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Abstract In the traditional order completion time (OCT)
prediction methods, some mutable and ideal production data
(e.g., the arrival time of work in process (WIP), the planned
processing time of all operations, and the expected waiting
time per operation) are often used. Thus, the prediction time
always deviates from the actual completion time dramati-
cally even though the dynamicity of the production capacity
and the real-time load conditions of job shop are considered
in the OCT prediction method. On account of this, a new
prediction method of OCT using the composition of order
and real-time job shop RFID data is proposed in this article.
It applies accurate RFID data to depict the real-time load
conditions of job shop, and attempts to mine the mapping
relationship between RFID data and OCT from historical
data. Firstly, RFID devices capture the types and waiting
list information of all WIPs which are in the in-stocks and
out-stocks of machining workstations, and the real-time pro-
cessing progress of all WIPs which are under machining at
machining workstations. Secondly, a description model of
real-time job shop load conditions is put forward by using the
RFID data. Next, the mapping model based on the composi-
tion of order and real-time RFID data is established. Finally,
deep belief network, which is one of the major technologies
of deep neural networks, is applied to mine the mapping rela-
tionship. To illustrate the advantages of the proposed method,
a numerical experiment compared with back-propagation
(BP) network based prediction method, multi-hidden-layers
BP network based prediction method and the principal com-
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ponents analysis and BP network based prediction method is
conducted at last.

Keywords Order completion time prediction - Deep neural
networks - DBN - RFID

Introduction

The evolution of the competitive context in recent decades
has led firms to face a more dynamic and uncertain envi-
ronment where the main feature is the necessity of offering
a higher and higher level of customization (Corti et al.
2006). Greater product variety forces the firms to shift from
make-to-stock (MTS) to make-to-order (MTO) production.
In MTO firms, before an order is released to the job shop
for processing, its due-date needs to be assigned (Vinod and
Sridharan 2011). Thus, due-date assignment is becoming
more and more complex and significant. Providing customers
with exact due-date is much better than a competitive price,
because the deviations of actual due date (delay or early deliv-
ery) would result in increasing the product cost, decreasing
the firm competitiveness (Gordon et al. 2002). The actual
due date of order primarily depends on the order comple-
tion time (OCT) in the job shop. Thus, OCT prediction is the
first important task in job shop control, and it is also a diffi-
cult decision. More importantly, accurate OCT prediction is
also needed for better management of the job shop control
activities, such as order review, contracts negotiation, prod-
uct quote etc. (Liang et al. 2013).

A vast amount of literature exists on scheduling to meet
due dates, but little work considers how to predict the OCT
before setting these due dates (Moses et al. 2004). In practice,
many traditional firms address this problem by establishing
fixed lead times based on experience (Ziarnetzky and Monch
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2016). And they do not consider the dynamicity of job shop
load. However, manufacturing system operates in a dynamic
environment where the unpredictable disturbances affecting
the production schedule emerge at any time. Thus, the relia-
bility of the assigned due date is relatively low. In theory, the
prediction techniques of OCT can be distinguished by the
methodology proposed: analytical and heuristic (Sun et al.
2013). The analytical approaches are usually based on the
queue theory. They create an optimal schedule, and then set
the order due dates equal to their scheduled completion dates
(Moses et al. 2004; Hopp and Melanie 2001). However, the
optimal completion time clearly cannot be computed in a
large-scale systems context, because it is a NP-hard problem.
The heuristic approaches, e.g., expert system, data mining,
and neural networks, typically try to find an optimal value
by heuristic procedures. They need not establish the analyt-
ical model of job shop. However, their performance is often
dependent on a large number of training data.

Referring to the existing literature, the OCT prediction
can be classified into three conceptual categories (Zorzini
et al. 2008): (1) no job shop load analysis. The completion
time prediction of order is based on average completion time,
derived from similar products already realized in the past. (2)
Aggregate job shop load based analysis. According to the
hierarchical approach, aggregate information (from both the
time and resource point of view) is used for the OCT predic-
tion. They mostly consider the medium—long term and to the
bottleneck resource. (3) Detailed shop load based analysis.
The information about real-time job shop load conditions is
used for OCT prediction. Although more and more works
concentrate on detailed job shop load based analysis, they
still use some mutable and ideal production data (e.g., the
arrival time of work in process (WIP), the processing time
of all operations, the waiting time per operation) to represent
the detailed job shop load (Sabuncuoglu and Comlekci 2002;
Vinod and Sridharan 2011). They view the job shop load con-
ditions as static contexts, and predict the OCT based on the
assumption that each production disturbance has a known
stochastic distribution.

However, the production capacity of job shop is dynami-
cally changed. Actually, there are too many uncertainties in
a job shop (Wang and Jiang 2016). It is difficult to present
an explicit analytic expression for the impact of those uncer-
tainties to the completion time of order. However, the impact
is implied in a large amount of historical information of job
shop conditions. Thus, based on the historical information
of the job shop load conditions, using intelligent approach
to establish the prediction method of OCT is much more
feasible. Previous studies clearly indicate that neural net-
works (NN) method is good at the OCT prediction. Using
NN to predict the OCT has following merits (Hsu and Sha
2007): (1) NN can obtain a probable result even if the input
data are incomplete or noisy. (2) A well-trained NN model
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can provide a real-time forecasting result. (3) Creating a NN
does not necessitate understanding the complex relationship
among the input variables. Although NN has been introduced
into the OCT prediction, it is not well applied in large-scale
systems due to its shallow architecture which makes it have
admittedly less capability with respect to inference mech-
anisms (Lopes and Ribeiro 2015). This architecture would
lead to a large hidden layer and make the learning time scale
poorly as the number of parameters increases in large-scale
systems (Hinton et al. 2006).

The information of job shop load conditions is not usually
available in traditional job shop. The advent of RFID technol-
ogy has made obtaining the real-time information easy, but
the real-time information captured by RFID is quite huge.
Thus, in RFID-driven job shop, a new intelligent approach
should be found to replace the NN in the OCT prediction.
Theoretical and empirical evidence indicates that deep neu-
ral networks (DNN) are more efficient than NN in large-scale
and/or high-dimensional systems (Bengio et al. 2007). Thus,
itis very necessary to discuss the OCT prediction using DNN
for RFID-driven job shop.

