
J Intell Manuf (2019) 30:1423–1436
https://doi.org/10.1007/s10845-017-1334-2

A novel integrated tool condition monitoring system

Amit Kumar Jain1 · Bhupesh Kumar Lad1

Received: 7 September 2016 / Accepted: 24 May 2017 / Published online: 2 June 2017
© Springer Science+Business Media New York 2017

Abstract A tool condition monitoring (TCM) system is
vital for the intelligent machining process. However, litera-
ture has mostly ignored the interaction effect between prod-
uct quality and tool degradation andhas devoted less attention
to the criterion of integrated diagnostics and prognostics to
cutting tools. In this paper, we aim to bridge the gap andmake
an attempt to propose a novel integrated tool condition mon-
itoring system based on the relationship between product
quality and tool degradation. First, a cost efficient experi-
mentation concerning high-speed CNC milling machining
was implemented. Subsequently, a comprehensive correla-
tion investigation was performed; revealing strong positive
relationship exists between product quality and tool degrada-
tion. Mapping this relationship, an integrated TCM system
pertaining to diagnostics and prognostics was proposed.
Herein, the diagnostic reliability was enhanced by research-
ing on the use of a multi-level categorization of degradation.
The prognostic competence was enhanced by formulating
it explicitly for the tools critical zone as a function of tool
life. The system is integrated in a manner that, whenever
the degradation curve of the tool reaches the critical zone,
prognostics module is triggered, and remaining useful life
is assessed instantaneously. To enhance the performance of
this system, it is modeled employing support vector machine
with optimal training technique. The proposed system was
validated based on the experimental data. An extensive per-
formance investigation showed that the proposed system
provides a robust problem-solving framework for the intelli-
gent machining process.

B Amit Kumar Jain
amitkjain23@gmail.com

1 Reliability Engineering Lab, Discipline of Mechanical
Engineering, IIT Indore, Simrol, Indore, MP 453552, India

Keywords Tool condition monitoring · Diagnostics ·
Prognostics · Product quality · Tool wear · Intelligent
machining process · Support vector machine

Introduction

Innovation in machining systems has led to improved qual-
ity and higher productivity. Mainly these aids are extremely
reliant on the smooth functioning of several machine com-
ponents; cutting tool is one such essential component.
According to Kurada and Bradley (1997) cutting tool failures
usually, represent about twenty percent of the downtime of
a machining system. It is also reported that tool degradation
directly affects the integrity and the cost of the manufac-
tured products. Whereas, the expense of these tools and their
maintenance grosses about three to twelve percent of over-
all manufacturing cost (Malekian et al. 2009). Consequently,
an expert tool condition monitoring (TCM) is essential to
improve machining system availability, reducing downtime
cost and enhancing operating reliability. The TCM systems
require systematic methods of diagnostics and prognostics.
Diagnostics involves estimating the health condition, and
prognostics involve assessment of the remaining useful life
(RUL) of the tool. The available TCM methodologies can
be broadly classified as direct and indirect methods. Direct
methods are offline, such as computer vision, etc., and used
forwear estimation. Indirectmethods are online and correlate
appropriate measurable process signals (viz. cutting forces,
vibration and acoustic emission, etc.) to tool wear.

Since the late 1980s, numerous investigations have been
dedicated to the development of TCM systems. For example,
Dey and Stori (2005) presented a Bayesian-based method
for diagnosing the low and high level of tool wear variations
usingmultiple sensormetrics. Likewise, Vallejo et al. (2006),
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and Elangovan et al. (2011) developed diagnostic models
using vibration and acoustic measurements for classifying
the tools health condition in different states viz. good-broke
or worn-no worn or low-high blunt. Whereas, Chen and Li
(2009) and Rizal et al. (2013) presented tool wear prediction
models by quantifying the cutting force deviations in various
machining process viz. turning, etc. From these studies, it is
observed that the cutting dynamics is governed by the devi-
ation in the cutting force and can be related to wear. As per,
Li et al. (2009) tool dynamometers are generally employed
to measure cutting forces. Though, Zhong et al. (2013) in
the recent study demonstrated that dynamometers are not
appropriate for industrial usage, because of their higher cost,
negative effect on machining framework rigidity, geomet-
ric constraints, etc. Whereas, Alonso ad Salgado (2008) and
Wang et al. (2014) proposed a tool wear evaluation model
utilizing vibration investigation. Several characteristic mea-
sures indicative of toolwearwas extracted from the processed
vibration measurements and a strong relationship with tool
wear is recognized. However, efficient utilization of these
approaches requires placement of costly accelerometer sen-
sors close to the tool-workpiece interface which becomes
cumbersome with tools subjected to rotating motion viz.
milling. Consequently, Chen and Chen (1999), Bhuiyan et al.
(2012), and Ren et al. (2014) investigated aspects of acous-
tic emission (AE) in the machining process and developed
new tool wear monitoring methodologies. The major issue
with the application of these methods is the attenuation of
the AE signal; also the AE sensor needs to be close to its
source. Therefore, even with the realization of the AE meth-
ods, on its own, the evidence delivered by the AE method
is not sufficient to provide a completely precise estima-
tion of tool condition. Accordingly, the multi-sensor fusion
techniques have received tremendous applications in recent
studies. Like, Geramifard et al. (2012) proposed a temporal
probabilistic approach based on hidden Markov model with
multiple sensor fusion (force, vibration, and acoustics emis-
sion) to predict the real-valued health state metric (tool wear)
instead of discrete types or stages in a CNC-millingmachine.
Similarly, Ghosh et al. (2007), Nakai et al. (2015) and Zhang
et al. (2015) describes experimental and analytical models
for TCMbased on an examination of various process signals,
namely cutting force, vibration, AE, and power, etc. These
approaches workwell for discrete events, for instance, break-
age, wear estimation etc., however, are harder to implement
for remaining useful life prediction. Some study deals with
the angular approach, like Girardin et al. (2010) examined
the angular speed occurring without delay through the spin-
dle encoder measurements. In general, these measurements
are required to be corresponded with a reference measure-
ment, usually cutting force, to confirm their precision. As
a consequence, these approaches not only cost a substantial
amount of time and money on sensor setup but also possibly

contain a substantial amount of errors because of handling
complexities.

