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Abstract The continuous development of steel products
generates new challenges for the maintenance of manufac-
turing machines in steel mills. Substantial mechanical stress
is inflicted on the machines during the processing of mod-
ern high-strength steels. This increases the risks of damage
and flaws in the processed material may appear if the capa-
bility of a machine is exceeded. Therefore, new approaches
are needed to prevent the machine condition from deterio-
rating. This study introduces an approach to the prediction
of mechanical stress inflicted on a roller leveler during the
processing of cold steel strips. The relative stress level is indi-
cated by features extracted froman acceleration signal. These
features are based on the calculation of generalized norms.
Steel strip properties are used as explanatory variables in
regression models to predict values for the extracted vibra-
tion features. Themodels tested in this study includemultiple
linear regression, partial least squares regression and gener-
alized regression neural network. The models were tested
using an extensive data set from a roller leveler that is in
continuous operation in a steel mill. The prediction accuracy
of the best models identified indicates that the relative stress
level inflicted by each steel strip could be predicted based on
its properties.
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Introduction

Product diversity in steel mills is continuously growing. The
development of modern high-strength steels and advanced
high-strength steels is driven by demanding market require-
ments (Silvestre et al. 2015). The production of thesemodern
steels pushes the manufacturing equipment close to its limits
of endurance. The manufacturing machines, such as roller
levelers, are often designed for steel products with differ-
ent properties compared with modern steels. Therefore, the
machine has to endure harsher conditions than it was orig-
inally designed for. The testing and modeling of material
behavior and the formability of these new steel materials has
received attention recently (Bruschi et al. 2014; Dong et al.
2016; Silvestre et al. 2015; Sriram et al. 2012). The perspec-
tive of this study, however, is to evaluate themechanical stress
effect on the roller leveler, inflicted when processing various
materials, including high-strength steel. The objective is to
improve the safe operation and damage prevention in roller
levelers in the light of increasingly challenging production
requirements.

Roller leveling is amethod for straightening steel plates or
strips after final rolling, heat treatment, or cooling operations.
Flatness imperfections and uneven stresses can be eliminated
by bending the rolled material in alternating directions. The
literature on roller leveling is largely dominated bymodeling
based on finite element models (Huh et al. 2003; Seo et al.
2016; Silvestre et al. 2014) and analytical models (Baumgart
et al. 2015; Chen et al. 2015; Cui et al. 2011; Doege et al.
2002; Liu et al. 2012; Silvestre et al. 2014). A vast number
of these models are concerned with process simulation and
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parameter analysis. On the other hand, several studies focus
on the analysis and control of material behavior in the lev-
eling process (Dratz et al. 2009; Madej et al. 2011; Morris
et al. 2001; Park and Hwang 2002). These approaches have a
major significance for the design and the improvement of the
leveling process. However, they do not provide direct solu-
tions to the prevention of machine condition deterioration.

The effects of leveling on machine condition have also
been investigated by some authors. Sueoka et al. (2002) and
Matsuzaki et al. (2008) applied analytical models and actual
vibration measurements in the study of polygonal wear on
work rolls in a hot leveler. Additionally, Karioja et al. (2015)
analyzed vibration measurements to study the stress inflicted
on an industrial roller leveler. The effects of leveling param-
eters on vibration features were analyzed by Nikula and
Karioja (2016). Moreover, there is a broader selection of
studies related to the vibrations in other steel forming pro-
cesses and especially rolling processes. Numerical vibration
modeling approaches have been used to study non-linear
vibrations (Bar and Świątoniowski 2004), mid-frequency
vibrations (Bar and Bar 2005), vertical vibrations (Nizioł and
Świątoniowski 2005), and the chatter phenomenon (Heidari
and Forouzan 2013). Wu et al. (2014) examined the relation-
ships of vibration characteristics with local defects on the roll
surface and later the chatter phenomenon (Wu et al. 2015)
using numerical approaches and actual vibration measure-
ments. The effect of vibrations on flatness measurements of
steel strips has been studied byUsamentiaga et al. (2014) and
Usamentiaga et al. (2015). However, the analysis of vibra-
tionmeasurements from roller levelers in industrial cases has
rarely been discussed in the literature. This study extends the
work presented by Karioja et al. (2015) and Nikula and Kar-
ioja (2016) by introducing a modeling approach to the stress
evaluation of the industrial leveler.

In this study, a data-driven approach to modeling is used.
This is an especially suitable approach for industrial sys-
tems that are in continuous use. The model generation is
relatively straightforward and detailed information on the
physical properties of the modeled system can be partly
ignored. On the other hand, comprehensive historical data
from typical operation is needed for model training. Data-
driven modeling and its application on machine diagnostics
and prognostics have been widely studied (Jardine et al.
2006; Lee et al. 2014). The modeling methodologies include
linear regression models (Wise and Gallagher 1996), such
as multiple linear regression (MLR), principal component
regression (PCR), partial least squares regression (PLSR)
and non-linear regression methods, such as artificial neural
networks (ANN) (Specht 1991) and support vector machines
(SVM) (Smola and Schölkopf 2004). Additionally, Bayesian
approaches (Mosallam et al. 2016) and stochastic modeling
approaches such as Markov, semi-Markov (He et al. 2012),
hiddenMarkovmodels (Wang 2007) have gained broad inter-

est in machine prognostics recently. Data-driven modeling
has been applied in rolling mill applications quite exten-
sively as well. Neural networks have been used in many
cases, including plate width set-up value estimation in a hot
plate mill (Lee et al. 2000), temperature prediction for steel
slabs (Laurinen and Röning 2005), steel hardness prediction
(Das and Datta 2007) and the prediction of work roll ther-
mal expansion (Alaei et al. 2016). Furthermore, Faris et al.
(2013) used genetic programming to predict rolling force,
torque, and slab temperature. Serdio et al. (2014) proposed
residual-based fault detection using soft computing tech-
niques for condition monitoring in rolling mills. However,
this investigation differs from those examples in the target
of the modeling, which is the prediction of the mechanical
stress inflicted on the roller leveler.