In this article, an RFID based descriptive model of real-
time job shop load conditions is proposed. It depicts the
real-time load conditions through the type and waiting list
information of all WIPs which are in the in-stocks and
out-stocks of machining workstations, and the real-time pro-
cessing progress of all WIPs which are under machining at
machining workstations. The RFID system can not only track
the manufacturing progress of every order, but also provide
a large number of historical production data. Furthermore,
DNN is employed to learn the mapping relationship between
the real-time job shop load conditions and OCT from the
historical production data.

This article proposes an intelligent method for OCT pre-
diction in RFID-driven job shop. It attempts to provide a
credible OCT for firm managers when they negotiate the
contracts with customers or assign the due-date of order. The
method does not require an accurate analytical model of the
manufacturing system, nor does it require the system to be
operating in static state. This article combines the efforts of
the following three aspects: (1) the real-time job shop load
conditions are depicted by RFID data; (2) the OCT is pre-
dicted according to the information of WIPs such as type,
waiting sequence, and real-time processing progress; and (3)
DNN is introduced into OCT prediction to solve the defi-
ciency of NN when is applied in large-scale systems.

The remainder of this article is organized as follows:
“Background and motivation” section indicates three aspects
of the background and motivation of our research. “The
OCT prediction method of RFID-driven job shop” section
describes the real-time job shop load conditions descrip-
tive model of RFID-driven job shop. The DNN calculation
method is depicted in “DBN based order completion time
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prediction” section. In “Numerical experiment” section, a
numerical experiment is taken as an example to illustrate the
utility of the proposed method. “Conclusions” section sum-
marizes the principal conclusions of this work and suggests
areas of future research.

Background and motivation
Due dates assignment and OCT prediction

Due dates can be assigned either externally by the customer
or internally by the firm. The methods of due date assign-
ment for the firm include two ways: the scheduling approach
and the completion time prediction approach. The schedul-
ing approach is to create an optimal schedule and then set
order due dates equal to their scheduled completion dates
(Weng 1996; Hopp and Melanie 2001; Gordon and Struse-
vich 1999). Since due dates often need to be computed in
a few seconds or less, full schedule optimization cannot be
performed for an industrial-sized system (Moses et al. 2004).
The completion time prediction approach sets the due date
for the arriving/upcoming order to its completion date. Since
Enns (1995) assigned due dates to orders based on the pre-
dicted completion time of orders, a number of articles have
addressed the due dates problem from a completion time per-
spective. Vinod and Sridharan (2011) proposed a simulation
modeling to predict the completion time of orders for a typ-
ical dynamic job shop production system. Hu et al. (2012)
developed a prediction model of the order completion date
based on the assumption that each production disturbance
has a known stochastic distribution. Brahimi et al. (2014)
took into account the load of job shop in the completion time
prediction. Then they proposed a model which integrates pro-
duction planning decisions together with order acceptance
decisions. Lawrence (1995) approached the estimation of
flow times as a forecasting problem, and used the empiri-
cal distribution of forecast errors to set the order due dates.
Although some papers considered the load of job shop in
the completion time prediction, they predicted the time only
based on historical/empirical data, and neglected the current
job shop load conditions. There has been little consideration
of the order and the current shop load conditions as a whole
in the completion time prediction method.

RFID and real-time information in OCT prediction

The OCT prediction heavily relies on the real-time statuses
of various manufacturing resources. Moses et al. (2004)
analyzed the difficulties of the real-time completion time pre-
diction. They considered dynamic time-phased availability
of resources required for each operation of the order when
computing the completion time. Based on the platform of

ExSpect, a high-level Petri net simulation model for produc-
tion process, Zhu et al. (2009) used the real-time state of
workshop to predict the OCT. Sabuncuoglu and Comlekci
(2002) utilized the detailed job shop and route information
for operations of WIPs as well as the machine imbalance
information to estimate the completion time by virtue of
computer-integrated manufacturing systems (CIMS). From
the above mentioned literatures, it can be seen that the
real-time information of manufacturing resources is hardly
captured. Capturing real-time information of manufacturing
resources mainly depends on CIMS or simulation in the past.
With the advent of the RFID, this information is now avail-
able. There is, however, a lack of systematic study of the
OCT prediction for RFID-driven Job shop. The rigorous rel-
evant researches have appeared as follows. Li et al. (2015)
observed the real-time status of a one-of-a-kind production
process accurately with the help of RFID. They studied due
date assignment when the processing time is uncertain and
normally distributed. Zhong et al. (2013) proposed a data
mining approach to analysis the completion time prediction
from the historical data of a RFID-enabled real-time job shop
environment. They quantitatively examined the impact fac-
tors such as processing routine, batching strategy, scheduling
rules and critical parameters of specification. Although these
literatures discussed the OCT prediction in RFID-driven
manufacturing environments, they did not point out the infor-
mation acquisition method of job shop load conditions.

NN and DNN in completion time prediction

NN, as a heuristic approach, have been applied in the OCT
prediction since it doesn’t need the accurate analytical model
of job shop. Hsu and Sha (2007) presented an artificial neural
networks (ANN)-based due date assignment model. From the
simulation and statistical results, the model performed bet-
ter in due date prediction. Chen (2007, 2008) proposed a
hybrid fuzzy c-means and back propagation network (BP)
approach to enhance the effectiveness/accuracy of OCT pre-
diction in a semiconductor fabrication factory. According to
experimental results, the prediction accuracy of the proposed
approach was significantly better than those of some exist-
ing approaches. Asadzadeh et al. (2011) presented a flexible
algorithm for estimation and forecasting lead time based on
ANN. The algorithm was used to estimate the weekly lead
times of an actual assembly shop. The experiment showed
that ANN is superior to other algorithm. Although there have
been some literatures to predict the OCT based on NN, some
problems in the application of NN are still not well solved:
(1) the accuracy of the completion time prediction using NN
loses when the load of job shop or the composition of orders
changes. This results from that the input parameters do not
reflect the real-time job shop conditions (Okubo et al. 2000);
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(2) as mentioned previously, it is not well applied in large-
scale systems due to their inherent drawback.

DNN can be used to deal with large data (Hinton and
Salakhutdinov 2006). It has been successfully applied in full-
sized, high-dimensional images inference, automatic speech
recognition, human pose estimation, (Mohamed et al. 2012;
Toshev and Christian 2014; Lee et al. 2009). In manufac-
turing domain, there have been some researches that use
DNN. Tamilselvan and Wang (2013) presented a novel multi-
sensor health diagnosis method using DNN for operation
and maintenance of complex engineered systems. DNN were
employed using vibration signal obtained from end milling
to build feature space for cutting states monitoring (Fu et al.
2015). Keshmiri et al. (2015) presented a deep learning
approach to estimation of the bead parameters in welding
tasks. At present, although DNN has been introduced into
manufacturing domain, there are few reports in RFID-driven
job shop production information processing.

