J Intell Manuf (2019) 30:1137-1154
https://doi.org/10.1007/s10845-017-1313-7

@ CrossMark

Combining SOM and evolutionary computation algorithms

for RBF neural network training

Zhen-Yao Chen! - R. J. Kuo?

Received: 30 October 2014 / Accepted: 17 February 2017 / Published online: 27 February 2017

© Springer Science+Business Media New York 2017

Abstract This paper intends to enhance the learning perfor-
mance of radial basis function neural network (RBFnn) using
self-organizing map (SOM) neural network (SOMnn). In
addition, the particle swarm optimization (PSO) and genetic
algorithm (GA) based (PG) algorithm is employed to train
RBFnn for function approximation. The proposed mix of
SOMnn with PG (MSPG) algorithm combines the automat-
ically clustering ability of SOMnn and the PG algorithm.
The simulation results revealed that SOMnn, PSO and GA
approaches can be combined ingeniously and redeveloped
into a hybrid algorithm which aims for obtaining a more
accurate learning performance among relevant algorithms.
On the other hand, method evaluation results for four contin-
uous test function experiments and the demand estimation
case showed that the MSPG algorithm outperforms other
algorithms and the Box—Jenkins models in accuracy. Addi-
tionally, the proposed MSPG algorithm is allowed to be
embedded into business’ enterprise resource planning sys-
tem in different industries to provide suppliers, resellers or
retailers in the supply chain more accurate demand informa-
tion for evaluation and so to lower the inventory cost. Next,
it can be further applied to the intelligent manufacturing sys-
tem to cope with real situation in the industry to meet the
need of customization.

B Zhen-Yao Chen
keyzyc@gmail.com

R.J. Kuo
rjkuo@mail.ntust.edu.tw

Department of Business Administration, DE LIN Institute of
Technology, New Taipei City, Taiwan

Department of Industrial Management, National Taiwan
University of Science and Technology, Taipei, Taiwan

Keywords Hybrid algorithm - Radial basis function neural
network - Self-organizing map neural network - Particle
swarm optimization - Genetic algorithm

Introduction

In general, statistical methods can obtain reasonable predic-
tion accuracy for future demand conditions, they have two
common limitations: (1) it is difficult to specify the most
suitable model without human expertise; (2) the models gen-
erated by these methods may not be able to capture some
strongly nonlinear characteristics of short-term demand data
(Chan et al. 2012). Also, the widely used time series mod-
els for forecasting purpose especially auto-regressive (AR)
integrated moving average (MA) (ARIMA) model (Box and
Jenkins 1976) is generally applicable to linear modeling and
it hardly captures the non-linearity inherent in time series
data (Jaipuria and Mahapatra 2014). Further, it is very impor-
tant for decision-makers to focus on alternative models when
non-stationary and non-linearity play a significant role in
the forecasting (Sattari et al. 2012). Therefore, according
to reliable sales forecasting methods, decision-makers can
response quickly to market change, maintain the inventory
in a relatively low level, and control the cost of production
(Du et al. 2015).

Various meta-heuristic optimization algorithms have been
applied to solve different optimization problems by
researchers in many different scientific areas. The main
objective all of the optimization algorithms is to be oper-
ated to search the global optimum to the all optimization
problems (Duman et al. 2015). After that, neural network
(NN) is an artificial intelligence (AI) system, which con-
verts information of different space into the same space
through simulating human intelligence behaviors. It is effec-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-017-1313-7&domain=pdf

1138

J Intell Manuf (2019) 30:1137-1154

tively applied to many application fields (Lu et al. 2015).
For forecasting purpose, NN neither requires any statisti-
cal information nor stationary nature of data series (Jaipuria
and Mahapatra 2014). For example, the self-organizing map-
ping (SOM) algorithm (Kohonen 1987) is one of the most
popular NN model based on the unsupervised competitive
learning paradigm (Yadav and Srinivasan 2011). Next, radial
basis function neural networks (RBFnns) have a number of
advantages over other types of NNs and these include better
approximation capabilities, simpler network structures and
faster learning algorithms (Qasem et al. 2012).

Additionally, due to the omnipresence of constraints
in real-world optimization problems, constrained optimiza-
tion problems have received considerable attentions over
recent years. There is an increasing number of nature-
inspired meta-heuristic algorithms (Mezura-Montes and
CoelloCoello 2011) proposed, such as genetic algorithm
(GA) (Holland 1975), particle swarm optimization (PSO)
(Kennedy and Eberhart 1995), and artificial bee colony
(ABC) (Karaboga and Basturk 2008) algorithms.