A directmethod like computer vision has been pursued for
over three decades now. The innovation in computer vision
has directed the advancement of several vision sensors to
gather data about the condition of the tool. Basically, an
image of the tool is apprehended to deliver information about
the behavior or level of wear. For example, Su et al. (2006)
and Castejón et al. (2007) utilized this technology to formu-
late a wear quantifying system for drill and cutting inserts
to identify the time for its replacement. Wang et al. (2005)
suggested amethod on sequential image scrutiny for periodic
quantification of tool wear and to identify the wear area. In
these works, characteristic measures from the tool image are
extracted for classification of tool health state as new-worn
or broke. However, these methods fail to perform under the
variation of surrounding conditions, radiance of light, and
the existence of chip or dust particles, thereby restricting the
application in the real industrial environment.

Most recently, Ambhore et al. (2015) presented a compre-
hensive review of numerous methodologies for TCM based
on direct and indirect methods. It is observed that direct
methods are subjected to higher inaccuracies, as a result,
are unreliable. Where, most of the indirect TCM systems
are carried out on lathes, where the cutting tools are single
point and non-rotating. Though, in machining process like
milling, the wear evolution is different as the cutting edge
move in and moves out the workpiece repetitively during the
course of machining. Also, the attachment of sensors close
to the tool-workpiece interface with the rotating motion of
cutters is very difficult. Thus, the monitoring methods for-
mulated for lathes do not guarantee to work adequately in a
fully intermitted process like, milling. Although many types
of research have been carried out on the TCM, still there
are several issues like high cost, convenience, adaptability,
inflexibility and robustness which hinder their application
in a real-time environment. Consequently, a real-time, con-
venient and adaptable TCM system without sensor setup is
not present in the existing literature. The available TCM sys-
tems either fit trends in the monitored parameters (cutting
force for example) to predict the future wear state or do clas-
sification as a healthy or a failed tool. The extension of such
systems for the multi-level characterization of degradation
and remaining life assessment is not researched satisfactorily
in the relevant literature. Therefore, many of the developed
indirect or direct monitoring systems are not available yet or
have not been tested in an industrial environment. Also, the
available TCM approaches in the literature focus exclusively
on the diagnostics or the prognostics task. In any case, inte-
grating diagnostics information with prognostics will be of
great interest to advance the TCM system. Such integrated
TCM system is not reported in the relevant literature. More-
over, many investigators (Özel and Karpat 2005; Kaya et al.
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2012; Tangjitsitcharoen et al. 2014) have perceived that there
is a link between product quality and tool degradation, yet
research in this area is still very constrained. An analytical
evidence of such relationship will be beneficial to the indus-
tries; as product quality is affected by tool degradation. Thus,
product quality can be an important element in estimating the
health condition of the tool. However, no explicit real-time
TCM system is reported mapping such relationship. In this
regard, the objective of this work is to formulate a novel
integrated tool condition monitoring system based on the
relationship between product quality and tool degradation,
for the milling process.

Firstly, a new cost efficient experimental strategy con-
cerning high-speed CNC milling machining is executed.
Further, a comprehensive correlation investigation between
product quality and tool degradation is performed; revealing
the strong positive relationship. Mapping this relationship;
a novel integrated tool condition monitoring system per-
taining to diagnostics and prognostics is formulated. The
diagnostic reliability is enhanced by researching on the use
of a multi-level categorization of wear, and the prognostic
competence is improved by formulating it explicitly for the
critical zone as a function of tool life. A new tool degrada-
tion indicator (TDI) with diverse functionality is introduced
as the system input; it is the set of measures (tool cur-
rent age and product quality measurements) sensitive to
cutting tool degradation. The architecture of the proposed
expert systemcomprises of diagnostics and prognosticsmod-
ules linked together. The diagnostics module estimates the
current health state of the tool, whenever, the degradation
curve of the tool reaches the critical zone, the prognostics
module is triggered, and remaining useful life is assessed
instantaneously. To map the desired relationship, support
vector machine (SVM) has been utilized. An optimal train-
ing technique is adopted based on grid search approach to
advance the system performance. The developed system is
validated based on the experimental data, and its performance
is critically analyzed. The implementation results show that
the enhanced maintenance performance can be obtained,
which makes the system suitable for advanced industry
maintenance.

The novelty of this work is in the formulation of an
integrated TCM system by quantifying andmapping the rela-
tionship between product quality and tool degradation. This
system ascertains reliable health monitoring and life predic-
tion of the machining system at the same time with a solitary
experimentation. An added contribution lies in the outcomes;
an exhaustive performance and comparative investigations of
the proposed integrated TCM system is presented, to distin-
guish the suitability, stability, quality, reliability, robustness,
applicability and comprehensibility in a real industrial envi-
ronment. This expands the proposed system robustness and
applicability in manufacturing industries.

The rest of the paper is structured as follows: in next sec-
tion, the details of the new experimental strategy are given.
“Analytical investigation” section illustrates the investiga-
tion of the relationship between product quality and tool
degradation. “Integrated tool condition monitoring system”
section shows detailed formulation and the architecture of the
integrated TCM system. “Results and discussions” section
briefly discusses the implementation results. Lastly, “Con-
clusions” section concludes the paper and contributions are
highlighted.

Experimental details

The aim is to develop an experimental strategy which suc-
cessfully attempts to improvise upon existing setups by
removing their drawbacks like, system rigidity, geometric
limitations, etc. Accordingly, setup is made free from exclu-
sive sensors, fixtures, jigs etc., which makes it cost effective,
convenient and adaptable for the real industrial environment.
In the exercise, testing and validation of fault diagnostics sys-
tems is anything but difficult to implement, as the faults can
be easily introduced to the cutting tools. In any case, this is not
the case for the prognostics systems where the change in the
health condition is the result of a long and slowdegradation of
cutting tool. Consequently, to test these strategies, it is impor-
tant to create the degradation through accelerateddegradation
tests of cutting tool and quantify the health attributes for the
duration of its entire life. Accordingly, in the current investi-
gation, initially no defects are introduced in the cutting tools
and each degraded cutting tool contains practically all sorts
of defects (wear, breakage, etc.).

