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Abstract Two critical objectives in sculptured surface tool
path optimization are machining accuracy and process effi-
ciency. The former objective is characterized as the combined
effect of chord error and scallop height, known as surface
machining error, whilst the latter may be reflected by the
number of cutting tool locations constituting the tool path.
These objectives are entirely depended on the values to be
selected for computing tool paths under a given cutting strat-
egy and preset tolerance. In order to determine optimal tool
path parameters that will simultaneously satisfy the trade-
off incurred between these objectives, a novel; generic and
unbiased environment integrated with a virus-evolutionary
heuristic for intelligent tool path optimization is presented.
The proposed environment has been developed using the
open architecture of a cutting edge CAM system whilst it
deploys a set of interactive functions to straightforwardly
assess criteria without the formal knowledge of any objective
function; but directly from computer-aided manufacturing
attributes; fully responsible to formulate efficient tool paths.
A utility based on weighted summation for multi-objective
optimization has been introduced to capture the direct output
of globally optimized tool paths avoiding this way problem
oversimplification and statistical errors that mathematical
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relations involve. Results have been rigorously validated
both computationally and experimentally with the aid of a
benchmark sculptured part that has been previously tested
by several noticeable research contributions. Based on the
quality of research outputs it is shown that the proposed
framework for optimizing sculptured surface CNC tool paths
may gain a prominent role for further extending the capabil-
ities of current industrial strategies and be the flagship of
allied; not-yet industrially interfaced approaches for deploy-
ing similar software integration tools to transfer significant
results to production.

Keywords Sculptured surface machining · Tool path
optimization · Viral intelligence · Intelligent algorithms

Introduction

As products need to be functional, aesthetic and more versa-
tile, a tendency to employ modern methods in design and
manufacturing has grown imposing high quality require-
ments in lower production times. CAD/CAM systems play
key role to the support of such modern methods. New algo-
rithms in design andmanufacturing allow the development of
free form features to enhance products from different indus-
trial environments such as automotive; aerospace; electronics
and mold/die. Selection for tool path parameters to machine
products comprising sculptured surfaces in CAM systems
is one of the most critical tasks. In general, latest proposals
for addressing the sculptured surface machining optimiza-
tion problem span a number of significant contributions
that follow two main directions; tool positioning for sculp-
tured surface CNC machining and intelligent optimization
for either standard or newly developed tool paths. The major
goal of tool positioning strategies is to generate feasible tool
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locations on a given part’s surface considering important geo-
metrical attributes such as principal curvature and cutting tool
geometry. Redonnet et al. (2016) proposed a tool position-
ing strategy for 3-axis sculptured surface CNC machining
with the use of a toroidal cutter. Their study takes advan-
tage of “parallel-planes” milling and the effective radius of
filleted-endmills to produce larger cut trajectories and simul-
taneously maintain scallop height at low levels. Gan et al.
(2016) managed to answer to the research question concern-
ing the optimal direction a cutter should rotate around to
achieve wider machining strip widths, by implementing the
“mechanical equilibrium” theory when generating isopara-
metric tool paths. Rufeng et al. (2010) developed a module
that integrates a commercially available CAM system to pro-
duce successive cutter contact points for sculptured surface
tool paths when the cutter is to be controlled by two drive-
curves. Their methodology first generates tool points for
the first curve and according to the tolerance a second set
of points is sequentially created with reference to the sec-
ond curve to maximize machining strip width. Other older,
yet well-established approaches dealt with the problem are
Multi-point machining (Duvedi et al. 2014; Warkentin et al.
2000), Curvature matching (Lin et al. 2009), Arc-intersect
method (Paul et al. 2005), rolling-ball approach (Gray et al.
2004), principal axis method (Rao et al. 1997), etc.

Tool path generation methods based on computational
intelligence have also been proposed to address the sculp-
tured surface machining problem. Li et al. (2015) imple-
mented a back propagation neural network to optimize
machining time, energy consumption as well as surface
roughness by investigating spindle speed, feed rate, depth
of cut and path spacing as process parameters for sculp-
tured surface tool path generation. Their network is trained
using known results obtained by design of experiments.
Fountas et al. (2014) presented a software-based environ-
ment dedicated for optimizing sculptured surface tool paths
for two-stages; roughing and finishing. Their approach opti-
mizes rough machining tool paths based on the concept of
attaining a uniformly distributed volume left to be finish-
machined; whilst finish-machining is evaluated by iteratively
assessing the surface deviation between the theoretical sur-
face and the virtually machined one. The whole procedure
is supported by a conventional genetic algorithm. Manav
et al. (2013) proposed an intelligent approach of generat-
ing 3-axis optimal surface machining tool paths in terms of
cutting force, cycle time and scallop height by adopting the
weighted summation algorithm. Their approach is heavily
based on a mathematical relationship representing the force
model involved to the weighted criterion. Ulker et al. (2009)
took advantage of “Clonal-G” artificial immune algorithm
to find the most convenient step size in u and v parametric
directions using known equations. Their approach refers to
3-axis surface machining with ball-end cutter whereas each

algorithmic iteration results to a pair of curves intersected to
give a surface point. This method is repeated until all neces-
sary surface points are obtained to constitute the tool path.
Krimpenis and Vosniakos (2009) proposed a novel strategy
for sculptured surface rough machining optimization based
on game theory. In their approach the goal is to optimize
tool path parameters handled by two intelligent algorithms
treated as players in a Stackelberg game. The goal is to opti-
mize machining parameters for the benefit of both players
and their environment (Nash equilibrium). Agrawal et al.
(2006) proposed the implementation of a genetic algorithm
capable of defining the optimal orientation of master cutter
paths to produce an isoscallop surface topography and have
machining time minimized as a side-effect. Their method is
carried out in two steps. The first step involves the gener-
ation of the adjacent scallop curve from a known tool path
trajectory (tool path interval computation) whereas the sec-
ond step deals with the sequential determination of all cutter
contact points under a preset tolerance constraint (forward
step computation). Lazoglu et al. (2009) proposed a two-
phase optimization approach for producing force-minimal
sculptured surface tool paths. The first phase implements the
“Minimum Spanning Tree- MST” algorithm to obtain opti-
mal tool path points whereas the second-phase implements
the “Traveling Salesman” algorithm for connecting them so
that productivity is maximized. Castelino et al. (2003) pre-
sented an approach for properly ranking discrete tool path
segments through the solution of a generalized “Traveling
Salesman” problem to minimize air time during machining.

