cluster
center. There are two stages of the density-based weighted
FCM. The first stage is designed to calculate the weights of
every object, the second stage is the clustering stage. The val-

ues of the parameters used are: I tr_max = 100, ε = 10−5

and m = 2.

Results of the comparison

To establish the comparison, the same data set used in the last
experiments was used. Tables 12, 13 and 14 show the results
of the confusion matrices related with the algorithms used in
the comparison. As it can be observed, the results indicate

Table 12 Confusion matrix: FC-PFS (NOC: 350, F1: 350, F7: 350,
F12: 350, F15: 350, F19: 350)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 299 13 14 8 4 12 85.43 14.57

F1 7 293 3 6 10 31 83.71 16.29

F7 8 11 297 9 5 20 84.86 15.14

F12 11 9 8 310 2 10 88.57 11.43

F15 16 29 37 14 235 19 67.14 32.86

F19 51 12 10 6 9 262 74.86 25.14

GEN 80.76 19.24

Bold values indicate the main diagonal is associated with the number
of observations successfully classified

Table 13 Confusion matrix: PFCA-CD (NOC: 350, F1: 350, F7: 350,
F12: 350, F15: 350, F19: 350)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 305 10 11 9 5 10 87.14 12.86

F1 5 298 2 8 5 32 85.14 14.86

F7 9 10 301 8 5 17 86.00 14.00

F12 6 10 8 312 3 11 89.14 10.86

F15 12 31 33 9 248 17 70.86 29.14

F19 43 9 11 3 8 276 78.86 21.14

GEN 82.86 17.14

Bold values indicate the main diagonal is associated with the number
of observations successfully classified

Table 14 Confusion matrix: DBWFCM (NOC: 350, F1: 350, F7: 350,
F12: 350, F15: 350, F19: 350)

NOC F1 F7 F12 F15 F19 HR (%) E (%)

NOC 301 9 13 7 6 14 86.00 14.00

F1 4 297 1 12 7 29 84.86 15.14

F7 7 13 302 10 4 14 86.29 13.71

F12 8 7 11 308 7 9 88.00 12.00

F15 14 26 35 13 244 18 69.71 30.29

F19 46 11 9 5 10 269 76.86 23.14

GEN 81.95 18.05

Bold values indicate the main diagonal is associated with the number
of observations successfully classified
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the difficulty of these algorithms to obtain satisfactory results
in the classification in the presence of outliers.

A summary of these results can be seen in Fig. 11, where
the global classification percentages obtained for each algo-
rithm are showed. The results obtained with the algorithms
used in the comparison (FC-PFS, PFCA-CD,DBWFCM) are
smaller than the result obtained with the proposal made in
this paper (96.23%).

Figure 12 shows the FAR and FDR values obtained for
each one of these algorithms. It is evident that the results
obtained with the proposal made in this paper (FAR = 0%
and FDR = 99.05%) constitute the best outcomes but the
best practice is to support this appreciation by applying sta-
tistical tests (García and Herrera 2008; García et al. 2009;
Luengo et al. 2009).

Statistical tests

First, the non-parametric Friedman test is applied in order
to demonstrate that there is at least one algorithm whose
results have significant differences with respect to results of
the others. Afterwards, if the null-hypothesis of the Friedman
test is rejected, it is necessary tomake a comparison in pairs to
determine the best algorithm(s). For this, the non-parametric
Wilcoxon test is applied.

Table 15 Results of the Wilcoxon test

1 vs 2 1 vs 3 1 vs 4 2 vs 3 2 vs 4 3 vs 4∑
R+ 0 0 0 54 0 0∑
R− 55 55 55 1 55 55

T 0 0 0 1 0 0

Tα=0.05 8 8 8 8 8 8

Winner 2 3 4 2 4 4

Table 16 Final result of the comparison between algorithms

Algorithm No. Wins Ranking

FC-PFS 0 4

PFCA-CD 2 2

DBWFCM 1 3

DOFCM-KFCM 3 1

Friedman test

In this case, for four algorithms (k = 4) and 10 data sets
due to the cross validation (N = 10), the value obtained to
the Friedman statistic was FF = 241 . With k = 4 and N =
10, FF is distributed according to the F distribution with
4−1 = 3 and (4−1)×(10−1) = 27 degrees of freedom.The
critical value of F(3,27) for a level of significanceα = 0.05 is
2.9604, then the null-hypothesis is rejected (F(3, 27) < FF .
This means that at least, there is an algorithm whose results
differ significantly from the rest.

Wilcoxon test

Table 15 shows the results of the comparison in pairs of
the algorithms (1: FC-PFS, 2: PFCA-CD, 3: DBWFCM, 4:
DOFCM-KFCM) using theWilcoxon test. The first two rows
contain the values of the sum of the positive (R+) and neg-
ative (R−) rank for each comparison established. The next
two rows show the statistical values T and the critical value
of T for a level of significance α = 0.05. The last row indi-
cates which algorithm was the winner in each comparison.
The summary in Table 16 shows how many times each algo-
rithm was the winner. This results validates once again the
methodology proposed in this paper.

Conclusions

The mechanical systems are fundamental elements in the
manufacturing industry and a large number of faults in these
industries occur in such systems. In the present paper a
new robust scheme to fault diagnosis in mechanical systems
using computational intelligence techniques is proposed to
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decrease the unfavorable impact of these faults in the pro-
ductivity, the environment and the safety of the operators.

In this paper, several experiments were presented with the
aim of demonstrating that the best strategy is the one that
integrates the DOFCM, KFCM algorithms and an optimiza-
tion algorithm. In this paper the ACO algorithm was used.
The DOFCM algorithm was used in the first step for prepro-
cessing the data to remove the outliers. TheKFCMalgorithm
was used in the second step for the data classification tomake
use of the advantages introduced by the kernel function in the
separability of the classes , in order to obtain better classi-
fication outcomes. Finally, the ACO algorithm was used to
optimize the parameters of the algorithms used in the previ-
ous steps.

Three fuzzy clustering algorithms recently presented in
the scientific literature were selected to establish a com-
parison with the proposed methodology. After comparing
the obtained results, it was demonstrated that the proposed
methodology obtained the best performance.
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