Acceleration measurements have been used for mechani-
cal stress evaluation recently in some studies. Acceleration is
a response to the force applied to the machine, and therefore,
it has potential for stressmonitoring. In some cases, the accel-
eration signal provides an even better indication of changes
in the stress level compared with the strain gauge signal
(Karioja and Lahdelma 2013). Accelerometers are practical
sensors for industrial applications and for various fault detec-
tion applications as well (Lahdelma and Juuso 2011a). Stress
evaluations based on acceleration signals have been previ-
ously made for steel mill machines such as the steel cutter
(Karioja andLahdelma 2015) and roller leveler (Karioja et al.
2015). Cumulative stress indices obtained from vibration
measurements have also been proposed for a Kaplan water
turbine and a load haul dumper (Juuso 2014). Cumulative
stress indices were previously introduced for the predic-
tion of roller mill fatigue based on torque measurements
(Juuso and Ruusunen 2013) and later extended to the real-
time risk analysis of machines and process devices (Juuso
and Galar 2016). The stress contributions were obtained
using a data-driven non-linear scaling approach (Juuso and
Lahdelma 2010). The approach proposed in this study has
the following differences with regard to these previous stress
evaluation approaches. A data-driven model is proposed for
the prediction of the relative stress inflicted by each steel
strip. Additionally, the trained model can be used for stress
evaluation without real-time measurements, in contrast to
the aforementioned approaches. The stress contributions are
based on linear evaluation of vibration feature values instead
of the non-linear scaling approach.

The research question discussed in this study concerns
the identification of the relative stress that is inflicted dur-
ing the processing of steel strips. The relative stress defines
the relative level of the mechanical stress that each level-
ing event inflicts on the machine. To indicate the relative
stress level, features are extracted from an acceleration
signal measured from the machine structure. These fea-
tures are based on the generalized norms, which have been
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Fig. 1 The principle of a roller
leveler

used in stress monitoring (Karioja and Lahdelma 2015) and
various industrial condition monitoring applications previ-
ously (Lahdelma and Juuso 2011a). The requirement for
feature extraction comes from the large amount of data pro-
duced by an accelerometer. With generalized norms, this
data can be effectively compressed, and at the same time,
both long-term stress and impact stress effects can be mon-
itored. Additionally, the automatic computation of large
number of such features is practical in condition monitoring
approaches.

The working hypothesis is that the correlations of vibra-
tion features with steel strip properties could be successfully
exploited as the basis for model generation. Additionally,
the prediction of the relative stress level is studied using the
generated regression models. These models include multiple
linear regression, partial least square regression, and gener-
alized regression neural network (GRNN). MLR is used to
identify the linear relations between the vibration features
and steel strip properties, whereas PLSR is used to reduce
the dimensionality and collinearity in the explanatory data.
GRNN is used to build a model that is free from the linear-
ity assumption. The applied modeling approach is validated
using an extensive data set, which includes data from a wide
range of different steel strips. Based on the literature survey,
multiple models for roller leveling have been introduced, but
these models are mainly used for process simulation or the
analysis of material behavior and process parameters. These
models are typically complex and their application requires
excessive computation. In contrast, this study introduces a
straightforward experimental approach that can be applied
in an industrial environment to support maintenance plan-
ning, for instance.

This paper is organized as follows. The “Materials and
methods” section provides a description of the industrial case
and the methods used to conduct the study. The results from

the industrial stress evaluation case are shown and discussed
in the “Results and discussion” section. Finally, the study is
summarized in the “Conclusions” section.

Materials and methods

The principles of roller leveling and the leveler studied here
are presented in “Roller leveling” section. The practicali-
ties related to vibration measurements are described in the
“Vibration measurements” section. The generalized norms,
which are used as the basis for vibration feature genera-
tion, are introduced in the “Generalized norms” section. The
“Generalized norms in vibration simulation” section demon-
strates the effect of the norm order in change detection using
simulated vibration signals that imitate signals obtained from
the industrial leveler. “Feature generation” introduces the
features generated from the signals and steel strip proper-
ties. The modeling approach is presented in the “Regression
modeling” section.

Roller leveling

The goal of roller leveling is to eliminate shape defects in
the material. Steel coils contain flatness defects caused by
uneven stresses anddefects resulting from thickness variation
across the product width (Smith 1997). The stress patterns
create longitudinal and transverse curvature. Edge and center
waves are caused by a difference in the length of the sheet
between the center and the edges (Park and Hwang 2002).
Roller leveling is done by subjecting the strip to multiple
back and forth bending sequences with increasing roll gaps,
as illustrated in Fig. 1. In other words, the strip is exposed
to reverse bending. The rolls on the entry side cause more
curvature to the strip than the rolls near the exit. Strains in
the strip are controlled by the set geometry of the leveler. The
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principle of roller leveling is based on controlling the plas-
tic deformation through the thickness of the material. Plastic
deformation determines the resultant flatness and memory
and it also affects the required force. The roll force is a func-
tion of material thickness, width, yield strength, roll spacing,
and the extent of plastic deformation (Smith 1997). Appro-
priate control of operational parameters is therefore required
for the desirable leveling result.

The roller leveler under investigation is used for strips of
cold steel at the SSAB steel mill in Raahe, Finland. Sheets
are cut from a strip on the production line after the leveler
using a flying shear. The cutting is performed simultaneously
with leveling without the need to stop the strip in the leveler
for cutting. The cutting of sheets causes shocks that are con-
ducted to the leveler and emerge as peaks in the monitored
vibration signal as described in the “Steel cut effect removal”
section later on. The processed steel strips considered in this
study showed a large variation of properties. The range of the
yield strength was 210–1640 MPa; the length range was 68–
1161 m; the thickness range was 1.98–15.21 mm; the weight
range was 7400–29,280 kg, the width range was 861–1875
mm; the number of cut sheets was 4–465 and 55 different
steel grades were processed altogether. Materials with high
yield strength and thickness impart substantial force on the
rolls, whereas long strips need to be processed for a long
duration and potentially inflict a high accumulation of stress.

Vibration measurements

Three accelerometers were stud-mounted on the supporting
structure beneath the lower supporting rolls of the leveler. The
acceleration wasmeasured horizontally in the cross direction
compared with the direction of the roller track. Only the sig-
nal from the sensor located in the middle of the roller track
was used in the stress estimation, because one signal was
considered sufficient for this study. The other signals were
used in data preparation, which is explained in the “Data
preparation” section. The accelerometer used was an SKF
CMSS 787A-M8, which has a frequency response from 0.7
to 10 kHz with±3 dB deviation. The measurement hardware
included an NI 9234 data acquisition card and an NI Com-
pactRIO for data acquisition. The sampling rate was 25.6
kHz and the only filter used at the hardware level was the
built-in antialiasing filter of the data acquisition card. The
measurement system was calibrated using a hand-held cali-
brator.