The complex high-speed CNC vertical milling machine
(EMCO MILL E350) is utilized as the testing platform.
A high-speed steel 6mm milling cutter is utilized for the
analysis. The milling process elected was face milling for
generating a flat surface on the mild steel workpiece (165 ×
100mm), with fixed operating profile (feed = 300mm/min,
speed =1000RPM, depth of cut = 0.25mm) in the absence
of coolant. Mitutoyo TM-505 Toolmakers’ microscopy sys-
tem at 15x eyepiece magnification and a resolution of
0.001mm, according to ISO/IEC 17025 is used to mea-
sure the tool degradation of the tool in terms of flank
wear. An HANDYSURF E-25A/B portable surface rough-
ness device was utilized to quantify the product quality in
terms of average surface roughness parameter (Ra), accord-
ing to ISO’97 / JIS’01 / DIN. Run-to-failure tests with six
milling cutters have been performed to investigate the degra-
dation behavior of these tools. Two different failure types
were witnessed namely tool worn-out and tool breakage.
After every 1320mm of machining distance, tool wear and
average surface roughness of the finished product is mea-
sured and recorded. Current experimentation enables testing
and validation of the proposed integrated TCM system.
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Fig. 1 Experimental setup

Figure 1 shows the developed experimental setup. The cur-
rent arrangement is cost effective, convenient and adaptable
to the real industrial environment, as no sensor or fixture is
utilized with the test bed. Likewise, the quantifying instru-
ments used are not required to be installed on the test bed
and are kept discretely in order to keep the machining sys-
tem rigidity and avoid any sort of geometric limitations.

Analytical investigation

Experimental tests conducted on milling cutters direct that
even the exact same cutters functioned at similar operat-
ing settings demonstrate diverse wear behavior. Figure 2
displays experimental wear measurements of two different

Fig. 2 Wear behavior versus tool life

failure types milling cutters. Where, Fig. 3 shows the aver-
age surface roughness of the finished product with different
failure types cutting tool as a function of its life. Figure 3
depicts that average surface roughness value remains small
and steady with small tool wear. Though, when tool wear
moves towards moderate wear zone average surface rough-
ness increases gradually, then it significantly increases as
tool wear reaches the critical zone. This infers that some
relationship exists between product quality and tool degra-
dation. Analytical evidence of such relationship is missing
in the relevant literature. Consequently, Pearson correlation
coefficient (PCC) is employed to analytically evaluate the
strength of the relationship between the product quality and
tool degradation. PCC value is in the range of−1 to 1; where

Fig. 3 Average surface roughness behavior versus tool life
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Fig. 4 Results of comprehensive correlation investigation

value closer to 1 shows a positive correlation. The mathe-
matical expression for PCC is given in Eq. (1).

PCC
(
PRa , TW

) =
∑(

PRai
− PRa

) (
TW i − TW

)

√
∑ (

PRai
− PRa

)2 (
TW i − TW

)2
(1)

where PRai
is the product quality in terms of average surface

roughness of the ith product, PRa is the mean of product
quality in terms of average surface roughness, TW i is tool
degradation in terms of tool wear at ith cutting process and
TW is the mean of tool degradation in terms of tool wear.

To better comprehend this relationship a comprehensive
correlation investigation is executed. Herein, three milling
cutters of each failure type have been utilized to compute the
value of PCC. Figure 4 shows the detailed results of corre-
lation investigation. The results depict that the value of PCC

ranges from 0.584 to 0.821 for the cutters failed owing to
worn-out, while it ranges from 0.583 to 0.663 for the cut-
ters failed owing to breakage. The average values of PCC
in the case of worn-out and breakage are estimated as 0.731
and 0.628 respectively. These results clearly indicate that
a strong positive correlation exists between product quality
and tool degradation. To further verify these results, Spear-
man’s correlation coefficient (SCC) is employed to gauge
the strength of the monotonic relationship between product
quality and tool degradation. It is the non-parametric version
of the PCC, and its interpretation is similar to that of PCC.
Equation (2) shows the mathematical expression for SCC.
Herein, the examination shows that the value of SCC ranges
from 0.555 to 0.868 for the cutters failed owing to worn-
out, while it ranges from 0.532 to 0.801 for the cutters failed
owing to breakage. The average values of SCC in the case
of worn-out and breakage are estimated as 0.739 and 0.658
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Fig. 5 Tool health states as a
function of tool life
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respectively. These results confirm that even with different
failure type’s tools there exist a strong positive relationship
between product quality and tool degradation. Mapping this
relationshipwill be of high significance to estimate the health
condition of the tool based on product quality.

SCC
(
PRa , TW

) = 1 −
6
∑

(PRaRi
− TWRi

)2

N
(
N 2 − 1

) (2)

where PRaRi
is the rank of the product quality in terms of

average surface roughness of the ith product, TWRi
is the rank

of the tool degradation in terms of tool wear at ith cutting
process and N is the total number of cases in the analysis.

Integrated tool condition monitoring system

A reliable tool condition monitoring system is significant
in manufacturing industries for fault diagnostics and prog-
nostics to prevent machinery performance degradation and
catastrophic failures. An integrated TCM system is scarcely
studied in the relevant literature. Accordingly, an integrated
TCMsystembased on the relationship between product qual-
ity and tool degradation is proposed. The architecture of
a proposed integrated TCM system consists of two intelli-
gent modules linked together. The first one is the diagnostics
module; it is modeled to estimate the current health state
of the cutting tool. Second is the prognostics module; it is
formulated explicitly for the tools critical zone to predict
remaining useful life. These modules are linked together to
function as follows: the diagnostics modulemonitors the cur-
rent health state of the cutting tool, whenever the degradation
curve of the cutting tool reaches the critical stage the prog-
nostics module is triggered and remaining useful life of the
tool is assessed instantaneously. To model the desired map-
pings a supervised learning system, support vector machine
is utilized. This SVM based integrated TCM system ascer-
tains health monitoring and life prediction at the same time
with a solitary experimentation. Theoretical and mathemati-
cal foundations of the developed diagnostics and prognostics
modules are elaborated in following sub-sections.