Several other intelligent systems have been employed to
optimize general advanced machining tasks allied to the one
discussed in this paper (Mellal and Williams 2016; Zainal
et al. 2016; Yusup et al. 2014; Chu and Hsieh 2012; Zhang
et al. 2006; Yildiz 2009a, b, 2012, 2013a, b, c). For the essen-
tial case of sculptured surface tool path optimization, one
may distinguish two research limitations, yet to be overcome.
The first limitation refers to tool positioning strategies for
sculptured surface tool paths, based on the fact that, inde-
pendently dealing with tool contact points may not always
guarantee tool path continuity and smoothness. In addition,
the imminent abrupt tool path changes owing to large local
curvature variationsmay deteriorate surface finish. To ensure
tool path continuity as well as process efficiency, a system-
atic approach is needed to dynamically evaluate patterns of
tool path points referring to the entire surface, rather than
creating them one-by-one given a cut tolerance to build
the tool path. The second limitation refers to the philoso-
phy underpinning the employment of intelligent heuristics
as optimization tools. The approach of deterministic expres-
sion for criteria as a function of tool path parameters through
mathematical relations could turn prominent approaches to
less efficient ones, despite their advanced attributes. That is;
mathematical models playing the role of objective functions
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to intelligent algorithms may lead to partial problem solv-
ing owing to statistical errors, questioning thus optimality.
By contrast, the direct link between an intelligent module
and a CAM system’s interface (via interacting functions and
a utility for measuring objective outputs), could represent
the problem’s domain itself, resulting thus; to an unbiased;
generic optimization framework for sculptured surface CNC
machining tool paths. Besides CAM environment is in prac-
tice the most suitable resource for tool path generation whilst
it provides the necessary properties for experimenting on dif-
ferent machining modeling scenarios and methods (Brecher
and Lohse 2013; Zeroudi et al. 2012).

To avoid problem oversimplification and further push the
envelope of unbiased tool path optimization to the required
level of efficiency, generality and consistency, this paper
aims to contribute to the field by presenting a novel CAM-
assisted optimization environment for sculptured surface tool
paths; seamlessly supported by a new virus-evolutionary
genetic algorithm to enable the simultaneous, software-
automated assessment of heterogeneous tool path param-
eters. This allows for a rigorous process optimization by
directly extracting objectives instead of repetitively evalu-
ating objective functions that relate them to the parameters
involved. To achieve seamless functionality, the environment
handles CAM software automation routines developed for
the dynamic retrieval of key components constituting the tool
path (i.e. cutter location data). The proposed approach has
been validated by conducting comparative tests concerning
process simulations as well as actual 5-axis CNC machin-
ing, by examining a benchmark sculptured part for which
results are available from several previous tool path genera-
tion/optimization approaches addressing the same problem.

Proposed dynamic framework for intelligent tool
path optimization

The proposed optimization framework for generating intel-
ligent tool paths is based on the concept of dynamically
handling manufacturing software programming components
and the development of interactive exploitation routines
capable of linking tool-path parameters to the arguments of
an intelligent system’s algorithmic functions. Thereby, pre-
cise information about performance metrics may be obtained
directly from the geometrical properties of a given sculptured
surface, as opposed to deploying case-oriented mathematical
solutions aiming at relating independent variables to discrete
quality criteria.

As a first step, the proposed system initializes the environ-
ment by accepting values from the end-user, for a given set
of tool path parameters being undoubtedly crucial in terms
of their effect upon quality criteria such as the machining
surface error as well as the number of cutter locations (Cai

Fig. 1 Machining surface error as a combined effect of chordal devi-
ation and scallop at an intermediate surface point

and Zhao 2014). The former criterion may reflect surface fin-
ish requirements as a combined effect of chordal deviation
and scallop height, whilst the latter may represent produc-
tivity under the assumption that less cutter location points
throughout the tool-path ought to minimize machining time
(Kayal 2007; Ulker et al. 2009; Lin et al. 2014). A graphical
illustration of the machining surface error as a combination
of chordal deviation and scallop height is depicted in Fig. 1.

The parameters affecting the aforementioned criteria are
the cutting tool geometry; the step-over; the maximum dis-
cretization step (distance between two consequent points
on a part’s surface; as it is interpolated by the tool during
machining) as well as the two inclination angles; lead and
tilt. Identification of surface tool path parameters is based
upon their effect on surface tomography when it comes to
material removal simulations (Tunç 2016; Tunç and Budak
2009). The next step is the automatic argument passing of
inputs determined during the initialization stage, to the tool
path’s parameters for computing the aforementioned criteria.
Note that determination of tool path parameters is conducted
by considering an applicable parameter value range; as well
as fundamental constrains (Fountas et al. 2014). Tool path
evaluation with recommended values for process parameters
against the criteria of machining error and cutter location
number, is dynamically conducted utilizing the information
contained in cutter location (CL) file; known also as “APT
source” file. Once the tool path is automatically computed,
a module dedicated for CL file parsing undertakes to distin-
guish key attributes for NC surface machining such as tool
axis vector and tool tip coordinates. These properties facili-
tate geometrical analysis in CAD environment where cutter
contact points are imported to the sculptured surface towards
the formulation of surface normal vectorswhich are not avail-
able by the CL file (Tunç and Budak 2009). These instances
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are distinguished in the application’s project tree as individ-
ual geometrical sets, named as “APT points” and “Normal
Vectors”. With reference to the topology of cutter contact
points existing on a given sculptured surface, an interactive
routine undertakes to sequentially compute local curvatures
according to the feed direction by employing vector alge-
bra and retrieving dot products of normal vectors utilizing
the angle between them. Thus, if two unit normals �n1 and �n2
separated by a 3D distance Li on the sculptured surface; hav-
ing also an angular difference θ , where θ = arccos( �n1 ◦ �n2)
their local curvature at that local section may be computed
by implementing Eq. 1 (Fisher 1989).

ρi = 2 × sin(θ/2)/Li (1)

3D distances Li corresponded to the lengths of chords
connecting the pairs of consecutive CC points by taking into
account the machining axis system in Cartesian space, are
computer in the same “For-Next” loop as the one imple-
mented for local curvatures. Eq. 2 was applied to compute
the sequential chords for pairs of cutter contact points;
whereas Eq. 3 was used for the computation of correspond-
ing chordal deviations. The routine developed for finding
local curvatures as well as chordal deviations was veri-
fied by comparing its outputs to those obtained by manual
processing via the “Surfacic curvature analysis” tool of
Dassault Systemes C AT I A� V 5 R18 for the same sculp-
tured surface and other experimental 3D free-form models.