Generalized norms

The generalized norm introduced by Lahdelma and Juuso
(2008) is defined by

‖x (α)‖p =
(

1

N

N∑
i=1

∣∣∣x (α)
i

∣∣∣p
) 1

p

. (1)

This feature is known as the l p norm of signal x (α) where
p is the order of the norm, α is the order of derivation, x
stands for displacement, and N is the number of data points.
The l p norm has the same form as the generalized mean, also
known as the Hölder mean or power mean (Bullen 2003).
The l p norms are defined in such a way that 1 ≤ p < ∞.
In the case of 0 < p < 1, norm (1) is not a proper
norm in general, because it violates the triangle inequality
‖x + y‖ ≤ ‖x‖ + ‖y‖ (Lahdelma and Juuso 2011b). How-
ever, in this case, these p values are also valid because y is the
null vector. The root mean square (rms) and the peak value,
which are special cases of norm (1) when p = 2 and p = ∞,
respectively, are often used as features in condition monitor-
ing (Jantunen and Vaajoensuu 2010; Li et al. 2012). In this
study, norms l0.1, l0.5, l1, l2, l4, and l10 were calculated from
an acceleration signal (α = 2), but other signals could also
be used. The features generated from generalized norms are
introduced in the “Feature generation” section.

Generalized norms in vibration simulation

The acceleration signal measured from the roller leveler
contains varying amplitude levels and peaks with differ-
ent magnitudes. These features were simulated in order to
demonstrate the significance of the norm order in feature
extraction. The simulated signals consist of three cosine com-
ponentswith frequencies of 50, 80, and 150Hz and 0◦ phases,
respectively. The signals were generated by combining 60
samples that had 25,600 points, which corresponds to 1 min
of data using sampling frequency of 25.6 kHz.

In signal 1, the amplitudes (X) of each frequency were
X = 0.5 on samples 1–15, X = 1 on samples 16–30,
X = 4 on samples 31–45, and X = 10 on samples 46–
60. Gaussian noise with variance σ 2 = 0.5 was added on
each sample. The signal-to-noise ratios (SNR) of these four
15-second segments were SNR = 20 · log10(lsignal2 / lnoise2 ) =
[−1.25 4.77 16.81 24.77], respectively. The complete sig-
nal is shown in Fig. 2 on the left.

Signal 2 was generated by combining the second sample
segment (samples 16–30) from signal 1 four times in a row.
The last three segments were manipulated by adding three
events with exceptionally large values on each segment. The
magnitudes of these values were±20,±40,±60, also shown
in Fig. 2 on the right. One negative and one positive value
were added on each event. Signal 3 is the same as signal 2
but without the exceptionally large values.

A single norm value was computed from each one-
second sample (N = 25,600). The norm orders were p =
[0.1 0.5 1 2 4 10]. The sixty values of l0.1, l2, and l10 from
signals 1 and 2 are shown in Fig. 2. The increasing amplitude
of signal 1 is clearly seen in the norm values, as indicated on
the left in Fig. 2. The relative magnitude of change between
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Fig. 2 Simulated signals
(above) and generalized norms
l0.1, l2, and l10 from the
corresponding signals (below)
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Fig. 3 Effect of norm order in the detection of signal changes. 1st, 2nd, 3rd, and 4th segments correspond to points 1–15, 16–30, 31–45, and 46–60
in the signals, respectively

the segments is shown in Fig. 3. The leftmost graph in Fig. 3
shows the ratios of norm averages from the 2nd, 3rd, and 4th
segments to the 1st segment from signal 1. The low order
norm (e.g. p = 0.1) results in larger relative change com-
pared with the high order norm (e.g. p = 10). This can
clearly be seen especially in the ratio of the 4th segment
to the 1st segment. This behavior shows that the difference
between signal amplitude levels is the most distinguishable
when norms with low order p are used.

The graphs on the right in Fig. 2 show that exceptionally
high signal values have a major influence on the high order
norms (e.g. p = 10). On the other hand, the effect is small on
the low order norms (p ≤ 2). The same effect is illustrated
by the ratios of maximum norm values in the middle graph
in Fig. 3. This behavior indicates that the effect of a single
peak is large on the high order norms and negligible on the
low order norms.

The rightmost graph of Fig. 3 illustrates the effect of
exceptionally high signal values on the sum values of norms,
which were also used in feature generation, as presented in
the next section. The sums of complete signals 2 and 3 were
compared by studying their ratios. The influence of excep-
tionally high values was significant in the sums computed
using a norm that had the order p ≥ 4. When the order of
the norm was small, the effects of exceptionally high signal
values were negligible and the ratios in Fig. 3 are therefore
close to one. This behavior illustrates that large peak values
may affect the norm sums if the order of the norm is high and
the number of exceptionally high values is large with relation
to the number of values summed.

Feature generation

The features generated from steel strip properties are shown
in Table 1. The yield strength, length, weight, width, and
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Table 1 Steel strip features

Feature number Description

1, 2, 3, 4, 5 Yield strength, length, weight, width and
thickness, respectively

6–10 Common logarithm of features 1–5

11–15 Square of features 1–5

16–20 Cube of features 1–5

21–25 Square root of features 1–5

26–30 Cube root of features 1–5

31–40 Products of features 1–5. Only different features
were multiplied by each other. This also
concerns features 41–90

41–50 Products of features 6–10

51–60 Products of features 11–15

61–70 Products of features 16–20

71–80 Products of features 21–25

81–90 Products of features 26–30

91–110 Products of features 1–5 and 6–10 (Feature
multiplication by its transformation, such as
‘log10 (length) · length’ was not included. This
also concerns features 111–190)

111–130 Products of features 1–5 and 11–15

131–150 Products of features 1–5 and 16–20

151–170 Products of features 1–5 and 21–25

171–190 Products of features 1–5 and 26–30

thickness of steel strips are features number 1–5, respectively.
These features were further transformed using the common
logarithm, square, cube, square root, and cube root to produce
features 6–30. The features with similar transformation were
multiplied by each other to generate features 31–90. Finally,
features 1–5 were multiplied by features 6–30 to generate
features 91–190. These features were used as the explanatory
variables in themodeling approach presented in the following
section.

