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Abstract In today’s competitive environment of Indus-
try 4.0, cyber-physical systems (CPS) of various advanced
manufacturing paradigms have brought new challenges to
maintenance managements. Efficient prognostics and health
management (PHM) policies, which can integrate both indi-
vidual machine deteriorations and different manufacturing
paradigms, are urgently needed. Newly proposed PHM
methodologies are systematically reviewed in this paper:
as the decision basis, an operating load based forecast-
ing algorithm is proposed for machine health prognosis;
at the machine level, a dynamic multi-attribute mainte-
nance model is studied for diverse machines in CPS; at
the system level, novel opportunistic maintenance poli-
cies are developed for complex flow-line production, mass
customization and reconfigurable manufacturing systems,
respectively. This framework of PHM methodologies has
been validated in industrial implementations.

Keywords Maintenance · Dynamic programming ·
Manufacturing paradigms · Cyber-physical system

Introduction

In the global competition and technique innovation, many
manufacturing enterprises are pursuing a shift to cyber-
physical systems (CPS) of advanced manufacturing para-
digms (Lee et al. 2014a). In practice, complex flow-line

B Lifeng Xi
lfxi@sjtu.edu.cn

1 State Key Laboratory of Mechanical System and Vibration,
Department of Industrial Engineering, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai
200240, China

production, mass customization and reconfigurable manu-
facturing paradigms have been applied to satisfy changeable
customer demands and keep enterprise core competitive-
ness (Al-Zaher and ElMaraghy 2013; Lin et al. 2015;
Jardim-Goncalves et al. 2016). However, these CPS systems,
machines and accessorial sensors have also become techno-
logically more advanced, and more difficult to manage. This
transformation provides motivation for improving mainte-
nance methodologies. It is important to efficiently predict
machine health statuses, eliminate unnecessary production
breaks, achieve maintenance cost reduction and decrease
systemic decision-making complexity (Rafiee et al. 2014;
Benkedjouh et al. 2015).

In the recent decades, numerous valuable studies have
been devoted to the maintenance scheduling (Arab et al.
2013; Mirabi et al. 2013; Zied et al. 2014). Prognostics and
health management (PHM) has been crucial to keep CPS
systems and their machines in good condition (Liu et al.
2013). Cyber-physical systems usually consist of diverse
machines, which have different degrading processes that
will finally lead to failures and interrupt the normal pro-
duction (Sheikhalishahi et al. 2014; Chouikhi et al. 2014;
Ebrahimipour et al. 2015). Considering CPS characters of
integrated computational and physical capabilities such as
actuation, sensing and communication to physical world,
PHM should provide a systematical view of the machine
health prognosis, the machine-level maintenance scheduling
and the system-level maintenance optimization. To develop
proper PHM methodologies for advanced manufacturing
paradigms, it is necessary to comprehensively considermain-
tenance opportunities and manufacturing characters to make
maintenance schedules in a cost-effective manner. However,
classical opportunistic maintenance policies are insufficient
to provide feasible solutions because of complex series-
parallel structures, changeable batch orders and open-ended
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system reconfigurations (Chang et al. 2007; Derigent et al.
2009; Zhou et al. 2009; Lee et al. 2013). Thus, PHM poli-
cies that can decrease decision-making complexity, avoid
breakdowns of batch production, and adapt to diverse recon-
figurations are urgently needed.

PHM methodologies for advanced manufacturing para-
digms are complex due to the hierarchical levels of system-
atical maintenance decision-making: (a) accurate machine
health prediction at the physical level; (b) dynamic mainte-
nance scheduling at the machine level; (c) effective oppor-
tunistic maintenance policies at the system level. In a CPS
system, recent advances in sensing and information tech-
nologies enable enterprises to on-line collect, store and
process information that characterizes machine health sta-
tuses (Lee et al. 2014b). Thus, these statuses are utilized to
predictmachine deteriorations for supporting PHMdecision-
making. Furthermore, designed information transfer between
the machine level and the system level should not be a
“push” process, but a “pull” process. By pulling machine-
level outputs, this interactive scheduling mode promotes
opportunistic maintenance policies to dynamically optimize
system-level schedules by integrating maintenance opportu-
nities and manufacturing paradigms.

The remainder of this paper is organized as follows:
“A systematical framework of PHM methodologies” sec-
tion presents a systematical PHM framework for advanced
manufacturing paradigms. “WFRGM algorithm for machine
health prognosis” section proposes the W -variable fore-
casted-state rolling grey model (WFRGM) by considering
the effect of operating loads. “MAM method for machine-
level maintenance scheduling” section develops the multi-
attribute model (MAM) by utilizing the multiple attribute
value theory and imperfect maintenance. “Opportunistic
maintenance for various cyber-physical systems” section dis-
cusses the maintenance time window (MTW) for complex
flow-line production, the advance-postpone balancing (APB)
for mass customization, and the reconfigurable maintenance
time window (RMTW) for reconfigurable manufacturing,
respectively. Finally, conclusions and perspectives are drawn
in “Case study of PHM methodologies” section.