Li =
√

(xi+1 − xi )2 + (yi+1 − yi )2 + (zi+1 − zi )2 (2)

Ce = ρi −
√

ρ2
i −

(
Li

2

)2

(3)

where,

Li : Chord length, or 3D point distance between two
points in forward direction (mm)

xi , yi , zi : Cutting tool point coordinates
Ce: Chord error (mm)
ρi : Local curvatures between normal vectors of

points in forward direction (mm−1)

During the sequential evaluations executed by the intelli-
gent part of the proposed environment scallop heights evolve
for different kinds of cutting tool geometries; different step-
over values as well as different inclination angles. As a
result, scallop heights may not be accurately represented by
retrieving automation objects for scallop height computa-
tion, available to CAM systems. A solution to the problem
is given by considering not only the distance between the
pairs of adjacent tool trajectories but also the effective cutting

profiles for the three basic types of end mill geometries, flat-
end; ball-end and filleted-end (Bedi et al. 1997; Vickers and
Quan 1989). Cutting profiles during surface machining may
be examined by considering the elliptical postures formed
at the bottom of a cutting tool, if the latter is inclined and
having its profile projected on a given sculptured surface.
Major axes of projected ellipses do not seem to introduce
important effect on the scallop magnitude given that they
are oblique views of a cross-sectional plane of a half sphere,
yet; minor axes greatly affect scallop magnitude since they
depend on the tool’s inclined orientation. The fundamental
attribute relating the scallop magnitude to tool orientation
via the elliptical postures, is the effective radius REff. At
this point, several noticeable contributions such as the one
of Duroobi et al. (2010) as well as Redonnet et al. (2013)
concerning the investigation of effective radius variation dur-
ing surface machining were taken into account to create
expressions capable of extracting accurate data for scallop
magnitudes during the sequential algorithmic evaluations
from the intelligent algorithm embedded to the proposed
optimization framework.Note that the requirement for gouge
avoidance as well as cut tolerance is determined by the CAM
environment in advance. Hence, only applicable tool paths
are to be evaluated. Important studies estimating scallopmag-
nitude with reference to the effective radius depending on the
different cutting tool types may be found in Redonnet et al.
(2013); Sarma (2000a, b); as well as in Bedi et al. (1997).
Eq. 4 was applied to compute REff for flat-end; toroidal and
ball-endmills.Note that for ball end-mills, REff is not affected
by tool inclination angles in 5-axis machining.

Reff

⎡
⎣
Flat − end
Toroidal
Ball − end

⎤
⎦ =

⎧
⎪⎪⎨
⎪⎪⎩

R×cos2 aT
sin aL×(

1−sin2 aT ×sin2 aL
)

(R−r)×cos2 aT
sin aL×(

1−sin2 aT ×sin2 aL
) + r

R

⎫
⎪⎪⎬
⎪⎪⎭

(4)

where:

Reff: the effective cutting radius given the tool inclina-
tion;

R: the cutter’s radius;
r : the cutter’s corner radius for toroidal end-mills;
aL : lead angle in degrees;
aT : tilt angle in degrees.

An essential issue that is also taken into account by the pro-
posed methodology is the false impression of perfectly sharp
edges in the case of flat-end mills; mainly when it comes to
the implementation of cutting inserts instead of solid carbide
tools. To provide realistic outputs in the case of flat-end mill
selection, the undercut magnitude designated by hu parame-
ter was also computed (Bedi et al. 1997).
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Extraction of outputs necessary to assess generated tool
paths, is the last step of the developed system. Tool path
evaluation is performed by adopting the weighted summa-
tion scheme for the simultaneous multi-criteria optimization
between surface machining error and cutter location points.
The selection of this particular schemewas decided consider-
ing the practical need of a single optimal point against others
existing on a Pareto front. Besides, the set of all potential
solutions may be obtained by varying the weights for objec-
tives involved given the end-user’s preferences regarding the
application (Manav et al. 2013). The aforementioned process
developed for obtaining optimal tool paths for sculptured
surfaces, is executed by the intelligent algorithm integrating
the system under an iterative fashion; whilst driven by the
goal of obtaining optimized values for independent param-
eters; cutting tool; step-over; maximum discretization step
and lead-tilt angles, that will maintain both surface machin-
ing error and productivity under acceptable levels.

Viral intelligence

The intelligent module integrating the framework is an
improved virus-evolutionary genetic algorithm which has
been developed in Visual Basic� and is embedded to
Dassault Syst èmes� CAT I A� V5 R18 open API. Its
main objective is the global optimization for tool paths by
iteratively simulating the effect of each tool path parame-
ter combination on the objectives of accuracy and efficiency
(without the presence of any kind of mathematical relation
among parameters and criteria, to play the role of objective
function). Tool path parameters selected for optimization are
responsible for defining different cutting tool orientations
towards the whole sculptured surface during the algorithmic
evaluations. In each iteration, a finite number of CC points
existing on the surface, formulates a pattern of CC points
(CC pattern) containing m and n rows of them, referring
to X and Y directions respectively. Final topologies of CC

points producing am×n CC pattern are thus affected by the
tool type; the magnitude of the two inclination angles as well
as the two steps producing the surface machining error; dis-
cretization step and step-over. The last two aforementioned
parameters (discretization step and step-over) are responsible
for the maximum allowable chordal deviation and the maxi-
mum allowable scallop error respectively. Figure 2 shows the
effect on the number of CC points formulating a patter on a
sculptured surface when changing tool path parameters for
the same cutting strategy. Figure 2a shows a denser CC pat-
tern referring to low values for tool path parameters (mainly
for discretization step and step-over) whereas Fig. 2b shows
a wider CC pattern referring to large values for parameters.

Therefore it is of great importance that, chromosomes
in the proposed system should determine meaningful tool
orientations (3D point coordinates) for real-time assessment
within a preset limit range, whilst later genes should capture
the need of identifying new values for tool path parame-
ters, such that intelligently formulated CC point distributions
towards X and Y directions are obtained to simultane-
ously minimize surface machining error and the number of
CC points. The algorithm’s general architecture adheres to
the standard five-stage virus-evolutionary genetic algorithm
cycle, pioneered by Kubota et al. (1996) and modified prior
to its employment for a typical algorithmic study, by Fountas
et al. (2016). In order to clarify the contributing extend of its
current status and further demonstrate the improved aspects
of the existing work, only original attributes concerning the
algorithm’s infrastructure and novel functions are to be pre-
sented.