Prediction under soft-computing models, such as NN,
intelligent algorithms and hybrid intelligent approaches were
used (Anbazhagan and Kumarappan 2014). The previous
researchers have adopted the RBFnn structure along with
other single approaches such as PSO (Feng 2006) and GA
(Sarimveis et al. 2004), to implement the learning of the
network. However, as every single technique always exists
with some drawbacks, hybridizing is a reasonable way to
take strengths and avoid weakness. Therefore, the hybrid
methods become very popular for the combinatorial opti-
mization problem (Qiu and Lau 2014). As such, this study
intends to propose a mix of SOMnn with PSO and GA based
(MSPG) algorithm for training RBFnn and make suitable
performance verification and comparison. The evolutionary
learning mechanism of the MSPG algorithm can be used
to train and find out the optimal network parameters within
the solution space of the individuals generated population
in RBFnn. Further, we can utilize this verified MSPG algo-
rithm, in terms of forecasting accuracy, to make predictions
in the demand estimation problem.

In summary, this study starts from the idea of “clustering
first then classification (2-stage)” to integrate SOMnn and
evolutionary computation algorithms (ECAs) and then pro-
poses the MSPG algorithm. Further, the MSPG algorithm is
applied on the RBFnn training to obtain the better learning
performance with much higher forecasting accuracy. This is
considered the contribution to the theoretical methodology
in this paper. In addition, the proposed MSPG algorithm is
allowed to be further embedded into business’ information
system to perform its forecasting capability with high accu-
racy. Therefore, it can be applied to the enterprise resource
planning (ERP) system in different industries to provide sup-
pliers, resellers or retailers in the supply chain more accurate

@ Springer

demand information for evaluation and so to lower the inven-
tory cost. This is considered the contribution to the practical
domain in this paper.

The rest of this paper is organized as follows. “Lit-
erature review” section summarizes RBFnn, SOMnn, and
several ECAs. The proposed MSPG algorithm is presented
in “Methodology” section. The results of experimental simu-
lation, model evaluation, and comparison with relevant algo-
rithms are illustrated in “Experimental simulation results”
and “Model evaluation results” sections. Finally, concluding
remarks are made in “Conclusions” section.

Literature review

This section presents general backgrounds associated to this
research, including RBFnn, SOMnn, and evolutionary com-
putation algorithms. The theories and applications pertaining
to this study will be discussed in detail.

Radial basis function (RBF) neural network (RBFnn)

RBFnn was proposed by Duda and Hart (1973), it provides an
alternative to accomplish the same work as NN does (Huang
and Wang 2007). Next, the transfer function of the hidden
layer is generally a non-linear Gaussian function (Wu and
Liu 2012). Further, the mathematical equation which defines
a RBFnn is given as (Ayala and Coelho 2016)

M
@O =D wad(r (), cm, om), (1

m=1

where M € N7 is the number of neurons in the hidden
layer, y(¢) € Rand r(z) € R™ are, respectively, the network
predicted output and the input vector at a given instant ¢;
¢m € R and 0, € R™ are, respectively, the center and the
width of the mth hidden node of RBFnn. Each of the output
weights is given by w;,, € R. The Gaussian RBF is defined
as (Ayala and Coelho 2016)

_ 2
B(r.c.0) = exp (_u)

202
—exp—ot5 D — i) @)
202 —

Afterward, because of the simple topological structure and
the ability to reveal how learning proceeds in an explicit
manner, the RBFnn has been widely used as the universal
function approximator to solve nonlinear problems (Lin and
Wu 2011). In the field of prediction, Yu et al. (2010) proposes
an RBFnn-ensemble forecasting model to obtain accurate

J Intell Manuf (2019) 30:1137-1154

1139

prediction results and improve prediction quality further. In
addition, Shafie-khah et al. (2011) proposed a novel hybrid
model to forecast day-ahead electricity price, based on the
wavelet transform, ARIMA models and RBFnn.

The difficulty of applying the RBFnns is in network train-
ing which should select and estimate properly the input
parameters including centers and widths of the basis func-
tions and the neuron connection weights (Tsekouras and
Tsimikas 2013). Next, feature pre-processing technique in
forecasting model also influences the forecasting accuracy
significantly. Especially, a NN combined with pre-processed
input feature data will achieve better prediction accuracy
(Anbazhagan and Kumarappan 2014).

Self-organizing map (SOM) neural network (SOMnn)

A self-organizing map (SOM) neural network (SOMnn) is a
nonlinear NN paradigm (Kohonen 1987). Next, learning in
the SOM is unsupervised, making it useful in a variety of
situations and easily modified to suit a variety of purposes
(Rumbell et al. 2014). Contrary to the supervised clustering
algorithms, unsupervised clustering algorithms do not need
prior information that makes these algorithms more accept-
able in the literature (Ozturk et al. 2015).