A systematical framework of PHM methodologies

Cyber-physical systems (CPS) are defined as transformative
technologies for managing interconnected systems between
its physical assets and computational capabilities (Lee et al.
2015). Recent advances in manufacturing industry have
paved way for a systematical deployment of CPS, within
which information from all related perspectives is closely
monitored and synchronized between the physical factory
floor and the cyber computational space. Moreover, by uti-
lizing advanced information analytics, networked machines

will be able to perform more efficiently, collaboratively
and resiliently. Cyber-physical systems are ubiquitous in
power systems, transportation networks, industrial control
processes, and critical infrastructures. These systems need to
operate reliably in the face of unforeseen failures (Pasqualetti
et al. 2013).

For understanding the impact of CPS and the relation to
the manufacturing field, Monostori et al. (2016) compre-
hensively studied cyber-physical systems in manufacturing.
This important survey can help us: (1) to identify potentially
impactful articles that are related to CPS and (2) to find
out how CPS has evolved with respect to problems, appli-
cations and techniques. Wang et al. (2015) presented the
current status and advancement of cyber-physical systems
and their future research directions when applied to manu-
facturing. The characteristics of CPS were outlined together
with those of Systems of Systems (SoS), Internet of Things
(IoT), Big Data and Cloud technology. Like cloud-enabled
prognosis can leverage advanced manufacturing by using
data and information from across the manufacturing hierar-
chy (Gao et al. 2015), PHMmethodologies forCPShavebeen
designed to improve efficiency, productivity, and profitabil-
ity by integrating monitored information, failure prediction,
system structure and manufacturing characteristics.

In industry, modern manufacturing systems with CPS
technologies could be widely used in advanced manufactur-
ing paradigms, such as complex flow-line production, mass
customization and reconfigurable manufacturing paradigms.
Since machine statuses are available from sensors within
the cyber computational space, PHM decisions to optimize
maintenance arrangements should be made in the physical
factory floor by considering different manufacturing char-
acters. Without properly integrating the special characters
of advanced manufacturing paradigms, valuable information
collected by CPS technologies can achieve rapid respon-
siveness and cost effectiveness for modern manufacturing
systems.At this point, several key issues need to be addressed
in the developed PHM methodologies for CPS:

(1) Based on monitored and synchronized information,
it will improves forecast accuracy by incorporating real-
time influencing factors (i.e., operating load) for machine
health prognosis; (2) with failure frequency predictions, it
is important to accurately describe hazard rate evolutions of
individual machines and model machine-level maintenance
operations with multiple objectives; (3) by pulling machine-
level outputs, cost-effective system schedules should be
studied to avoid decision-making complexity caused by
series-parallel structures for complex flow-line paradigm; (4)
for mass customization paradigm, an opportunistic mainte-
nance strategy is required to handle changeable batch orders
due to customer demands and eliminate unnecessary produc-
tion breaks; (5) for reconfigurable manufacturing paradigm,
real-time maintenance schedules should be made to respond
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Fig. 1 Scheme of hierarchical PHM decision-making for CPS

rapidly to diverse open-ended reconfigurations and flexible
system structures.

The designed PHM framework consists of three levels,
where CPS maintenance decisions are dynamically made
through the machine health prognosis, the machine-level
maintenance scheduling and the system-level maintenance
optimization. The hierarchical scheme is shown in Fig. 1.

• Physical levelCyber-physical systems of advanced man-
ufacturing paradigms are defined as the decision objects.
With rapid innovations ofmonitoring techniques and sen-
soring tools, efficient prognostic algorithm is developed
to forecast accurate machine health trends for supporting
the PHM decision-making process in real time, rather
than over time.

• Machine level For each individual machine, preventive
maintenance (PM) intervals are dynamically scheduled
by considering multiple attribute value theory, imperfect
maintenance assessment and sequential PM scheduling
mode. If a machine fails between successive PM actions,

minimal repair recovers it to the failure rate that it had
when it failed.

• System levelBy pulling PM intervals, novel opportunistic
maintenancepolicies are presented to utilizemaintenance
opportunities and manufacturing characters to make
dynamic maintenance schedules in a cost-effective man-
ner. Themanufacturing characters of CPS are thoroughly
investigated. Thus, the proposed PHM methodologies
can adapt to advanced manufacturing paradigms and
achieve significant reduction of maintenance cost, pro-
duction downtime and decision-making complexity.

The notation used in this paper is listed in Table 1.

WFRGM algorithm for machine health prognosis

Machine health prognosis plays an important role in PHM
methodologies. For complex CPS consisting of multiple
machines, it is necessary to utilizemaintenance opportunities
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Table 1 Notation
W : Generating coefficient of grey model L : Operating load change rate

x (0) : Actual status of machine x̂ (0) : Forecasted status of machine

i : Index of PM cycles at machine level j : Index of machine M j

Aij : Availability of the i th PM cycle for M j cri j : Cost rate of the i th PM cycle for M j

Tpi j : Time duration of PM action Tfi j : Time duration of minimal repair

Cpi j : Cost of PM action Cfi j : Cost of minimal repair

λij(t) : Hazard rate function prior to the i thPM Toi j : PM interval of machine level

aij : Age reduction factor bij : Hazard increase factor

Tw : Maintenance time window k : Index of PM cycles at system level

tjk : PM time point of M j at system level tk : PM execution point at system level