The virus-evolutionary genetic algorithm integrating the
proposed intelligent tool path optimization framework imple-
ments two populations; the one of ordinary individuals and
the one of viruses. The former population is conventionally
used for the evolution process among candidate solutions,
whereas the latter is used for recording patterns during the
search so as to avoid the problem of premature convergence

Fig. 2 CC patterns of two differently defined sculptured surface tool paths of the same cutting strategy
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caused by the dominance of few elite candidate solutions.
Virus individuals in the proposed algorithm ensure that effec-
tive patterns of candidate solutions won’t be eliminated from
the search space as the algorithm converges to the opti-
mum result and diversity will be maintained. A mandatory
scheme that contributes to the overall performance of the
proposed algorithm is the artificial viral infection involving
two operators; reverse transcription and transduction. That
is; in every several generations, a few virus individuals have
the chance to infect (reverse-transcribe) individuals’ strings
using their substrings whereas new viruses or modifications
to the already existing ones, is performed via transduction.
Since major scope is to preserve efficient solution patterns to
avoid local trapping, transduction is employed to extract sub-
strings from individuals and utilize these substrings as viral
“chromosomes” to infect other individuals aiming at rein-
forcing their fitness. An extensive description about the role
of virus infection and consecutively the two aforementioned
viral operators is given in Kubota et al. (1996).

Population of tool path “chromosomes”

Tool path “chromosomes” are represented as binary-encoded
structures of the aforementioned tool path parameters. The
number of bits determining the accuracy of represented tool
path parameters sets also the accuracy for the search towards
the optimum. To assess the effect of each of the randomly
selected tool path parameters (individuals or simply “candi-
date” solutions) on the optimization criteria, the phenotype
should be computed in order to dynamically achieve the
argument passing from the virus-evolutionary GA to CAM
environment and compute the resulting tool path. Thereby,
the number of tool path “chromosomes” in a given popula-
tion; the number of their bits as well as their locations in
chromosome chains, are structured using series of arrays, as
illustrated in the following equations.

Cinit
Pop =

⎡
⎢⎢⎢⎢⎢⎣

[
T lp Prm1,1

]
N1
b

[
T lp Prm1,2

]
N2
b

[
T lp Prm1,3

]
N3
b

[
T lp Prm1,4

]
N4
b

[
T lp Prm1,5

]
N5
b

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...[
T lp Prmn,1

]
N1
b

[
T lp Prmn,2

]
N2
b

[
T lp Prmn,3

]
N3
b

[
T lp Prmn,4

]
N4
b

[
T lp Prmn,5

]
N5
b

⎤
⎥⎥⎥⎥⎥⎦

(5)

N
Tlp Prmi, j
b =

⎡
⎢⎢⎢⎢⎣

[
N 1
b

]
1, j

[
N 2
b

]
1, j

[
N 3
b

]
1, j

[
N 4
b

]
1, j

[
N 5
b

]
1, j

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...[
N 1
b

]
5, j

[
N 2
b

]
5, j

[
N 3
b

]
5, j

[
N 4
b

]
5, j

[
N 5
b

]
5, j

⎤
⎥⎥⎥⎥⎦

(6)

Cinit
Pop =

⎡
⎣
[Lgthi ] ui li
... ... ...

[Lgthn] ui li

⎤
⎦ (7)

Cinit
Pop is the initial population of tool path “chromosomes”;

T lp Prm a tool path’s parameter; NTlp Prm
b i, j , the number

of bits required for the accuracy of each tool path parameter
(T lp Prm) for the i th tool path “chromosome”of the j th pop-
ulation and Lgthi is the i th tool path’s chromosome length.
CAM software simulations for tool path “chromosomes” are
conducted after converting all parameters involved to the
optimization problem from binary to real-encoded values.
Hence, considering a given tool path parameter T lp Prmi ;
its corresponding domain DTlp Prmi = [ui , li ] and the i th
tool path’s chromosome length Lgthi the following expres-
sion is used for the conversion of binary encoding values to
real-encoded ones.

T lpPrmi = li + f nc(BinStr) × ui − li
2Lgthi − 1

(8)

where, ui , li are the parameter’s upper limit and lower limits;
whereas f nc(BinStr) is a function developed to return the
decimal values for binary-encoded schemes depending on
the accuracy requirements.

Weighted objective evaluation utility

Both aforementioned optimization criteria are expressed as
a common weighted utility to simplify painstaking com-
putations and to arrive at a single-point output that will
facilitate practitioners against the concept of selecting a solu-
tion from many, existing to a Pareto front (Manav et al.
2013). Besides, all Pareto optimal solutions may still be
reached by the same scheme, if the weights associated to
each of the objectives are sequentially changed to modify
the relative importance to the overall optimization output

as it has already been mentioned. Prior to the employ-
ment of the weighted objective utility, proper normalization
using the minimum and maximum values of the single cri-
teria of machining error and CC point number, has been
conducted to remove the bias owing to the different unit
magnitudes (Chryssolouris and Subramaniam Chryssolouris
and Subramaniam 2001). The weighted objective utility with
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respect to the single criteria and their weights is depicted in
Eq. 9.

Obj Fcnws = w1 × Crt1 + ...... + wn × Crtn (9)

with, wi (i = 1, 2, ...n) and
n∑

i=1
wi = 1, 0 ≤ wi ≤ 1. Crti

would correspond to the i th single criterion for optimization
whilst wi would correspond to its related weight of impor-
tance.

For the criterion of surface machining error, a novel func-
tion has been developed to dynamically interact with CAM
software and retrieve the randomly selected tool from the
current tool path “chromosome” being under evaluation so
as to identify its geometrical configuration and apply the
proper mathematical expression to compute Reff magnitude.
The requirement ofminimizing cutter contact points has been
facilitated by the automatic retrieval of “APTpoints” geomet-
rical set attached to the machining document’s project tree.
The weighted objective values are then ranked in ascending
order given their magnitudes. Since tool orientation in the
case of sculptured surface tool path generation is quite sen-
sitive even to small differences among objective values, an
exponential expression was developed to make such magni-
tudes prominent enough to be able to distinguish them. Note
that, when the difference between objective values is not that
obvious, the algorithm may select parents randomly rather
than heuristically. The expression is given in Eq. 10.

Fittedi = FitSum ×
[
exp

(
−ObjVal2i

)]
(10)

In Eq. 10 FitSum represents the summation of ranked objec-
tive values of individuals and ObjVali the objective value
attained by i th individual in a population. Fitted individuals
are selected with a given probability to formulate a mating
pool. Thereby single-point crossover and single-point muta-
tion are applied to produce a new generation of candidate
solutions for assessment.