The OCT prediction method of RFID-driven job
shop

The OCT prediction

The OCT prediction is always done at contracts negotiation
stage without changing any of the existing production plan-
ning. Meanwhile, the production of the job shop has four
principles: (1) machine tools select WIPs to process in a first
come and first served (FCFS) manner; (2) each WIP requires
a specific set of operations that need to be performed in a
specified sequence (routing) on the machines; (3) each WIP
type is allowed to have unique routing through the manufac-
turing system; (4) set-up times and transportation times are
included in the processing times. Principles 1, 2 and 3 are sat-
isfied in many, if not most, practical applications. Principle
4 is in line with production schedule. It’s important to note
that the dominant disturbances which occur after the OCT
prediction (e.g., machine tools breakdown, arrival of urgent
job) are not considered in the article.

For explanatory purposes, the OCT is defined as follows:

Definition 1 OCT is the last WIP completion time of the
order in the job shop. It is affected by two qualitative factors,
namely, the real-time load conditions of the job shop, and the
composition of the order.

To realize the OCT, the two qualitative factors should be
quantified. Here, OI is used to represent the quantified com-
position of the order, JS is used to represent the quantified
real-time load conditions of the job shop. Therefore, based
on OI and JS, the OCT can be formulated as follows:

ptv = £ (OI,JS) (1)
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where ptv is the prediction value of OCT, f stands for the
mapping function from OI and JS to ptv.

The quantization approaches of OI and JS are discussed
as following sections.

The order composition quantization

To formulize a job shop, assuming the job shop consists of
M machine tools and can produce N types of parts, any
machine tool i can process an operation for n types of parts
(n < N). The prediction method should consider individual
order requirements and characteristics on a detailed level so
that the accurate completion time can be calculated. Because
the only difference between two orders is the number that
the order demands for different part types, the composition
of an order can be described as follows:
Ol = {NK{,NK,,...,NK,, ..., NKy} 2)
where NK, represents the order’s demands for the nth type
part number.

It should be noted that if the order does not demand for
some part types, the corresponding numbers can be marked
as zero.

The job shop real-time load conditions quantization

The real-time load conditions of job shop include machine
tools and WIPs related information. This information can
be captured by RFID devices which are deployed in the job
shop.

The routing of a WIP in discrete systems has multiple
operations. Each WIP should be processed on machine tools
in FCFS manner. When an operation completed, the WIP
would continually be conveyed to the next machine tool for
processing until the last designated operation finished and it
is qualified.

As a general rule, a machine tool would be configured with
an operator, in-stock, out-stock and other tools (e.g., measur-
ing devices, fixtures) in job shop. Thus, the machine tool with
its auxiliaries can form a machining workstation (MW). For
explanatory purposes, the MW is defined as follow:

Definition 2 MW is a manufacturing unit which can process
a complete operation independently. It consists of an in-stock
(IB), an out-stock (OB), and a machine tool (MT). Based on
the set theory, the mth machining workstation can be written
as MW,, = {IB,,, MT,,, OB,,}.

Note that the impact of machine operators to OCT is not
considered in this article.

A WIP in a MW would go through three steps: (1) enter-
ing the in-stock waiting for processing; (2) being machined
on the machine tool; and (3) entering the out-stock waiting
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Fig. 1 The configuration of RFID devices in job shop

for transportation. Since a large portion of process time can
be attributed to queuing for machining. Thus, the detailed
information about each in-stock and out-stock such as WIPs
types, WIPs numbers and the waiting list is very important
for the OCT prediction (Yang et al. 2013). Although RFID
can easily capture the identification code of WIPs, the RFID
devices should be reasonably deployed in the job shop in
order to get the location information of WIPs.

Based on the above analysis, the deployment of RFID
devices in a MW can be described as Fig. 1. All WIPs should
be labeled with RFID tags. A MW is configured with one
RFID reader which has three RFID antennas. The RFID
antenna 1 monitors whether the WIPs are in in-stock. The
RFID antenna 2 is responsible for capturing the machining
start time of the WIP. The RFID antenna 3 monitors whether
the WIPs are in out-stock.

Since the time that a WIP waiting for processing is heavily
affected by the waiting list in-stock, the prediction method
should consider the detailed real-time condition of in-stock.
Suppose there are p WIPs in the in-stock at current time ¢, the
real-time condition of in-stock can be formulated as follows:
B! = {Plinyl,Plinvz, N .,PI,',,J,} 3)
where Pl fn , represents the pth WIP in in-stock at the mth
MW at current time ¢.

When a WIP is in machining, it means that the machine
tool has started to process the current operation of the WIP.
Thus, the real-time condition of the machine tool can be
described as follows:

MT!, ={PM,, RP,} “)

where P M/, represents the WIP in machining at the mth MW
at current time 7, RP!, stands for the real-time processing

machining workstation m

machining workstation M

progress of the current operation. Because RFID can cap-
ture the start time of current operation S7,, the RPﬁn can be
calculated as follows:

RP! =1t — ST, Q)

Now that the actual wait time of PI}, , can be formulated
as follows:

p—1 p—1
WT, , =Y Plua+ Y (AT, — PTya)
a=1 a=1

+ (MPT,, — RP}) (6)
where WT, , is the actual wait time of PI}, ,, PT, 4 repre-

sents the planned processing time of WIP a at the mth MW.
AT, , stands for the actual processing time of WIP a at the
mth MW, MPT,, represents the planned processing time of
the WIP in machining at the mth MW.

If the type of WIP a is the nth part type, its routing is

described as follows
MR = {PTn{l, PTZ,, ..., PT,{X} )

where MR is the routing of WIP a which belongs to the nth
type part, PT, , represents the planned processing time of
the xth operation of the nth type part at MWy, y € [1, M].

From Egs. (6) and (7), it can be found that the planned
processing time of a WIP at a MW is decided by the WIP
type. Thus, Eq. (6) can be modified as follows

Wr,, , = pi Z ]_[ (MR?)

a=1 n=1y=m
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p—1 N
Ty (a1t
a=1 n=1

n (]_[ (MRf M"") - RPin) . ®)

y=m

1l <MRz>)

y=m

Because AT}, , cannot be obtained at the moment of the OCT
prediction, WT' ;1 p cannot be calculated accurately. Addition-
ally, according to the principles mentioned above, there is a
one-to-one correspondence between routings and WIP types.
Thus, the wait time of W77, p» can be estimated according
to the types of WIPs before it and the real-time processing
progress of P M, as follows

wr',

= fi (PIT,1, PITy 5, ..., PITy p—1, PMT,,, RP),)

©))

where WT;;, , is the estimate of WT7, . PIT , ;1 stands for
the type of Plin,pq . PMT, represents the type of PM! . f
is the estimation function.