ETC : Excepted total system maintenance cost cd j : Downtime cost rate

u : Index of batch Bu T Bu : Time duration of batch Bu

ti j : Time point of PM from machine level tbu : Set-up time point after Bu at system level

�( j, tbu) : Maintenance decision at tbu Gu : PM combination set after Bu

SCA j (u+1) : Saved cost of PM advancement SCP j (u+1) : Saved cost of PM postponement

APBj (u+1) : Advance-postpone balancing cs j : Set-up cost rate

Tpumax : Maximum duration for PM actions h : Index of manufacturing stage MSh

TRh : Time duration of the hth reconfiguration tRh : Time point of the hth reconfiguration

TWh : Time width of RMTW in MSh �( j, tk) : Maintenance decision for M j at tk

and avoid production losses by forecastingmachine degrada-
tions. Conventional forecasting methods can be categorized
into quantitative forecasting and qualitative forecasting,
including Delphi method, time series, exponential smooth-
ing, linear regression, expert systems and neural networks
(Wang and Hsu 2008; Yu and Xi 2008; Tian 2012). Gen-
erally, large amounts of machine statuses are required to
construct prognosis models, which limit their practical uses
for CPS. In recent decades, grey model (GM) forecasting has
achieved good prognosis accuracy with limited statuses by
using approximate differential equations to describe future
tendencies for a time series (Akay and Atak 2007; Xia
et al. 2015b). The GM method, which was first proposed by
Deng (1982), focuses on information insufficiency andmodel
uncertainty in analyzing future trends through studies on con-
ditional analysis, prediction and decision making based on
scarce and fuzzy information. This forecasting model is suit-
able for real-time prediction with limited data available.

To further increase GM accuracy, the novel philosophy
comprising of utilizing practical industrial influencing fac-
tors, besides the time series itself, is needed. This study tries
to achieve the following GM improvements: (1) incorporat-
ing real-time influencing factors (such as operating loads)
that affect machine health trends; (2) taking new statuses
into consideration and avoiding too old ones that cannot
reflect current machine degradations; (3) dynamically eval-
uating the generating coefficient W values to overcome the
shortage of static W = 0.5 in original GM(1,1). Thus, a W -
variable Forecasted-state rolling grey model (WFRGM) is
proposed to increase the accuracy of CPS health prognosis.
This WFRGM algorithm includes the following steps:

(1) Health data acquisition With sensing technology of
CPS, health statuses of machine failure frequency at
sequential time d are collected online as the in-sample
testing data x (0) = (x (0)(1), x (0)(2), . . . , x (0)(d), . . . ,

x (0)(p)), p ≥ 4.
(2) Dynamic W fitting In grey model, enumerate W val-

ues and select optimal ones (W1,W2,W3, . . . ,Wp) at
time d = 1, 2, 3, . . . , p. Evaluate the correlation coef-
ficient (CR) of W values and corresponding operating
load change rate Lvalues (L1, L2, L3, . . . , L p). Then
construct the relationship of W = f (L).

CRWL =
∑p

d=1

(
Wd − W

) (
Ld − L

)

√
∑p

d=1

(
Wd − W

)2
√

∑p
d=1

(
Ld − L

)2
(1)

(3) WFRGM reconstruction With forecasted W (Wp+1,

Wp+2,Wp+3, . . . ,Wp+q) related to real-time L(L p+1,

L p+2, L p+3, . . . , L p+q), WFRGM is reconstructed by
taking advantages of forecasted-state rolling and gener-
ated values calculating with dynamic W in Accumulat-
ing Generation Operation (AGO).

(4) Health trend prediction Then WFRGM is used to
forecast the out-of-sample predictive data (x̂ (0)(p +
1), x̂ (0)(p+2), x̂ (0)(p+3), . . . , x̂ (0)(p+q)). Forecasted-
state rolling process and dynamic W values ensure a
high-precision prediction, which is essential for support-
ing PHM scheduling. The rolling process reconstructs
the grey model whenever a new status rolls in. It takes
newer information into consideration and eliminates
older statuses that cannot show the new machine health
trend. Furthermore, in original rolling GM, the generat-
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ing coefficient W is customarily given as 0.5. The static
W value does not consider real-time influencing fac-
tors. Therefore, by analyzing the relationship between
dynamic W values and variable L data, WFRGM can
generate better forecasts.

(5) Performance evaluation and application To evaluate the
predicting performance, different error criteria are intro-
duced and used, such as the mean absolute percentage
error (MAPE) and the mean absolute error (MAE).

MAM method for machine-level maintenance
scheduling

Based on the machine health prognosis, decision makers
can make maintenance schedules. With age and usage, each
machine undergoes increasing wear, which finally leads to
a failure and breaks the normal production. Conventional
maintenance models usually suffer from a critical problem
of setting periodic intervals to perform PMactions. However,
it has been noticed that insufficient maintenance inevitably
leads to unnecessary downtime and huge cost; on the other
hand, plethoric maintenance will increase maintenance cost
and decrease manufacturing profit (Dekker et al. 1997). The
innovative idea of this research is to incorporate the multiple
attribute value theory, the imperfect maintenance assessment
and the sequential PM scheduling mode. Proper machine-
level PM intervals of diverse machines will be the solid base
for the opportunistic maintenance policies at the system level
(Xia et al. 2013).