Viral infection

It has been mentioned that the role of virus individuals is to
preserve effective schemata from candidate solutions, since
local information may be very useful for solving such com-
plex optimization problems as sculptured surfacemachining.
As a result, the process of operating with viruses as effective
patterns to offer information for producing better offspring
during the search, is finally what truly gives the system’s
its merits. In general, the key procedure of viral infection
overcomes the drawback of crossover andmutation operators
referring to their inability of directly handling schemata.Note
that an increase of a schema equals to an increase of local
information in a given population. Unfortunately increase in

schemata occurs not only to efficient but also to inefficient
ones owing to proportional selection. On the other hand virus
infection operation directly handles chromosome schemata
since it creates substrings of candidate solutions as viruses.
The combination of hosts and viruses prompts the algorithm
to generate new candidates as a horizontal propagationwhich
is beneficial for local information handling. In addition, viral
individuals may vertically transmit their “genetic material”
to the strings of hosts, thus; maintaining their local informa-
tion from generation to generation as vertical inheritance. As
a result global search is facilitated with the aid of local data
as well.

Nevertheless, since no direct mathematical expression
exists to relate independent tool path parameters to the cri-
teria presented above and serve as the objective function,
no guarantee that offspring will occur better than parents is
given. Hence, good candidate solutions may be lost when
crossover and mutation operators are applied. Note that
mathematical relations used as objective functions, often
“highlight” the proper search direction to facilitate several
heuristics towards their way for finding optimum results. In
the problem tackled here, neither a “known” mathematical
model exists to serve as the objective function; nor continu-
ity of the search domain is ensured; only real values directly
obtained and appeared to a simple weighted-objective utility
are retrieved for computing the outputs. To solve this issue,
elitism was applied to copy small proportions of fittest solu-
tions into next generations. As a consequence viruses to be
created by the process of transduction will have higher prob-
ability to preserve outstanding seed to favor the infection of
other individuals towards the search.

Initial virus individuals are created after evaluating the
fitness of all individuals existing to the main population, as
a fraction of the main population’s magnitude. Unlike the
random selection of individuals performed in conventional
virus-evolutionary genetic algorithmpresented so far for pro-
ducing the virus population, the one in this paper performs
both targeted as well as random selection. The former selec-
tion is decided upon the elite of few outstanding individuals
whereas the latter is normally decided upon the rest of the
individuals through a probability, so as to sustain an unbi-
ased selection procedure. The algorithm proposed initializes
a series of functions to deliver the necessary outputs. These
functions include also some components that resemble the
original ones presented by Kubota et al. (1996) as well as
new ones to further extend the algorithm’s potentials.

The initial population of tool path “chromosomes”; Cinit
Pop

is randomly generated and then transduction operation is
applied to both fitted and randomly selected individuals to
create the population of viruses V init

Pop . A virus created by
transducing from the i th chromosome of the j th population
is denoted as Vrsi j . Substrings being cut represent viruses’
chromosomes whose length is denoted as VrsLgthi . Locus
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Fig. 3 Intelligent operations of virus-evolutionary genetic algorithm: a transduction; b reverse transcription; c partial transduction

i = 1 is the starting point from which VrsLgthi length will
be determined and Locus imax is the ending point. These
two loci are randomly determined and are constrained to
the original host’s chromosome length Lgthi . The chromo-
some length (Lgthi ) of individuals of the main population
is fixed; whereas the length of virus individuals (VrsLgthi )
extends as the evolution process continues. Viruses attack
to infect host individuals, using reverse transcription oper-
ator for overwriting a string of a virus Vrsi j to a portion of
an individual’s I dv j string. The indices of both Vrsi j and
I dv j are declared in advance so as to sequentially perform
the replacement of selected binary digits according to the
determined references.

Assessment of virus individuals is performed using their
fitness scores denoted as FitVrsi, j reflecting their infection
capability. This fitness is computed after the successful infec-
tion of I dv j by Vrsi j as Eq. 11 indicates:

FitVrsi, j = FitInfIdv j − FitIdv j (11)

The value obtained by Eq. 11 is the difference between the
two fitness values of individual I dv j before and after its

infection by Vrsi j . Given that Vrsi j might infect more than
a single individual (let S be the set of infected individuals)
then FitVrsi, j reveals the improvement of fitness values of
all infected individuals and is as Eq. 12 determines:

FitVrsi =
∑
j∈S

FitVrsi, j (12)

Efficiency in terms of a virus Vrsi j infectivity is dictated
through the infectivity force I n f Forcei,g where i the index
of the virus Vrsi j and g its current generation. This parame-
ter is depended from the result of FitV rsi and is compared to
the one attained by the virus Vrsi j in a previous generation.
If its value is lower than the one attained in the previous gen-
eration (I n f Forcei,g−1) then new transduction operation is
applied to produce a newvirus. If the value of I n f Forcei,g is
greater than I n f Forcei,g−1 then the virus Vrsi j increases
its robust scheme by transducing a partially new substring
from the infected individual. The mechanisms of transduc-
tion and reverse transcription are depicted in Fig. 3. Figure 3a
shows the generation of a virus individual by employing
transduction; Fig. 3b depicts the virus infection process via
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transduction and Fig. 3c depicts the transduction for a partial
individual string segment should the value of I n f Forcei,g
is greater than I n f Forcei,g−1 for a Vrsi j .

In conventional virus-evolutionary genetic algorithm the
infection rate of viruses is dictated via their fitness score
FitVrsi and the infection rate of viruses; I n f RateVrsi j ,
0 ≤ I n f RateVrsi ≤ 1 for self-adaptively adjusting the
search between exploitation and exploration. In the pro-
posed algorithm I n f RateVrsi j can be manually restricted
to new intervals should the algorithm fail to increase effective
schemata for candidate solutions. Hence, infection rate may
take a minimum value so that 0 ≤ MinIn f RateVrsi ≤ 0.5
and a maximum value so that Max In f RateVrsi j , 0.5 ≤
Max In f RateVrsi ≤ 1 in the case of handling a problem
that is mainly of global search and local search respec-
tively. In other words self-adaptation in terms of exploitation
and exploration is controlled according to the engineering
problem’s nature using discrete operational intervals. Fig-
ure 4 gives the workflow of the proposed virus-evolutionary
genetic algorithm integrating the environment.

