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Abstract CyberManufacturing system (CMS) is a vision
for future manufacturing systems. The concept delineates
a vision of advanced manufacturing system integrated with
technologies such as Internet of Things, Cloud Computing,
Sensors Network and Machine Learning. As a result, cyber-
attacks such as Stuxnet attack will increase along with grow-
ing simultaneous connectivity. Now, cyber-physical attacks
are new and unique risks to CMSs andmodern cyber security
countermeasure is not enough. To learn this new vulnera-
bility, the cyber-physical attacks is defined via a taxonomy
under the vision of CMS. Machine learning on physical data
is studied for detecting cyber-physical attacks. Two examples
were developed with simulation and experiments: 3D print-
ing malicious attack and CNC milling machine malicious
attack. By implementing machine learning methods in phys-
ical data, the anomaly detection algorithm reached 96.1%
accuracy in detecting cyber-physical attacks in 3D printing
process; random forest algorithm reached on average 91.1%
accuracy in detecting cyber-physical attacks in CNC milling
process.

Keywords CyberManufacturing systems · Security ·
Additive manufacturing ·Machine learning

Introduction

CyberManufacturing system (CMS) is a blueprint for future
manufacturing systems where physical components are fully
integrated with computational processes in a connected envi-
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ronment. The CMS is expected to yield benefits in cost,
efficiency, and sustainability, by taking advantage of tech-
nologies such as Internet of Things, Cloud Computing,
Fog Computing, Cyber-Physical System, Service-Oriented
Technologies, Modeling and Simulation, Embedded Sys-
tems, Sensor Networks,Wireless Communications,Machine
Learning, andAdvancedManufacturingProcesses (Song and
Moon 2016; Ren et al. 2015). Similar concepts and visions
have been developed in different scopes and under different
names such as “Industrie 4.0” by Germany, “Monozukuri”
by Japan, “Factories of the Future” by EU, and “Industrial
Internet” by GE, thus confirming the universal recognition
of the importance of the CMS vision.

Particularly the openness of the Internet enhances man-
ufacturing activities with additional capabilities in commu-
nication, information resources, storage, and computation.
A result can be a manufacturing system possessing intel-
ligent capabilities such as self-awareness, self-prediction,
self-optimization, and self-configuration abilities (Ren et al.
2015). However, the very openness also enlarges the vul-
nerability, especially the attack surface for Manufacturing
Systems as analyzed by following five layers.

In CMS, the system can be conceived by five layers as
defined by Song and Moon (2016): User Layer, Application
Interface Layer, Core Service Layer, Integrated Connection
Layer and Physical Provider Layer. Each layer is distributed
globally and connected to upper and lower layers via the
Internet. Therefore, the attack surface of the whole CMS
system is enlarged by the additional layers and Internet con-
nections comparing to the traditional factories. For example,
a malicious input could come from integrated connection
layer as a malicious real-time controlling command that
changes production schedules. Another example is when
malicious input could orient from a person in the middle
attack between customer layer and application interface layer
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as a maliciously altered file. Also, malicious input could
exchange between different components in physical provider
layer. If a manufacturing system is developed with the five
layer CMS structure, security will be a critical concern for
development and maintenance of CMS.

Currently even for other future manufacturing systems,
security is becoming a critical concern. Ren et al. (2015)
considers security as critical, especially for competitive
enterprises under cloud manufacturing vision. Jazdi (2014)
suggests that Industrie 4.0 brings many challenges including
security needs to be extensively studied in the research. As
suggested by Minnick (2016), indiscriminate internetwork-
ing is the biggest problem facing manufacturing today. The
traditional methods such as firewalls are never enough, and
intrusion detection takes time. For example, average intru-
sion takes more than two months to detect and even longer to
remediate. Moreover, a recent study by IBM (2016) reports
that manufacturing is the second most frequently targeted
industry in 2015 in terms of the number of cyber-attacks.

The confidentiality, integrity, and availability, also known
as theCIA triad, are important factors in dealingwith security
in CMS. The confidentiality includes SCADA (supervisory
control and data acquisition) data security, preventive main-
tenance data security, customer personal information, etc.
The integrity includes machine data integrity, production
plan data integrity, source file integrity, etc. The availability
includes machine availability, real-time control orders avail-
ability, customer user interface availability, etc. In CMS each
factor influences differently in every layer, which is different
from a traditional production environment that puts availabil-
ity in the first priority.