Diagnostics module

A significant part of the past work on tool monitoring has
regarded the problem as one of figuring out if the cutting tool
isworn or notworn. In reality, toolwear is a dynamic process,
with tools, moving from being new to progressively greater
levels of wear and possibly to breakage. On that ground,
and as it provides more valuable information to machinists,
we explore the use of a multi-level categorization of wear.
Considering the case of cutting tools, health states of the
cutting tools are categorized in three stages as a function of
tool life. Figure 5 demonstrates the splitting of the health
states with their wear scopes. It splits the health state into
three zones viz., Stage I: slight wear zone, Stage II: moderate
wear zone and Stage III: critical or worn-out zone. A simi-
lar idea of quantized wear levels is also explored in Kurada
and Bradley (1997) and Al-jonid et al. (2013). These litera-
ture and observation of the noticeable physical change in the
surface roughness of the produced surface with tool degrada-
tion during experiments are the primary basis for selections of
these wear scopes. In addition, to build the desired integrated
TCM system, we propose a new tool degradation indica-
tor with diverse functionality as an input to represent the
degradation features of the cutting tool. The TDI is a set of
measures (current age and quality measurements), sensitive
to cutting tool degradation. Current age (Ti ) is the current age
of the tool. Product quality in terms of the most widely used
parameter average surface roughness is used and defined as
“the result of irregularities arising from the plastic flow of
chips during the machining” (Lou et al. 1998). The product
quality during current and previous inspection can be defined
as follows:

Current inspection;

Rai = 1

L

∫ L

0
|Y (x)i | dx (3)

where the parameter L is the sampling length, and function
Y (x) is the coordinate of the roughness profile curve.

Previous inspection;

Rai−1 = 1

L

∫ L

0
|Y (x)i−1| dx (4)
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The proposed TDI plays a distinctive role in diagnostics
module. The tool current age is important for diagnos-
tics module in estimating the degradation of the cutting
tool. While, average surface roughness measurements of the
present and previous inspection are useful in representing the
current health condition of the cutting tool. Herein, the TDI
is normalized. The output from the diagnostics module is the
current health state of the cutting tool.

Modeling of the diagnostics module should be profi-
cient in achieving the desired input-output mapping. Conse-
quently, C-support vector classification (C-SVC) is utilized
for modeling diagnostics module. Through, C-SVC, an opti-
mumseparating hyperplane is built in the higher-dimensional
input space, for the classification of different health states
of the milling cutter. Let the n-dimensional input training
vectors yi ∈ Sn, i = 1, 2 . . . , m, (m is the number of sam-
ples) in two classes and a label vector z ∈ Sm, such that
zi ∈ {1,−1} , slack variable (ξi ) and regularization param-
eter C . The required optimum hyperplane is established by
solving a convex quadratic optimization problem (Cortes and
Vapnik 1995), given as:

min
a,b,ξ

1

2
aT a + C

∑m

i=1
ξi

Subject to zi

(
aT φ (yi ) + b

)
≥ 1 − ξi ,

ξi ≥ 0, i = 1, 2 . . . , m, (5)

where a is an n-dimensional vector and b is a scalar (utilized
to decide the location of the separating hyperplane) and the
function φ (yi ) maps yi in a higher dimensional space.

The variable a is possible to have high dimensionality;
thus the problem is simplified by converting into the equiva-
lent Lagrange dual problem throughKuhn-Tucker conditions
and given as:

min
α

1

2
αT Rα − f T α

Subject to
(

zT α
)

= 0, 0 ≤ αi ≤ C, i = 1, 2 . . . , m, (6)

where α is Lagrange multiplier, f = [1, . . . , 1]T is the vec-
tor of all ones, R is an l by l positive semi definite matrix and
given as:

Ri j ≡ zi z j K
(
yi , y j

)
, K

(
yi , y j

) ≡ φ(yi )
T φ

(
y j

)
. (7)

The kernel function
(
K

(
yi , y j

))
is used to project the data

into a virtual space where it might be easier to separate them.
Radial basis function (RBF) kernel is utilized as a part of this
work to shape the decision boundary, since they are not sen-
sitive to the outliers and have no equal variance requirement
for the input data. The RBF kernel takes the following form:

K
(
yi , y j

) = exp−γ ‖yi −y j ‖2 (8)

To increase the diagnostic reliability of the system, we
research on the use of multi-level categorization of degrada-
tion. This makes the current problem a multi-class classifi-
cation problem. Accordingly, we reconstruct a multi-class
classifier from binary C-SVC. According to a compara-
tive investigation between different methods for multi-class
C-SVC by Hsu and Lin (2002), it is established that the one-
against-one (building and combining numerous binary clas-
sifiers) is a competitive method. Consequently, we employ
the samemethod for binary decomposition. Herein, if k is the
number of health states of the cutting tool, then k ((k − 1) /2)
binary classifiers are constructed and each separates each
other overlooking entire supplementary health states. Vari-
ous coupling schemes are used to associate binary classifiers
for the global solution of this problem. We make use of a
voting strategy, “each binary classification is considered to
be a voting where votes can be cast for all data points y, in
the end a point is designated to be in a class with the maxi-
mum number of votes” (Chang and Lin 2011). Subsequently,
for the training samples of the ith and the jth health states, a
binary classification problem given in Eq. (9) is solved.

min
ai j ,bi j ,ξ i j

1

2
(ai j )T ai j + C

∑

t
(ξ i j )t

Subject to (ai j )T φ (yt )+ bi j ≥1− ξ
i j
t , if yt in the ith class,

(ai j )T φ (yt )+ bi j ≤−1+ξ
i j
t , if yt in the jth class, ξ i j

t ≥0.