In order to obtain the feature values for the relative stress
level, the generalized norm sums were computed from the
acceleration signal. The sums were computed by adding up
the norm values of one-second samples (N = 25,600) from
each leveling event. The leveling of one complete steel strip
was considered as a leveling event. The summation was done
to include the effect of stress accumulation during the level-
ing event on the relative stress features. These features were
then used as response variables in the models. The response
variable set contained

∑
l0.1,

∑
l0.5,

∑
l1,

∑
l2,

∑
l4, and∑

l10 and the square, square root, and common logarithm
of each. Twenty-four variables were included in this part
of the set. The same variables were also computed after the
removal of data points that correspond to steel cutting events.
The removal of steel cut effects is introduced in the “Steel
cut effect removal” section. Altogether 48 response variables

were included in the complete set. In order to produce com-
parable modeling results, the values of explanatory variables
and response variables were scaled to range 0–1.

Regression modeling

This section presents the applied modeling methods, includ-
ing themultiple linear regression, partial least squares regres-
sion, and generalized regression neural network. Thereafter,
the criteria used for model assessment are shown. The last
part of this section presents the applied variable selection
procedures and the cross-validation approach.

Multiple linear regression

Multiple linear regression is a popular and simple regres-
sion method, where the response variable is considered a
linear combination of certain explanatory variables. MLR
models the relationship between two or more explanatory
variables and a response variable by fitting a linear equation
to observed data. If the model has only one explanatory vari-
able, the model is a simple linear regression model. AnMLR
model with N observations and k explanatory variables is
formally defined by

y j = β0 + β1x j1 + β2x j2 + · · · + βk x jk + ε j , (2)

where j = 1, 2, . . .N , y denotes the value of the response
variable, x is the value of the explanatory variable, β0 is the
intercept, β1– βk are the unknown regression coefficients to
be estimated, and ε is the error term. The model is identified
using the least squares fitting.

Partial least squares regression

Partial least squares is an extension of principal component
analysis and it has the ability to analyze data with several,
noisy, collinear and incomplete variables (Wold et al. 2001).
The underlying assumption of PLSR is that the observed
data is generated by a system or process which is driven by
a small number of latent variables, which are not directly
observed or measured. The latent variables are linear combi-
nations of the original variables and hold no correlation with
each other. The latent variables explain the variation in the
explanatory variables X and the variation in X which is the
most predictive of the response variables Y . That is to say,
PLSR maximizes the covariance between matrices X and Y .
The matrix X is decomposed into a score matrix T , loading
matrix P , and residual E . Similarly, the matrix Y is decom-
posed into a score matrix U , loading matrix Q, and residual
F . The matrix decompositions are defined by
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X = T P ′ + E, (3)

Y = U Q′ + F. (4)

The latent variables are calculated iteratively extracting infor-
mative features one at a time. The number of latent variables
is typically smaller than the number of original variables and
thus the method is considered as a dimensionality reduction
method (May et al. 2011). However, it is also possible to
express the PLSR formula in terms of the original variables
(Rosipal and Krämer 2006). There are several methods to
determine the number of latent variables in a model. In this
study, the number of latent variables was determined based
on the cross-validation test result. The function plsregress in
Matlab was used for model training.

Generalized regression neural network

The generalized regression neural network, developed by
Specht (1991), is a memory-based network, which includes
a one-pass learning algorithm with parallel structure. It
approximates any arbitrary function between input and out-
put vectors and draws the function estimate directly from the
training data. The method is suitable for regression problems
where an assumption of linearity is not justified. A GRNN
configuration consists of four layers, which include the input
layer, pattern layer, summation layer, and output layer (Kim
et al. 2010). Each input unit in the input layer corresponds
to individual observed parameters. The input layer is fully
connected to the pattern layer, where each neuron represents
a training pattern and its output is a measure of the distance
of the input from the stored patterns. The pattern layer is
connected to the summation layer, which has two different
types of summation including S-summation neuron and D-
summation neuron. S-summation neuron determines the sum
of the weighted outputs of the pattern layer, whereas the D-
summation neuron determines the unweighted outputs of the
pattern neurons. The connection weight between the i th neu-
ron in the pattern layer and the S-summation neuron is yi ,
which is also the target output value corresponding to the
i th input pattern. The connection weight for D-summation
neuron is unity. The output layer divides the output of each
S-summation neuron by that of each D-summation neuron.
Therefore, a predicted value ŷ(x) to an unknown input vector
x can be expressed as (Kim et al. 2010)

ŷi (x) =
∑n

i=1yiexp [−D (x, xi )]∑n
i=1exp [−D (x, xi )]

, (5)

where n and xi represent the number of training patterns
and the i th training input pattern stored between the input
and pattern layers, respectively. The Gaussian D function is
defined as

D (x, xi ) =
p∑

j=1

(
x j − xi j

σ

)2

, (6)

where p indicates the number of elements of an input vec-
tor. The x j and xi j represent the j th element of x and xi ,
respectively. The parameter σ is referred to as the spread
parameter, whose optimal value is often experimentally eval-
uated. In this study, the spread parameter of the best model
was defined based on the cross-validation test result. The
tested values were σ = [0.01 0.05 0.1 0.2 0.5 0.7 1 1.5].
The Matlab function newgrnn was used for model training.

Criteria for model performance evaluation

Four criteria were used to evaluate the models in this study.
The predictive performance of the models was evaluated
using the root mean squared error of prediction (RMSE),
which gives the average prediction error. The RMSE crite-
rion is given by

RM SE =
√

1

N

∑N

j=1

(
y j − ŷ j

)2
, (7)

where y j , ŷ j , and N are the observed value, the correspond-
ing predicted value, and the total number of observations,
respectively. The goodness of fit for linear models was eval-
uated with the coefficient of determination (R2). The general
definition of R2 is

R2 = 1 − SSres

SStot
, (8)

where SSres = ∑
(y j − ŷ j )

2 is the sum of the squares of
residuals and SStot = ∑

(y j − ȳ)2 is the total sum of the
squares. When the criterion is close to one, the fit of the
model is good; when the criterion is close to zero, the fit is
poor. The R2 criterion is inappropriate for the evaluation of
non-linear regression models (Spiess and Neumeyer 2010),
and therefore it was used only for linear models. Pearson’s
correlation coefficient was used to evaluate the linear corre-
lation between themodel predictions and the observed values
in linear and non-linear models. The correlation coefficient
for two variables x and y is given by

Rxy =
∑N

j=1

(
x j − x̄

) (
y j − ȳ

)
√∑N

j=1

(
x j − x̄

)2 ∑N
j=1

(
y j − ȳ

)2 . (9)

Variance inflation factor (VIF) was used to assess the multi-
collinearity in the models. Multicollinearity is an indication
of collinearity between three or more variables even if no
pair of variables has a high linear correlation. This situation
can be a serious problem for MLR and neural network mod-
els with many explanatory variables (May et al. 2011; James
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et al. 2013). The VIF for each explanatory variable can be
computed using the formula

V I F = 1

1 − R2
i

, (10)

where R2
i is the R2 from a regression of explanatory vari-

able Xi onto all of the other explanatory variables. If R2
i is

close to one, then collinearity is present and the VIF will be
large. The smallest value of VIF is one, which indicates the
complete absence of collinearity. As a rule of thumb, a VIF
value that exceeds 5 or 10 indicates a problematic amount of
collinearity (James et al. 2013).

