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Abstract The traditional maintenance strategies may result
in maintenance shortage or overage, while deterioration and
aging information ofmanufacturing systemcombined by sin-
gle important equipment from prognostics models are often
ignored. With the higher demand for operational efficiency
and safety in industrial systems, predictive maintenance with
prognostics information is developed. Predictive mainte-
nance aims to balance correctivemaintenance and preventive
maintenance by observing and predicting the health status of
the system. It becomes possible to integrate the deteriora-
tion and aging information into the predictive maintenance
to improve the overall decisions. This paper presents an
integrated decision model which considers both predictive
maintenance and the resource constraint. First, based on
hidden semi-Markov model, the system multi-failure states
can be classified, and the transition probabilities among the
multi-failure states can be generated. The upper triangular
transition probability matrix is used to describe the system
deterioration, and the changing of transition probability is
used to denote the system aging process. Then, a dynamic
programming maintenance model is proposed to obtain the
optimal maintenance strategy, and the risks of maintenance
actions are analyzed. Finally, a case study is used to demon-
strate the implementation and potential applications of the
proposed methods.

B Qinming Liu
lqm0531@163.com

1 Department of Operations Management, Antai College of
Economics and Management, Shanghai Jiao Tong University,
Shanghai, China

2 Department of Industrial Engineering, Business School,
University of Shanghai for Science and Technology,
Shanghai, China

Keywords Maintenance · Dynamic programming ·
Prognosis · Deterioration · Aging

Introduction

Manufacturing system maintenance plays a critical role
in industrial equipment’s efficient usage in terms of cost,
availability and safety. Many effective system maintenance
strategies have been developed (Huynh et al. 2012; Wang
et al. 2016; Lu et al. 2015). Generally, system mainte-
nance can be classified into correctivemaintenance (CM) and
preventive maintenance (PM). The corrective maintenance
involves the repair or replacement of failed components
(Kenne and Nkeungoue 2008). The preventive maintenance
is a schedule of maintenance actions aiming at the preven-
tion of system breakdowns and failures (Wang et al. 2015;
Zhong and Jin 2014). Recently, condition-basedmaintenance
(CBM)becomesmore desirable inmany application domains
where safety, reliability and availability of the systemare con-
sidered critically. It has attracted researchers in recent years
by aiming to balance the maintenance cost, which is high in
PM,with failure cost, which is high in CM. In addition, CBM
can also increase productivity, efficiency and availability of
systems.

For system maintenance, condition monitoring is becom-
ing popular in industries because of its efficient role in
detecting potential failures. The use of condition monitoring
techniques can improve systemavailability and reduce down-
time. If a hidden defect is already presented, with the help of
conditionmonitoring, the failuremaybe identified, andmain-
tenance actions may be taken. For an effective maintenance,
advance prediction of such a failure and its development are
very important for ordering spare parts and preparing main-
tenance personnel. Meanwhile, it requires careful plan well
before the failure actually occurs.
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Predictive maintenance aims to optimize the tradeoff
between maintenance costs and performance costs by
increasing availability and reliability while eliminating
unnecessary maintenance activities. Besides the functions of
condition monitoring and failure diagnosis, predictive main-
tenance also estimates the time of a future failure and residual
useful life of the system, which can be called prognos-
tics. Prognostics can provide the current or predicted system
health status and this information can be used to initiatemain-
tenance actions. The motivation of this research comes from
the complexity of finding optimal predictive maintenance
strategies in a system based on diagnostics and prognostics
information. This research integrates the predictive mainte-
nance with system degradation and resource constraints, and
employs dynamic programming model to find the optimum
strategies.

The organization of the paper is as follows:
In “Literature review” section, a brief review of exist-

ing literature in the various types of models and algorithms
in maintenance optimization is presented and the contribu-
tion of the research is clarified. In “System degradation and
maintenance description” section, the system degradation
and maintenance are described. In “The integrated deci-
sion model of system maintenance management” section, a
dynamic programming maintenance scheme for integrating
predictive maintenance and resource constraints is proposed,
and the corresponding solution algorithm is developed. In
“Case study” section, a case is analyzed and discussed.
Finally, conclusions are drawn in “Conclusions” section.

Literature review

Maintenance optimization problem

Maintenance models are used to find optimal maintenance
schedules for a variety of systems. And it has been stud-
ied extensively. Fitouhi and Nourelfath (2012) dealt with
the problem of integrating non-cyclical PM and tactical
production planning for a single machine. Bartholomew-
Biggs et al. (2009) considered the optimal PM scheduling
and dealt with the problem of scheduling imperfect pre-
ventive maintenance for equipment. The above literatures
mainly focus on minimizing system cost and identifying
the preventive maintenance period. Moreover, the delay-
time concept and its modeling techniques can be developed
and applied to various industrial equipment maintenances
(Christer 1999; Wang 2011). Wang et al. (2000) proposed a
stochastic process called gamma process, with hazard rate
as its mean for prediction of residual life. The condition
information was considered as the expert judgment based on
vibration analysis. Marseguerra et al. (2002) studied optimal
maintenance solutions for continuously monitored multi-

component systems with Markov deteriorating processes.
The Monte Carlo simulation was used for the optimiza-
tion and it was more efficient than the analytical method.
Wu et al. (2010) developed an online adaptive condition-
based maintenance method for mechanical systems with a
concentration on condition monitoring. A multi-component
systems approach for condition-based maintenance opti-
mization was applied by Jafari and Makis (2015) where
economic dependence between components existed. How-
ever, for PM, prognostics and diagnostics information are not
considered. That is, the decisions are based on the reliability
information obtained from similar systems while the prog-
nostics and diagnostics information are not considered. For
CBM, it only uses current component state information. In
this paper, themaintenance strategywill consider not only the
diagnostics information (or health monitoring information),
but also the prognostics information (or system degradation
information).

Maintenance and resources optimization problem

Predictive maintenance can provide current or predicted
health status of a system and use the prognostics informa-
tion to initiate maintenance actions. The study of predictive
maintenance concerns resource management, maintenance
strategy optimization and evaluation.Recently,mathematical
models have been established to describe predictive mainte-
nance with consideration of spare parts inventory (Park and
Lee 2011; Fitouhi and Nourelfath 2014; Jafari and Makis
2016). Basten et al. (2012) designed an optimal solution algo-
rithm for joint problem of LORA (level of repair analysis)
and spare parts stocking. Wang (2012) presented a joint opti-
mization method for both spare parts inventory control and
preventive maintenance inspection interval. All these studies
entail the joint optimization of predictive maintenance and
spare parts inventory. Thus, in current literatures, the pre-
dictive maintenance mainly focused on the optimization of
spare parts inventory and maintenance strategies is devel-
oped only with consideration of system status forecasting. In
this paper, the predictive maintenance focused on the opti-
mization of spare parts inventory andmaintenance personnel.
Maintenance strategies are developed with consideration of
diagnostics and prognostics information.