This research focuses on three crucial questions for
optimally scheduling PM intervals: firstly, the traditional
assumption of perfect PM that covers a machine to the “as
good as new” status is plausible (Wang and Tsai 2014). For
most machines, even though some components are replaced,
the cumulativewear on adjacent componentsmay deteriorate
unnoticed. This leads to the imperfect effects of mainte-
nance activities. In practice, a machine after PM is not as
good as brand new one, that is, the hazard rate value is
decreased while always greater than zero. Simultaneously,
eachmachine tends to havemore frequent maintenance since
the hazard rate increases more quickly than it did in the pre-
vious PM interval. To sum up, PM not only decreases the
hazard rate to a certain value but also changes the slope of the
hazard rate function. Secondly, most existing maintenance
models were concerning cost. In fact, it should consider other
machine-level PM objectives according to practical require-
ments. Thus, this study utilizes the multiple attribute value
theory in building the PM model. Last but by no means the
least, for responding quickly to system-level PHM pulling,
a dynamic model-iteration mode is proposed to output PM
intervals cycle by cycle. Since conventional static long-time
planning focuses on the maintenance modelling and analysis

for the whole designed lifetime and arranges PM actions in
advance without considering the real-time machine degrada-
tion, which is usually not applicable in a practical factory. In
our dynamic model-iteration mode, sequential PM intervals
are obtained according to the real-time hazard rate evolution
of the current cycles, not being relative to the whole lifetime.

The multi-attribute model (MAM), which is illustrated in
Fig. 2, provides real-time PM intervals Toi j , even if there
are L objectives (O1ij, O2ij, . . . , OLij). The comprehensive
objective function is minimized to schedule optimal PM
intervals. If a smaller Oli j (such as the maintenance cost
cri j ) is preferred,�l = 0; if a larger Olij (such as themachine
availability Aij) is preferred, then �k = 1.

Vij = w1ij
(−1)�1O1ij

O∗
1ij

+ w2ij
(−1)�2O2ij

O∗
2ij

+ · · · + wLij
(−1)�L OLij

O∗
Lij

(2)

In this model, the machine availability Aij and the main-
tenance cost rate cri j may be considered as two objectives
related to the efficiency and the economy, respectively:

Aij = Tai j

Tai j +
(
Tpi j + Tfi j

∫ Tai j
0 λi j (t)dt

) (3)

cri j = Cpi j + Cfi j
∫ Tci j
0 λi j (t)dt

Tci j +
(
Tpi j + Tfi j

∫ Tci j
0 λij(t)dt

) (4)

For each next PM cycle, with the actual interval Tij from
the system-level feedback, the relationship between hazard
rates of consecutive cycles can be defined as:

λ(i+1) j (t) = bi jλi j (t + aijTi j ), t ∈ (0, T(i+1) j ) (5)

In imperfect maintenance effects, the age reduction fac-
tor aij, aij ∈ (0, 1)indicates that imperfect PM causes the
machine’s initial failure rate to become λij(aijTij); mean-
while, the hazard increase factor bij > 1 reflects that PM
increases the failure rate bijλij(t).

Opportunistic maintenance for various
cyber-physical systems

Nowadays, there has been agrowing interest inPHMmethod-
ologies of multi-unit systems for leading enterprises. It is
essential to investigate and model the complicated machine
interactions and the diverse manufacturing characters, which
provide maintenance opportunities for CPS of advanced
manufacturing paradigms. Opportunistic maintenance refers

123



1664 J Intell Manuf (2019) 30:1659–1672

Fig. 2 Illustration of machine-level MAM method

to the scheme where PM can be performed at opportuni-
ties with the advantages of combining individual PM actions
and saving much group maintenance cost (Xia et al. 2012;
Gu et al. 2015). To overcome the exponential decision-
making complexity with machine number increasing and
apply the system-level PHMmethods to advanced manufac-
turing paradigms, novel opportunistic maintenance policies
will be presented in detail.

MTW policy for complex flow-line system

Complex series-parallel cyber-physical systems have been
widely used to satisfy flow-line productions. In this article, a
general PHM decision-making policy is proposed by consid-
ering both machine degradation and system structure. This
maintenance timewindow (MTW) policy can help enterprise
managers to make dynamic maintenance schedules based on
not only single-machine plans, but also the whole-system
global programming. MTW programming is applied by
pulling real-time machine-level PM intervals. A breakdown

caused by one machine is utilized to carry out PM actions on
non-failed ones, thus unnecessary breakdown of CPS could
be avoided. This maintenance-driven opportunistic main-
tenance policy aims to systematically obtain system-level
maintenance schedules in a cost effective manner:

(1) MTW-separation in parallel subsystem According to
machine-level PM intervals, the MTW value Tw pro-
vides a criterion to separate PM actions in subsystems.
MTW-separations can avoid the unnecessary downtime
of upstream and downstream machines.