The key to a successful implementation of SOMnn is to
find suitable centers for the Gaussian functions (Kurt et al.
2008). The SOMnn consists of M neurons arranged in a 2-D
rectangular or hexagonal grid (Hadavandi et al. 2012).

Each neuron i is assigned a weight vector, w; € R" (index
i = (p, q) for 2-D map). At each training step 7, a training
data x’ € R" is randomly drawn from data set and calculates
the Euclidean distances between x’ and all neurons. A win-
ning neuron with weight of w; can be found according to the
minimum distance to x’:

. . o
Jj = argmin ”x w;
l

, iefl,2,...,M} 3)

Then, the SOM adjusts the weight of the winner neuron and
neighborhood neurons and moves closer to the input space
according to:

with = w! +a' x h x [x" —wl], “4)

where o and h’ji are the learning rate and neighborhood
kernel at time #, respectively. Both of and h’ji decrease
monotonically with time and within [0, 1]. The neighbor-
hood kernel h;i is a function of time and distance between
neighbor neuron i and winning neuron. A widely applied
neighborhood kernel can be written in terms of Gaussian
function:

, | = ri]?
hji = exp —20—2 , (5
t

where r; and r; are the position of winner neuron and neigh-
borhood neuron on map. oy is kernel width and decreasing
with time. This process of weight-updating will be performed
for a specified number of iterations (Hadavandi et al. 2012).

SOM networks’ ability to associate new data with similar
previously learnt data can be applied to forecasting appli-
cations (Lopez et al. 2012). For example, Hsu et al. (2009)
showed that SOM outperforms the hierarchical methods in
clustering messy data and has better accuracy and robustness.
Also, Lin and Wu (2009) proposed a hybrid NN model to
forecast the typhoon rainfall using the SOMs and the feed-
forward NNs. Further, feature pre-processing technique in
forecasting model influences the forecasting accuracy sig-
nificantly. Especially, a NN combined with pre-processed
input feature data will achieve better prediction accuracy
(Anbazhagan and Kumarappan 2014).

Evolutionary computation algorithms (ECAs)

Evolutionary computations (ECs) inherit the principles of
biological evolution. This is stochastic in nature and stronger
as compared to traditional optimization methods (Dey et al.
2014). Further, considering the drawbacks of traditional opti-
mization techniques, attempts are being made to solve the
optimization problems by using meta-heuristics, which are
mostly nature inspired, such as PSO, artificial immune algo-
rithm (ATA), and GA algorithms (Savsani et al. 2014). After
that, PSO is a novel multi-agent optimization system inspired
by social behavior metaphor (Kennedy and Eberhart 1995),
while GAs are a family of computational models developed
by Holland in 1975. Thus, PSO and GA are two intelli-
gent optimization algorithms that are widely and successfully
applied in various types of model parameter estimation
because of their outstanding optimization capability (Yu et al.
2015b).

PSOis a swarm intelligence-based optimization technique
inspired by social behavior and dynamic movement of a flock
of insects, birds, and fish, which was developed by Kennedy
and Eberhart (1995) (Ketabchi and Ataie-Ashtiani 2015). In
a PSO system, each particle is ‘flown’ through the multidi-
mensional search space, adjusting its position in search space
according to its own experience and that of neighboring parti-
cles (Wang et al. 2014). Further, the velocities and positions
of particles are updated in each time step according to the
following equations (Kennedy and Eberhart 1995):

Via(t + 1) = Vig(t) + C1r1a(Pia — Xia)
+ Coraq(Pga — Xia); (6)
Xigt+1) = X;q(®) + Vigt + 1), @)

@ Springer

1140

J Intell Manuf (2019) 30:1137-1154

where C1 and C; are called cognitive and social acceleration
coefficients respectively, 14 and rp4 are two random numbers
in the interval [0, 1] (Kennedy and Eberhart 1995). After-
ward, PSO is based on social adaptation of knowledge for
working, and all individuals are considered to be of the same
generation. The particles with higher degree of constraint
violation fly by the search space according to the informa-
tion exchanged by their P;4 (i.e., local best, Lbest) and Pgy
(i.e., global best, Gbest) to search the better positions (Deng
et al. 2012).