Maintenance and system degradation problem

Usually, the system condition deteriorates with usage and
age over time. The degradation will lead to failures and
downtime, unless maintenance activities are performed.
The reliability evolution of a system depends on its struc-
ture and health status. In order to shorten the down-
time and reduce maintenance costs, mathematical models
were established to describe various degradation processes
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(Van Horenbeek et al. 2013; Liu et al. 2013; Molavi and
Zahiri 2015). Aiming to optimize the condition-based main-
tenance considering maintenance resources, Wang et al.
(2008) presented a condition-based order-replacement pol-
icy for a single-unit system. Based on the residual useful life
estimation, Rausch and Liao (2010) addressed a joint pro-
duction and spare parts inventory control strategy driven by
condition-based maintenance. The degradation information
was utilized to initiate replacement actions in conjunction
with spare parts inventory control under both production
lot size and due-date constraints. There are some litera-
tures on spare parts optimization using condition monitoring
information, without maintenance optimization. Li and Ryan
(2011) developed a model that incorporates real-time con-
dition monitoring information into inventory management
decisions for spare parts, and used the degradation model to
derive the life distribution of a functioning part and esti-
mate the demand distribution for spare parts. The above
studies illustrate the joint optimization of condition-based
maintenance and spare parts inventory with consideration
of degradation information. However, it is known that sys-
tem degradation includes both deterioration and aging. In
the most literatures, aging information is not considered.
The aging information has important influences on system
health status and predictive maintenance strategy. This paper
proposes an integrated dynamic maintenance model using
prognostics information (both deterioration and aging) with
consideration of resource constraints.

The assumptions and features of the studies reviewed can
be summarized in Table 1.

Research motivation and contributions

These studies are of interest and could be applied in a wide
variety of industries such as semiconductor manufacturing,
transportation and power generation. However, it can be
found that there is a fewworks in the integration of resources,
system degradation and predictive maintenance optimiza-
tion.

The implementation of maintenance actions may require
different resources such as spare parts and maintenance per-
sonnel. This paper provides a new method that incorporates
prognostics information with available resources to obtain
the optimal maintenance strategy. Thus, an integrated deci-
sion model for both predictive maintenance and resources
is presented. The contributions of the paper can be summa-
rized as follows. First, system degradation information such
as deterioration and aging is integrated into the proposed
predictive maintenance model. Second, different from the
systemmaintenancewith a single failure state,HSMMcan be
used to classify the different system failure states (prognostic
and diagnostic information), obtain the transition probabil-
ities among the failure states, and compute the duration of

each health state (Liu et al. 2015). Then different mainte-
nance actions could be developed for each failure state, and
each system health state will be optimized to a different
expected level. Finally, a dynamic programming model is
proposed to solve the integrated decision optimization prob-
lemwith consideration ofmultiple failure states and resource
constraints. And the overall optimal maintenance strategy is
obtained.

System degradation and maintenance description

Degradation description

System degradation includes deterioration and aging. For the
system, if there is no any maintenance action, it will not
automatically transfer to a better state and will just randomly
convert into a worse state. This phenomenon is denoted as
deterioration (see Fig. 1).

In this paper, the upper triangular transition probability
matrix is used to describe the deterioration as follows:

P(ht = j |ht−1 = i) = ai j = 0, ∀ j < i (1)

where, it represents that the system health state stays in j at
time t and in i at time t − 1.

The system status will become more aging with the
increase of its working time and the failure risks will cor-
respondingly increase. Then, the system will transfer to a
worse health state and it is denoted as aging phenomenon.

The previous HSMM based health management assumes
that the transition probabilities are only state-dependent,
which means that the probability of making transition to a
less healthy state does not increase with the age. In order
to characterize the system aging, an aging factor that dis-
counts the probabilities of staying at current state while
increasing the probabilities of transitions to less healthy
states are integrated into the HSMM. With an iteration
algorithm, the original transition matrix obtained from the
HSMM can be renewed with an aging factor. Although the
system health state will be changed by adopting mainte-
nance actions, health states obtained by the HSMM with
aging factor are still the best match for the real system
health states. With the classification information obtained
from the HSMMwith aging factor, the current system health
states can be identified and transition probabilities can be
generated.

Based on system deterioration and aging, the common
degradationmode can be divided into two kinds: one is called
decrement mode and the other is bell mode (see Fig. 2). The
decrement mode indicates that the transition probabilities
among health states will decrease progressively and the sys-
tem will degrade gradually with the growth of time. The bell
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Fig. 1 Illustration of the deterioration transition probability
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Fig. 2 Transition probability of degradation. a Decrement mode. b
Bell mode

mode says that the transition probabilities among several ini-
tial health states will increase and the transition probabilities
among other health states will decrease gradually.

Maintenance description

Maintenance actions

Variousmaintenance actions can be adopted to slowdown the
system degradation. In this paper, the system existing age is
introduced into the model to show the effect of maintenance
actions. The system lifetime will increase with time, and the
system existing age will decrease by adopting maintenance
actions. Thus, the system existing age is smaller than the
system life aftermaintenances. Let D(hi ) denote the duration
of a system staying at state hi . Once a system enters health
state hi , its existing age will equal to the summation of the
existing useful duration of a system staying at health state hi
and the existing useful duration of a system staying in the
health states before health state hi .

Let D̄(hi , n) denote as the existing duration of the system
at n-th stage since it has entered state hi . Then,

D(hi ) = μ(hi ) + ρσ 2(hi ) (2)

ρ =
(
T −

N∑
i=1

μ(hi )

)
/

N∑
i=1

σ 2(hi ) (3)

D̄(hi , n) = (1 − aii )D(hi ) (4)

where, μ(hi ) is the mean of duration probability of health
state hi and σ 2(hi ) is the variance of duration probability of
health state hi . T describes life time of a system, and T =∑N

i=1D(hi ).
Thus, based on Eqs. (2)–(4), the system existing age tn

at n-th stage since the system has entered state hi can be
computed as follows:

tn =
{
D̄ (hi , n) i = 1
D̄ (hi , n) + ∑i−1

j=1D
(
h j

)
i > 1

(5)

If the systemhealth state is hi , then the availablemaintenance
actions set can be expressed as follows:

PMi = {PMii ,PMRe}
∪ {PMi j |1 ≤ j ≤ i − 1}, i = 2, 3, . . ., L − 1 (6)

where

PMii Adopt some minor non-replacement maintenance
actions such as lubrication, adjustment and cleaning.
The purpose is to keep the system staying at the cur-
rent health state hi as long as possible.