Variable selection and model validation

Performing the variable selection using an exhaustive sub-
set selection approach requires the evaluation of a very large
number of subsets. Suboptimal search procedures can signif-
icantly reduce the number to be evaluated (Whitney 1971).
Therefore, forward selectionwas applied to variable selection
in this study. The exhaustive search, which tests all variable
combinations in themodels, was testedwith theMLRmodels
as an alternative variable selection approach. The approach
was tested to investigate if the optimal subsets are clearly
better than the suboptimal subsets defined using the forward
selection. However, this approach was not tested with the
PLSR and GRNNmodels due to their computationally more
burdensome training procedure.

In forward selection, the variables are included in pro-
gressively larger subsets so that the prediction performance
of the model is maximized. First, P models each consisting
of only one explanatory variable are built. P is the number of
candidate variables. The variable that gives the best value for
the observed performance criterion is selected. Then, P − 1
models are built each including the already selected variable
and each of the remaining variables one at a time. The per-
formance of the models is evaluated and the variable leading
to the best model performance is added to the model. The
addition of one variable at a time is repeated until the desired
number of variables have been selected.

Models with one to four explanatory variables were gen-
erated using the exhaustive search approach. The whole set
of steel property features, presented in Table 1, was used in
the exhaustive search for models with one and two explana-
tory variables. Features 1–90 were used in models with three
explanatory variables and features 1–30 in models with four
explanatory variables. These reduced sets were selected due
to the high computational requirement of exhaustive search.

The variables for the linear models were selected based
on the model performance on the test sets using the cross-
validated average of R2. For GRNN, the variables were
selected based on the cross-validated average of Rxy on the

test sets. The selection was done based on the testing results
in order to obtain models with the best prediction ability. The
collinearity of explanatory variables in the best models was
estimated using the maximum value of VIF from the partic-
ular models. A VIF value higher than five was considered as
an indication of collinearity.

Repeated random sub-sampling validation, also known as
Monte Carlo cross-validation (Picard and Cook 1984; Shao
1993), was used to validate the model performance. The data
set was split one hundred times into training and test sets.
Each test set included 20% of the points selected randomly
and the remaining 80% of the points were included in the
training set. All the models with different variable configu-
rations were tested using the same random sets in order to
enable an equal comparison of the models.

Results and discussion

Measurements in an industrial environment are susceptible to
complications that need tobe considered in data analysis. Sig-
nal pre-processing is an important prerequisite for credible
results. The applied data preparation is therefore presented in
the “Data preparation” section in a detailed manner and the
removal of the steel cut effect from the signal is introduced in
the “Steel cut effect removal” section. The main results are
presented in the “Modeling results” section. The correlations
between steel strip properties and vibration features are ana-
lyzed thereafter. The concluding discussion on roller leveler
stress estimation based on the observations is presented in
the “Discussion” section.

Data preparation

Acceleration was measured during a period of 37 days.
The measurement was continuous and consequently the data
included the leveling events as well as other irrelevant events.
One minute of data from three sensors was saved in a sin-
gle file. The elimination of unnecessary data was initiated
by deleting the individual files that had an l2 value smaller
than 0.045m/s2 in all three signals. The normwas computed
from the data points of each complete signal separately, pro-
ducing three values for each file. Crossing this limit value
was considered an indication of action on the leveler.

The data acquisition hardwarewas automatically restarted
once a day to prevent the measurement system from crashing
due to an unknown problem. An interruption in sensor power
supply caused a large deviation in signal values. High values
were then obtained for a few seconds as a consequence of the
system settling time. Therefore, files that contained a signal
value higher than 200m/s2 were completely removed.

The acceleration signals were then connected to specific
steel strips based on the time stamps that indicated the start
of the processing and the end of the coil tail drive. Expertise
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Fig. 4 Acceleration signal and
l10 norm during leveling of a
steel strip
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and inference were needed to address the inaccuracy in the
time stamps. Leveling durations that were shorter than 5 min
based on the number of files were considered incomplete and
the corresponding events were thus removed. If the previous
leveled strip had more than a 15-min overlap with the strip
under review based on the time stamps, the previous strip
was also rejected in this case.

During data analysis, it was noticed that a periodic distur-
bance was present in some of the signals when the leveler
was idle. This disturbance increased the l2 value computed
from the data points of a complete signal in a file. The files
with the disturbance were removed by checking the ratio of
l10 to l2. However, this was done only for files with an l2 max-
imum over 0.2m/s2, computed in one-second segments (N
= 25,600). Files with a lower maximum were automatically
accepted because the ratio check was not appropriate in these
cases. In the ratio check, files with l10/ l2 ≥ 3.75 computed
from the data points of the complete signal were accepted if
10% of the ratios computed in three-second segments (N =
76,800) from the complete signal were also higher than 2.1.
The objective of the three-second examination was to elimi-
nate the influence of single ratio peaks that were not caused
by the leveler operation.

After these stages, the leveling events that then contained
less than six files or more than 60 files were rejected. These
events were considered incomplete events or events that still
included several minutes of idle machine state. Finally, 752
steel strip leveling events were accepted for data analysis.
The signal average was subtracted from the signals in order
to ensure they had a zero mean.

Steel cut effect removal

The flying shear next to the steel leveler causes notable
shocks, which can also be seen as high peaks in some of
the measurements. Figure 4 shows an example of the accel-
eration signal from the leveling of a single steel strip. The

duration of this signal was 11 min. The steel strip was rel-
atively thick (15.2 mm) and clearly distinguishable peaks
emerged in the measured signal. The influence of cutting can
also be seen in the l10 values, as shown in Fig. 4. 51 sheets
were cut from this particular strip. However, it is difficult to
define which shocks are definitely caused by cutting based
on the acceleration signal alone.