PSO shares many similarities with other EC techniques.
The system is initialized with a population of random
solutions and searches for optima by updating generations
(Katherasan et al. 2014). Unlike GA, PSO has no evolution
operators such as crossover and mutation. Compared to GA,
the advantages of PSO are that PSO is easy to implement and
there are few parameters to adjust (Katherasan et al. 2014).
However, although the original PSO presents a high conver-
gence velocity, it does not present the capability to escape
from local minima. It occurs because the original PSO is
not able to maintain diversity within the swarm whenever it
is necessary during the search process. These issues affect
the PSO performance, mainly in dynamic problems or high
dimensional multimodal search spaces (Vitorino et al. 2015).
In addition, an adaptive self-generating RBFnn model with
mixed encoding PSO is utilized to optimize the RBF’s struc-
ture and parameters (Yu et al. 2009) and applied to predict
the primary energy consumption of China (Yu et al. 2012b).
Recently, researchers working in this area have started taking
some interest on some promising approaches to numerical
optimization.

On the other hand, the GA is referred to as EC technique
and was proposed by Holland (1975) as an algorithm for
searching an optimal solution based on survival of the fittest.
The GA searches for an optimal solution through genera-
tions. Typically, the search starts with a population believed
to possess the required best solution to the problem to be
solved. Survival of the fittest is responsible for fostering evo-
lution in the population to create the fittest chromosomes
(Chiroma et al. 2015). The chromosomes with the best fit-
ness values are selected for crossover and mutation whereas
those with lower fitness are ignored for the reproduction. The
fitness values are determined by the objective cost function
of the problem. The fittest chromosomes are then selected
for recombination through mutation and crossover, which is
typically performed with probabilities (Chiroma et al. 2015).
Next, GA is an effective optimization method for large and
complex problems to escape the local optima and acquire
a global optimal solution (Bagheri et al. 2015). Also, GAs
present many advantages that have led to an increasing use,
particularly with the rise in the processing power of comput-
ers. As they work with a set of potential solutions, GAs do
not easily get trapped in local minima (Bagheri et al. 2015).

@ Springer

PSO and GA never require initial guesses and only the
upper and lower bound must be defined (Garcia-Gonzalo and
Fernandez-Martinez 2012). The superiority of such methods
over other statistical/engineering ones is their ability to han-
dle local minima/maxima points efficiently (Rezaee-Jordehi
and Jasni 2013). Next, to avoid the particle to be stuck in the
local minimum, Kuo and Han (2011) integrated the mutation
mechanism of GA with PSO. In addition, although a great
research effort has been put forward to obtain an ideal, accu-
rately constructed and visually meaningful image clustering
performance by Kuo et al. (2012), it still remains a challenge
(Ozturk et al. 2015). Further, the hybrid PSO-GA algorithm
has been applied for optimization in some fields, such as
in primary energy demand prediction (Yu et al. 2012a) and
curve fitting of manufacturing (Galvez and Iglesias 2013;
Yu et al. 2015a). In addition, in the PSO-GA algorithm (Yu
et al. 2012a), PSO first transforms the population into cer-
tainty generations. The best particles are retained, whereas
the other particles are removed. Second, new individuals
are generated by implementing the selection, crossover, and
mutation operators of GA according to the remaining best
particles. Third, the generated new individuals are placed in
the remaining best particles to form a new population for the
next generation. During the evolution process, the algorithm
exchanges information several times to fully exploit the com-
bination (Yu et al. 2012a). Recently, to strike a right balance
between the performance and time complexity, a handful of
meta-heuristics emerge as useful and powerful approaches
to solve a wide range of optimization problems (Zhang et al.
2015a).

Methodology

The main idea underlying SOMnn is that RBFnns are local
approximations, and the centers of local units (RBF neurons)
are adjusted to move to the real center in the sense of fea-
ture representation (Er et al. 2005). The SOM is selected
for this study since it is a fast, easy and reliable unsupervised
clustering technique. SOM is used to divide the data into sub-
population and hopefully reduce the complexity of the data
space to more homogeneous sub-classes (Chang and Liao
2006). Further, the traditional SOM formulation includes a
decaying neighborhood width over time to produce a more
finely tuned output mapping (Rumbell et al. 2014).

As such, combining the automatically clustering ability of
SOMnn (Kohonen 1987) with the PG algorithm, we proposed
the mix of SOMnn with PG (MSPG) algorithm to improve
the accuracy of function approximation by RBFnn. It pro-
vides the settings of some parameters, such as the neuron,
width, and weight within RBFnn. During the process of the
MSPG algorithm, SOMnn determines the number of center
and its position values at first through its automatically clus-

J Intell Manuf (2019) 30:1137-1154

1141

Data: Training; Validation; Testing

Unsupervised Supervised
learning

Clustering: Classification:
SOMnn , RBFnn-MSPG Modelling
N
T Em s "
: (neuron) . Optimize parameters of
Modelling t-------- s A
i RBFnn with MSPG algorithm
(center) (neuron, width, and weight)

J L

Function Approximation & Demand Estimation

Fig. 1 The framework of the proposed MSPG algorithm

tering ability. The results are used as the number of neuron
in RBFnn. The algorithm for the PG algorithm provides the
settings of some parameters, such as the width and weight in
RBFnn. The framework for the MSPG algorithm is illustrated
in Fig. 1.