The entire tool path optimization framework has been
developed in V isual Basic� and is hosted as an interac-
tive module to Dassault Syst èmes� CATIA� V5R18 open
API. The usage of the intelligent part of the application as
a stand-alone module is also possible whereas the whole
environment can be attached to other CAM systems pro-
vided that their software development infrastructures is
supported by V isual Basic� f or Applications(VBA) to
ensure compatibility. Figure 5 illustrates the developed intel-
ligent tool path optimization infrastructure. At the early stage
of tool path generation the user is prompted to determine an
applicable range (minimum and maximum limits for tool
path parameters) for the formulation of the initial tool path
chromosome and design space. For each of the tool path
parameters involved the number of binary digits to represent
accuracy and facilitate computations for phenotype values
is also specified in that stage. Determination for tool path
parameters is performed by taking into account the avail-
able resources and technological constraints such as cutting
tool types, machine tool limits in tool inclination, constraints
imposed owing to part’s geometry, etc. The rest of the pro-
cedure targeting to optimal values for tool path parameters
automatically evolves until stopping criteria are met.

Experimental study for optimal algorithmic performance

For the proposed algorithm to reach its full potentials, a study
aiming at finding best settings for viral parameters was con-
ducted using a highly multimodal benchmark equation as
objective function. The results obtained were compared to
those found in Kubota et al. (1996) for the same function.
The function is given in Eq. 13.

f (x, y) = x2 + y2 − 0.3 cos(3πx) − 0.4 cos(4πy) + 0.7

(13)

where −1.0 ≤ x, y ≤ 1.0, x = y = 0, f (x, y) = 0. In the
experiment, the effect of variation of a viral parameter on the
objective has been investigated at a time,whilst; the rest of the
parameters were kept constant. The parameters investigated
were virus population VPop, the length of substring for virus
individuals VrsLgthi , the infectivity force I n f Forcei,g and
the infection rate I n f RateVrsi j having four levels each.
During this experimentation the proposed algorithm run an
evaluation process of 20 candidate solutions (population size)
and a maximum of 50 generations. The experimental design
is given in Table 1 and results of the experiment are illustrated
in Fig. 6.

The best result obtained gave f (x, y) = 5.55E-17 for
x = 0, y = 0. These results outperform the original ones
reported in Kubota et al. (1996) attaining 8.12E-5 for the
same population size with conventional virus evolutionary
genetic algorithm and 1.00E-4 for the same population size
using a steady-state genetic algorithm (SSGA). By consid-
ering the experimental results, for a main population size
equal to 20, 7 viruses Vrsi j deliver best fitness score, under
a variable substring length VrsLgthi no more than 40 digits
(out of 46, which is the length Lgthi of tool path chromo-
somes in the main population). For these settings, infectivity
force I n f Forcei,g is advantageous when set using its low-
est value (inheritance preservation) whilst infection rate
I n f RateVrsi j ought to be set equal to 70% (good local
search).

Experimental validation

To validate the proposed sculptured surface CNC tool path
optimization environment a benchmark second-order para-
metric open form surface investigated by several researchers,
(Gan et al. 2016; Rufeng et al. 2010; Warkentin et al. 2000;
Rao et al. 1997) was selected as a reference part. Its free-form
surface is defined as follows:

S(u, v) =
⎡
⎣

−94.4 + 88.9v + 5.6v2

−131.3u + 28.1u2

a1 + a2

⎤
⎦ (14)

with a1 = 5.9(u2v2+u2v)−3.9v2u+76.2u2; a2 = 6.7v2−
27.3uv − 50.8u + 25v + 12.1.
Multi-axis, zig-zag style swept-cut tool path was applied to
the part’s surface. The pattern formulated by applying this
surface tool path, is a typical offset of the surface in the form
of tool trajectories. For this tool path cut tolerance was spec-
ified equal to 0.01 mm as it is indicated to previous research
handled the same problem. Feed direction was towards the
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Fig. 4 Workflow of the
virus-evolutionary genetic
algorithm
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Fig. 5 Intelligent sculptured surface CNC tool path optimization environment

Table 1 Design table for
factorial experiment addressing
viral parameters for best settings

Viral parameters Experimental levels

1 2 3 4

VPop 2 5 7 10

VrsLgthi 10 20 30 40

I n f Forcei,g 0.001 0.01 0.1 1.0

I n f RateVrsi j 1−(10%) 4−(40%) 7−(70%) 10−(100%)

part’s minimum principal direction dictated along X-axis
direction. The proposed intelligent environment was applied
to the aforementioned surface using best viral parameter set-
tings. The proposed methodology was employed using a tool
database with nine tools for the intelligent algorithm to select
from; (three sets of flat-end, ball-end and toroidal tools; hav-
ing 8, 12 and16mmeach). In order to determine ameaningful
search domain for optimizing surface tool path parameters,
machining modeling was restricted to produce gouge-free
tool paths. The ranges for the rest of tool path parameterswere
determined as follows: Step-over [20–45%] as a percentage
of the selected cutting tool diameter, lead angle [0 deg–5deg],
tilt angle [0 deg–2 deg], and maximum discretization step
[0.005–0.01].

Algorithmic validation: comparison using
computational results

The results obtained using the proposed virus-evolutionary
genetic algorithm compared to those obtained by operating

the same algorithm without the presence of viral operators.
Both algorithms run with a population size of individu-
als equal to 20 for 50 generations. Figure 7 shows the
convergence of both algorithms tested. It is indicated that
virus-evolutionary genetic algorithm starts from lower objec-
tive function value whereas its convergence trend dictates
faster convergence to final pointwhichwas equal to 0.359608
against the value of 0.361086 suggested as the optimum
by the conventional genetic algorithm. Tool path parame-
ters corresponding to the above objective function values
were transferred to Dassault Syst èmes� CATIA� V5R18
advanced surface machining workbench in order to con-
duct comparisons in terms of algorithmic validation. Table 2
shows the tool path parameters attained by the algorithms.