In the next section, we propose and analyze a taxon-
omy of attacks in CMS systems, and define new and unique
Cyber-Physical attacks. In section three, we present machine
learning methods that were implemented on CMS envi-
ronments for security. In section four, we provide two
experimental results with machine learning methods detect-
ing malicious attacks in 3D printers and CNC machines. A
preliminary real-time detection system thatwas designed and
implemented is also described.

Attacks in CyberManufacturing systems: a
taxonomy

In order to clarify and classify attacks inCyberManufacturing
systems, we implement taxonomy proposed by Yampolskiy
et al. (2013) for describing cross-domain attacks in CMS.

Taxonomy

The taxonomy uses the distinction between Influenced Ele-
ment andVictimElement. As a result, we can define following

four categories of attacks: Cyber–Cyber attacks, Cyber-
Physical attacks, Physical-Cyber attacks, and Physical–
Physical attack (Fig. 1).

In Cyber–Cyber attacks category, influenced element and
victimelements are in cyber domain,which is typical of cyber
security problems. In cyber security, Cyber–Cyber attacks
have been researched extensively thus are reasonably well
understood. For example, denial-of-service (DoS) attack on
the wireless communication over the factory floor network
connecting sensors and actuators in CMS environments is a
common Cyber–Cyber attack. The developed countermea-
sure and preventive techniques are firewall, access control,
intrusion detection system, cryptography.

In Cyber-Physical attacks category, the influenced ele-
ment is in the cyber domain, whereas victim element is in
the physical domain. Currently, this category of attacks is the
least understood one (Yampolskiy et al. 2013). A real exam-
ple from critical infrastructure security is Stuxnet, which is
known for destroying roughly a fifth of Iran’s nuclear cen-
trifuges by causing them to spin out of control (Kelley 2013).

In Physical-Cyber attacks category, the influenced ele-
ment is in the physical domain, whereas victim element is in
the cyber domain. This effect of propagation has been stud-
ied within the embedded system security (Yampolskiy et al.
2013). One Physical-Cyber attack is by monitoring acous-
tic signal emanations of typing a keyboard, recovering the
keystroke from a victim and resulting in cyber information
leakage such as password (Zhu et al. 2014).

In Physical–Physical attacks category, both influenced
element and victim element are in the physical domain. For
example, a malicious infotainment systems make the vehi-
cles vulnerable remote attack (Zetter 2015a). In this case,
the influenced element is car’s infotainment system, and the
victim element is the car’s physical components. Another
example shows that researchers can build “back door” soft-
ware into hardware and it is almost undetectable (Zetter
2015b). Such malicious hardware is built intendedly or unin-
tendedly by suppliers and form Physical-Physical attacks in
CMS systems, and cause unsafe and insecure products for
customers.

Overall, the Physical-Physical attack is a comparatively
well-understood area (Yampolskiy et al. 2013). Standards
such as ISO9000 series for qualitymanagement and ISO/IEC
27001:2013 as information security standard can help man-
ufacturers select suppliers.

Cyber-physical attacks: the new vulnerability

The Cyber-Physical attack is a new but unique risk in the
cyber-physical environment, such as smart grid, CMSs, con-
nected vehicles, etc.

In 2010, Iranian secret centrifugeswas targeted by Stuxnet
computer worm. On the infected machines, the centrifuges
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Fig. 1 Taxonomy of attacks in
CyberManufacturing systems

can be maliciously speeded up or slowed down and finally
get destroyed. For the first time, Stuxnet showed its ability
on cyber-physical attacks.

In 2015, an unnamed steel mill in Germany was attacked.
According to a report, hackers manipulated the control sys-
tem that a blast furnace could not be properly shut down,
resulting in unspecified “massive” damage. This is the second
confirmed case of a cyber-physical attack that cyber-attack
caused physical destruction of equipment (Zetter 2015a),
after the Stuxnet case.

In 2015, an airplane on-board entertainment system was
taken control by a security researcher in the airplane. The
researcher claimed that hewas able to issue a climb command
and make the plane briefly change course (Zetter 2015b).
Later in 2015, two hackers demonstrated that they could
remotely control a Jeep Cherokee’s ignition switch, brakes
and steering system (WIRED 2015). All examples above
are cyber-physical environments attacked by cyber-physical
attacks.