The analysis of the MSPG algorithm

The proposed MSPG algorithm, which combines SOMnn
and the evolutionary learning approaches of the PSO and
GA, was designed to resolve the problem of network param-
eters training and solving with RBFnn. The MSPG algorithm
applies PSO and GA approaches as the learning mecha-
nism in PG algorithm, respectively. The pseudo code for
the SOMnn method of the MSPG algorithm is illustrated
in Fig. 2.

Through the approaches such as PSO and GA within PG
algorithm of the MSPG algorithm, we intend to solve proper
values of the parameters from the setting domain in the exper-
iment. The pseudo code for the PG algorithm of the MSPG
algorithm is illustrated in Fig. 3.

The MSPG algorithm integrates SOMnn and virtues of
PSO and GA approaches to enhance learning efficiency of
RBFnn. The optimal values of parameters solution can be
obtained and used in the MSPG algorithm with RBFnn to
solve the problem for function approximation. This solution
will enable RBFnn to make the most exact approximation
toward the test functions in the experiment.

The inverse of root mean squared error (RMSE) is used as
fitness function (i.e., Fitness = RMSE~!) (DelaOssa et al.
2006). Next, the nonlinear function that the RBFnn hidden

layer adopted is the Gaussian function shown in Eq. (2), and
the fitness value of individuals in population is calculated
by Eq. (8). The fitness values for relevant algorithms in the
experiment are computed by maximizing the RMSE~! (Lee
2008) defined as:

N
Fitness = | ———, (®)
\/Z?/:l (vj = 3))?

where N is the number of the testing set, §; is the predicted
output of the learned RBFnn model for the jth training pat-
tern, and y; is the actual output.

The detailed description of the MSPG algorithm

A population of individuals undergoes a sequence of trans-
formation by means of genetic operators to form a new
population (Qasem et al. 2012). Further, each solution is
called a ‘particle’ in PSO and ‘chromosome’ in GA where
on the contrary to the former new solutions are not cre-
ated from the parents within the evolution process (Yousefi
et al. 2012). In which, the data are divided in three subsets
(X1, Y1), (X2, Y2), (X3, Y3) of size M;, M> and M3, which
are the training (65%), testing (25%) and validation (10%)
sets respectively (Looney 1996). Therefore, the evolutionary
procedures for the PG algorithm of the MSPG algorithm was
performed and summarized as follows.

(1) Inmitialization: The initialization corresponding to nature
random selection ensures the diversity among individu-
als (i.e., particles in PSO approach or chromosomes in
GA approach) and benefits the evolutionary procedure
afterwards. An initial population with a number of indi-
viduals is generated and the initializing procedures are
as follows.

(a) Each individual in the initial population is the set of
positions of neuron (i.e., cf’ j) and width (i.e., wd?) on
RBFnn, defined as a matrix form. Figure 4 presents
the design of decoding routine for the matrix form.
Meanwhile, the embedded values of C; are equiv-
alent to RBFnn hidden nodes which include the
cfj(i ={l,....,H},j={1,...,N}) and wd; (i =
{1,..., H}) of parameters solution (i.e., individuals)
such as positions of neuron and width. § matri-
ces C1,Ca,...,Cs (i.e., population size) of size
H x (N + 1) are created by setting all their elements
equal to zero. For each Ci(s = 1,2,...,5), aran-
dom integer hy € {1,..., H} from the number of
center generated in SOMnn is selected.

The results are used as the number of neuron in
RBFnn. The {1, ..., hg} rows of the C; are replaced
by an equal number of row vectors of size 1 x (N +1)

@ Springer

1142

J Intell Manuf (2019) 30:1137-1154

Fig. 2 The pseudo code for the
SOMnn method of the MSPG
algorithm. Note Initially,
trainingData and testingData
contains X[] and Y[], where
elements of X[] and Y[] are
sampled from the input and
output space, respectively

for i=1 to 100000

if (i<=1000)

end for

end for

end for

SOMnn (trainingData, testingData){

set somData to the X[] part of trainingData and testingData; // see: Note.