(2) MTW-combination in series subsystem Pulling the out-
puts from MAM and MTW-separations cycle by cycle,
MTW is defined as the criterion to combine PM actions
within [tk, tk+Tw]. The timepoint tk iswhenonemachine
is preformed PM, which also means maintenance oppor-
tunities for other machines in series.

(3) System performance evaluation The total systemmainte-
nance cost (ETC) by usingMAMpolicy can be evaluated
based on system-level maintenance schedules. The total
maintenance cost of the kth cycle for machine j can be
evaluated by:

ETCkj =

⎧
⎪⎨

⎪⎩

cd j · Tpkmax

Cpi j + Cfi j
∫ T ∗

oij−(t jk−tk )

0 λi j (t)dt + cd j · Tpkmax

0

�( j, tk) = 0
�( j, tk) = 1
�( j, tk) = 2

(6)
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Fig. 3 Flowchart of APB
policy for mass customization
CPS

where �( j, tk) = 0 means no maintenance action is ini-
tiated on M jat the time point tk , but this machine will be
down; �( j, tk) = 1 means the PM action is combined to be
performed in advance; �( j, tk) = 2 means no maintenance
action is initiated and themachine continues to operate. Thus,
the total system maintenance cost for the CPS in its mission
lifetime can be obtained by:

ETC =
K∑

k=1

⎛

⎝
J∑

j=1

ETCkj

⎞

⎠. (7)

APB policy for mass customization system

As one of advanced manufacturing paradigms, mass cus-
tomization is widely used to response quickly to changeable
customer demands. In mass customization, batch orders are
processed through CPS with following production charac-
teristics: (1) batch orders are independent with diverse lot
size; (2) batches are sequentially ordered only a transient
time beforehand; (3) one set-up work happens when a batch
switches to another; (4) it prefers no interruptions in each
batch cycle to ensure product quality. To meet the require-
ments of mass customization, there has been a great need to
propose a new type of opportunisticmaintenance that consid-
ers machine degradations and manufacturing characteristics
(Xia et al. 2015a).

In this study, a production-driven opportunistic mainte-
nance policy is presented to eliminate unnecessary produc-
tion breaks and achieve significant cost reduction. According
to sequential batch orders and machine-level PM intervals,

the advance-postpone balancing (APB) policy utilizes the
set-up works and analyzes the cost savings to schedule real-
time PM adjustments. Each set-up time between successive
batches is used to perform PM actions, thus unnecessary
breakdown during batch productions can be avoided. We
apply APB programming to analyze the cost savings of PM
advancement and PM postponement, and then choose the
better PM adjustment to ensure no-disruptions and reduce
maintenance cost.

This production-driven APB policy has the advantages
for the mass customization paradigm: (1) APB satisfies
no-disruption requirements during changeable batch orders,
other than traditional constant production assumption; (2)
it utilizes planned production downtimes as maintenance
opportunities to advance or postpone PM actions, which
significantly reduces the complexity of system-level schedul-
ing; (3) by choosing the greater cost savings between PM
advancement and PM postponement at each set-up opportu-
nity, APB ensures that the maximization of ETC-saving can
be achieved. The procedure of APB programming is illus-
trated in Fig. 3.

When each batch Bu has been finished, and the next batch
Bu+1 has not started, this moment tbu is utilized as the deci-
sion time to schedule APB. On the one hand, if machineMj

is prevented maintained now, the saved cost by advancing
PM in batch Bu+1 can be evaluated as:

SCA j (u+1) = SCAd
j (u+1) + SCA f

j (u+1) − SCAp
j (u+1)

= Tpi j (cd j − cs j )

+
[∫ T ∗

oi j

0
λi j (t)dt −

∫ T ∗
oi j−(ti j−tbu)

0
λi j (t)dt

]

123



1666 J Intell Manuf (2019) 30:1659–1672

Cfi j − ti j − tbu
T ∗
oi j − (ti j − tbu)

Cpi j (8)

where SCAd
j (u+1) is the downtime cost saving, SCA f

j (u+1) is

the minimal repair cost saving, SCAp
j (u+1) is the PM cost

saving of PM advancement:
On the other hand, if PM of machine Mj is postponed to

the next set-up time point tbu+1, the minimal repair cost sav-
ing will be a negative value (prolonged PM interval leads to
increasing cumulative failure risk and more minimal repair
cost) and the PM cost saving will be a positive value (longer
intervals mean that less PM actions would be needed in the
same scheduling horizon). Therefore, the saved cost by post-
poning PM in batch Bu+1 can be evaluated as:

SCP j (u+1) = SCPd
j (u+1) − SCP f

j (u+1) + SCPp
j (u+1)

= Tpi j (cd j − cs j )

−
[∫ T ∗

oi j+(tbu+1−ti j )

0
λi j (t)dt−

∫ T ∗
oi j

0
λi j (t)dt

]

Cfi j + tbu+1 − ti j
T ∗
oi j + (tbu+1 − ti j )