Cyber-physical attacks in CMS environment

To better understand Cyber-Physical attack, we define it as
following:

The attacks initiate inside or outside CMS environment
as digital format and intrude via cyber, causing physical
components such as machines, equipment, parts, assemblies,
products have over wearing, breakage, scrap or any other
change that original design not intend to be.

In manufacturing systems, Cyber-Physical attacks start to
cause concern.Wells et al. (2014) designed an experiment on
CNC milling machines infected with a virus, which altered
the tool path file. The result showed 19% loss in performance.
Turner et al. (2015) conducted a experiment to test partici-
pants’ awareness of cyber-attack inmanufacturing with virus

rewriting the G-Code to alter the part’s geometry for a 3D
printer. The result shows that of the seven groups, none iden-
tified amalicious entity corrupting the file. Sturmet al. (2014)
proved a maliciously defected 3D printed part could reduce
yield load by 14%. The malicious defect is a void placed
inside of a part, causing a failure of anASTMStandardD638-
10 tensile test specimen. Zeltmann et al. (2016) provided an
overview and evaluated the potential risks that exist in the
cyber-physical environment with additive manufacturing.

Cyber-Physical attack can affect the physical performance
of amachine, equipment or component inmanufacturing sys-
tem, causing change in shape, weight, structural stiffness,
natural frequency, etc. of a part. Those changes could result
in defective parts, assembly mistakes, tool breakage, over
wearing and unqualified products.

Due to the uniqueness of cyber physical attacks, detec-
tion cannot merely rely on network countermeasures. Vincen
et al. (2015) proposed a side channel analysis based on Struc-
tural Health Monitoring (SHM) detecting malicious defects
in manufacturing systems. Different from Vincent’s work,
this research focuses on themanufacturing process other than
just finished part, thus can prevent defective parts in an earlier
stage. Moreover, this research uses two different manufac-
turing process (3D printing and CNCmilling) to explore and
demonstrate the need for new methods for detecting attacks
cyber-physical attacks in manufacturing systems.

The unique Cyber-Physical attacks bring up challenges
to CMS: (i) the sabotage can be executed remotely via the
Internet access,which is ubiquitous inCMSenvironment; (ii)
comparing to office IT security, the loss of 24/7/365 availabil-
ity in CMS leads to direct disorders in production systems,
especially in realms such as real-time control and simulation;
and (iii) cyber security countermeasures that focus on office
IT security having left blind-spots for detecting attacks in
CMS factory floor.
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Cyber-physical attack detection: data and machine
learning

To detect cyber physical attacks in a manufacturing environ-
ment, both cyber and physical detection methods should be
used. The modern cyber-attack detection systems monitor
either host computers or network links to capture cyber-
attack data (Karthikeyan and Indra 2010). The cyber security
approaches such as Intrusion Detection Systems (IDS),
Misuse Detection/Misbehavior Detection Misuse, Signature
basedApproach, AnomalyDetection should be implemented
on CMS computer and network environments. However, in
a modern network environment, an intrusion detection could
take months, which is not acceptable for the availability
requirement for CMS production needs. Physical detection
is necessary to complement the cyber detection. Fortunately
compared with office IT network, manufacturing environ-
ment is more stable, easy to define rules and collect training
data. Each machine has its own safe range and every part
has its own manufacturing routine. Effective detection on
physical data with machine learning can enhance the overall
effectiveness.

Machine learning

Machine learning has been intensively applied both in phys-
ical security data and manufacturing system, but not in man-
ufacturing security so far. Physical security data needed for
machine learning can come from voice recognition, finger-
print authentication, gait authentication, keystroke and other
biometrics (Jain et al. 2004). Machine learning implemen-
tations in manufacturing includes real-time vision system
for surface defect detection (Jia et al. 2004), weld defect
defection (Shen et al. 2010), surface defect detection (Zhang
et al. 2011), preventative maintenance, supply chains opti-
mization, etc.

The integration of cyber security and physical data
machine learning is an approach to detect cyber-physical
attacks. It can effectively enhance the accuracy and shorten
the respond time. The cyber security approaches have been
intensively researched in the past and can be implemented
with IT security professionals. At the same time, themachine
learning approach utilizing physical data can filter the false
alerts from cybersecurity aided by domain experts fromman-
ufacturing.