(9)

Here, the support vectors are lesser than the training sam-
ples making C-SVC computationally efficient. Finally, the
desired optimal decision function of the proposed diagnos-
tics module is as follows:

sgn
(

aT φ(y) + b
)

= sgn

(∑l

i=1
ziαi K

(
y j , x

) + b

)

(10)

This diagnostics module involves estimating the current
health state of the tool; as the critical health state is detected,
prognostic is needed to be involved in predicting the remain-
ing useful life of the tool. Thus, a prognostics module is
linked with the diagnostics module.

Prognostics module

In most of the available work, researchers built models for
future wear prediction. This does not assist in the definitive
function of tool condition monitoring. On this ground, and
as it will be more significant, we formulate the prognostics
module to deliver information about the remaining useful life
of the cutting tools. Herein, the prognostics module predicts
RUL by assessing the extent of degradation from its expected
state of health in its expected usage conditions. The life of
the cutting tool comprises of three health states as a function
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of tool life. In which, the tool is most failure-prone in its third
stage, as tool wear is in the critical zone. The precise knowl-
edge of RUL, while tool wear is in critical zone, is crucial to
avoid failure consequences. Thus, to improve the prognostics
module competence, we formulate the module explicitly for
the critical zone as a function of tool life. This explicit mod-
ule will be more beneficial than developing the module for
the entire life of the tool. Also, as themodule is built for a spe-
cific time frame, it will reduce the error in prediction. Based
on real-time RUL assessment from the prognostic module,
effective actions can be taken to minimize production loss
and extend tool life.

The proposed tool degradation indicator (see, “Diagnos-
tics module” section) plays a diverse role in prognostics
module. The TDI consists of the current age of the tool (Ti )

and product quality measurements in the present (Rai ) and
previous (Rai−1) inspection [see, Eqs. (3) and (4)]. Herein, Ti

is important for prognostics module in estimating the RUL
of the cutting tool. Whereas, Rai and Rai−1 are useful in rep-
resenting the tool’s working condition. For the output of the
prognostics module remaining useful life is preferred and is
denoted as RUL, as shown in Eq. (11).

RUL = Ft − Cti (11)

where Ft is the tools time-to-failure (the time for which the
tool is in service) and Cti is the time from when the RUL is
estimated (the current time at which the RUL is required).

The RUL of a cutting tool is a non-linear function. To pre-
dict it, we need the powerful tool which can determine the
mapping relationship between the tool degradation indicator
from the cutting tool and the RUL of the tool. To achieve this,
the v-support vector regression (v-SVR) is proposed; as it is a
very powerful tool that can determine the non-linear function
of the system. v-SVR is centered on the structural risk mini-
mization principle and therefore capable to govern the upper
bound of generalization risk at the same time cutting down
the module complexity (Cortes and Vapnik 1995; Benked-
jouh et al. 2015). Taking the set of input-output pairs from
the tools critical zone {(TDI1, RUL1) , . . . , (TDIn, RULn)},
the aim is to approximate the non-linear relationship between
tool degradation indicator and remaining useful life of the
tool given inEq. (12), in amanner that f (TDI)must be closer
to the actual RUL and must be flat to avoid over-fitting.

f (TDI) = wT φ (TDI) + x (12)

wherew is the vector ofweights, x is the bias and the function
φ(TDI) characterizes the non-linear mapping function.

For ensuring that the f (TDI) come across the aimof close-
ness and flatness, the primal objective is to minimize (Chang
and Lin 2011):

Min
1

2
‖w‖2 + C

{
v.ε + 1

n

∑n

i=1

(
ξ + ξ∗)

}

Subject to RULi − 〈wT .φ (TDI)〉 − x ≤ ε + ξ∗
i ,

〈wT .φ (TDI)〉 + x − RULi ≤ ε + ξi ,

ξ∗
i , ξi ≥ 0. (13)

where parameter ε is a deviation of a function f (TDI) from
its actual value and ξ, ξ∗

i are supplementary slack variables.
For solving the problem in Eq. (13), its dual formulation

is presented by building a Lagrange function (Bhatt et al.
2014); the dual optimization problem is as follows:

Max − 1

2

∑n

i, j−1

(
αi − α∗

i
)
.(α j − α∗

j ).K
(
TDIi , TDIj

)

+
∑n

i−1
RULi .

(
αi − α∗

i
)

Subject to
∑n

i−1
(αi − α∗

i ) = 0,
∑n

i−1
(αi + α∗

i ) ≤ C v,

αi , α
∗
i ∈

[
o,

C

n

]
. (14)

where K
(
TDIi , TDIj

)
represents the kernel function speci-

fied by K
(
TDIi , TDIj

) = φ(TDIi )
T .φ

(
TDIj

)
. The solution

to Eq. (14) produces the Lagrange multipliers α, α∗.
RBFkernelwith parameter gamma (γ), as given inEq. (8),

is selected as it supplies high precision and has less execution
time. Putting w in Eq. (12) gives the absolute approximated
function of the proposed prognostics module, given as:

f (TDI) =
∑n

i−1
(αi − α∗

i ).K (TDIi , TDI) + x (15)

This explicit prognostics module will lead to a more pre-
cise estimate of RUL of the cutting tool. Consequently, guide
towards the establishment of a well-organized preventive
maintenance program based on an early warning of incip-
ient defects.

Results and discussions

This section presents an exhaustive performance investiga-
tion of the proposed integrated TCM system. The tests and
verification of the system are performed by using an Intel
(R) Core (TM) i7-3770 CPU 3.40GHz PC. The principal of
the multi-class C-SVC and v-SVR formulations are imple-
mented by using the WEKA (version 3.7.12).