PMi j Adopt some imperfect non-replacement maintenance
actions such as repairing the internal loss of parts.
The maintenance goal is to restore the system from
current health state hi to a better health state h j , and
then the system existing age will become smaller.
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Fig. 3 Illustration of maintenance time

PMRe Adopt replacement maintenance actions by directly
using new parts to replace the old ones. The system
health state will be restored to the initial health state
h1.

Maintenance time

For different system health states, various maintenance
actions can be adopted to optimize the system to different
states and objectives. System maintenance and replacement
time cannot be ignored. The maintenance time is illustrated
in Fig. 3. Although themaintenance actions are able to ensure
high system reliability, the frequent maintenance actions
could also decrease the system utilization, which can be
expressed as follows:

Au = Total_uptime

Totaluptime + Total_downtime

=
∑

Ti∑
Ti + ∑

TPM1 + ∑
TPM2 + ∑

TRe
(7)

where Au represents the system utilization. Ti is the work-
ing time between two maintenance actions. TPM1 is the time
required by a minor maintenance action PMii . TPM2 is the
time required by an imperfect maintenance action PMi j . TRe
is the time required by a replacement maintenance action
PMRe.

Maintenance risk

In this paper, different maintenance actions can be adopted to
decrease the system degradation, including non-replacement
maintenance actions and replacement maintenance action.
Besides replacement, non-replacement maintenance actions
may have the risk of not making the improvement to the
expected maintenance level. For example, when the system

health state stays in hi , the maintenance action PMi j can be
adopted and the target is to optimize the system to a better
state h j . However, the actual health state hk after performing
maintenance action PMi j may not be h j , and it may be a
worse state than h j , and even it may generate a failure (i.e.
the worst maintenance, hk = hL).

Moreover, the systemwill appear aging phenomenonwith
the increase of lifetime, and the maintenance risk will also
increase. The actual maintenance effect will be further away
from the expected level. In this paper, r is used to denote the
maintenance risk.

The integrated decision model of system
maintenance management

Notations

The following notation will be used throughout this paper:

CSy System cost
CM System maintenance cost
CF System failure cost
C f Failure independent cost
Co Failure dependent cost
CAv Resources cost
Cs Spare parts shortage cost
Cp Personnel cost
CA Downtime cost
cs Spare parts shortage cost per unit
F Maintenance stages
xn Initial inventory level at the n-th maintenance

stage
y Total personnel quantity
cp Penalty coefficient when the personnel is

missing
c f,i Failure independent cost when the system

health state is in i
co(i , tn) Failure dependent cost when the system

health state is in iat timetn
Pji (tn) Transition probability from health state j to

state i when the existing age is tn
cm,i Maintenance independent cost when the

system health state is in i
cM (an |i) Maintenance dependent cost generated by

adopting maintenance action an when the
health state is in i

r(an |i) Spare parts demand quantity generated by
adopting the maintenance action an when
the health state is in i

p(an |i) Personnel demand quantity generated by
adopting the maintenance action an when
the health state is in i

CT (n, F − n, tn , a|i) Expected total cost corresponding to the
future F − n stages by the maintenance
action a

C(n, F − n, tn , a|i) Expected total system cost and resources cost
corresponding to the future F − n stages by
maintenance action a
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T (n, F-n, tn , a|i) Expected total maintenance time
corresponding to the future F − n stages by
maintenance action a

CAv(yn , an , bn |i) Resources cost at the n-th maintenance stage
while the health state is in i

b Transition probability shape factor (i.e.
degradation)

d Downtime factor (i.e. downtime cost
coefficient)

r Maintenance risk factor

Maintenance management

In this paper, a novel model is proposed for the systemmain-
tenance. Some basic descriptions for the maintenance model
are described as follows.

(1) The system health state hi ∈ [1, 2, . . ., L] can be
obtained from the HSMM diagnosis and prognosis
model (Liu et al. 2015).

(2) The system will transfer to a worse health state with the
increase of the system lifetime.

(3) When the system health state is hi , the available main-
tenance actions are as follows:

PMi = {PMii ,PMRe}
∪ {PMi j |1 ≤ j ≤ i − 1}, i = 2, 3, . . ., L − 1

When i = L , non-replacementmaintenance actions can-
not be adopted. The only available maintenance action
is to replace the current component of the system with a
new one.

(4) The replacement costCRe and replacement time TRe will
not change with the system health state. The cost and
time for non-replacement maintenance actions are CPM

and TPM , respectively.
(5) The failure cost CF is a non-decrease function corre-

sponding to health state hi and system existing agetn .

Cost model

The costs directly related to systemmaintenance actions con-
sist of the replacement cost (corresponding to PMRe), the
minor maintenance cost (corresponding to PMii ) and the
imperfect maintenance cost (corresponding to PMi j ), which
can be denoted as maintenance cost (CM ). The costs indi-
rectly related to system maintenance actions include failure
cost (CF ) and reserved resources cost (CAv). By adopting
maintenance actions, it can slow down the system deteriora-
tion and aging. Thus, the system failure cost caused by the
system degradation can be reduced. This illustrates that the
system failure cost is related with the system maintenance

and is a part of the total cost. On the other hand, in order to
implement the maintenance actions, different resources are
needed. Therefore, in the total cost, resources cost is also con-
sidered in the maintenance model. The failure cost is related
to the system health state while the resources cost is related
to the maintenance actions.

Thus, the total objective Ctotal includes system cost
CSy (including maintenance cost CM and failure cost CF ),
resources cost CAv and downtime cost CA. Downtime cost
is the production or application loss of the system as a result
of performing maintenance. Moreover, the downtime cost
can increase due to insufficient spares, unavailable person-
nel etc. The CA is related to the maintenance action time TM
and downtime cost coefficient d. Hence, the total objective
function of maintenance model considering both cost and
system utilization can be obtained.