Supervised learning: classification

Classification is a supervised machine learning method with
the purpose of categorizing data sets. In machine learn-
ing, classification is implemented with various algorithms,
also known as classifier, such as Support Vector Machine
(SVM), C4.5 decision tree, artificial neural network (ANN),

k-Nearest Neighbors, etc. Data sets for classification are pre-
processed and analyzed to features. The process to define
feature is a key process to enhance accuracy inmachine learn-
ing results, called feature extraction which requires domain
knowledge with data mining experience.

In this research, image and acoustic classifications have
been used to detect malicious attacks in CMS processes.
Random forest, k-nearest neighbors (kNN) machine learn-
ing algorithms have been implemented. k-Nearest Neighbors
(kNN) classifier is used to perform discriminant analysis
when reliable parametric estimates of probability densities
are unknown or difficult to determine (Peterson 2009). A
random forest multi-way classifier consists of a number of
trees, with each tree grown using some form of randomiza-
tion. The leaf nodes of each tree are labeled by estimates of
the posterior distribution over the image classes. Each inter-
nal node contains a test that best splits the space of data to be
classified (Bosch et al. 2007). In this research, three decision
trees are used and each of them has five leaf nodes to classify
(Wu et al. 2016). Compared to C4.5 decision tree algorithm,
the random forest classifier achieves higher accuracy with
relatively shorter time to execute.

Unsupervised learning: anomaly detection

Anomaly detection can identify abnormal behavior on a host
or network (Kim et al. 2013), image (Chandola et al. 2009),
supervisory control and data acquisition (SCADA) (Garcia
et al. 2011), or for equipment preventive maintenance (Raba-
tel et al. 2011). It refers to the problem of finding patterns
in data that do not conform to expected behavior (Chan-
dola et al. 2009). The principle is to recognize patterns of
accepted behavior, which is learned or specified by the algo-
rithm. Activities that fall outside the predefined or accepted
model of behavior will alert administrators. The advantage of
anomaly detection is that it can detect novel attacks compar-
ing to supervised approaches. However, the disadvantage of
network anomaly detection is the difficulty in defining rules
for normal network behavior.

Since it is impossible to predict every possible attack that
a hacker may try against CMS system, the anomaly detec-
tion method is combined with the random forest method to
increase the accuracy in this research.

The data captured from 3D printing and CNCmilling pro-
cesses are pre-processed for anomaly detection with features
extracted according to different process characters.

Based on the data, the random forests algorithm is used
to build the process-based patterns. With the built patterns,
outliers are detected according to different features used in
the process. Once such outliers are detected, the system sends
out alerts.

The anomaly detection algorithm finds intrusions by spot-
ting unusual activities or outliers. There are three potential
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Table 1 CMS process attacks analysis and data extraction

Process Attack aim Symptom Consequence Detection data

3D printing Design infill nozzle travels
speed heating temperature

Hidden void surface gap
high energy consumption

Scrap parts overheating Vision energy consumption
acoustic

CNC milling Design spindle speed feed
speed

Change in vibration change
in chip shape cutting bit
temperature tool breakage

Scrap parts overwear tool
breakage overheating

Acoustic temperature time

outliers in 3D printing process: (1) increase in themean value
of image greyscale value over the malicious defects area,
(2) increase in the standard derivation of image greyscale
value, (3) increase in the number of pixels that greyscale
value higher than a threshold. There are also three potential
types of outliers in the CNC milling process: (1) increase
in the mean value of amplitude, (2) increase in the standard
derivation of amplitude, (3) increase in the number of points
amplitude larger than threshold.

The random forests algorithm uses proximities to find out-
liers whose proximities to all other cases in the entire dataset
are generally small. The average proximity from case n in
class j to case k (the rest of data in class j) is computed as
function (1):

P(n) =
∑

class(k)= j
prox2(n, k) (1)

The raw outlier-ness of case n is defined as N /P(n) where
N stands for the number of cases in the data set. For each
class, themedian and the absolute deviation of all raw outlier-
ness are determined. The median is subtracted from each
raw outlier-ness. The result of the subtraction is divided by
the absolute deviation that gives the final outlier-ness. If the
outlier-ness of a particular case is large and the proximity is
small, the case is considered to be an outlier (Prashanth et al.
2008).