The tool path recommended by the conventional genetic
algorithm consisted of 337 cutter contact points whereas the
corresponding mean chord error towards feed direction (X-
axis) was equal to 0.0043 mm. The tool path recommended
by the virus-evolutionary genetic algorithm integrating the
proposed optimization framework, consisted of 289 cut-
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Fig. 6 Results of viral parameter settings experiment: a effect of virus population according the levels of substring length; b effect of infectivity
force according the levels of infection rate; c average fitness values according to the number of generations

Fig. 7 Convergence trends for virus-evolutionary genetic algorithm
and conventional genetic algorithm

ter contact points whereas the corresponding mean chord
error towards feed direction was equal to 0.0036 mm. With
reference to the weighted objective evaluation utility scores
(0.359608 for the virus-evolutionary genetic algorithm and
0.361086 for the conventional genetic algorithm) and the

results concerning mean chord errors and cutter contact
points, a false impression might be given speculating that,
marginal differences between parameter values suggest
insignificant differences in either simulated or physical
outputs as well. To substantiate the opposite assumption,
simulated surface topographies and machining times derived
by the CNC unit were investigated. Simulated outputs were
examined by implementing the point cloud method for ana-
lyzing 3D tolerance between machined and desired surfaces.
3D tolerance analysis using digitized point cloud data was
conducted in Geomagic Qualify� 2013 3D metrology and
automation environment. “Best-fit alignment” utility was
employed to automatically combine instances so as to realize
optimumalignment. Results obtained indicated that both tool
paths are within the preset tolerance range [−0.01/+0.01],
yet; the tool path optimized by the proposed methodology
nearly reaches the theoretical surface to a larger extend
that the one recommended by the conventional algorithm.
3D tolerance analysis involved also the examination of
minimum/maximum point surface deviation as well as mini-
mum/maximumaverage3Ddeviationbetweenmachined and
ideal sculptured surfaces. The values for these metrics that
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Table 2 Optimal tool path parameters suggested by genetic algorithm and virus-evolutionary genetic algorithm

Intelligent heuristic Best parameters attained

Tool-ID Step-over (%∅ and mm) Lead angle (deg) Tilt angle (deg) Max. discretization step
(×10−3 mm)

Genetic algorithm 6 (∅16Rc3) 30.791% 4.927 mm 3.379 0.040 8.451

Virus-evolutionary
genetic algorithm

6 (∅16Rc3) 41.729% 6.677 mm 2.957 0.027 6.338

Fig. 8 Simulated results by implementing optimal parameters: a genetic algorithm; b virus-evolutionary genetic algorithm

the conventional GA produced wereMax [+/−] 3D deviation
equal to [+0.0103 mm/−0.0103 mm] and Max [+/−] aver-
age 3D deviation equal to [+0.0041 mm/−0.0050 mm]. For
the same metrics, the proposed virus-evolutionary GA pro-
duced a 3D output model withMax [+/−] 3D deviation equal
to [+0.0103 mm/−0.0103 mm] and Max [+/−] average 3D
deviation equal to [+0.0046 mm/−0.0052 mm]. By taking
into account the absolute 3D deviation difference between
the average values of both algorithms it is indicated that for
the conventional GA is 9 × 10−4 and the virus-evolutionary
GA is 6 × 10−4. Despite this negligible result still the lat-
ter algorithm outperforms the conventional one in terms of
simulation magnitudes. By simulating a cutting feed equal

to 1000 mm/min, tool path times were approximately 3.00
and 2.00 min for the conventional algorithm’s recommended
tool path and the one by the virus-evolutionary genetic algo-
rithm respectively. Figure 8a illustrates the simulated results
for surface machining error analysis and distribution of CC
points, corresponding to the optimized tool path of the con-
ventional genetic algorithm tested. Figure 8b shows the
analogous outputs for the virus-evolutionary genetic algo-
rithm. It can be concluded that the final output deemed
as the optimal by the virus-evolutionary, yields a profound
improvement compared to the non-dominated solution the
conventional algorithm achieved for tool path parameters.
According to the solution recommended by the proposed
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Fig. 9 Actual 5-axis dry machining of the part used for validating the proposed tool path optimization methodology: a part setup; b start of finish
machining operation; c end of finish machining operation; d machined part

Fig. 10 Virtual and actual CMM measurements conducted on benchmark sculptured part

algorithm, the toroidal cutter achieved a wider machining
strip owing to the larger step-over distance. This step-over
distance still satisfies the requirement of scallop elimina-
tion since the machining strip is produced under the flatted

region for this toroidal cutter. The lower lead angle the pro-
posed algorithm recommended allows for larger effective
radius than the one of conventional algorithm’s solution.
The same also goes for the results of tilt angle values the
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Fig. 11 Surface deviation measurements for selected profile sections of the benchmark part: a X = −5 mm, b X = −30 mm, c X = −60 mm, d
X = −90 mm

two algorithms proposed. The result of 6.338 (×10−3 mm)

against the value of 8.451 (×10−3 mm) produces less pro-
nounced “faceted” result owing to the interpolation, yet it
could be responsible for increasing the number of CC points.
However the larger step-over the proposed algorithm rec-
ommends against the one of conventional algorithm gives
the merit to tool path efficiency by lowering the number of
CC points. Therefore, by taking into account the final out-
puts in terms of surface finish as well as machining time,
it comes as a conclusion that the improvements warranted
by the proposed approach are significant and with practical
merits.

Manufacturing validation: comparison based on
existing tool path optimization methodologies

A 5-axis dry machining test based on the algorithm’s
recommended tool path parameters was conducted on a
Fooke�Endura 9 series spindle head-tilted (A and C axes),
CNCmachining center equippedwith aSiemens Sinumeric�

840DCNCcontrol. The stockmaterial prepared for clamping
was a 94.5×105×50; Al 7050 T-7451 aluminum alloy. The
toroidal cutter proposedwas anOsborn� supermill standard
solid carbide ∅16mm,Rc3mm fixed to an HSK 63A tool

holder. Spindle speed was set to 9950 rev/min and feed rate
was set to 3000mm/min. The totalmachining timewas 1min,
24 s. Figure 9a–d illustrate the part setup, the machine tool
tilted spindle, the finishing operation and the resulting part
respectively.

Final part was inspected on a DEA� gantry line CMM
using a Renishaw� PH10M TP2 probe (∅ = 2mm) with
10 mm stylus extension. Surface deviation was examined
along the normal vectors between the machined and the
designed sculptured surface in four selected profile sections
of OYZ plane, at X = −5 mm; X = −30 mm; X = −60
mm and X = −90 mm as it was suggested for testing prin-
cipal axis tool path planning (Rao et al. 1997); multi-point
machining (Warkentin et al. 2000) aswell as dual-drive curve
tool path planning method (Rufeng et al. 2010) using the
same part. The measuring step length of 0.5 mm towards
Y direction was applied to measure all aforementioned
profiles. The CMM inspection program was generated in
LK-DMIS 5.22�/LK CAMIO� environment (Fig. 10). Fig-
ure 11 shows the surface deviation trends according the
inspection conducted to the aforementioned profile sections.