From Eq. (9), it can be seen that the wait time of a WIP is
decided by the types of WIPs in in-stock, in machining, and
the real-time processing progress of the current operation.
Thus, the real-time condition of in-stock can be described by
the types of WIPs and waiting list in in-stock, Eq. (3) can be
transferred as follow

B, = {PIT 1, PIT 2, ... . PITy p} . (10)

Similarly, Eq. (4) can be transferred as follow
MT!, = {PMT,, RP!,}. (11)

Since the types and waiting list of WIPs in out-stock would
also affect the wait time of their next operation, similarly, the
real-time condition of out-stock can be described as follow
OB, = {POT,,,1,POT 5, ..., POT 4} (12)
where POT ), , represents the type of the gth WIP in out-
stock at the mth MW.

Since a WIP can be in only one MW at any time, it is
either in in-stock or in machining or in out-stock. And the
real-time conditions of all MWs actually represent the current

load conditions of job shop. Thus, the real-time conditions
of the job shop at current time ¢ can be quantified as follow

JS' =MW, MW, ... MW, ..., MW}
={{{PIT11,PIT 5, ... . PIT| 1}, {PMT\,RP'},
POT|1,POT 2, ...,POT 41}},
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UPIT w1, PIT 2, ... PITy pm}, { PMT . RP,,}
{POT .1, POT 2, ..., POT py gm}} .

{PITm, PITy 2, ..., PITy i} { PMT pr, RPY, )
{POT w1, POT y 2, ..., POT y gum}}}- (13)

Based on the discussion above, some information can be
found from Eqs. (1), (2) and (13). (1) OCT can be predicted
using the types and waiting list information of all WIPs in
the job shop with the composition of the order. (2) Because
the function f is unknown, NN or DNN can be used to estab-
lish the mapping function. (3) But Eq. (13) actually includes
all WIPs in the job shop. The job shop real-time load con-
ditions quantization JS, coupled with the order composition
quantization O/, inevitably leads to high-dimensional input
data of the mapping function. According to previous analysis
about NN and DNN, DNN is more suitable for establishing
the function.

DBN based order completion time prediction

Assuming that a job shop has accumulated a wealth of histori-
cal production data through RFID devices, which includes the
information of orders, the corresponding job shop load con-
ditions, HI = {hiy, hi,, ..., hi, }, and the actual completion
time of the orders, AT = {at, aty, ..., at,}. According to
the previous discussion, the historical production data should
include the following details

hi, = {{ NK,NK}, ..

. NKj, ... .NKy},

[{Pqu’l,Pqu,Q, L PITY }

{PMT}, RP}}, {POTﬁ’l,POTﬁ’Q, . .,POTq’ql}}

)

Py I, P, L)
{pmT;, RP),},
{por, . POTY, ... POT;, )|

)

P Py PITS ]
{pMT},, RP}, ),

[Poryy . POTYY ... POTY i ] (14)

where hi, is the rth historical production data.

Deep belief network (DBN) is one of the major technolo-
gies of DNN. Since proposed by Hinton et al. (2006), DBN
has excelled in visual recognition and Al areas with notable
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Fig. 2 Schematic representation of an RBM

success. A DBN is a feedforward neural network with a deep
architecture, i.e., with many hidden layers. It consists of an
input layer, a number of hidden layers and finally an output
layer. The input layer accepts the input data and transfers
the data to the hidden layers in order to complete the learn-
ing process (Tamilselvan and Wang 2013). The hidden layers
are created by several layers of restricted Boltzmann machine
(RBM) that are stacked on top of each other, thus forming a
network that is able to capture the underlying regularities and
invariances directly from the input data (Lopes and Ribeiro
2015).

To establish the function of OCT prediction, the historical
production information HI can be used as the input data to
train DBN.

Restricted Boltzmann machines

An RBM is a two-layer undirected bipartite graphical model
where the first layer corresponds to inputs variables (visible
units v = {vy, v2, ..., v, ..., 07}, v; € {0, 1}), and the sec-
ond layer corresponds to the latent variables (hidden units
h={h\, hy,....¢hj,....hs}, hj € {0,1}). The visible and
hidden layers are fully inter-connected via connections with
symmetric undirected weights, but there are no intra-layer
connections within either the visible or the hidden layer. A
typical RBM model topology is shown in Fig. 2.

An RBM is an energy-based generative model. The
weights and biases of the RBM determine the energy of a
joint configuration of the hidden and visible units E (v,h)
(Lopes and Ribeiro 2015; Sarikaya et al. 2011; Bengio et al.
2007),

E h) = —cv" —bhT — hwyT

1
= - civ
i=1
J J 1
=Y bihj =y wjivih; (15)
=1 i=1i=1

where w € IR’/ is amatrix containing the RBM connection
weights, ¢ = {c1,¢2,...,¢Ci,...,cI} € IR! is the bias of the
visible units and b = {by, by, ..., bj,...,b;} € IR/ the
bias of the hidden units.

The RBM assigns a probability to every possible visible-
hidden vector pair via the energy function as follow:

1
p (wh) = Ee—EW’) (16)

where Z is a normalization constant called partition function
by analogy with physical systems, which is obtained by sum-
ming over all possible pairs of visible and hidden vectors:

7= Ze—E(””” (17)
v,h

Since there are no connections between any two units within
the same layer, given a particular random input configuration
v, all the hidden units are independent of each other and the
probability of & given v becomes:

p k) =]p(hj = 1)
J

/ (18)
p(hj=1p) =0 <bj + X inji)
i=1

where o is the activation function, 0 = 1/1 + e™*.
Similarly given a specific hidden state &, the probability
of v given h is obtained as follows:

plh) =]]p i =1h)

J (19)
pi=1lh)y=0lci+ ) hjwj
j=I

RBMs are usually trained by using the contrastive diver-
gence (CD) learning procedure, which is described by Hinton
(2002).