Data in CMS environment

To implement machine learning in CMS security, data/signal
processing and feature selection and extraction are key steps.
Data sources can be used including vision, acoustic, energy,
temperature, weight, etc. Some of the data can be directly
drawn from controlling system whereas others need addi-
tional monitoring systems.

Collection and processing

CMS processes can consist of traditional and advanced
manufacturing processes. They include additive manufactur-
ing, subtractive manufacturing, molding, forming, joining,
casting, coating, high-speed assembly and others. In this

research, we use 3D printing and CNC milling processes
as two examples.

To decide what data to extract from the manufacturing
process for security purposes, the following factors should
be analyzed: (i) what is the process andwhat is the attack aim,
(ii) what is the symptom and consequence, and (iii) what data
can be collected from the machine for detection.

3D printing is a key enabling technology for CMS. It
is getting extensively popular in recent years, and some
new machines are developed with wireless network capabil-
ity, which also increases the attack surface for a successful
attack. The attack aims for 3D printing could be: change
the design dimensions, change the infill with malicious void,
change nozzle travel speed, or change heating temperature.
The symptom could be quite implicit, such as a hidden void,
surface gap or high energy consumption, and finally, leads
to scrap parts. For 3D printing, vision, acoustic and energy
consumption could be potential features.

Computer Numerical Control (CNC) milling process is a
representative process for subtractivemanufacturing process.
The attack can aim for CNC milling process to alter design,
spindle speed, or feed speed. The design change can create
scrap parts. The increase in spindle speed can expedite the
tool wear. Also, the increase in feed speed can break cutting
tools. For CNC milling, acoustic, temperature and time can
be potential features (Table 1).

Feature extraction

For machine learning in manufacturing, feature extraction
is a critical process. It starts from an initial set of mea-
sured data and builds derived values (features) intended to be
informative and non-redundant, facilitating the subsequent
learning and generalization steps, and in some cases lead-
ing to better human interpretations https://en.wikipedia.org/
wiki/Feature%20extraction. A feature is a good data repre-
sentation of a symptom, phenomenon or measurement. For
example, high value of acoustic emission during drilling pro-
cess can mean wrong spindle speed or wrong part material.
The feature extraction process requires domain knowledge
and data processing experience.
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Fig. 2 Man-in-the-middle attack for a cyber-based 3D printing process

Simulation of attack detection in CMS processes:
two examples

Two examples were developed to test and demonstrate how
machine learning methods can be utilized in CMS security.
In “Additive Manufacturing process: a 3D printing example”
section, we present an experiment design of detecting mali-
cious defects in 3D printing process using machine learning
with image data. In “Subtractive manufacturing process: a
CNC milling example” section, we present an experiment
design of detecting malicious defects in CNC milling pro-
cess using machine learning with acoustic signal data.

Additive manufacturing process: a 3D printing example

3D printing, or additive manufacturing, is a key technol-
ogy for advanced manufacturing systems (Wu et al. 2016).
However, 3D printing systems have unique vulnerabilities
presented by the ability to affect internal layers without
affecting the exterior layers (Sturm et al. 2014). By changing
design or dimensions in the “.STL” file, malicious defective
parts could be manufactured without any prior alert.

Attack mode

Man-in-the-middle attacks can easily accomplish the process
of replacing a original “.STL” file with a malicious design
“.STL” file. As shown in Fig. 2, during the user’s uploading
original “.STL” file to manufacturing server to put an order,
an attacker can alter the communication between user and
server, and replace with malicious “.STL” file.

If a hacker designed amalicious infill void defect that can-
not be observed from the surface of the final product, the part
will be manufactured without noticing any abnormalities.
During the pre-production check process, operators cannot
detect the difference between the original design and mali-
cious design because the malicious design can be implicit.
The malicious file will then be sent to 3D printers and the

finished defective parts will be sent to the customers. As
shown by Sturm et al. (2014), the void in a 3D printing part
will result in reduction of yield, with other corresponding
physical characteristic changes such as weight, stiffness and
natural frequency.

Five different infill defect patternswere designed as shown
in Fig. 3: seam, irregular polygon, circle, rectangle, and
triangle to simulate attacks. The examples illustrated in Fig. 3
are parts with 10% honeycomb infill.