MinCTotal = CSy + CAv + CA = CM + CF + CAv

+ TM × d (8)

System cost

Reducing the operating-support cost and increasing the
safety are the major interests of industries. The maintenance
of a system directly affects the availability and production
rate. It causes twokinds of costs: failure cost andmaintenance
cost. The failure cost often is larger than themaintenance cost
because it may involve in identification of failure, insufficient
spare parts at the failure time, and unavailable personnel due
to unplanned nature of the failure. However, if too many
maintenance actions are performed, it will lead to increase
maintenance cost. Hence, the system cost is defined as the
summation of maintenance cost and failure cost as follows.

CSy = CF + CM (9)

Failure cost consists of failure independent cost (C f ) and
failure dependent cost (i.e., operation cost Co). Failure inde-
pendent cost can be defined as the fixed cost due to any failure
(cool down, diagnostics, disassemble, re-assemble, start-up,
and warm up), and failure dependent cost is the repairing and
replacement cost of failed components. It can be expressed
as follows:

CF = C f + Co = c f,i +
i∑

j=1

Pji (tn)co(i, tn) (10)

where c f,i denotes the failure independent cost when the
system health state is in i . co(i , tn) is the failure dependent
cost when the system health state is in i at tn .Pji (tn) is the
transition probability from health state j to state i when the
system existing age is tn .
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Similar to failure cost, maintenance cost consists of main-
tenance independent cost and maintenance dependent cost.
Maintenance independent cost can be defined as the fixed
cost due to any maintenance (stop the system, cool down,
disassemble, re-assemble, start-up, and warm up), and main-
tenance dependent cost is the cost of the specificmaintenance
actions. It can be expressed as follows:

CM = cm,iδ (an) + cM (an|i) (11)

where cm,i denotes the maintenance independent cost when
the system health state is in i . If maintenance action an is
adopted, then δ(an) is 1. Otherwise, δ(an) is 0. cM (an|i)
describes the maintenance dependent cost generated by
adopting maintenance action an when the system health state
is in i .

Based on Eqs. (8)–(10), the total system cost can be
obtained as follows.

CSy = CM + CF = cm,iδ (an) + cM (an|i) + c f,i

+
i∑

j=1

Pji (tn) co (i, tn) (12)

Resources cost

In this paper, resources for maintenance implementation
include spare parts and personnel. The maintenance strategy
will be applicable only if the required resources are available
at the time of the maintenance. It will cause more downtime
costs if the maintenance cannot be performed due to lack of
resources. So it is important to incorporate available resource
information into the maintenance model. The resources cost
consists of spare parts shortage cost (Cs) and personnel cost
(Cp). And they can be written as follows:

CAv = Cs + Cp (13)

The spare parts shortage can affect the implementation of
maintenance actions. Furthermore, the production processes
might be affected since the system cannot be maintained
timely due to the spare parts shortage. Therefore, the spare
parts shortage could become a part of the total cost model in
order to avoid the high shortage penalty. Let cs be the spare
parts shortage cost per unit, then the shortage cost can be
obtained as follows:

Cs =
i∑

j=1

Pji (tn)max {0, cs (r (an|i) − xn)} (14)

where, xn denotes the initial inventory level at the n-th
maintenance stage. r(an|i) describes the spare parts demand

quantity generated by adopting the maintenance action an
when the system health state is in i .

In the proposedmodel, if the required personnel constraint
is not satisfied, then a distinct penalty cost will be defined
for each health state, which is calculated as the product of
the missing personnel number and a penalty coefficient. Let
cp be the penalty coefficient, y denote the total personnel
quantity and p(an|i) describe the personnel demand quantity
generated by adopting the maintenance action an when the
system health state is in i . Then the personnel cost can be
written as follows:

Cp =
i∑

j=1

Pji (tn)max{0, cp(p(an|i) − y)} (15)

Based on Eqs. (13)–(15), the available resources cost can
be obtained.

CAv = Cs + Cp =
i∑

j=1

Pji (tn) [max {0, cs (r (an |i) − xn)}

+max
{
0, cp (p (an |i) − y)

}]
(16)

The dynamic programming model

In this paper, we assume that the system maintenance has
F maintenance stages. The model aims to obtain the optimal
maintenance strategies in the future F maintenance stages. So
it can be transformed into an F-stage decision problem. For
each stage, the optimal maintenance strategy is obtained and
the optimal maintenance action is chosen. Thus, the optimal
strategy of each stage composes the overall optimal strategy.

Based on Eq. (6), the optimal decision is to choose the
optimal maintenance action. The results of the available
maintenance action set are as follows (Liu et al. 2013):

PMii The system stays at the current state after the minor
non-replacement maintenance, the system existing
age is reduced to

∑
k=1,2...,i−1t(k) + E �λ(tn−∑

k=1,2...,i−1t(k)) + 0.5
⌋
.

PMi j The system will restore to a better health state
after imperfect maintenance, and the system exist-
ing age is reduced to

∑
k=1,2..., j−1t(k) + E �λ(tn−∑

k=1,2..., j−1t(k)) + 0.5
⌋
.

PMRe The system health state will restore to h1 after replac-
ing the old parts by new ones, and the system existing
age is reduced to 0.

Here, t(k) represents the duration of a system staying at
health state hk , and its value can be obtained based onEqs. (2)
and (3). E �x� is the floor function and E �x + 0.5� will
round x to the nearest integer. λ is the maintenance utility
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function and λ ∈[0, 1]. When λ equals 0, the maintenance
action can obtain the best result. When λ equals 1, the main-
tenance action has no effect, and the system existing age will
remain unchanged.

Thus, the objective function for F maintenance stages can
be obtained as follows.

MinCT (n, F − n, tn, a|i)
= C(n, F − n, tn, a|i) + T (n, F − n, tn, a|i) × d (17)

where, a is the maintenance action adopted at the n-th main-
tenance stage. tn is the system existing age at the n-th
maintenance stage.CT (n, F−n, tn, a|i) is the total expected
cost corresponding to the future F − nstages by the main-
tenance action a. C(n, F − n, tn, a|i) is the total expected
system cost and resources cost corresponding to the future
F − n stages by maintenance action a. T (n, F − n, tn, a|i)
is the total expected maintenance time corresponding to the
future F − n stages by maintenance action a.

Corresponding to the F maintenance stages, let CAv(yn ,
an , bn|i) denote the resources cost at the n-th maintenance
stage while system health state is in i . Then, after n stages,
the expected total resources cost can be obtained as follows:

CAv (n, F − n, y, an, xn|i) = CAv (y, an, xn |i)
+

∑
j=i,i+1,...,L

Pi j (tn)

{
CAv (n + 1, F − n − 1, y, an+1, xn+1| j)∗

}
(18)

Based on Eqs. (16) and (18), the total expected resources
cost at the n-thmaintenance stage can be obtained as follows.