// train SOMnn with somData

Initial a 10x10 SOMnn by setting the weight vector of each center randomly;

set learning rate € 10 0.8;

// In the first 1000 generations, both € and O decrease linearly

decrease & linearly;
select randomly one element from somData as x;
select the best center according to x;
for each center C in the neighborhood region of the current best center
/hupdate the weight vector of C

c=c+ S(x - C) ; // refer Kohonen (1990)

//choose centers from the trained SOMnn
for each C in the trained SOMnn

select C as a center if there is at least one element in somData that regards C as its best center;

Use the PG algorithm to choose the widths of those selected centers; }

set radius O to 10;

decrease O linearly;

that are the neurons of RBFnn associated with this
individual. The {hy, ..., H} rows remain equal to
zero and do not correspond to a neuron.

(b) When the width parameter is fixed and a set of RBF
neurons is provided, a RBFnn which has such a struc-
ture and an orthogonal least squares (OLS) algorithm
(Chen et al. 1991) is developed for constructing par-
simonious RBFnn (Chen et al. 1999) (i.e., RBFnn
algorithm). Then the Gram—Schmidt scheme (Golub
and Loan 1996) and Moore Penrose pseudo-inverse
(Denker 1986) methods of the basis matrix are used
to calculate the weights.

For each Cj, the output weights of the respective
RBFnn are calculated by Eq. (9) (Denker 1986):

ws = (B} - By~ (B - Y1) =B 11, ©)
where wy is the pseudo-inverse of the design matrix
By; B is the M x hy matrix containing the responses

of the hidden layer to the X subset of examples; Y
is the desired response vector in the training set. The

@ Springer

number of columns of the B; equals the number of
neurons at the hidden layer and the number of rows
equals the number of training samples. Each column
of By corresponds to the response of the respective
hidden neuron to all input data (Barra et al. 2006).
The calculation of the output weights completes the
formulation of #; RBFnns, which can be represented
by the pairs (C1, wi), (C2, w2), ..., (Cp,, wp,).

(c) The fitness value of individual matrix in population
is calculated by Egq. (8) (i.e., RMSEh).

(2) PSO approach: The maximum value of Minimum
selection type PSO learning method (Feng 2000) (i.e.,
PSO approach) will be considered the active number of
RBFs for all particles and ensure that the same vector
length is achieved. The solution of RBFnn correlated
values of parameters that are included in the individuals
of particle population, is equivalent to a set of the RBFnn
solution. The PSO approach is one step which will be
executed in one epoch and continue in the following pro-
cess with the PG algorithm of the MSPG algorithm. This

J Intell Manuf (2019) 30:1137-1154

1143

Fig. 3 The pseudo code for the

PG algorithm of the MSPG Procedure PG algorithm;

algorithm
Begin

End
PSO Learning:

Begin

End

Initialize population by encoding routine;
Calculate the weights and fitness values of population by decoding routine;
Preserve the best chromosome;
for (i=0;1i<number of epochs ; i++) {
Perform PSO Learning;
Duplicate current chromosomes to [PSO-only] chromosomes
Perform uniform crossover operator on chromosomes;
Perform one-cut point mutation operator on chromosomes;
Perform addition or deletion operator on chromosomes (Sarimvesis et al., 2004);
Calculate the weights and fitness values of chromosomes;
Select a new population from both [PSO + GA] and [PSO-only] populations
with roulette wheel selection;
Replace the weakest chromosome with the previous best chromosome;
Preserve the best chromosome;
Decrease linearly operators of the updated probabilities of P, P,,, and & by degrees

with the number of epoch;

Calculate the local and global optimal values through Egs. (6) and (7);
Perform Minimum selection type PSO learning method (Feng, 2006);
Update velocities and positions of particles through Eq. (7);

Calculate the weights and fitness values of particles by decoding routine;

step can update the values of velocity and the embedded
values of all particle matrices to record the Lbest values
through Eqs. (6) and (7). The procedures of the PSO
approach are as follows.

(a) The number of the RBFnn hidden node neurons that
use C; of initialize population is regarded as the
number of the neurons for each particle with PSO
learning population, and thus is called particle matrix
to progress the evolutionary process afterwards.

(b) The particles in population don’t move toward any
particular direction by Eq. (7) until the Lbest and
Gbest of the present particle are calculated by Eq. (6).

3

“

Duplication: The population enhanced by the Mini-
mum selection type PSO learning method (Feng 2006)
is duplicated and called [PSO-only] population.

GA approach: The approach of GA evolution that
includes one-cut point mutation, addition/deletion
(Sarimveis et al. 2004), and uniform crossover (Syswerda
1989) operators in the population of PSO enhanced
learning is called [PSO + GA] population. The operators
used in GA approach are as follows.