Cpi j (9)

where SCPd
j (u+1) is the downtime cost saving, SCP f

j (u+1) is

the minimal repair cost saving and SCPp
j (u+1) is the PM cost

saving of PM postponement:
According to the values of SCA and SCP,APB j (u+1) could

be defined as the criterion to decide weather to advance or
postpone this PM action:

APB j (u+1) = SCA j (u+1) − SCP j (u+1). (10)

RMTWpolicy for reconfigurable manufacturing system

The system structure of reconfigurable manufacturing CPS
can be adjusted to meet various future products and change-
able market demands (Koren and Shpitalni 2010; Ni and Jin
2012). In other words, the main advantage of reconfigurable
manufacturing is the adaptability to the uncertainties of the
open system architecture with reconfigurable system struc-
tures. For the entire system, those different reconfigurations
are caused by the changing needs in terms of capacity and
functionality, while the production process will be separated
into sequential manufacturing stages. Each manufacturing
stage (MSh) has its own system structure designed for its
current production requirements. If the system-level main-
tenance policy has to be rebuilt according to each different
structure, its responsiveness and flexibility will be obviously
weakened (Xia et al. 2016).

By extending the previous research from both recon-
figurable structure and manufacturing paradigm aspects,
this study presents a reconfiguration-oriented opportunistic
maintenance policy to achieve rapid responsiveness and cost
effectiveness for future reconfigurable manufacturing. Other
than rebuilding new system-level policies for different sta-
tionary structures, the developed reconfigurablemaintenance
time window (RMTW) focuses on the structure analysis
to extract reconfigured parallel subsystems and series sub-
systems in each manufacturing stage. Faced with different
system structures, the RMTW policy utilizes reconfigura-
tion characters and maintenance opportunities to constantly
redefine reconfiguring scheduling criteria within a uniform
method. This manner is more suitable for rapidly adapting to
new system structures in reconfigurable manufacturing sys-
tems (RMS).

The production scenarios in Fig. 4 can be taken as an
example to illustrate the RMTW scheduling for system-level
reconfigurations. After the original design, the RMS enters
service at time t = tR1 = 0 with its initial system structure
(5 machines). In the first manufacturing stage MS1, the time
width value of RMTW TW1 is defined as a criteria to separate
PM actions in parallel subsystems and combine PM actions
in series subsystems based on machine-level PM intervals.

At the reconfiguration time tR2, the structure is redesigned
for the second manufacturing stage MS2. In the time dura-
tion of this reconfiguration TR2, M1 is replaced with a new
M6, and M7 is added in parallel with M5. Then, the RMS
continues production with a new structure, while a rede-
fined time width of RMTW TW2 is applied for reconfigured
parallel/series subsystems tominimize the total systemmain-
tenance cost.

Similarly, in the next reconfiguration before MS3, M3
is removed, while M8 is added in parallel with M2 and
M4. In contrasted to the traditional manner of rebuilding
new system-level policies for different structures, RMTW
scheduling focuses on reconfiguring scheduling criteria TWh

within a uniform method for rapidly adapting to new struc-
tures.Above structure analysis of eachmanufacturing stage is
essential for RMTW scheduling. Then, the process flowchart
of the proposed RMTW programming is shown in Fig. 5.

Case study of PHM methodologies

Effectiveness of WFRGM algorithm

To prove the prognosis accuracy of the proposed WFRGM
algorithm, the increasing health statuses of a monitored
machine’s deterioration during a maintenance interval are
collected. The twelve status data points of failure frequency
from monitoring points 1–12 are regarded as the in-sample
test data, which reflects the increasing failure risk. The
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Fig. 4 Production scenarios of
reconfigurable manufacturing
CPS.

Fig. 5 Flowchart of RMTW policy for reconfigurable manufacturing
CPS

remaining six states from cycles 13–18 are used for out-of-
sample forecasting.

Results of the linear regression model (LRM) with
x̂ (0)(d) = 0.0362d + 0.0211, the original GM(1,1) model

with x̂ (0)(d) = (
1 − e−0.147

) (
x (0)(1) + 0.0951

0.147

)
e0.147(d−1),

the actual-state rolling grey model (ARGM), the forecasted-

state rolling grey model (FRGM) and the proposedWFRGM
algorithm have been presented in Table 2. The plot of actual
versus forecasted machine states from above five models is
shown in Fig. 6.

From the result comparisons in Table 2, it can found
that the MAPE (5.19%) and MAE (0.0395) of WFRGM are
all lower than LRM (MAPE = 21.26%; MAE = 0.1608),
GM (MAPE = 17.74%; MAE = 0.1415), FRGM (MAPE
= 15.73%; MAE = 0.1263) and ARGM (MAPE = 9.80%;
MAE = 0.0729), indicating the highly accurate forecast-
ing ability. Thus, WFRGM algorithm can provide real-time
machine health information to dynamic PHM decision-
making.

Effectiveness of MAM method

A 5-unit series-parallel system with the initial system
structure in Fig. 4 is selected as an example for numeri-
cal experiments using the proposed MTW policy. In this
manufacturing system, PM intervals of each machine are
dynamically scheduled by the MAM method according
to individual machine degradation. The reliability of each
machine is formulated by a Weibull failure probability
function: λ1 j (t) = (m j/η j )(t/η j )

m j−1, which has been
widely used to fit repairable equipment in electronic and
mechanical engineering. Machine e parameters are shown
in Table 3.