CAv (n, F − n, y, an, xn|i)

=
i∑

j=1

Pji (tn) [max {0, cs (r (an|i) − xn)}

+max
{
0, cp (p (an|i) − y)

}]
+

∑
j=i,i+1,...,L

Pi j (tn) {CAv(n + 1, F − n − 1, xn

− r (an|i) , y, an+1, xn+1| j)∗
}

(19)

For maintenance action a, the expected total cost in the
future F − nstages can be described as follows:

C(n, F − n, tn, a|i)
= CM (a) + CF (i, tn) + CAv(i, a, tn)

+
∑

j=i,i+1...,L

Pi j (tn){C(n+1, F−n − 1, tn + 1, a′| j)∗}

(20)

The total expected cost at the n-th maintenance stage con-
sists of two parts. One is the summation of failure cost,
maintenance cost and resources cost at the n-th stage, and the
other is the total expected cost of all stages after the n+1-th
maintenance stage.

For maintenance action a, the total expected downtime in
the future F − nstages can be described as follows:

T (n, F − n, tn, a|i) = t (a)

+
∑

j=i,i+1...,L

Pi j (tn){C(n + 1, F − n − 1, tn + 1, a′| j)∗}

(21)

The total expected downtime at the n-thmaintenance stage
consists of two parts. One is the maintenance actions time at
the n-thmaintenance stage, and the other is the total expected
maintenance time of all stages after the n+1-th maintenance
stage.

For a = PMii (i.e. minor maintenance), the total expected
cost and downtime can be obtained as follows.

C (n, F − n, tn, a/ i) = CM (PMii ) + CF (i, t)

+CAv (n, F − n, PMii , xn/ i)

+
L∑
j=i

r j−i (1 − r)
{
C

(
n, F − n, t ′ + 1, a′/j

)∗}
+ r L−i {C(

n, F − n, t ′ + 1, PMjL/L
)∗} (22)

T (n, F − n, tn, a/ i) = t (PMii )

+
L∑
j=i

r j−i (1 − r)
{
T

(
n, F − n, t ′ + 1, a′/j

)∗}
+ r L−i {T (

n, F − n, t ′ + 1, PMjL/L
)∗} (23)

a = PMi j (i.e. imperfective maintenance)

C (n, F − n, tn, a/ i) = CM
(
PMi j

) + CF
(
j, t∗

)
+CAv

(
n, F − n, PMi j , xn/ i

)
+

L∑
q= j

rq− j (1 − r)
{
C

(
n, F − n, t∗ + 1, a′/q

)∗}
+ r L−i {C(

n, F − n, t∗ + 1, PMqL/L
)∗} (24)

T (n, F − n, tn, a/ i) = t
(
PMi j

)
+

L∑
q= j

rq− j (1 − r)
{
T

(
n, F − n, t∗ + 1, a′/q

)∗}
+ r L−i {T (

n, F − n, t∗ + 1, PMqL/L
)∗} (25)

a = PMRe (i.e. replacement)

C (n, F − n, tn, a/ i) = CM (PMRe) + CF (1, 0)

+CAv (n, F − n, PMRe, xn/ i)
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+
L∑
j=i

P1 j (0)
{
C

(
n + 1, F − n − 1, 0, a′/j

)∗} (26)

T (n, F − n, tn, a/ i) = t (PMRe)

+
∑
j∈H

P1 j (0)
{
T

(
n + 1, F − n − 1, 0, a′/j

)∗} (27)

where,

t ′ =
∑

k=1,2,...,i−1

t(k)+ E

⎛
⎝λ

⎛
⎝tn−

∑
k=1,2,...,i−1

t(k)

⎞
⎠ + 0.5

⎞
⎠

t∗ =
∑

k=1,2,..., j−1

t(k)+ E

⎛
⎝λ

⎛
⎝tn−

∑
k=1,2,..., j−1

t(k)

⎞
⎠ + 0.5

⎞
⎠

The overall framework of the dynamic programming main-
tenance model is shown in Fig. 4.

A heuristic algorithm can be used to obtain the optimal
maintenance strategy a(n, F − n, tn|i)∗. When the system
existing age is tn and its health state is in i at the n-th main-
tenance stage, heuristic algorithm can be developed to solve
the maintenance model and obtain the optimal maintenance
strategy set. The detailed algorithm is described as follows:
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Fig. 4 The framework of the integrated dynamic maintenance model
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Fig. 5 Schematic diagram of the experiment setup

Here, a(F − m,m, tF−m |i)∗ denotes the optimal main-
tenance strategy corresponding to the system existing age
tF−m and health state i . A(F − m,m, tF−m)∗ describes the
optimal maintenance strategy set corresponding to the sys-
tem existing age tF−m for all health states. A(F − m, m)∗
is the optimal maintenance strategy set at the F − n − m-th
maintenance stage.

Case study

In the following, a case is studied to validate the proposed
integrated dynamic maintenance model with system prog-
nostics information and resources constraints.

Experimental setup and data acquisition

In this case study, the long-term wear test experiments
were conducted at a research laboratory facility (Shanghai
Pangyuan Machinery Co.). In the test experiments, three

pumps (A, B and C) were worn by running them using oil
containing dust. Each pump experienced four states: Level 1
(normal state), Level 2 (degradation state), Level 3 (degrada-
tion state), and Level 4 (failure state). The degradation stages
in this hydraulic pumpwear test case study correspond to dif-
ferent stages of flow loss in the pumps. As the flow rate of a
pump clearly indicates pump’s health state, the degradation
stages corresponding to different degrees of flow loss in a
pump were defined as the health states of the pump in the
test (Liu et al. 2015).

The vibration signals were collected from a pump
accelerometer that was positioned parallel to the axis of
swash plate swivel axis and data was continuously sampled.
Figure 5 shows the schematic diagram of the experimental
setup. The pump used for testing in the experiments was a
Back Hoe Loader: a 74 cc/rev variable displacement pump.
The data was collected at a sample rate of 60 kHz with anti-
aliasing filters from accelerometers which were designed to
have a usable range of 10 kHz. In many cases, the most dis-
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tinguished information is hidden in the frequency content
of signals. So the time-frequency representation of signals
is needed. In this case study, the signals were processed by
using wavelet packet with Daubechies wavelet 10 (db10) and
five decomposition levels as the db10 wavelet provided the
most effective way to capture the fault information in the
pumpvibration data. The coefficients obtained by thewavelet
packet decomposition were used as the inputs.