DBN architecture

DBN is produced by stacking RBMs. An example of DBN
architecture is shown in Fig. 3, which consists of three
stacked RBMs, as input layer and hidden layer 1 forms the
first RBM, hidden layer 1 and hidden layer 2 forms the sec-
ond RBM, and hidden layer 2 and hidden layer 3 forms the
third RBM.

The training process of DBN is in a greedy manner (Hin-
ton et al. 2006). Firstly, the first RBM that receives the DBN
inputs is trained. Secondly, the second RBM that receives
the first RBM outputs is trained. Thirdly, the third RBM that
receives the second RBM outputs is trained, and so on (Lopes
and Ribeiro 2015). Figure 4 demonstrates a DBN training
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Fig. 3 Deep belief network
architecture
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process for OCT prediction based on the DBN architecture
in Fig. 3. Considering the training process for the RBM 1
unit as shown in Fig. 4a, the input data HI is first given
to the visible layer of this RBM unit. The next step is to
transform the input data from the RBM visible layer to the
hidden layer using visible layer parameters. While the train-
ing epoch reaches its maximum number and the training of
the RBM 1 is accomplished, the hidden layer of this RBM
unit becomes the visible layer of the RBM 2. The training
process is continued for the second and the third RBM units
as shown in Fig. 4b, c respectively. The training of the DBN
is accomplished through the successive training of each indi-
vidual RBM unit, as shown in Fig. 4d. This training approach
represents an efficient way of learning by combining multi-
ple and simpler RBM models, learned sequentially (Lopes
and Ribeiro 2015). From the training process, also called
pre-training, it can be seen that the layer-by-layer learning
algorithm is unsupervised (Hinton et al. 2006).

After training the DBN, the trained weights of the RBM
layers can be used to initialize the weights of a multi-layer
feedforward neural network. However, learning the weight
matrices one layer at a time is efficient but not optimal (Hin-
ton et al. 2006).

Back-propagation learning

To improve the prediction accuracy of the DBN model,
the back-propagation (BP) training algorithm is used to
train the DBN after the pre-training. BP is the supervised
learning process as Fig. 3 dotted arrow shows, which fine-
tunes the weights initialized by pre-training (Tamilselvan
and Wang 2013). In pre-training process, the corresponding
actual completion time AT of the historical information HI

@ Springer

are useless. However, they would be used during the succeed-
ing supervised learning process. Unlike pre-training process
that considers one RBM at a time, BP considers all DBN
layers simultaneously. BP uses the actual completion time
AT for the training of the DBN model. The training error
is calculated using DBN model outputs PTV and the actual
completion time AT'. Note that PTV is a set of OCT prediction
values, i.e., PTV = {ptvl,ptvz, .. ,prvr}.

The weights of the DBN model are updated in order to
minimize the training error (Bengio et al. 2007). The super-
vised learning process is continued until the network output
reaches the maximum number of epochs.

Numerical experiment

The introduction of experiment environment and
sample data

In order to show the applicability and superiority of the OCT
prediction method, an RFID-driven job shop of a famous
equipment manufacturing enterprise in China is chosen as
an example. There are 12 MWs in the job shop. The config-
uration of each MW is listed in Table 1. The number under
the length of IB,, (OB,,) in Table 1 represents the maximum
number of WIPs in the in-stock (out-stock), which is decided
by the production experience.

This job shop mainly produces 10 different kinds of parts.
The information of the parts can be found in Table 2, where
part number is the index of part type and the number under
machine model represents the planned processing time of the
part.
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Fig. 4 Training process of a DBN

Table 1 The configuration information of each machining workstation in the job shop

M W1 M Wz M W’;
Length (/B1)  CNC lathe Length (OB1) Length (IB;) CNC lathe Length (OB2)  Length (IB3)  CNC lathe Length (OB3)

70 CKAG6163L 10 70 CKA6163L 10 70 CKA6163L 10

MWy MWs MW

Length (/B4)  Boring Length (OB4)  Length (IBs) Boring Length (OBs)  Length (IBg) = CNC milling  Length (OBs)
10 TPX6113 10 10 TPX6113 10 10 XD-40A 20

MW7 MWg MWy

Length (/B7) CNC milling Length (OB7) Length (IBg) Processing center Length (OBg) Length (IBg) Processing center Length (OBog)

10 XD-40A 20 10 DGMA1320 30 10 DGMA1320 30

MW 1o MW, MW,
Length (/B19) Machining center Length (OBjo) Length (/IB11) NC boring and milling Length (OB;) Length (IB12) CNC milling Length (OB12)

15 VDWAS50 10 15 TK6516 10 15 XW2416 10

Table 2 The planned processing time of each kind of parts

Part number Part type Planned processing time (h)
CKA 6163L TPX 6113 XD-40A DGMA 1320 VDWA 50 TK 6516 XW 2416

1 Cylinder block 5.5 6.5 0 4 5.2 2.5 3
2 Cylinder head 3 0 2 1.5 0 4 5.1
3 Shell 6.1 35 52 4.1 0 2.5 1.5
4 Crankcase 4 5.5 2 0 35 0 1.5
5 Crankshaft 2 0 1 3 3.1 0 0
6 Piston 3 0 1.5 0 4 1 2
7 Flange disk 4 1 3 7 1 0 0
8 Shaft 7.5 3 0 0 6.1 2 5
9 Cylinder liner 5 0 0 4.2 1 0 1
10 Bearing ring 4.5 0 0 0 1.5 2 0

@ Springer
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According to Tables 1 and 2; Eq. (14) can be detailed in
this job shop as M = 12, N = 10, pl = 70, g1 = 10,
p2 =170,42 =10, p3 =70, ¢3 = 10, p4 = 10, g4 = 10,
p5 =10, 95 =10, p6 = 10, g6 = 20, p7 = 10, g7 = 20,
p8 =10, ¢8 = 30, p9 = 10, ¢9 = 30, p10 = 15, ¢10 =
10, p11 = 15, ¢q11 = 10, p12 = 15, g12 = 10. Thus, the
dimensionality of ki, is 529.