Data collection: image simulation and experiment

Images were captured from the 3D printing software Maker-
Bot Desktop 3.9.1 preview function. The size of images is
512 × 512 pixels. The selection of image size was done in
considering feature extraction process.

In total, 3887 simulation images were generated for simu-
lation. 532 images of non-defect parts were captured, labeled
as group A. The non-defect group A images were captured
every 2–4 layers during the printing process, with infill den-
sity varied from 8–12% to increase the diversity of the
training images. 3355 images of defective parts were cap-
tured and labeled as group B. The defective group B images
were captured every 2–4 layers during the printing process,
with combinations of 5 different defects. The infill density is
10% for group B.

Another method used in images collection is to cap-
ture real images during printing process with mini cameras
attached on 3Dprinter structures. To test and verify the image
classification method in real environment, a camera-based
vision detection system has been designed and installed on
MakerBot ReplicatorTM2. MakerBot ReplicatorTM2 has the
building envelope of 11.2 × 6.0 × 6.1” and can print at 100
µmper layer. Installation of the camera on aMakerBotRepli-
cator 2 is shown in Fig. 4. In this work, we developed two
ways to install on MakerBot Replicator 2. One is mounting
the camera right next to the intruder and move along with
it, called ’moving camera.’ The other is mounting the cam-
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Fig. 3 Malicious defect designs, simulation images and camera images

Fig. 4 MakerBot replicator 2 printer with moving camera and static camera

era on the frame of the 3D printer, called ’static camera.’
The ‘static camera’ can capture clear image and reach higher
accuracy. The ‘moving camera’ should have same accuracy
and can adapt tomore conditions, without the blurring caused
by motion.

The camera is an Arducam Mini Module Camera Shield
with OV2640 2 Megapixels Lens, compatible with Arduino

UNO Mega2560 Board. The camera unit dimensions are
3 × 2 × 1 inches, connected to the Arduino UNO via
extended jumper wires.With programming in Arducam soft-
ware, it can produce images any size scaling down from
SXGA to 40×30 in jpeg format. As a result, the feature
extraction process for previous 512×512 size images needed
to be altered.

123



1118 J Intell Manuf (2019) 30:1111–1123

Fig. 5 Grayscale plot row no. 250, section separation

Fig. 6 Preliminary wireless real-time alert system for 3D printing process

Feature extraction

The feature extraction process was implemented in R and
RStudio Desktop.

By plotting simulated image row No. 250 (marked in red
in Fig. 5) grayscale value, we can observe repetitive peaks
in normal area on the left, one medium peak followed by
one high peak, in pairs. In defective area on the right, the
greyscale plot shows constant volatility. To specify peaks,
we set threshold of grayscale at 120.

For feature extraction, each image is equally divided into
eight sections as shown in Fig. 5. Each section contains 64
rows, 32,768 pixels. The following features are extracted for
defect classification.

• Mean of grayscale in each section.
• Standard derivation of grayscale in each section.

• Number of pixels grayscale larger than 120.

As a result, every image has 24 features, from eight sections,
each section provides three features (Wu et al. 2016).

Three machine learning algorithms are used in detecting
malicious defect: k-Nearest Neighbors (kNN), random forest
and anomaly detection.

Real-time detection

Aprototype systemwasdesigned and connected to 3Dprinter
and computers. As shown in Fig. 6, it is designed to send
real-time alert to administrator indicating malicious defect.
The vision system on 3D printer is connected to Internet via
Raspberry Pi B+. The camera is updated with Raspberry Pi
OV 5647 Camera To be compatible with Raspberry Pi B+,
and also improve the image quality.
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Table 2 3D printing process
accuracy results

Accuracy Machine learning method

Random
forest (%)

kNN (%) Anomaly
detection (%)

Image from simulation Honeycomb 88.4 81.3 100.0

Diamond 100.0 85.0 100.0

Linear 94.6 92.5 100.0

Star 97.8 100 99.8

Catfill 91.5 100 100.0

Image from moving camera Honeycomb 68.4 68.75 72.5

Image from static camera 95.5 87.5 96.1

Raspberry Pi B+ is used as the mini-computer system to
connect to the network wirelessly and operate the Raspberry
Pi OV5647 Camera to capture images of the printed object at
a set time interval. Once the images are captured and saved
to the Pi, BitTorrent Sync is used to synchronize the images
from the device to the cloud service. The computer with
classifier testing real-time collected images. If detected any
malicious defects, the program will send an alert to the user
via text message and email. As shown in Fig. 6, the email
says “Alert from 3D printer, Administrator: Found defect in
process”.