Data preparation and processing

(1) Health state transition probability

In this case study, thematrix of pumphealth state transition
probability can be obtained from the previous research work
(Liu et al. 2015). There are four health states in this case study,
including one normal state, two degradation states and one
failure state, which are defined as Level 1, Level 2, Level
3 and Level 4 (L), respectively. The matrix of health state
transition probability is shown as follows.

�t =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − b
′
(1 + β2)

t∑n
j=2P

0
1 j P0

12(1 + β2)
t b

′
. . . . . . P0

1F (1 + β2)
t b

′

0 1 − b
′
(1 + β2)

t∑n
j=3P

0
2 j . . . . . . P0

2F (1 + β2)
t b

′

... . . . . . .
. . .

...

0 . . . 1 − b
′
(1 + β2)

t P0
n−1,F P0

n−1,F (1 + β2)
t b

′

0 . . . . . . 0 PFF

⎤
⎥⎥⎥⎥⎥⎥⎦

where, β2 is aging factor (here, β2 = 0.18), b is a transition
probability shape factor (b

′ = 1 − b, 0 ≤ b < 1). When b
equals 0, it shows that the system degradation is in the basic
decrement mode. The initial transition probabilities among
four health states are given in Table 2. The duration t(k) of a
system staying at health state hk is given in Table 3.

Table 2 The initial health state transition matrix

Heath state Level 1 Level 2 Level 3 Level 4

Level 1 0. 9056 0.0879 0.0063 0.0002

Level 2 0 0.8491 0.1506 0.0003

Level 3 0 0 0.9129 0.0871

Level 4 0 0 0 1

Table 3 Expected duration for each health state

Heath state Level 1 Level 2 Level 3 Level 4

Mean of duration 10.4549 9.7923 11.3375 –

Variance of duration 1.9388 0.9792 1.2415 –

D(hi ) 10.6485 9.8900 11.4615 –

Table 4 Maintenance actions cost

Health state cm,i cM (PMiRe) cM (PMi1) cM (PMi2) cM (PMi3)

Level 1 100 18000 200 – –

Level 2 130 18000 500 250 –

Level 3 160 18000 700 650 400

Level 4 (L) 190 18000 – – –

Table 5 Maintenance actions time

Health state t (PMiRe) t (PMi1) t (PMi2) t (PMi3)

Level 1 1 0.1 – –

Level 2 1 0.5 0.15 –

Level 3 1 0.8 0.4 0.3

Level 4 (L) 1 – – –

(2) Maintenance action cost and time

The maintenance cost and time of various maintenance
actions are given in Tables 4 and 5, respectively.

(3) Failure cost

The failure cost is related to the system health state and its
lifetime. Then the failure independent cost can be obtained
as follows:

c f,i =

⎧⎪⎪⎨
⎪⎪⎩
150 i = 1
200 i = 2
250 i = 3
300 i = 4

The failure dependent cost function can be described as fol-
lows:

co(i, t) =

⎧⎪⎪⎨
⎪⎪⎩
120i + 90t i = 1
80i + 93t i = 2
70i + 95t i = 3
∞ i = 4

(4) Resource cost

The demand quantities of spare parts and personnel are
determined by the current systemhealth state and the adopted
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Table 6 Demand quantities of spare parts

Health state PMiRe PMi1 PMi2 PMi3

Level 1 5 0 – –

Level 2 5 1 0 –

Level 3 5 3 1 0

Level 4 (L) 5 – – –

Table 7 Demand quantities of personnel

Health state PMiRe PMi1 PMi2 PMi3

Level 1 3 0 – –

Level 2 3 1 0 –

Level 3 3 2 1 0

Level 4(L) 3 – – –

maintenance actions, which are shown in Tables 6 and 7,
respectively.

(5) Maintenance risk

In this paper, maintenance risk factor r is used to describe
the maintenance action risk. With the growth ofr , the main-
tenance action risk will increase. Thus, two conditions can
be considered (i.e. smaller maintenance risk and larger main-
tenance risk).

When the maintenance risk is smaller, it can be shown as
follows:

r(t) =
⎧⎨
⎩
0.05 1 ≤ t < 20
0.05 + 0.02(t − 20) 20 ≤ t < 45
0.5 45 ≤ t

When the maintenance risk is larger, it can be shown as
follows:

r(t) =
⎧⎨
⎩
0.2 1 ≤ t < 20
0.2 + 0.03(t − 20) 20 ≤ t < 45
0.6 45 ≤ t

The values of parameters related to resources and other
parameters are given as follows:

cs = 1200, cp = 1300, x1 = 8, y = 2,

λ = 0.6, d = 1000, F = 12

Maintenance strategy comparisons

Nowadays, periodic maintenance, defined as significant
activities carried out regularly to maintain the condition or
operational status of the system, is a common maintenance
strategy. The periodic maintenance includes periodic inspec-
tions, periodic repairs and preventive maintenance. In this
paper, periodicmaintenance aims to obtain the optimalmain-
tenance strategies in one life-cycle of the system.And the one
life-cycle of the system can be divided into 4 states based on
system health states obtained by the work (Liu et al. 2015).
For each stage, there is a time interval between two main-
tenance actions, in which the optimal maintenance strategy
can be adopted.

Based on system health states, when the current stage is
staying at the health state Level 1, minor non-replacement
maintenance actions are adopted. This will keep the system
stay at the current health Level 1 as long as possible. If the
current stage is staying at the health state Level 2 or Level 3,
imperfect non-replacement maintenance actions are adopted
and thiswill restore the system fromcurrent health stateLevel
2 or Level 3 to a better health state. When the current stage is
staying at the health state Level 4, replacement maintenance
actions by directly using new parts to replace old ones are
adopted. This will restore the system from current health
state Level 4 to a better health state. The detailed periodic
maintenance strategies are shown in Table 8.

For the purpose of simulating different conditions, three
major parameters are chosen: shape factor b, downtime factor
d and maintenance risk factor r . The three parameters can be
differently combined to illustrate the performance of the pro-
posed methods, and two values can be chosen corresponding
to each parameter. They can be shown in Table 9.

Based on Table 9, eight combination strategies can be
simulated, and the combination strategies can be shown in
Table 10.