(a) Figure 5 illustrates the idea of uniform crossover idea
schematically. Later, each row of the selected paired
C; will have equal probability to precede uniform

@ Springer

1144

J Intell Manuf (2019) 30:1137-1154

S S S S
C1 Ca Cin wd,
S S S S
G Con Con wd,

S S S
Cyy Chyo =t Ch v WA
| “H) “H2 H,N H] pr(N1
S5) s S S S S S s
S | G2 wd | G | G, wd, Cuy | Cun wd,,
H: Input neuron number on RBFnn; N+1: Output neuron number on RBFnn
Fig. 4 The design of decoding routine for the matrix form
s s s s s+l s+l s+l s+17]
Ci G Cin wd, | <€ >la; G, Cin wd,
A) A s
Gy Gy Gy wdy | <—>| 0 0 0 0
N N N N s+1 s+1 s+1 s+1
Gy G Gy wdh Gr o G Gy wd,
exchange s+1 s+1 s+1 s+1
0 0 0 0 & G Go Gn Wd3
s+1 s+1 s+1 s+1
0 0 0 0 Ca1 Cis Coy W,
S S S S
Cy1 Ciy Coy Wdy | «<——>1| 0 0 0 0
S N) S
¢, s, Coy wds | <—>[0 0 0 0 |,

Fig. 5 Schematic illustration of uniform crossover between Cs and Cs41 with each pair of rows independently exchanging their values with
probability 0.5

(b)

crossover (Syswerda 1989) operator, so as to conform
to the spirit of GA.

The mutation operator is one of the strategies used to
ensure variability within the population and design
space exploration (Rocha et al. 2014). Through the
mutation operator, the values are replaced by ran-
domly selected values from the range of the search
domain in each dimension, which maintains the diver-
sity and generates new solutions.

(5) Reproduction: In order to force the GA to propagate
more intensely the genetic material from the best parents,
the roulette wheel selection (Goldberg 1989) role was
used for formation of the mating pairs (Kuzmanovski
et al. 2007). The [PSO-only] and [PSO + GA] popu-
lations are combined after evolutionary process. Same
amount of individuals from the initial population are

@ Springer

randomly selected by the roulette wheel (proportional)
selection for the evolution afterwards.

(a)

(b)

The (X7, Y>2) subset is used in this step as a testing
set, in the following manner. First, the predictions
)92,1,)92,2, ey),}2’5 of the S RBFnn formulated in
the previous step and the corresponding RMSE are
computed as follows:

RMSE,

N R)
_ \/zs_l(yzs Pap) 10

The pair (Cy, wy) associated with the maximum error
is replaced by the best RBFnn of the previous epoch
so that the optimal solution survives in all epochs (this
replacement will not take place in the firstepoch). The
network associated with the minimum error is stored

J Intell Manuf (2019) 30:1137-1154

1145

for later use. The objective is to give more chances of
survival to the network associated with smaller error
values. Therefore, the probability of selection p; of
every C; is calculated by Eq. (11), and the cumulative
probability g, is computed by Eq. (12):

RMSE !

B it B 11
S (RMSE;") (1)

Ps =

S
4 =Y i (12)
i=l1

(6) Termination: The PG algorithm of the MSPG algorithm
will not stop returning to step (2) unless a specific num-
ber of epochs has been achieved.

We focus on how to combine SOMnn and two evolution-
ary approaches to obtain the complementary learning effect.
In the evolutionary process of PG (i.e., PSO + GA) algorithm,
our differences with other evolutionary algorithms are: (1)
The PSO and GA approaches in PG algorithm are able to
take their own best calculated results to do cross learning
in the next generation, and then gradually obtain the opti-
mal solution in the whole population; (2) PG algorithm has
the capability to dynamically adjust relevant parameters (i.e.,
inertia weight, mutation probability, and crossover probabil-
ity) by decreasing linearly in a certain range. And with such
way of having multiple learning factors for cooperation, it
facilitates the PG algorithm to converge and further solve the
optimal solution.

For population in PSO approach, the particle figures out
the best solution after consulting itself and other particles,
and decides the proceeding direction and velocity. Also, the
memory mechanism (Xu et al. 2007) implemented in PSO
approach can retain the information of previous best solutions
that may get lost during the population evolution. Through
the memory mechanism, the obtained parameter solution in
the population will be more advanced than the initial ones to
facilitate the evolutionary process afterwards. Thus, execut-
ing an evolutionary computation through the PSO approach
would obtain an enhanced evolution population, which is
better than the initial population.

As the algorithm proceeds, the members of the popula-
tion improve gradually. Due to the property of global search
with GA approach, no matter what the fitness values of the
individuals in population are, they all have the chances to
proceed with some genetic operators and enter the next gen-
eration of population to evolve. In this way, the PG algorithm
of the MSPG algorithm meets the spirit of GA approach
and ensures the genetic diversity in the future evolution pro-
cess, and proceeds to obtain a new enhanced population. In
addition, through the GA approach within the PG algorithm
to estimate the fitness values of individual parameter solu-

tion in the population, the better solutions will be obtained
gradually. Thus, the solution space in population could be
changed gradually and converge toward the optimal solu-
tion. The algorithm stops after a specific number of epochs
have been completed.