Based on the historical data of the job shop captured by
RFID devices, the production information of 2000 orders
is chosen as sample data, as listed in Table 3. Eighteen
hundred data points are used as training samples and two
hundred data points as test samples, i.e., the training samples:

HI = {hiy, hiy, ..., higoo}, AT = {at,at2, ..., atig00}
and test samples: HI' = {hi’l,hi’z, ...,hi'zoo}, AT =
{ati, aty, ..., ‘”ﬁoo}-

The experiment of DBN based OCT prediction

The appropriate number of hidden layers and units of each
layer need to be determined before using DBN. Considering

-
o

the sum of squarers of prediction error
o

2 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

the number of iterations

Fig. 5 The optimization process of the unit number for three hidden
layers

1200 [ :

genetic algorithm (GA) has been well studied, and its out-
standing performance in parameter optimization has been
proved by large amounts of practices, here, GA is used to
find the appropriate parameters of DBN. According to the
previous work and experience, the range of hidden layers
number is set to [2, 4], and the range of the units number
for each layer is set to [0, 200]. The sum of the squared
errors (SSE) between the model outputs PTV and the actual
completion time AT is used to as the GA fitness criteria. A
simulation implementation is constructed based on GA tool-
box in MATLAB R2013a. The simulation parameters are
stochastic uniform selection, scattered crossover, constraint
dependent mutation, a population size of 20. The stopping
criteria are that the generations are 100 or the function toler-
ance is equal to 1 x 107, The optimization process is shown
in Fig. 5. From the optimization process, it can be found that
the parameters of DBN reach the best after 52 iterations. The
number of hidden layers is 3. And the corresponding unit
number of three hidden layers is 106, 80, and 88, respec-
tively.

According to the results of GA, the DBN model of the
OCT prediction is designed as 529 — 106 — 80 — 88 —
1. The training samples HI = {hiy, his, ..., hi|3o} are
divided into 100 mini-batches to train the DBN. They are
given as an input to the DBN for pre-training. Then, HI =
{hiy, hi,, ..., hijgoo} and AT = {aty, atr, ..., atigo0} are
used for BP learning. In the RBM learning process and back-
propagation learning process, the number of training epochs
is set to 1 in this experiment.

When the DBN model finishes the learning process, it can
be used to predict the OCT according to the real-time job
shop load conditions and the order information. Here, the
test samples HI' = {hl’l iy, hi,zoo} are used to demon-
strate the performance of the DBN model. The prediction
results of the DBN model for the test samples are depicted
in Fig. 6 using black markers. It can be seen from the results
that the prediction values of OCT is very close to the actual

1100
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.| I |
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T e

600

the completion time of test order

T T T
—— DBN prediction time
—+—the number of test order

500 | [ | |
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100 120 140 160 180 200

the number of test order

Fig. 6 The prediction results of the DBN model for the test samples
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Fig. 7 The prediction results of three comparison methods. a The prediction results of the BP method for the test samples. b The prediction results
of the MBP method for the test samples. ¢ The prediction results of the PCABP method for the test samples

@ Springer



J Intell Manuf (2019) 30:1303-1318

1315

Table 4 The statistical analysis

of different prediction results Prediction method DBN (Fig. 6) BP (Fig. 7a) MBP (Fig. 7b) PCABP (Fig. 7c)
RMSE 38.611 229.658 195.762 279.344
MV (%) 4.39 22.47 19.47 31.48
SSE 2.982 x 10° 1.054 x 107 7.665 x 10° 1.561 x 107

completion time of the orders which is marked in red color,
and the change direction and amplitude of black line is nearly
the same as red line.

Comparison with other different methods

To illustrate the advantages of the proposed method, an exper-
iment compared with other methods is conducted. According
to the previous discussion, NN is the most widely accept-
able method in the OCT prediction. Here, a BP networks
with only one hidden layer is used as the first comparison
method. The unit number of hidden layer is also optimized
by GA, and the range is set to [0, 300] according to expe-
rience. And the number is finally set to 126 based on the
optimization result. In order to compare the NN with DBN
which is based on multi hidden layers, a BP networks with
same network architecture as DBN, namely MBP, is used as
the second comparison method. Hence, the network archi-
tecture of the BP and MBP can be given as 529 — 126 — 1
and 529 — 106 — 80 — 88 — 1 respectively.

Since the historical production information of the job
shop is high-dimensional data, one possible method is to
reduce its dimensionality first, and then use NN to pre-
dict the OCT. The principal components analysis (PCA),
which is more popular in dimensionality reduction, is com-
bined with BP to be used as the third comparison method,
namely PCABP. Firstly, PCABP reduces the dimension-
ality of the training samples HI = {hiy, hi,, ..., hijgoo}
and test samples HI' = {hi’l, hiy, ..., hi/zoo} together into
lower dimensionality. Then, the low-dimensional data of the
training samples and the corresponding actual completion
time AT = {aty, ata, ..., at100} are used for BP learning.
Finally, the low-dimensional data of the test samples is used
by BP to predict the OCT.

All the methods proposed above have been implemented
in MATLAB R2013a and run on Intel(R) Xeon(R) CPU ES5-
2630 v2 @2.60GHz, 192GB RAM, on Windows Server
2008 R2 datacenter. The training parameter of the BP
accepted in three comparison methods is set as the goal 0.01,
the epochs 500 and learning rate 0.01. The unit number of BP
hidden layer in PCABP is changed into 50 according to the
dimensionality reduction results of PCA and experiments.
The prediction results of three comparison methods can be
found in Fig. 7a—c, respectively.

The error between the prediction time and the actual com-
pletion time is the key factor, and it determines whether the
prediction method of OCT can succeed. Here, the root mean
square error (RMSE) of the prediction results is used to reflect
the accuracy. The mean value (MV) of the relative errors and
SSE are to represent their precision. The statistical analysis
of different prediction results (see Figs. 6, 7) is shown in
Table 4.

To minimize the variation of the results, ten replications
are conducted for each prediction method. The experiment
results are shown in Fig. 8.

Comparisons of ten experiment results are given in
Table 5. The statistical analysis of ten experiments results
(see Fig. 8), such as average RMSE, average MV, and aver-
age standard deviation (SD) of the relative errors, are used to
judge the performance of different prediction methods. Addi-
tionally, the average training time and average decision time
are used to reflect the responsiveness of different prediction
methods.

A few conclusions can be seen from the experiment
results:

1. DBN based prediction method reaches the highest accu-
racy and precision in all prediction methods. Besides, its
training time and decision time is the shortest one. This
means that the DBN based OCT prediction method can
respond quickly to the change of a job shop load condi-
tions.

2. Facing a huge amount of real-time production data, the
training time of BP based prediction method is very long,
and the accuracy and precision of prediction results are
very low. Although the MBP based prediction method
can improve the performance by adding hidden layers,
the prediction results are still not good enough.

3. Using PCA to reduce the dimensionality of real-time
production data can effectively shorten the training time
and decision time of the BP based prediction method.
However, the accuracy and precision of prediction results
become lower since some useful information may be lost
during the dimensionality reduction.