Table 8 Periodical maintenance strategies

Health state 0< t ≤ 20 Maintenance
every 10 time unit
(T = 10)

20 < t ≤ 35 Mainte-
nance every 7 time unit
(T = 7)

35 < t ≤ 45 Mainte-
nance every 5 time unit
(T = 5)

45 < t Maintenance
every 3 time unit
(T = 3)

Level 1 PM11 PM11 PM11 PM11

Level 2 PM21 PM21 PM22 PM22

Level 3 PM31 PM32 PM33 PM33

Level 4 (L) PM4Re PM4Re PM4Re PM4Re
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Table 9 Parameter condition
Deterioration b1 = 0 (decrement mode) b2x = 0.3 (bell mode)

Downtime d1 = 1000 (small downtime) d2 = 5000 (large downtime)

Maintenance risk r1 (small maintenance risk) r2 (large maintenance risk)

Table 10 Parameter combination strategy

Combination 1 2 3 4 5 6 7 8

Deterioration b1 b2 b1 b2 b1 b2 b1 b2

Downtime d1 d1 d2 d2 d1 d1 d2 d2

Maintenance risk r1 r1 r1 r1 r2 r2 r2 r2

Discussion and performance evaluation

Result analysis

In this case study, for each combination, both periodical
maintenance and integrated maintenance strategy are carried
out 10 simulations. For each simulation, the twomaintenance
strategies run 600 monitoring cycles to obtain the optimal
solution, respectively. The maintenance strategy evaluation
criteria include average unit cost c and average system life t .
The results are provided in Table 11.

It can be seen from the 8 combinations in Table 11 that
the integrated dynamic maintenance strategy has a better

performance than the periodical maintenance strategy in
terms of extending system life, increasing system utilization
and decreasing unit cost. For all combinations of integrated
dynamic maintenance strategy, combination 1 is the best
one. Due to the active maintenance actions of the integrated
dynamicmaintenance strategy, the system residence time in a
better state is longer than that of the periodical maintenance
strategy. Thus, the average life cycle of a system adopting
dynamic programming maintenance strategy is also longer
than that of the periodical maintenance strategy.

For the integrated maintenance strategy, from Table 12,
it can be seen that the periodical maintenance increases
the system average life, but it has a long downtime and
very high maintenance cost. The target of the integrated
dynamic maintenance strategy is not only to increase sys-
tem life, but also to choose the optimal maintenance strategy
based on the system health states so that the system uti-
lization is improved and the average unit cost is decreased.
Compared with the no-maintenance method, the integrated
maintenance strategy increases the utilization by 1.39% and
decrease the average unit cost by 26.91%. Compared with

Table 11 Comparison of
simulation results for different
maintenance strategies

Integrated dynamic
maintenance

Periodic
maintenance

Integrated dynamic
maintenance

Periodic
maintenance

Combination 1 Combination 2

c 1351.87 1751.49 1522.37 1938.31

t 64.38 52.19 52.87 44.62

Decreasing c 399.62 (22.81%) 415.94 (21.45%)

Extending t 12.19 (23.35%) 8.25 (18.48)

Combination 3 Combination 4

c 1765.43 2191.07 1923.73 2262.7

t 60.26 51.79 53.52 45.87

Decreasing c 425.64 (19.42%) 338.97 (14.98%)

Extending t 8.47 (16.35%) 7.65 (16.67%)

Combination 5 Combination 6

c 1503.64 1943.95 1603.95 1951.78

t 55.97 46.36 50.77 43.57

Decreasing c 440.31 (22.65%) 347.83 (17.82%)

Extending t 9.61 (20.72%) 7.2 (16.53%)

Combination 7 Combination 8

c 1889.16 2168.97 1980.41 2277.93

t 58.92 50.53 48.94 42.76

Decreasing c 279.81 (12.9%) 297.52 (13.06%)

Extending t 8.39 (16.61%) 6.18 (14.45%)
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Table 12 Comparison of
simulation results for different
maintenance strategies

Evaluation
criteria

Integrated dynamic
maintenance strategy

Pure dynamic
maintenance

Periodic maintenance
strategy

No-maintenance
strategy

c 1692.57 1851.86 2060.78 2318.53

t 55.71 51.69 47.21 32.69

Au (%) 98.85 95.29 91.28 95.42

0 10 20 30 40 50 60
0

2

4

6

8

M
ai

nt
en

an
ce

 a
ct

io
ns

System life t

Fig. 6 The periodical maintenance strategy in one life-cycle of the
system

the periodical maintenance, the integrated dynamic mainte-
nance strategy increases the system utilization by 5.91% and
decrease the average unit cost by 17.88%. Compared with
the pure dynamic maintenance strategy without considering
the constraints, it can increase the system utilization by 3.6%
and decrease the average unit cost by 8.6%.

Figures 6 and 7 describe the periodical maintenance activ-
ities and the integrated maintenance activities within one
life-cycle of the system, respectively. In Figs. 6, 7 and 8,
y-axis denotes the maintenance actions, where 1 = PM11,
2 = PM21, 3 = PM22, 4 = PM31, 5 = PM32, 6 = PM33,
7 = PMRe. And x-axis represents the system life. From
Fig. 6, it can be seen that the periodical maintenance still
implements a large number of maintenance actions even
when the system health state enters Level 3 and the system
life exceeds 45. Although thesemaintenance actions increase
the system life, they increase both downtime cost and main-
tenance cost.

From Fig. 7, it can be seen that the integrated maintenance
strategy implements a great deal of maintenance actions such
as PM11 and PM21 at the system initial working state. This
keeps the system at a better health state for a long time and
generates a lower failure cost. With the increase of working
time, once the system enters health state Level 3, even if the
maintenance action PM31 is adopted to restore the system
health state from Level 3 to Level 1, its health state will
return back to Level 3 quickly. Figure 7 indicates that the
integrated maintenance doesn’t implement a large number of
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Fig. 7 The integrated maintenance strategy in one life-cycle of the
system
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Fig. 8 The relationships between the integrated maintenance and
resource

maintenance actions once the system enters Level 3. Instead,
a replacement maintenance action is adopted directly.

Resource analysis

The relationships between the integrated dynamic mainte-
nance strategy and resources within one system life-cycle
need to be analyzed. For combination 1 of the integrated
dynamicmaintenance strategy, the results are shown inFig. 8.
It can be seen from Fig. 8, due to the limit of spare parts
level, when the system health state enters Level 2, the opti-
mal maintenance strategy does not choose to implement the
maintenance action PM21immediately to restore the health
state from level 2 to Level 1. With the growth of working
time, the maintenance actions PM21 and PM31are adopted
by the optimal maintenance strategy, and it has no effect
on system utilization. Moreover, the required resources are
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Fig. 9 Maintenance actions corresponding to different shape factor b

always available in the process of the optimal maintenance,
including spare parts and personnel.