Optimal module parameters setting

To train the developed integrated TCM system, we must
specify the module and kernel parameters that play an imper-
ative part in the performance of the system. In most work,
the authors end up choosing parameter by trial and error,
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which is not efficient. In the diagnostics module, regular-
ization parameter C and RBF kernel parameter γ are the
tuning parameters that need to be optimized. The parameter
C ranges from 0 < C ≤ ∞, and controls over-fitting of
the model; a high value of C means a strict classifier that
does not admit many misclassified points. The parameter γ

controls the degree of non-linearity of the model, a small
value of γ will lead to curved hyper planes and a high value
will constrain the hyper planes to be straighter. Likewise, in
the prognostics module, model parameter v and RBF kernel
parameter γ are the important tuning parameters. The value
of v lies between 0 and 1, and governs the number of support
vectors and training errors; higher support vectors reduces
the computational efficiency of the module.

To optimize these parameters, a potential range of these
parameters with the grid space is defined. Then, all the grid
points are iterated to evaluate the one contributing the higher
cross-validation accuracy. Finally, the parameters with the
highest accuracy are selected for training the integrated TCM
system. Usually, the search becomes slower as the values of
these parameters become higher, thus it is better to restrict it
to an equitable range. Accordingly, in the diagnostics mod-
ule, the interval for the parameter C is taken as {1 1000
1000}, this will test the regularization parameter from 1 to
1000 with 1000 steps. Likewise, in the prognostics module,
the interval for the parameter v is taken as {0.01 1 60}, this
will test the parameter from 0.01 to 1with 60 steps. The inter-
val for the parameter γ is taken as {0.01 2 120}, this will
iterate over the gamma parameter, using values from 0.01
to 2 with 120 steps. Employing this grid search technique,
we obtained the optimal training parameters for diagnostics
module as C = 100, and γ = 0.344, and for prognostics
module as v = 0.497, and γ = 0.110 respectively. These
optimal parameters are used to train the integrated TCM sys-
tem to achieve the best generalization ability.

Performance investigation

In-depth performance assessment of the integrated TCM sys-
tem is significant to recognize the practicability of the system
in a real industrial environment. Accordingly, an exhaustive
performance investigation is executed to distinguish the suit-
ability, stability, quality, reliability, robustness, applicability
and comprehensibility of the proposed integrated TCM sys-
tem, for advanced industry maintenance. Consequently, the
performance is verified by utilizing the life data of sixmilling
cutters consisting of 321 samples drawn from experiments.
Herein, K-fold cross-validation is designated for experimen-
tally validating the integrated TCM system. It is a widely
used statistical technique to evaluate the classification and
regression systems. Kohavi (1995) has shown that 10-fold
cross-validation is paramount to make sure the strength and
consistency of the performance of the model; the same is
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Fig. 6 Detailed DA for different health states of the tool

employed in the current study. The investigation is carried
out in two phases; in the first phase the diagnostics module is
evaluated, in next phase the prognostics module is evaluated.

Experimental validation and assessment of diagnostics
module

The effectiveness of the diagnostics module is distinguished
as follows:
(a) Suitability

The diagnostic accuracy (DA) is evaluated to gauge the
suitability of the diagnostics module. DA is the extent of
the samples correctly categorized among the total number of
samples evaluated. Detailed diagnostic accuracy per health
state of the tool is demonstrated in Fig. 6. The weighted
average DA accomplished by diagnostics module is 92.84
%; higher estimation of DA puts forward the suitability of
the diagnostics module for classifying tool health states. The
weighted average of the diagnostic accuracy is the sum of all
diagnostic accuracy; each weighted according to the number
of instances with that particular class label.

D A = TP + TN

TP + TN + FP + FN
× 100 (16)

where TP and TN are total number of correctly recognized
true positive samples and true negative samples respectively,
FP and FN are total number of correctly recognized false
positive samples and false negative samples respectively.
(b) Stability

To illustrate the stability of the diagnostics module,
specificity (SPF), sensitivity (SEN) and precision (P) are
computed. SPF evaluates the extent of negatives which are
correctly recognized. SEN evaluates the extent of actual pos-
itives which are correctly recognized. P is the proportion of
true positives to the total number of positives recognized by
the module. Their weighted average values are 95.80, 92.80,
and 92.80%, respectively; this shows the stability of the diag-
nostics module, as it provides perfect predictions and lesser
variance in predictions.
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SPF = TN

TN + FP
× 100 (17)

SEN = TP

TP + FN
× 100 (18)

P = TP

TP + FP
× 100 (19)

(c) Quality
For evaluating the quality of the classifications made by

diagnosticsmodule,Matthews correlation coefficient (MCC)
and F-measure are calculated. MCC measures the quality of
classifications, through the essence of correlation between
the actual and predicted; its value lies between −1 and +1.
Whereas F-Measure is interpreted as a weighted harmonic
mean between precision and recall, its value stretches its best
at 1 and its worst at 0. MCC value of 0.887 and F-Measure
value of 0.928 from diagnostics module represents the good
quality of predictions.

MCC = TP .TN − FP . FN√
(TP + FN )(TP + FP ) (TN + FN ) (TN + FP )

(20)

F − Measure = 2 × P × SE N

(P + SE N )
(21)

(d) Reliability
Reliability of the diagnostics module is verified through

Kappa statistic; it is a chance-corrected indicator of agree-
ment between the classified and the actual health states.
Herein, the inter-class agreement is considered, making it
more reliable degree. Its value lies between −1 and 1. A
Kappa value of 0.888 from diagnostics module represents a
reliable agreement for classification of tool health states.

Kappa Statistic = PA − PC

1 − PC
(22)

where PA is a percentage agreement and PC is chance agree-
ment.
(e) Robustness

Robustness of the diagnosticsmodule is evaluated by plot-
ting the receiver operating characteristics (ROC) curve. ROC
curve contains a lot of information about the robustness of
the modules predictive ability, as it provides an understand-
ing of the complete spectrum of sensitivity and specificity,
as all conceivable SEN / SPF sets for an individual exami-
nation are plotted. A worthy examination is one where SEN
increases promptly and 1-SPF barely rises at all till SEN
becomes high. Figure 7 shows the ROC curve for different
tool health states, it is evident that ROC curve of the diagnos-
tics module covers a maximum area among all three stages.
The weighted average ROC area is 0.943, which indicates
the robustness of the diagnostics module for tool health state
classification.