From the results of industrial implementations (Xia et al.
2012), the proposedmachine-levelMAMmethod reveals fol-
lowing conclusions: (1) the PM interval decreases while PM
cycle increases, since the underlying hazard rate evolution
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Table 2 Forecasting results of
different methods

Monitoring point Actual status LRM GM FRGM ARGM WFRGM

1 0.0837 0.0573 0.0837 0.0837 0.0837 0.0837

2 0.0864 0.0935 0.1157 0.1157 0.1157 0.1157

3 0.1705 0.1297 0.1340 0.1340 0.1340 0.1340

4 0.1732 0.1659 0.1552 0.1552 0.1552 0.1552

5 0.2110 0.2021 0.1798 0.1798 0.1798 0.1798

6 0.2122 0.2383 0.2082 0.2082 0.2082 0.2082

7 0.2388 0.2745 0.2412 0.2412 0.2412 0.2412

8 0.2448 0.3107 0.2794 0.2794 0.2794 0.2794

9 0.2856 0.3469 0.3236 0.3236 0.3236 0.3236

10 0.4144 0.3831 0.3749 0.3749 0.3749 0.3749

11 0.4219 0.4193 0.4342 0.4342 0.4342 0.4342

12 0.5318 0.4555 0.5030 0.5030 0.5030 0.5030

In-sample testing statuses (1–12)

13 0.6316 0.4917 0.5827 0.5827 0.5827 0.6207

14 0.6401 0.5279 0.6749 0.6586 0.6857 0.6743

15 0.6812 0.5641 0.7818 0.7649 0.7762 0.7074

16 0.7483 0.6003 0.9056 0.8849 0.8421 0.8285

17 0.8540 0.6365 1.0490 1.0315 0.9130 0.8589

18 0.9026 0.6727 1.2151 1.1953 0.9976 0.9830

Out-of-sample forecasting statuses (13–18)

MAPE (%) 21.26 17.74 15.73 9.80 5.19

MAE 0.1608 0.1415 0.1263 0.0729 0.0395

Fig. 6 Comparison of actual and forecast machine health states

becomes faster with the degradation process; (2) machine
availability will be lower andmaintenance cost will be higher
as a machine ages due to the consideration of maintenance

effects; (3) ignoring the effects of a maintenance activity will
lead to less availability and extra cost, and MAM contributes
to more practicality of PM intervals.

Effectiveness of MTW policy

To validate the MTW policy for complex flow-line systems,
we program the system-level maintenance schedule with
machine parameters in Table 3. Taken Tw = 800 h for the
MTWprogramming as an example, the CPSmission lifetime
is 25,000 h. Table 4 provides the system-level maintenance
schedule results.

The influence of MTW-value and the effectiveness of
MTW programming is shown in Fig. 7. It is proven that
MAM policy can reduce ETC up to 27% comparing with
Individualmaintenancemode (IMM)of Tw = 0 andSimulta-
neous maintenance mode (SMM) of Tw = 25,000. Besides,

Table 3 Machine parameters
j m j η j Tpij Tfi j Cpi j Cfi j cdij aij bi j

1 3.0 8000 140 600 5000 35,000 80 i /(15i+5) (17i+1)/(16i+1)

2 2.0 7000 120 200 6000 18,000 40 0.03 1.04

3 1.5 12,000 200 350 2000 15,000 30 i /(20i+20) 1.03

4 3.0 13,000 80 300 7500 22,000 45 0.025 (16i+3)/(15i+3)

5 2.5 16,000 300 800 2500 25,000 75 i /(16i+14) 1.05
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Table 4 System-level maintenance schedule based on MTW

j Time point of PM activity (h)

1 3319 6911 10,020 13,121 15,134 17,940 20,212 22,789

2 3319 6911 10,020 15,134 19,105 22,789

3 5108 10,020 15,134 20,212

4 6911 14,455 21,984

5 5108 10,020 15,134 20,212

Fig. 7 ETC of the flow-line
CPS with various MTW
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it can be concluded that larger MTW value enables more
machines to take advantage of maintenance opportunities,
but too large MTW causes extra maintenance and more ETC
will be needed for CPS.

Moreover, traditional opportunistic maintenance policies
calculate the cost-savings of all possible combinations at each
cycle with the exponential decision-making complexity of
O(2(J−1)). For example, Zhou et al. (2009) took a 3-unit
system to illustrate the opportunistic PM scheduling algo-
rithm, while the cost savings for 4 possible combinations
were calculated at each opportunity. For our presentedMTW
policy, since the numbers of parallel/series subsystems and
their respective machines are all smaller than J , the maxi-
mal decision-making complexity at each opportunity is less
than 2J 2. Thus, the MTW complexity is just polynomial
with total machine number J , which means even a complex

flow-line CPS with a large number of machines can be han-
dled.

Effectiveness of APB policy

Facedwith sequential batchorders,APBdynamically utilizes
set-up works and analyzes the cost savings to reduce the total
system maintenance cost. PM intervals and various batch
orders are pulled to make opportunistic maintenances cycle
by cycle. For a 7-unit mass customization CPS, results of
production-driven opportunistic maintenance are presented
in Table 5.