To remove the effect of the flying shear, a steel cut effect
removal approach was applied to half of the 48 response
variables. The l10 value was assumed to represent the steel
cut effect if it was larger than the average of l10 computed
in one-second segments from the whole leveling event and
more than 1.5 times larger than the mean of four previous l10
values. The corresponding data points were removed from
all the generalized norms (l0.1, l0.5, l1, l2, l4, l10) based on
the steel cut effects found in l10. The check was performed
starting from the end of the event moving towards the start
of the event. An example of removing the steel cut effect for
one signal is shown in Fig. 4.

Modeling results

Regression models were generated to predict the relative
stress on the machine. Forty-eight vibration features, which
were introduced in the “Feature generation” section, were
used as response variables in the models to indicate the stress
level.All of the steel strip features shown inTable 1were used
as explanatory variable candidates in forward selection.MLR
and PLSRwere tested using one to ten explanatory variables,
whereasGRNNwas tested using one to five explanatory vari-
ables. MLR was also tested using one to four explanatory
variables selected using the exhaustive search approach. The
features tested as explanatory variables are given in Table 2.
The rightmost column shows the number of variable combi-
nations in each case. It can be seen that the number of possible
combinations becomes high when the number of explanatory
variables in a model increases.
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Table 2 Data sets in exhaustive
search

Number of explanatory variables Steel strip features Number of variable combinations

1 1–190 9120

2 1–190 861,840

3 1–90 5,639,040

4 1–30 1,315,440
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Fig. 5 Cross-validation results from training and testing for the models with the best performance. The number of explanatory variables is shown
on the horizontal axes and the values of performance criteria RMSE, R2, and Rxy are shown on the vertical axes

Figure 5 shows the modeling results of the best models
with different number of explanatory variables. The results
indicate that the performance of linear regression models
reached the highest level when three to four explanatory
variables were used. The use of additional variables did not
improve the result. When the MLR models built using the
exhaustive search and forward selection are compared, it is
obvious that the exhaustive search approach resulted in bet-
ter prediction accuracy only when two explanatory variables
were used. This clearly demonstrates the impracticality of
the exhaustive search approach for more than two explana-
tory variables in this case. The result also implies that the
reduced candidate sets in exhaustive search had weaker pre-
dictive power compared with the full set of candidates even
when suboptimal variable combinations from the full set
were used. However, the differences in the model perfor-
mances are small as shown in Fig. 5.

The number of latent variables in PLSR was in the range
from one up to the number of explanatory variables in each
model. The best modeling results according to R2 with one
to four explanatory variables were obtained using the same
number of latent variables as there were explanatory vari-
ables. Therefore, thesemodelswere effectivelyMLRmodels.
This indicates that the identification of latent variables from

the original data did not improve the models. The best per-
forming models with 5–10 explanatory variables had four
latent variables each, but the model performance did not
increase in comparison with the models that included fewer
explanatory variables.

Figure 5 reveals that GRNN had better performance com-
pared with linear regression models in model training. This
implies that the neural network learned the training data
effectively. However, the performance in model testing was
almost the same with linear models when one to three
explanatory variables were used. With four and five explana-
tory variables, the RMSE criterion for GRNN was clearly
lower. This can be partly explained by the use of differ-
ent response variable in the model. The response variable
for the best linear regression models with 1–10 explanatory
variables and GRNN with 1–3 explanatory variables was
‘log10(

∑
l0.1)’ with steel cut effect removal. The response

variable for the best performingGRNNwith four explanatory
variables was ‘(

∑
l0.1)1/2’. With five explanatory variables,

it was ‘(
∑

l0.5)1/2’. However, the correlation coefficient of
GRNN models was only slightly higher in comparison with
the linear models.

Figure 6 shows the maximum VIF values for the models
with two to five explanatory variables. The VIF values were
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Fig. 6 Maximum variance inflation factor (VIF) in the best performing models with two to five explanatory variables. The horizontal axes show
the number of explanatory variables and the bars show the corresponding maximum VIF value in the particular model

Table 3 Performance of the best models

Model Model no. RMSE Rxy R2 Maximum VIF

Training Testing Training Testing Training Testing

MLR (exhaustive search) I 0.0962 0.0955 0.8562 0.8532 0.7331 0.7233 3.6794

MLR and PLSR (forward selection) II 0.0960 0.0953 0.8569 0.8537 0.7343 0.7241 3.3213

GRNN III 0.0696 0.0831 0.9034 0.8557 2.7433

GRNN (logarithmic response variable) IV 0.0831 0.0949 0.8952 0.8556 3.2413

computed using data from all 752 steel strips. The results
reveal that all the models had VIF value over 10 when five
explanatory variables were used. All the MLR models built
using the exhaustive search approach and the MLR models
built using forward selection with 1–3 explanatory variables
had VIF value smaller than five indicating the absence of
collinearity. Figure 6 also shows that VIF values increased
togetherwith the number of explanatory variables,whenvari-
ables were selected using forward selection and the same
response variable was used in the models. In contrast, the
maximum VIF may also decrease as variables are added in
models built using exhaustive search, as shown in Fig. 6. The
collinearity has to be taken into consideration in the case of
PLSR, because the models with 1–4 explanatory variables
were MLR models in practice. Based on the maximum VIF
values, the PLSR models with fewer than four explanatory
variables had an acceptable level of collinearity. Figure 6
reveals that the GRNN model had multicollinearity when
five explanatory variables were used. The rightmost graph
shows the maximum VIF values when ‘log10(

∑
l0.1)’ with

steel cut effect removal was used as the response variable in
GRNN. In that case, VIF values were on the acceptable level
when fewer than four explanatory variables were used.

Table 3 summarizes themodeling results for the best mod-
els while the VIF value of explanatory variables was allowed
to be less than five. The results of the linear models show that
the training and testing results were consistent. Over-fitted
models in training and overly optimistic testing results were
avoided with the applied procedure. The results of GRNN
models show that the neural network learned the data slightly
better, but the prediction accuracy for the test data was sim-
ilar to the linear models. This becomes clearly evident by
comparing models I, II, and IV, which had the same response
variable ‘log10(

∑
l0.1)’ with steel cut effect removal. The

GRNN (model III) had the best performance based on the
RMSE, but the Rxy of testing was almost the same in com-
parison with other models.