Fig. 7 ROC curve for different health states of the tool

(f ) Applicability
Computational efficiency of diagnostics module is mea-

sured as 0.14 s in terms of the CPU time, making it com-
putationally efficient to be applicable in real-time industrial
environments.
(g) Comprehensibility

Judging the comprehensibility of the diagnostics module
is significant to see the performance by each health state.
The best classification of a particular health state requires
the specificity, sensitivity and precision values to be near to
100. Similarly, the MCC, F-Measure, and ROC area values
should approach towards 1.As shown inTable 1, the obtained
specificity, sensitivity and precision values of each health
state approach towards 100. Likewise, the MCC, F-Measure
and ROC area values of each health state are very close to
1. These results underscore the merit of the classification
performance of each health state.

These implementation results show that the diagnostics
module is capable of effectively monitoring the health state
of the milling cutters. This performance by the diagnostics
module proves its worth for advanced industry maintenance.

Experimental validation and assessment of prognostics
module

The performance of the prognostics module is distinguished
in the following manner:
(a) Suitability

To check the suitability of the prognostics module, mean
absolute error (MAE) is calculated. Herein, MAE measures
how close RUL predictions are made by the module to the
actual RUL. TheMAE value of 1.613 from prognostics mod-
ule shows predicted RUL is very close to the actual RUL,
proving the suitability of the prognostics module in a real
industrial environment.

MAE = 1

n

∑n

i=1

∣∣RULPi − RULAi

∣∣ (23)
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Table 1 Comprehensibility assessment

Health state Specificity (%) Sensitivity (%) Precision (%) Matthews correlation coefficient F-Measure ROC area

SI 96.40 96.00 94.50 0.922 0.952 0.962

SII 94.20 90.90 91.60 0.852 0.913 0.925

SIII 98.10 90.60 92.10 0.892 0.913 0.943

Weighted average 95.80 92.80 92.80 0.887 0.928 0.943

where n is the total number of observations, RULPi is the
predicted RUL and RULAi is the actual RUL.
(b) Stability

For stability, relative absolute error (RAE) and root rel-
ative squared error (RRSE) are evaluated; these are the
measures of the variance in the predictions. Error rates of
39.16 and 45.60% represent the lesser variance in prediction
and showing the stability of the module.

RAE =
∑n

i=1

∣∣RULPi − RULAi

∣∣
∑n

i=1

∣∣RULA − RULAi

∣∣ × 100 (24)

where RULA is the mean value of actual RUL.

RRSE =
√∑n

i=1(RULPi − RULAi )
2

∑n
i=1(RULA − RULAi )

2
× 100 (25)

(c) Quality
The quality of the prediction from the prognostics module

is assessed through the goodness of fit. For which R-squared
(R2) correlation coefficient is calculated. Here, R2 equals
the square of the Pearson correlation coefficient between the
actual and predicted RULs, R2 represents how much pre-
dicted RULs are related to actual RULs. The R2 value of
0.884 from prognostics module shows perfect linear rela-
tionship and high strength of correlation between actual and
predicted RUL.
(d) Reliability

Root mean squared error (RMSE) is chosen to signify
the reliability of the predictions from the prognostics mod-
ule; it characterizes the standard deviation of the differences
between predicted RULs and actual RULs. RMSE value of
2.175 represents reliable RUL predictions.

RMSE =
√
1

n

∑n

i=1

∣∣RULPi − RULAi

∣∣ (26)

(e) Applicability
Computational efficiency of prognostics module is mea-

sured as 0.25 s in terms of the CPU time, making it com-
putationally efficient to be applicable in real-time industrial
environments.

Fig. 8 The output performance of prognostics module

(f ) Comprehensibility
Comprehensibility of the prognostics module is assessed

by plotting the each output performance of the prognostics
module, as shown in Fig. 8. Observation from this figure
displays that each actual and predicted RUL are very close
to each other. This performance shows that the prognostics
module is robust in predicting the remaining useful life of
the tool.

These implementation results from the prognostics mod-
ule are very promising. This will ensure the development
of an efficient preventive maintenance program based on
an early warning of incipient failures. In addition, this will
improve machining system availability, reduce downtime
cost and enhance operating reliability.

Influence of kernel function

This section presents a comparative study on the perfor-
mance of the RBF kernel with other kernels namely sigmoid
kernel and polynomial kernel. Table 2 shows the mathe-
matical expressions for these kernels. Herein, we consider
judging the best kernel that yields optimal results, as no
definite way is reported to decide the best kernel type. We
test the proposed integrated TCM system by comparing dif-
ferent kernels on the basis of accuracy and computational
time using optimal kernel parameters and constant model
parameters (C = 100 and v = 0.497). Table 2 shows the

123



1434 J Intell Manuf (2019) 30:1423–1436

Table 2 Proficiency of integrated TCM system for different kernel functions

Kernel function
K

(
yi , y j

) Mathematical
expression

Integrated TCM system

Diagnostics module Prognostics module

Optimal
parameter
value

Diagnostics
accuracy (%)

Computational
time (s)

Optimal
parameter
value

Mean absolute
error

Computational
time (s)

Radial basis See Eq. (8) 0.344 92.84 0.14 0.110 1.61 0.25

Sigmoid tanh

(
−yT

i y j
s

)
10.869 91.28 0.17 9.091 4.11 0.40

Polynomial (yT
i y j + 1)p 1st degree 90.34 6.98 2nd degree 3.63 842.50

detailed comparative results. The experimental evaluations
demonstrated that satisfactory results are produced by all
the kernels in diagnostics module. Among which the poly-
nomial kernel produced the lowest diagnostic accuracy. In
consistency with several researches, RBF kernel yielded a
higher diagnostic accuracy. In other words, RBF obtains
almost 1.6 and 2.5% better diagnostic accuracy compared
with sigmoid and polynomial kernels respectively. In addi-
tion, RBF kernel shows the optimal results with respect
to the fastest computational time, as it takes less training
time than other kernels. Likewise, in prognostics module the
results clearly show that, the RBF kernel provides lowest
mean absolute error and having about 60% improvement in
accuracy over other kernels.Where, the accuracies of the sig-
moid and polynomial kernels are relatively same. Moreover,
the RBF kernel is found capable of taking less computa-
tional time compared to other kernels. Herein, it is worth
noticing that; polynomial kernel is not suitable for remain-
ing useful life prediction, as it takes high computational
time.