The results from mass customization CPS (Fig. 8) reveal
that the mechanism of APB policy can ensure the low-
est ETC. On the one hand, huge downtime cost saving
ensures that ETC of APB policy is lower than those of

Table 5 APB results in
sequential batch cycles

APB (cost) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

M1 −9204 −3269 −2725 4022

M2 2262 33 1865 1746 2790

M3 392 −6332 105 −902

M4 −110 4033 4555

M5 −78 5762 5934 3687 1758 −1640

M6 526 −2332 336 151

M7 6490 1951 2250

123



1670 J Intell Manuf (2019) 30:1659–1672

Fig. 8 Results comparison of opportunistic maintenance policies

maintenance-driven opportunistic maintenance policies (e.g.
IMM, SMM and MTW). On the other hand, APB dynami-
cally compares cost savings and chooses PMadjustmentwith
Max

{
SCAju, SCPju

}
, which is thus a more cost-effective

policy than Advanced maintenance mode (AMM) and Post-
poned maintenance mode (PMM). Therefore, APB policy
achieves significant cost reduction by considering batch char-
acteristics and making PM adjustment based on maximum
cost saving for each machine at each set-up time.

Effectiveness of RMTW policy

The RMTW policy is performed on a reconfigurable manu-
facturing CPS with changeable system structures shown in
Fig. 4. In the first manufacturing stage (MS1), TW1 = 800 is
applied for the RMTW programming as an example, while
TW2 = 600 and TW3 = 1000 are taken for MS2 and MS3
separately. Table 6 shows the RMTW scheduling results for
reconfigured system structures. At each system-level PM
execution point tk , �( j, tk) = 0 means no PM action but
this machine will be down according to the system structure;
�( j, tk) = 1 indicates a PM action is combined to be per-
formed; while �( j, tk) = 2 evinces no PM and this machine

Fig. 9 ETC-saving rate comparison with various methods

continues working. Newly added or removed machines are
considered in each manufacturing stage.

From the results of reconfigurablemanufacturingCPS,we
can find that different CPS structures with various machine
reliabilities and changeable system-level reconfigurations
would lead to different ETC-saving rates. However, RMTW
policy is exactly designed to redefine the time width of
TWh for minimizing the ETC in each manufacturing stage.
Therefore, this optimizationmechanism ensures that RMTW
policy can not only be rapidly adapt to new diverse sys-
tem structures, but also achieve cost effectiveness for the
whole-CPS maintenance scheduling. In Fig. 9, results indi-
cate that theETC-saving rate (28.105% comparing to IMM)
achieved by RMTW scheduling is much higher than tradi-
tional opportunistic maintenance policies (IMM, SMM and
static MTW). It can be concluded that proposed RMTW
policy is a viable and effective policy to achieve rapid
responsiveness and cost reduction for future reconfigurable
manufacturing.

Conclusions and perspectives

In this paper, we have presented systematic PHM method-
ologies for cyber-physical systems of three advanced man-

Table 6 RMTW results for reconfigurable manufacturing CPS

�( j, tk) MS1 MS2 MS3

tk 4587 6042 9033 10251 12563 16012 18437 19147 19978 21955 24188 27538

M1 1 2 1 0 – – – – – – – –

M2 1 0 0 1 0 1 2 0 0 1 0 1

M3 0 1 0 0 1 0 2 1 0 – – –

M4 0 2 1 0 2 0 1 2 0 2 0 1

M5 1 2 0 1 2 1 2 2 0 1 0 1

M6 – – – – 2 1 2 2 1 2 1 1

M7 – – – – 2 0 2 2 1 2 0 1

M8 – – – – – – – – – 2 0 1
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ufacturing paradigms. With monitored and synchronized
information from the cyber computational space, PHM
methodologies integrating manufacturing characters in the
physical factory floor can improve the health management.
These developed prognosis algorithm, scheduling model
and opportunistic maintenance policies achieve significant
improvements in following aspects: (1) WFRGM algorithm
provides real-time and accurate health predictions by incor-
porating updated information and influencing factors; (2)
MAM method can output sequential PM intervals based on
individual machine health for supporting the system-level
opportunistic maintenance; (3) MTW policy schedules PM
separations/combinations according to series-parallel struc-
tures for reducing maintenance cost and decision-making
complexity; (4) APB policy achieves huge cost savings by
utilizing set-up times to makes real-time PM optimizations
and handle variable batch orders; (5) RMTW policy effi-
ciently achieve rapid responsiveness and cost effectiveness
for diverse open-ended reconfigurations and flexible system
structures.

In sum, both cyber factors (information technologies) and
physical factors (manufacturing paradigms) are essential for
the health management of future CPS. Some industrial enter-
prises (i.e., port machinery manufacturers and automobile
manufacturing companies) have already benefited from these
novel PHMmethodologies. Future work is needed to extend-
ing this hierarchical PHM framework to other burgeoning
manufacturing paradigms, such as sustainable manufactur-
ing, green production and cloud manufacturing.
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