Strategy dynamic analysis

The maintenance strategy can be affected by three main
parameters: transition probability shape factor b, downtime
factor d and maintenance risk factor r .

(1) The impact of degradation on the integrated dynamic
maintenance decision

For combinations 1 and 2, they have same downtime, but
with different degradation. Corresponding to different b, the
maintenance actions are shown in Fig. 9.

With the increase of b, the degradation mode gradually
transits from decrement mode to bell mode. In the decrement
mode, the system stays at the current state with the greatest
probability. In the bell mode, the probability of the system
remaining at the current state becomes small, and the system
is more inclined to the less healthy state. Thus, replacement
maintenance actions may be needed to slow down the system
aging.

The different degradation modes generate different main-
tenance strategies. From Fig. 9, it can be seen that the
integrated dynamic maintenance strategy can be automati-
cally adjusted to accommodate different degradation modes.

(2) The impact of downtimeon the integrateddynamicmain-
tenance decision

For combinations 1 and 3, they have same degradation,
but with different downtime. Corresponding to different d,
the maintenance actions are shown in Fig. 10.

With different values of the downtime factor d, the system
has different utilizations and downtime loss. Compared with
other maintenance actions, the replacement action requires a
longer time and may cause more downtime losses. With the
increase of d, many non-replacement maintenance actions
need to be adopted to reduce the number of replacement
maintenance actions and avoid that the system transits into a
worst state.

(3) The impact of maintenance risk on the integrated
dynamic maintenance decision

Non-replacement maintenance actions have a certain
amount of maintenance risk. With the increase of mainte-
nance risk, the actual maintenance effect is further away
from the target results. For combination 1 and combination
5, they have same degradation and downtime, and differ-
ent maintenance risk. Thus, corresponding to different r , the
maintenance actions can be shown in Fig. 11.

With the increase of maintenance risk, the system needs
to increase the improvement of maintenance actions to
decrease themaintenance risk generated by adoptingmainte-
nance actions, and transform maintenance actions. It can be
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Fig. 10 Maintenance actions corresponding to different downtime factor d
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Fig. 11 Maintenance actions corresponding to different maintenance risk r

seen from Fig. 11 that the integrated dynamic maintenance
strategy can adjustmaintenance actions corresponding to dif-
ferent maintenance risk.

Based on the above analysis, the three main parameters
are connected by maintenance actions. Moreover, with the

change of different parameters, minor maintenance action
(PMii ) and imperfect maintenance action (PMi j ) often need
to be adopted in order to reduce the number of replacement,
the degradation mode can be changed, and the system needs
to transform maintenance actions. Thus, for different param-
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Table 13 The results of sensitive analysis

Factors/Indexes Downtime factor Maintenance stages Health states Shape factor Maintenance risk

Convergence Range 1876 920 523 1811 1878

Sequencing 2 4 5 3 1

Dynamic performance Range 337 126 199 290 319

Sequencing 1 5 4 3 2

Timeliness stability Range 5.945 1.729 1.512 2.026 4.342

Sequencing 1 4 5 3 3

eters, different maintenance actions can be adopted to stay
the system in a better state and adapt the change of differ-
ent parameters by the integrated model. It can be concluded
that the integrated dynamic maintenance strategy has a good
dynamic performance for b, d and r . Moreover, it can obtain
the optimal maintenance strategy and maintenance actions
based on different parameters.

Sensitivity analysis

In the experiment described above, the proposed models are
solved by a heuristic algorithm. In order to analyze the sen-
sitivity of the proposed methods, its convergence, dynamic
performance and timeliness stability are developed as perfor-
mance evaluation indexes, and downtime factor,maintenance
stages, health states, transition probability shape factor and
maintenance risk factor are selected as major factors. The
orthogonal test method is used to carry out this test, and the
range analysis method is used to determine the impact of
factors on the performance of a heuristic algorithm (Anni-
bale et al. 2015). And the results in Table 13 show that the
range sequence of transition probability shape factor, down-
time factor and maintenance risk factor always occupies the
top three, thus, they are the most sensitive factors affect-
ing the comprehensive performance of the proposed models.
The number of the health states and maintenance stages has
lower sensitivity and they don’t influence on the efficiency of
the algorithm and the proposed models. Moreover, the per-
formance of the heuristic algorithm is more sensitive in the
three parameters.

Based on the sensitivity analysis, the proposed method
and the heuristic algorithm have good sensitivity, and three
parameters are fully considered to solve the integrated main-
tenance problem, including the transition probability shape
factor, downtime factor and maintenance risk factor.

Conclusions

This paper emphasizes the need of a maintenance opti-
mization method using prognostic information and resource

planning. For many industries, on one hand, the unavailabil-
ity of resources is a major problem. On the other hand, the
system deterioration and aging information from prognosis
models are not utilized well in current literatures. There-
fore, an effective framework to this problem is the integrated
optimization of predictive maintenance and resource plan-
ning. From the managerial insights of the model, system
actual deterioration and aging information are integrated, and
the spare parts and actual maintenance personnel also are
considered. In this paper, a dynamic programming model is
proposed for this integrated maintenance optimization prob-
lem. And the corresponding solution algorithm is developed.
Finally, a case is studied to validate the proposed methods.
From the experiment results, the comparisons between the
proposed model with the common periodical maintenance
strategy show several benefits of the integrated dynamic
maintenance strategy, and it indicates that the proposed
method is effective for the system maintenance by using
prognostic information.

The long-term wear test experiments are conducted at a
research laboratory facility of Shanghai Pangyuan Machin-
ery Co.. Industrial implementation and demonstration of
the newly proposed methods in a real factory environment
remains to be doing, and the primary effect can be obtained.
The further application needs to be done in the future.

Furthermore, a number of interesting directions for fur-
ther research can be followed based on the ideas proposed in
this study. The prognostics with missing of degradation data
caused by failure of data transmission or manipulation errors
could be considered. And based on the proposed methods,
maintenance schedulingmodels with prognostic information
could be developed. Finally, extension of the methods pro-
posed in this paper to service systems is another opportunity
for further enhancing the benefits of maintenance operations
through the usage of predictive condition information.
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