On the ground of this comparative study, it can be con-
cluded that the RBF kernel is proficient in achieving higher
accuracy with the fastest computation. Consequently, the
advanced performance of the integrated TCM system is the
consequence of utilizing RBF kernel.

Comparative analysis

In the direction of ensuring that the proposed integrated TCM
system is having a robust problem-solving framework. We
performed an exhaustive comparative analysis with widely
used data-driven schemes build with the same set of experi-
mental data. Herein, to verify the performance of diagnostics
module it is compared with distinctive classification algo-
rithms such as, Fuzzy system (Kaburlasos et al. 2007), Naïve
Bayes (NB) (McCallum and Nigam 1998), Rule-based (RB)
(Frank andWitten 1998),HiddenMarkovmodel (HMM) (Xu
and Ge 2004). Moreover, the performance of the prognostics
module is verified by comparing it with the widely used arti-
ficial neural network (ANN) (Nakai et al. 2015). The detailed
comparative results are shown in Table 3. From this table, it
is evident that among all HMM has shown the worst perfor-
mance with 0 MCC and Kappa value representing very less
agreement for classification of tool health states. The low
DA from fuzzy, NB, RB and HMM classifiers shows poor
suitability, as well as lower values of SEN, SPF, P shows
poor stability. The lesser value of F-Measure than 0.7 shows
low classification quality. The robustness of the proposed
diagnostics module is evident with a highest weighted aver-
age value of ROC area among other classifiers. Furthermore,
results in Table 3 indicate that the high R2 correlation coef-

Table 3 Results of comparative analysis

Diagnostics module Prognostics module

Performance measures Proposed method Fuzzy NB RB HMM Performance measures Proposed method ANN

Diagnostic accuracy (%) 92.84 75.70 64.18 76.01 38.94 R-squared correlation coefficient 0.884 0.641

Specificity (%) 95.80 75.70 64.20 76.00 38.90 Mean absolute error 1.613 2.826

Sensitivity (%) 92.80 90.20 75.10 83.50 61.10 Root mean squared error 2.175 3.634

Precision (%) 92.80 79.60 77.50 62.40 15.20 Relative absolute error (%) 39.16 68.63

Matthews correlation coefficient 0.887 0.655 0.448 0.590 0 Root relative squared error (%) 45.60 76.2

F-Measure 0.928 0.759 0.582 0.682 0.561 Computational Time (Sec.) 0.25 3.06

Kappa statistic 0.888 0.637 0.398 0.599 0

ROC area 0.943 0.839 0.914 0.845 0.5
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ficient from prognostics module shows that predicted RUL
are highly related to actual RUL compared to ANN. Lower
values of MSE and RMSE from prognostics module show
higher accuracy in RUL prediction compared to ANN’s out-
put. Prognostics module has lesser error rate in the RAE and
RRSE as it provides, the more perfect predictions and lesser
variance in predictions. Moreover, the proposed prognostics
module is also computationally efficient to be applicable in
real-time environment.

Implementation results from this comparative study con-
firm that the proposed integrated TCM system is superior to
other data-driven schemes and provides a robust problem-
solving framework.

Conclusions

In this paper, a novel integrated tool condition monitor-
ing system was formulated by quantifying and mapping
the relationship between product quality and tool degrada-
tion. The purpose was to provide manufacturing industries
with an intelligent integrated monitoring system to instanta-
neously prevent machining system performance degradation
and sudden failures. The major contributions of this work are
highlighted as follows:

• A cost efficient experimentation strategy was imple-
mented in an effort to create a simple, easily comprehen-
sible monitoring system utilizing minimum resources to
enable easy adaptation of the technology even inmedium
and small-scale machining industries.

• A comprehensive analytical investigation of the corre-
lation between product quality and tool degradation was
realized; revealing the strong positive relationship. Based
on the investigated relationship, an integrated tool condi-
tion monitoring system based on support vector machine
with optimal training technique was formulated. The
architecture of the proposed system includes a linked
diagnostics module with a prognostics module. Herein,
the diagnostic reliability was enhanced by researching
on the use of a multi-level categorization of degradation.
Whereas, the prognostics competence was improved by
formulating it explicitly for the tools critical zone as a
function of tool life. In addition, a new tool degradation
indicator with diverse functionality was introduced as an
input, to represent the degradation features of the cut-
ting tool. The function of this integrated system was to
monitor the current health state of the machining system,
and whenever the degradation curve of the tool reaches
the critical zone, prognostics module was triggered, and
remaining useful life was assessed instantaneously.

• The proposed system was thoroughly evaluated on a
high-speed CNC milling machining system to recognize
the practicability of the system in a real industrial envi-
ronment. Consequently, a comprehensive performance
examination was performed to distinguish the suitabil-
ity, stability, quality, reliability, robustness, applicability
and comprehensibility of the integrated TCM system.
This extreme performance assessment expands the sys-
tem’s robustness and applicability to the real industrial
environment. The implementation results showed that
the proposed system can monitor the machining system
health condition effectively and improve the precision of
remaining useful life prediction, thus it is pertinent to
advance industrial maintenance.

In essence, the proposed system was proficient in capturing
the relationship between product quality and tool degradation
and provides a robust problem-solving framework for the
intelligent machining process. This will enrich the existing
tool conditionmonitoring systemsby considering the product
quality as a new element for tool health monitoring. The
information obtained in the current course of action results in
significant savings in cost, time and improving productivity
in a heavily competitive manufacturing industry.

The restriction in this work is that the proposed approach
is only suitable for the applications in which the operating
conditions are fixed. The applicability of this approach can
be seen in applications with high volume of productions.
In future, the approach can be generalized by considering
multiple operating conditions.
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