4. There exists the overfitting problem in BP based predic-
tion method and PCABP based prediction method, as
Fig. 8 shows. While DBN based prediction method can
solve this problem successfully.
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Fig. 8 The results of all prediction methods in 10 experiments. a The
RMSE of the prediction results in 10 experiments. b The MV of the
relative errors in 10 experiments. ¢ The SD of the relative errors in 10
experiments
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Table 5 The performance of different prediction methods in 10 exper-
iments

Prediction DBN BP MBP PCABP

method

Average 0.7312 35.0129 23.5476 2.7153

training
time
CPU
time (s)

Average 0.0183 17.3725 21.627 0.0704

decision

time

CPU

time (s)

Average 37.103 225.804 178.922 285.071

RMSE

Average 4.19
MV (%)

Average
SD

22.16 18.0 29.69

0.025 0.178 0.153 0.247

Conclusions

This article focuses on the OCT prediction using real-time
RFID data of job shop load conditions. A DBN based pre-
diction method of OCT is proposed. Firstly, RFID devices
capture the types and waiting list of all WIPs which are in in-
stocks and out-stocks and the real-time processing progress
of all WIPs which are in machining at all MWs, and the real-
time job shop load conditions is presented by those RFID
data. Next, the prediction model is established by using the
composition of orders and the real-time RFID data. Finally,
based on historical production data of the job shop, a DBN
based prediction method is trained to predict the OCT.

A numerical experiment based on real production data of
an RFID-driven job shop is used to verify the performance of
the DBN based prediction method. Additionally, the advan-
tages of the proposed method are fully demonstrated by
comparing with BP based prediction method, MBP based
prediction method, and PCABP based prediction method.

From the experiments conducted, the following important
managerial implications have been drawn.

1. This study provides a credible prediction value of OCT
by using real-time RFID data of job shop load conditions.
It can help firm managers to choose suitable order based
on time and/or cost of production.

2. From the experiment results, it can be observed that DNN
can be successfully applied into the OCT prediction.
DNN can not only solve the problems that NN applied
in large-scale job shop would arise, but also decrease
the information loss that PCA would result in during the
dimensionality reduction.
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3. Historical production data is very important and criti-
cal to improve management and decision-making in job
shop. The decision-making which depends on the firm
managers’ experience and knowledge can also be real-
ized through historical production data analysis.

However, the method is in an early stage of implementa-
tion and has limitations for some applications:

1. The prediction value of OCT in this article is a reference
for firm managers when they negotiate with the customers
about business. The actual due date of the order should
be greater than the prediction value in order to cope with
unforeseen problems in production.

2. RFID in this article is only used to realize the automatic
acquisition of the job shop real-time load conditions.
For other acquisition methods, such as barcode, smart
sensors, the model of OCT need to be modified corre-
spondently.

3. The proposed method can do well in a stable manufac-
turing system. And frequent disturbances would debase
its effect.

Future work in this area includes three aspects: (1) the
impact of different operators to OCT should be taken into
account; (2) the production disturbances captured by RFID
can be used to improve the robustness of the proposed
method; (3) the experience of the firm managers can be used
in the prediction of OCT.

Acknowledgements The research work presented in this article is
under the support of National Natural Science Foundation of China
with Grant No. 51275396.

References

Asadzadeh, S. M., Azadeh, A., & Ziaeifar, A. (2011). A neuro-fuzzy-
regression algorithm for improved prediction of manufacturing
lead time with machine breakdowns. Concurrent Engineering,
19(4), 269-281. doi:10.1177/1063293X11424512.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy
layer-wise training of deep networks. Advances in Neural Infor-
mation Processing Systems, 19, 153-160.

Brahimi, N., Aouam, T., & Aghezzaf, E. (2014). Integrating order accep-
tance decisions with flexible due dates in a production planning
model with load-dependent lead times. International Journal of
Production Research, 53(12), 3810-3822.

Chen, T. (2007). Incorporating fuzzy c-means and a back-propagation
network ensemble to job completion time prediction in a semi-
conductor fabrication factory. Fuzzy Sets and Systems, 158(19),
2153-2168. doi:10.1016/j.£s5.2007.04.013.

Chen, T. (2008). A hybrid fuzzy-neural approach to job completion time
prediction in a semiconductor fabrication factory. Neurocomput-
ing, 71(16-18), 3193-3201. doi:10.1016/j.neucom.2008.04.040.

Corti, D., Pozzetti, A., & Zorzini, M. (2006). A capacity-driven
approach to establish reliable due dates in a MTO environment.

International Journal of Production Economics, 104(2), 536-554.
doi:10.1016/j.ijpe.2005.03.003.

Enns, S. T. (1995). A dynamic forecasting model for job shop flowtime
prediction and tardiness control. International Journal of Produc-
tion Research, 33(5), 1295-1312.

Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., & Leopold, J. (2015).
Analysis of feature extracting ability for cutting state monitoring
using deep belief networks. Procedia CIRP, 31, 29-34. doi:10.
1016/j.procir.2015.03.016.

Gordon, V. S., & Strusevich, V. A. (1999). Earliness penalties on a
single machine subject to precedence constraints: SLK due date
assignment. Computers and Operations Research,26(2),157-177.

Gordon, V., Proth, J., & Chu, C. (2002). A survey of the state-of-the-art
of common due date assignment and scheduling research. Euro-
pean Journal of Operational Research, 139(1), 1-25. doi:10.1016/
S0377-2217(01)00181-3.

Hinton, G. E. (2002). Training products of experts by minimizing con-
trastive divergence. Neural Computation, 14(8), 1771-1800.
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimension-

ality of data with neural networks. Science, 313(5786), 504-507.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm
for deep belief nets. Neural Computation, 18(7), 1527-1554.

Hopp, W.J., & Melanie, R. S. (2001). A simple, robust leadtime-quoting
policy. Manufacturing and Service Operations Management, 3(4),
321-336.

Hsu, S. Y., & Sha, D. Y. (2007). Due date assignment using artifi-
cial neural networks under different shop floor control strategies.
International Journal of Production Research, 42(9), 1727-1745.
doi:10.1080/00207540310001624375.

Hu, S., Zhang, B., & Zhang, X. (2012). Order completion date estima-
tion and due date decision under make-to-order mode. Industrial
Engineering Journal, 15(3), 122—129.

Keshmiri, S., Zheng, X., Chew, C. M., & Pang, C. K. (2015). Application
of deep neural network in estimation of the weld bead parameters.
arXiv:1502.4187.