An experiment was conducted during a 3D printing pro-
cess under attack. After testing, the whole process can be
accomplished within 1 min, including the time for syncing
and downloading images (largely depend on server and Inter-
net speed) and feature extraction and classify time (within
few seconds), and a real-time alert is send to an operator via
mail system.

Result analysis

The goal of this experiment is using machine learning and
physical data from cameras to detect malicious defects. The
accuracy of machine learning results is one of the measure-
ments for effectiveness of the system. The machine learning
accuracy is defined by the Eq. (2).Where TruePositivemeans
images in class A that are predicted as class A, and TrueNeg-
ative stands for images in class B predicted as class B.

Accuracy = TruePositive+ TrueNegative

Total
(2)

Moreover, the compatibility of the system is also tested by
running with 5 different infill shapes of 3D printing pro-
cess: Honeycomb, Diamond, Linear, Star, Catfill. Finally,
the system effectively under real environment comparing to
simulation is analyzed.

As shown in Table 2:

Table 3 Simulation signal parameters

Parameter Value

Fundamental frequency 40Hz

Harmonic frequency 80, 120, 160, 320Hz

Normalized amplitude 0.3 for milling exterior
boundaries 1 for milling
interior boundaries

White noise 0.1×N (0,1)

Acquisition frequency 100 Hz

(1) Anomaly detection ismost accuratemethod among three
chosen methods in detecting malicious defects. Accu-
racy is 96.1% which is acceptable for the experimental
result and can be improved by refinement in hardware
and software.

(2) Based on simulation images experiment, the different
types of infill have aminor influence on system accuracy,
but not critical.

(3) Camera images have lower accuracy compared to simu-
lated images. Among camera images, moving camera’s
final accuracy 72.5% is not acceptable because of the
blur created by motion. Static camera images have a
better accuracy of 96.1%, thus proves the system effec-
tiveness in a real environment.

Subtractive manufacturing process: a CNC milling
example

CNC machining is a typical subtractive processing. Dur-
ing the decades, CNC has been core manufacturing units
in manufacturing systems. The flexibility and automation of
manufacturing systems have been significantly enhanced by
implementation of CNC machining. Since CNC processing
could be totally manipulated by programming, it shows its
vulnerability towards cyber-physical attacks.
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Attack mode

By implementing man-in-the-middle attack, attackers can
replace original G-code designs with malicious G-code. Two
attack scenarios have been developed as a result of malicious
codes.

Scenario 1: Attack on Design
The first attacking scenario is to alternate the positioning

parameters during processes and therefore change the pro-
filing routine of tools. As a result, the geometric design will
change. The change in tool path could cause assemble mis-
takes, structural weaken and possibly breakage. As shown in
Fig. 7, edge 2–3, 4–5, 5–6 and 6–7 offset inward the contour.

Scenario 2: Attack on Operation
The second attack mode proposed in this research is the

change in machining operation parameters. In this section, a
change in spindle speed in milling operation is captured for
further research. In real case, fast rotation speed can cause
over wear of tool; a tool with too slow rotation will risk in
being broken by shear force in the feeding direction. In the
scenario, spindle speed is maliciously altered from 1200 to
2000 rpm.

Data collection: acoustic signal simulation and experiment

Acoustic signal is selected as the index to detect any
malicious change in CNC milling process. Similarly, both
simulation and experiment methods are adopted for testing.

Simulated signal is a time-serial amplitude numbers, cre-
ated by a summation of sine-functions with fundamental
frequency, harmonic frequencies and a Gaussian noise. The
advantage of adopting simulated signal in this scenario is
to enhance variety of signals for test and analysis with more
parameters setting, and generate enough data for further anal-
ysis. The parameter used for acoustic signal generation are
listed in Table 3, and the simulated signals were generated in
R.