The explanatory variables selected for the presented mod-
els are given in Table 4. The first variable that was selected
for the linear regression models by using forward selection
was ‘log10(strength) · log10(length)’. This indicates that it
had the strongest linear correlation with the response vari-
able ‘log10(

∑
l0.1)’ with steel cut effect removal. This result

indicates that the application of a mathematical transforma-
tion of the features improved their correlation. In fact, all
the variables in Table 4 are mathematical transformations or
interaction terms of steel strip features, such as length, yield
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Table 4 Explanatory variables in the models

Model no. 1st variable 2nd variable 3rd variable 4th variable

I log10(length) Thickness2 log10(strength) · log10(weight)
II log10(strength) · log10(length) Thickness3 Strength1/2 · weight
III log10(strength) · log10(length) Strength3 · thickness3 Thickness1/3 · weight Weight3 · thickness3
IV log10(strength) · log10(length) Thickness2 · strength Weight2 · strength

Fig. 7 Performance of models
II (left) and III (right) on
training data consisting of 752
steel strips
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strength, thickness, and weight. The width of steel strip or its
transformations were not included in the selected variables.

The performances of the best MLR model (II) and the
best GRNNmodel (III) are illustrated in Fig. 7. Thesemodels
were trained using all 752 steel strips. The observed values of
the response variable in the case ofMLR aremainly scattered
in the range 0.1–0.9. In the case of GRNN, the majority of
the observed points lies in the range 0–0.6 and only a small
sample of points is above that. However, the observed values
above 0.8 and the corresponding model predictions agree
quite well. The vast majority of predicted values lie in the
range 0–0.54. In the case of MLR, all of the predicted values
lie roughly in the range 0.16–0.82. The linear model was
unable to predict the values outside this range correctly.

Figure 7 shows that the relative stress inflicted by steel
grade B, which was the most common steel grade leveled,
was broadly scattered when using either of the response vari-
ables selected formodels II and III. In the case ofMLRmodel
on the left, the residuals of prediction were larger. The obser-
vations fromsteel gradesCandD,which are relatively strong,
seem to agreewith the predictions quitewell consideringboth
models. The observed values for these steel grades were in
the range 0.59–0.83 on the left and in the range 0.25–0.54 on
the right in Fig. 7. Considering the distributions of observed
stress values, these ranges indicate that the relative stress
was relatively high when these grades were processed. Steel
grade A, which has the lowest yield strength of the presented
grades seems to inflict different stress comparedwith the pre-

diction especially when the MLR predictions on the left are
considered.

Table 5 gives the parameters for model II trained using all
752 steel strips. The parameter significance is assessed using
the p value of F test. The results indicate that each parameter
is significant for the model. The spread parameter σ in the
best GRNN model (III) was 0.05.

Correlations between steel strip properties and
vibration features

Figure 8 illustrates the correlations between the steel strip
properties and vibration feature ‘

∑
l0.1’ without scaling.

The positive correlations of the vibration feature with yield
strength and strip length and negative correlation with strip
thickness are evident. Weight and width have vague correla-
tions with the vibration feature. These observations indicate
that the norm sum is influenced by the joint effect of steel
strip properties rather than the effect of a single property such
as the length or thickness.

Figure 9 illustrates the effect of steel cutting on vibration
feature ‘

∑
l10’ without scaling. The feature values without

removing the cut effect are presented on the left and the val-
ues with steel cut effect removal are shown on the right. The
feature is presented as a function of yield strength (above)
and steel thickness (below). Figure 9 clearly shows that the
processing of certain types of steel strips inflicts shocks that
have a major effect on the norm sums. It seems that the
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Table 5 Parameters in MLR trained using all 752 steel strips

Model II
Response variable y = log10(

∑
l0.1) with steel cut effect removal

Observed range 0.5296 ≤ y ≤ 2.9382

Explanatory variables Observed range Regression coefficients p value VIF

β0 = 0.3525 3.3674 · 10−86

x1 = log10(strength)·log10(length) 4.6368 ≤ x1 ≤ 8.8844 β1 = 0.3659 3.7458 · 10−40 3.3213

x2 = thickness3 7.7624 ≤ x2 ≤ 3.5187 · 103 β2 = −0.2069 1.1597 · 10−27 2.5736

x3 = strength1/2 · weight 1.5061 · 105 ≤ x3 ≤ 1.1579 · 106 β3 = 0.1464 3.7936 · 10−12 1.4951

The observed values of explanatory variables and the predicted values are defined on the range 0–1
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Fig. 9 The effect of shocks caused by steel cutting on the feature
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l10. The effect is included in the feature values in the plots on the left and
removed on the right
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Table 6 Linear correlations between steel strip properties and
∑

l0.1 for four different steel grades

Grade A (12 strips) Grade B (123 strips) Grade C (27 strips) Grade D (23 strips)

Yield strength −0.5050 0.0072 −0.0849 −0.5224

Length −0.0772 0.5378 0.6736 0.7092

Weight 0.0345 0.0707 0.4162 0.1453

Width 0.0773 −0.0676 −0.0601 0.0749

Thickness 0.0855 −0.5281 −0.2483 −0.5556

Fig. 10 The observed relative
stress during the processing of
752 steel strips in ascending
order illustrating the distribution
of the values in the stress range
0–1

0 100 200 300 400 500 600 700

observations in ascending order

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e 

st
re

ss
 le

ve
l

l
0.1

 with steel cut effect removal

log
10

( l
0.1

) with steel cut effect removal

( l
0.1

)1/2

steel cut effect is pronounced on signals measured during
the leveling of 5–8 mm thick strips and strips with a yield
strength from 900 MPa upwards. Otherwise, the removal
of the steel cut effect has a relatively minor influence on
the sums. These observations demonstrate the importance
of removing the steel cut effect when analyzing the relative
stress inflicted by the leveler operation alone. However, the
shocks caused by steel cutting probably stress the roller lev-
eler as well.

Pearson’s linear correlation coefficients between the steel
strip properties and vibration feature ‘

∑
l0.1‘ for four exam-

ple steel grades are presented in Table 6. The correlations
for different steel grades vary significantly. For instance, the
correlation of length is close to zero for grade A, but seems to
increase together with increasing yield strength, while grade
B is around 400MPa, grade C is around 1040MPa, and grade
D is around 1540 MPa. The correlation of yield strength, on
the other hand, is around −0.5 for grades A and D, whereas
it is close to zero for grades B and C. Steel grades A and D
had slightly more varying yield strength than grades B and
C, and this resulted in higher correlation. The non-consistent
correlations in Table 6 indicate that tailored stress models
for different steel grades could improve the modeling perfor-
mance for particular steel grades. However, the development
of such models requires a larger data set, because most of the
55 steel grades in this study included only a few strips in the
data set analyzed.