By examining Fig. 11 it can be observed that surface
deviation falls within the range of [−0.01/+0.01] referring
to all selected profile sections. Note that profile sections
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Fig. 12 Typical roughness diagram and corresponding parameter values obtained for a selected sculptured surface profile section

selected at X = −5 mm and X = −90 mm exhibit a large
form error owing to tool deflections, CMM measurements,
work holding, etc. By neglecting inconsistencies owing to
form error, surface deviation still satisfies the cut tolerance.
Besides these profiles are close to the fringes of the cutting
tool’s approach and departure where larger; yet smooth scal-
lops exist. Largest scallops distribute between the 140th and
200th measurement for all selected zones, yet with a more
profound result for X = −5 mm and X = −90 mm. The
junctures between adjacent passes as well as connected pos-

tures between contact points were found to be continuous;
smooth and free of sharp scallop edges. Note that rough-
ness average was far below 1µm. An illustrative roughness
measurement diagram accompanied with its corresponding
parameters using Taylor-Hobson� Surtronic 3+ is given in
Fig. 12.

From the consistency of simulated and inspected results, it
can be verified that the proposed approach can improve sculp-
tured surface machining operations in terms of both surface
finish requirements and productivity. Results given in Fig. 11
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may also be compared to those available byGan et al. (2016);
Rufeng et al. (2010); Warkentin et al. (2000) and Rao et al.
(1997). It is indicated that the proposed approach outper-
forms these techniques and produces lower surface deviation
as well as smaller scallops than the aforementioned multi-
axis surface machining strategies.

Discussion

Tool path optimization for sculptured surface CNC machin-
ing is a well established field for which numerous effective
approaches have been implemented. However their novel
directions canhardly convince that a straightforwardmethod-
ology indeed exists so as to provide a link between research
and state-of-the art practice. Therefore, it is of paramount
importance that practical strategies ought to be developed to
suggest new knowledge under simple interfaces for facili-
tating current implementations. The environment proposed
in this paper suggests the employment of a novel artificial
heuristic for which no specialized knowledge is to be needed
by practitioners since it operates “in-house” with existing
tools such as CAM systems to generate tool paths for sculp-
tured surfaces.

The presence of the new virus-evolutionary genetic algo-
rithm implemented to address the problem represents a novel
approach from the perspective that co-evolution among con-
ventional and viral intelligent operators ensures a good
exploration-exploitation ratio (global and local search for
optimal solutions) without a formal knowledge of the objec-
tive function. Note that most heuristics ensure the balance
between global and local search, yet; under the assump-
tion that the search space is inherently continuous since a
mathematical objective function exists to be optimized. The
problemhere is addressedwithout any speculation about con-
tinuity or non-continuity of the search space. Consecutively
previous intelligent approaches for solving the sculptured
surfacemachining optimization problem have not been ques-
tioned for validating the proposed heuristic integrating the
presented environment since there is a need to re-write and
conjugate them to the developed open interface (API) of the
CAM system to allow for rigorous comparisons. Another
problem is that most of the proposed approaches do not
validate their functionality against benchmark material for
which results can be found from previous researchers to be
comparedwith; they only illustrate their implementation phi-
losophy to test cases. This substantiates the selection of the
specificbenchmark component to test the proposed approach.
Note that comparative studies with results derived by the
same problem could still be conducted if an experimental
design was to be established so as to build a fitness model by
regression and use it to verify all heuristics selected, yet; this

direction would be less efficient based on the drawbacks of
process models and is not the scope of this work.

Conclusions and future perspectives

This paper presents a novel framework for dynamically opti-
mizing tool paths for sculptured surface CNC machining. At
its core is the implementation of a new virus-evolutionary
genetic algorithm for the generation and evaluation of robust
tool path chromosomes. The evaluation process is fully auto-
mated under an iterative fashion towards the convergence to
the optimal output that will simultaneously satisfy surface
machining error and tool path efficiency. The former crite-
rion is treated as a combined effect between chordal deviation
and scallop height whereas the latter is primarily reflected by
the number of CC points. Both criteria are measured using
a weighted objective utility instead the formal representa-
tion of an objective function to represent the search domain.
The developed framework is supported by series of novel
interactive routines established in the open architecture of a
cutting edge CAM system to select computational entities
depending on the parameter selections and achieve coopera-
tionwith the algorithm integrating theproposed environment.
Crucial parameters formulating tool paths involve the type
of cutting tool; the step-over; the two 5-axis machining
inclination angles (lead and tilt) and maximum discretiza-
tion step. The proposed framework has been validated by
employing both simulation tools as well as performing an
actual simultaneous 5-axis CNC machining using a bench-
markmodel for which a large number of outputs are available
to compare with. Results for simulations by testing two
algorithms were obtained via 3D tolerance analysis whilst
results for actual cutting were obtained via CMM inspec-
tion. Results analysis provided enough evidence to support
that the proposed methodology for optimizing sculptured
surface CNC machining tool paths can guarantee optimal-
ity at a very large extent at least when it comes to the usage
of computer-aided resources. Such an intelligent framework
for sculptured surface CNC tool path optimization is pre-
sented for the first time in related literature whilst it is of
significant contribution to industrial practice and academic
research. The significance of the proposed approach is the
straightforward global optimization of complex sculptured
surface tool paths for maintaining productivity and qual-
ity without the necessity of extensive user experience. The
work presented in this paper differs from other approaches
in many aspects such as the representation of the problem
handled, the automated collaborative infrastructure for pro-
ducing and assessing intelligently optimized tool paths via
computer programming and the direct interfacing to current
industrial resources with the aid of a simple interactive envi-
ronment. An important limitation of the work presented is
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that gouge detection when selecting cutting tools to machine
sculptured surfaces is not provided. This part requires the
sequential examination of local curvatures for tool postures
with respect to local curvatures for CC points constituting
the tool path; a function that adds a significant compu-
tational load. Nevertheless modern CAM systems provide
this property in advance. Another general shortcoming is
the restricted retrieval of automation objects for building
interactive platforms between manufacturing software and
intelligent systems. In other words the proposed method-
ology requires open CAM software architectures to ensure
interaction among manufacturing functions and intelligent
algorithms.

Looking further ahead, feed adaptation is to integrate
the environment since local curvature information can be
retrieved by the system. Sampling times from several CNC
units are to be taken into account to develop a curvature-based
feed adaptation module and a post-processor engine to trans-
late optimal CL files for tool paths to ISO codes depending
on theNC controller type and themachine tool configuration.
Other future perspectives include experimental validation
using other types of engineering problems and/or sculptured
surfaces since it is realized that the results presented here
refer to a single complex surface despite the fact that it covers
most surfaces found in cutting-edge industrial applications.
Nevertheless results presented here for the novel framework
deemed very encouraging and quite promising with great
potentials to further push the envelope of profitability and
quality to support state-of-the-art practice.
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