The experiments were conducted on a CNC machine
BridgeportMilling Ez-trak. Themilling tool is a 2-flute, 3/16
endmill with rotation speed of 1200 rotation per minute. The
material of work piece was aluminum. Moving speed of the
tool was 10 inch per minute. Feed rate was 50/1000 of 1 inch
for the first six milling cycles, 20/1000 of 1 inch for the last
cycle.

According to Duro et al. (2016); Song et al. (2017),
microphone provides the best balance in satisfying the many
requirements of a sensor for recording acoustic signal in
milling operations. Three microphones from smartphones:
iPhone 5s microphone, iPhone 6s plus microphone and
iPhone 6s with ear pod microphone were implemented as
the acoustic sensors to recording signals.

The sample part is designed as Fig. 8.

Feature extraction

The monitored signals were digitalized by MATLAB soft-
ware. All the sound signal data were pre-processed by
sectioning the whole period into sound periods of each indi-
vidual cycle. In order to increase the number of the training
data set, the real sound signal data were also sampled by
10 observations each. R was used for machine learning pro-
gramming. The packages used for sound wave editing and
analysis are “tuneR” and “seewave”. The packages used for
machining learning detection and analysis are “randomFor-
est”, “h2o” and “pROC” (Song et al. 2017) (Fig. 9).

According to the simulated and recorded signal, three key
feature is selected.

• Mean of amplitude in each period of time.
• Standard derivation of amplitude in each period of time.
• Number of points amplitude larger than threshold.

In experiment, period of time is set as 80 s, threshold for
simulation is set as 1000, threshold for experiment signal is
set as 2.5.

Similar to “Additive manufacturing process: a 3D print-
ing example”, three machine learning algorithms are used in
detectingmalicious defect: kNN, random forest and anomaly
detection. The real time synchronizing system can be imple-
mented as “Real-time detection”.

Result analysis

Accuracy is the key measurement for detecting effective-
ness as defined in “Result analysis”. The results of detecting
malicious defects in CNCmilling process via acoustic signal
shown as Table 4.

As shown in Table 4,

(1) Anomaly detection and random forest method hold high
accuracy for both scenario 1 and 2 in simulated signal,
and scenario 2 in real signal. In real signal, the random
forest shows highest average accuracy of 91.1%.

(2) Scenario 1 shows a slightly lower prediction accuracy
comparing to scenario 2.

(3) Real signal has lower accuracy in scenario 1 than sim-
ulated signal, the reason could be the background noise
from recording environment, and also the complexity of
scenario 1 attack mode.

Conclusion

Cyber-Physical attacks are unique but critical for security in
CyberManufacturing Systems. Modern cyber security coun-
termeasures are not sufficient in handling security issues
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Fig. 7 Comparison of original and attacked milling profiles

Fig. 8 Sample part

Fig. 9 Plot of sound wave in attacked scenario 2. a Real changed operation signal, b simulated changed operation signal

in CMS. In this research, physical data machine learning
approaches are developed and integrated for detectingCyber-
Physical attacks in CMS.

We developed two examples with simulation and experi-
mentation to test and demonstrate the physical data machine

learning security approach. In the 3D printing process exam-
ple, we used vision as physical data source for machine
learning. Three different machine learning algorithms are
implemented with image classification. The anomaly detec-
tion method returned the highest accuracy of 96.1% in
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Table 4 Machine learning accuracy for CNC milling process

Accuracy Machining learning method

kNN (%) Random
forest (%)

Anomaly
detection (%)

Simulated
signal

Scenario 1 50 93.1 93.8

Scenario 2 50 100 100

Real signal Scenario 1 70 82.2 79.6

Scenario 2 77.8 100 100

detecting a malicious defect in printing process. In the
CNC milling process example, we design two attack modes
in changing the part design and manufacture operation.
Acoustic signal is selected as source of physical data for
machine learning process. Same three different machine
learning algorithms were implemented with the random
forest algorithm returned the highest average accuracy of
91.1%

Detecting cyber-physical attacks in CMS environment is
not easy and needs further research. For more future work, (i)
research on more manufacturing processes and match with
suitable detectionmethods and data process; (ii) extract more
than one category of data in 3D printing and CNC milling
process to enhance detecting accuracy, (iii) Detection on
manufacturing processes with malicious defects integrated
in a system. (iv) development of cyber-physical environment
security policy, security standards, product design for secu-
rity, security framework for CMS.
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