Discussion

Themodeling results indicate that combinations of steel strip
properties could be used to predict the mechanical stress
inflicted on the roller leveler. The results also show that the
application of mathematical transformations of the features
increased the linear correlations between the steel strip prop-
erties and vibration features. In this case, the vibration feature
‘log10(

∑
l0.1)’ with steel cut effect removal was the best

response variable for MLR. The best response variable for
GRNN was ‘(

∑
l0.1)1/2’. These results indicate that a low-

order normwas generally more appropriate than a high-order
norm in the applied vibration features. The sorted values of
the selected features are shown in Fig. 10, which demon-
strates the effects of mathematical transformations on the
features. The use of logarithm on ‘

∑
l0.1’ made the rela-

tive stress values spread more evenly in the relative stress
range 0–1, while the values of ‘

∑
l0.1’ had a distribution

with strongly positive skew. A steep deviation can be seen at
both ends of the ‘log10(

∑
l0.1)’ curve. MLR was not able to

estimate these extreme values correctly, which was also evi-
dent in Fig. 7. The use of the square root in ‘

∑
l0.1’ changed

the distribution of relative stress so that themajority of points
were in the range 0–0.6. As shown in Fig. 7, GRNNwas also
able to learn the values above this range quite well.

The usability and reliability of predictionmodels in indus-
trial practice are significant matters. Linear models often
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have advantage over the non-linear models in terms of inter-
pretability. As shown in Table 5, the best MLR model can
be used with four model parameters, which means it can
be applied by using standard office software in a straight-
forward manner. In contrast, the best GRNN model has to
remember the hundreds of training patterns and a multiple
number of connection weights defined during model train-
ing. Consequently, the explicit analysis of model parameters
and the transferability to standard office software bring chal-
lenges. However, there are ways to reduce the amount of
training patterns, such as clustering (Specht 1991), but that is
a topic for another study. Another weakness in the non-linear
data-driven models may be their performance when new data
are introduced. Steel mills often manufacture a large range
of products and new products are continuously developed.
The trained models may become repeatedly outdated as new
products arrive. The transparency of MLR enables reason-
able testing for new data, because the effect of explanatory
variable manipulation on the model response can be eas-
ily interpreted. Such testing is considerably more difficult
with complex models. Moreover, the GRNN predictions had
a clear difference between the training and testing results,
while MLR produced consistent results. These considera-
tions indicate that the MLR is the most reasonable model
option from the tested models for practical stress predic-
tion. Other prediction algorithms presented in the literature
could be tested in future investigations. The testing of alter-
native variable selection methods could potentially lead into
improved models as well.

The strong steel grades C and D resulted in higher
observed values of relative stress compared with the values
from steel grades A and B which was also demonstrated in
Fig. 7. TheMLR predicted the stress inflicted by these strong
steel grades more accurately in comparison with the most
common steel grade B. This can be explained by the effect
of the logarithm on high values. In the case of GRNN, dif-
ferences in the prediction accuracy for different steel grades
were smaller. The generation of steel grade specific stress
models is a potential topic for future development. The data
set should be more extensive than the one used in this study.
The studied data set had 55 steel grades, but the number
of strips representing each grade varied and consequently
the data were dominated by certain steel grades. How-
ever, the general correlations between steel strip properties
and vibration features were discovered using this approach.
Nonetheless, the effects of relative stress values still need
to be investigated in future studies. This could be done by
estimating the stress of leveling events in process history and
then investigating the relation of the estimates with fault and
maintenance history. However, the use of vibration data as
the response of machine operation can already be considered
as an improved approach to stress evaluation compared with
assessments relying solely on production data.

The combination of work roll movement or motor power
with the vibration signal,whichwas not possible in this study,
could improve the reliability of the proposed approach. It
would then be certain that the effects of the idle state and pos-
sible measurement disturbances during the idle state could
be avoided in the norm sums. The operational parameters of
the roller leveler and steel strip properties correlate strongly
(Nikula and Karioja 2016). Therefore, based on the results, it
is assumed that the steel strip properties alone could be used
for stress prediction. On the other hand, the prediction accu-
racy shows variation that cannot be explained based solely
on the effects of steel strip properties. The combination of
instantaneous operational parameter values with the vibra-
tion signal could provide additional possibilities for stress
estimation.

The steel cut effect was removed from the response vari-
able of the best linear model. Therefore, the values of this
variable mainly represent the effects incited by the leveling
operation and the influence of steel cutting is mostly avoided.
This also means that the presented observations could be
useful in the development of monitoring approaches to other
roller levelers that are not influenced by steel cutting.

The relative stress proposed in this study could be used
for the estimation of condition deterioration in roller levelers.
Plenty of recent studies focus on the prediction of remaining
useful life and prognosis of deteriorating systems (Benked-
jouh et al. 2015; He et al. 2012; Mosallam et al. 2016; Ragab
et al. 2016; Shi and Zeng 2016; Son et al. 2016). The pro-
posed relative stress features could be used as the monitored
indicators in these kind of approaches. These features could
be utilized in risk assessments that are based on cumulative
stress.

Conclusions

In this paper, an approach to the prediction of the rela-
tive stress inflicted on a roller leveler was introduced and
validated using measurements from an industrial case. The
stress estimates were based on the sums of generalized norms
computed from an acceleration signal acquired during the
leveling of steel strips. Regression models were used to iden-
tify the steel strip properties and combinations of them that
could be used to explain the values of the norm sums. The
mathematical transformations of steel strip properties and
norm sums improved their linear correlation, which conse-
quently improved the performance of the linear regression
models. The generalized regression neural network had the
best prediction accuracy from the tested models, but the
superiority over other models was remote. In addition, the
neural network structure is complicated in comparison with
the tested linear regression models, and therefore its applica-
tion potential may be limited in practice. The results indicate

123



1578 J Intell Manuf (2019) 30:1563–1579

that the stress effects seen during the processing of various
steel grades were diverse, and consequently, more elabo-
rate modeling approaches could improve stress predictions
in some cases. However, a regression model trained based on
extensivemeasurement data is an advanced approach to stress
prediction when compared with assessments made only on
the basis of production data. The use of relative stress for
long-term risk assessment is a topic for future research.
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