Lawrence, R. S. (1995). Estimating flowtimes and setting due-dates in
complex production systems. /IE Transactions, 27(5), 657-668.

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional
deep belief networks for scalable unsupervised learning of hierar-
chical representations. Paper presented at the proceedings of the
26th annual international conference on machine learning.

Li, M., Yao, L., Yang, J., & Wang, Z. (2015). Due date assignment and
dynamic scheduling of one-of-a-kind assembly production with
uncertain processing time. International Journal of Computer Inte-
grated Manufacturing, 28(6), 616-627.

Liang, F., Fung, R. Y., & Jiang, Z. (2013). A comined approach of cycle
time estimation in mass customization enterprise. International
Journal of Industrial Engineering, 20(9), 574-588.

Lopes, N., & Ribeiro, B. (2015). Deep belief networks (DBNs).
In J. Kacprzyk (Ed.), Machine learning for adaptive many-
core machines—a practical approach (pp. 155-186). Switzerland:
Springer.

Mohamed, A., Dahl, G. E., & Hinton, G. (2012). Acoustic modeling
using deep belief networks. IEEE Transactions on Audio, Speech,
and Language Processing, 20(1), 14-22.doi:10.1109/TASL.2011.
2109382.

Moses, S., Grant, H., Gruenwald, L., & Pulat, S. (2004). Real-time
due-date promising by build-to-order environments. International
Journal of Production Research, 42(20), 4353-4375.

Okubo, H., Weng, J., Kaneko, R., & Simizu, T. (2000). Production
lead-time estimation system based on neural network. Research
paper.

Sabuncuoglu, I., & Comlekci, A. (2002). Operation-based owtime esti-
mation in a dynamic job shop. Omega, 30(6), 423-442.

Sarikaya, R., Hinton, G. E., & Ramabhadran, B. (2011). Deep belief
nets for natural language call-routing. Paper presented at the 2011

@ Springer


http://dx.doi.org/10.1177/1063293X11424512
http://dx.doi.org/10.1016/j.fss.2007.04.013
http://dx.doi.org/10.1016/j.neucom.2008.04.040
http://dx.doi.org/10.1016/j.ijpe.2005.03.003
http://dx.doi.org/10.1016/j.procir.2015.03.016
http://dx.doi.org/10.1016/j.procir.2015.03.016
http://dx.doi.org/10.1016/S0377-2217(01)00181-3
http://dx.doi.org/10.1016/S0377-2217(01)00181-3
http://dx.doi.org/10.1080/00207540310001624375
http://arxiv.org/abs/1502.4187
http://dx.doi.org/10.1109/TASL.2011.2109382
http://dx.doi.org/10.1109/TASL.2011.2109382

1318

J Intell Manuf (2019) 30:1303-1318

IEEE international conference on acoustics, speech and signal
processing.

Sun, D., Shi, H., & Chang, L. (2013). Application of support vector
regression in prediction of application of support vector regres-
sion in prediction of due date under uncertain assemble-to-order
environment. Journal of Computer Applications, 8, 2362-2365.

Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief
learning based health state classification. Reliability Engineering
and System Safety, 115,124-135. doi:10.1016/j.ress.2013.02.022.

Toshev, A., & Christian, S. (2014). DeepPose: Human pose estima-
tion via deep neural networks. Paper presented at the 2014 IEEE
conference on computer vision and pattern recognition (CVPR).

Vinod, V., & Sridharan, R. (2011). Simulation modeling and analysis
of due-date assignment methods and scheduling decision rules in
a dynamic job shop production system. International Journal of
Production Economics, 129(1), 127-146. doi:10.1016/j.ijpe.2010.
08.017.

Wang, C., & Jiang, P. (2016). Manifold learning based rescheduling
decision mechanism for recessive disturbances in RFID-driven
job shops. Journal of Intelligent Manufacturing. doi:10.1007/
$10845-016-1194-1.

Weng, Z. K. (1996). Manufacturing lead times, system utilization rates
and lead-time-related demand. European Journal of Operational
Research, 89(2), 259-268.

@ Springer

Yang, S., Lee, H., & Guo, J. (2013). Multiple common due dates
assignment and scheduling problems with resource allocation and
general position-dependent deterioration effect. The International
Journal of Advanced Manufacturing Technology, 67(1-4), 181—
188. doi:10.1007/s00170-013-4763-x.

Zhong, R. Y., Huang, G. Q., Dai, Q., & Zhang, T. (2013). Estimation of
lead time in the RFID-enabled real-time shopfloor production with
adata mining model. Paper presented at the The 19th international
conference on industrial engineering and engineering manage-
ment.

Zhu, H., Liu, F,, Liu, Q., & Shao, X. U. (2009). A predictive method
for order due date based on real-time state of workshop. China
Mechanical Engineering, 3, 300-304.

Ziarnetzky, T., & Monch, L. (2016). Incorporating engineering pro-
cess improvement activities into production planning formulations
using a large-scale wafer fab model. International Journal of Pro-
duction Research, 54(21), 6416-6435.

Zorzini, M., Corti, D., & Pozzetti, A. (2008). Due date (DD) quota-
tion and capacity planning in make-to-order companies: Results
from an empirical analysis. International Journal of Production
Economics, 112(2), 919-933. doi:10.1016/j.ijpe.2007.08.005.


http://dx.doi.org/10.1016/j.ress.2013.02.022
http://dx.doi.org/10.1016/j.ijpe.2010.08.017
http://dx.doi.org/10.1016/j.ijpe.2010.08.017
http://dx.doi.org/10.1007/s10845-016-1194-1
http://dx.doi.org/10.1007/s10845-016-1194-1
http://dx.doi.org/10.1007/s00170-013-4763-x
http://dx.doi.org/10.1016/j.ijpe.2007.08.005

	Deep neural networks based order completion time prediction by using real-time job shop RFID data
	Abstract
	Introduction
	Background and motivation
	Due dates assignment and OCT prediction
	RFID and real-time information in OCT prediction
	NN and DNN in completion time prediction

	The OCT prediction method of RFID-driven job shop
	The OCT prediction
	The order composition quantization
	The job shop real-time load conditions quantization

	DBN based order completion time prediction
	Restricted Boltzmann machines
	DBN architecture
	Back-propagation learning

	Numerical experiment
	The introduction of experiment environment and sample data
	The experiment of DBN based OCT prediction
	Comparison with other different methods

	Conclusions
	Acknowledgements
	References