In the latter experiment, the MSPG algorithm stops and
the RBFnn corresponding to the maximum fitness value is
selected. Finally, it is validated by using the (X3, Y3) subset,
which has not been utilized throughout the entire learn-
ing procedure. After those critical parameter values are set,
RBFnn can initiate the training of approximation and learn-
ing through four benchmark problems. The above mentioned
are our contribution to provide theoretical development.

Experimental simulation results

In this study, 1000 randomly generated data sets are divided
into three parts to train RBFnn: 65% training set, 25% testing
set, and 10% validation set (Looney 1996), in which we can
examine the learning status and adjust the parameter setting.

Four benchmark problems

There are several test functions with many local minima,
thus they can be used for comparison (Tsai et al. 2006).
Continuous test function leads to excellent approximation
to compensate RBFnn for the outcome of nonlinear mapping
relation. The MSPG algorithm has better performance among
other algorithms through the experiment in four benchmark
problems, including Rosenbrock, Griewank, B2 (Shelokar
et al. 2007), and Mackey-Glass time series (Whitehead and
Choate 1996) continuous test functions, which are defined in
“Appendix”.

In the experiment, it was performed on a PC with
Intel Xeon™ CPU, running at 3.40 GHz symmetric multi-
processing (SMP), and 2GB of RAM. Simulation were
programmed in the Java 2 platform, standard edition (J2SE)
1.5. In addition, Gnuplot version 4.2 open source software
was also used in the analysis to present the drafting results.
In this study, the search domain is two-dimensional (2D) and
the unit of output is amplitude. The maximum number of
epochs is set at 1000 to take as termination condition in the
experiment.

Parameters setup

There are several values of parameters within RBFnn that
must be set up in advance to perform training for function
approximation. The proposed MSPG algorithm is better than
trial and error way in the literature in that it determines the
appropriate values of parameters from the verified domain to
train RBFnn. Relevant algorithms start with the selection of

@ Springer

1146

J Intell Manuf (2019) 30:1137-1154

Table 1 Parameter setup for four benchmark problems

Parameter Description Continuous test function

Rosenbrock Griewank B2 Mackey-Glass time series
Dy Search domain [-5,5] [—300, 600] [—100, 100] [0.4, 1.6]
wd; The widths of RBFnn hidden layer [300, 600] [43,300, 44,000] [24,000, 25,000] [0.1,0.2]

the parameters setting for four benchmark problems shown
in Table 1.

Furthermore, the Taguchi (robust design) method (Taguchi
and Yokoyama 1993) (which used in this experiment for
parameter setup) is a powerful experimental design tool
(Olabi 2008) for solving the problems of optimizing the
performance, quality and cost of a product or process in a
simpler, more efficient and systematic manner than tradi-
tional trial-and-error processes (Lin et al. 2009). As such,
the parameters setting for the MSPG algorithm in this study
is obtained according to Taguchi experiment design (Taguchi
et al. 2005) and several literatures.

In the SOMnn method of the MSPG algorithm, the maxi-
mum number of center C is 100, the learning rate ¢ is 0.8, the
radius o is 10, and the maximum number of generation G is
100,000 (Kohonen 1990). According to 4, a suitable popula-
tion size is about 20-30 chromosomes. Thus, S is assigned
as 25 in this study.

In the PSO approach, Shi and Eberhart (1998) introduced
the parameter inertia weight k into the PSO equation to
improve its performance. Suitable selection of k provides
a balance between global and local explorations, and thus
requiring fewer generation on average to identify a suffi-
ciently optimal solution. The k in Eq. (13) can be expressed
by the inertia weights approach (Kennedy and Eberhart
2001), as given below:

kmax — Kmi
k — kmax _ max E min X 1,

(13)
where kpmax and ki are the maximum and minimum value,
respectively; n is the current number of epochs, and E rep-
resents the maximum number of epochs. The parameter
selection problem is formulated as a searching problem and
amethod based on a PSO evolutional learning method which
is applied to select a parameter set R in the searching space,
in which the scaling factor is 0.75 (Feng 2006). As originally
developed, k often decreases linearly from approximately
0.9 to 0.4 during a run (Amraee et al. 2007). Thus, this study
adopted the k decreased linearly from 0.75 to 0.4 with the
increase of epochs. Further, ¢ and ¢, in the PSO approach are
assigned as 2, which represent the same weight of stochastic
terms pulling the particle toward Pbest and Gbest (Wang and
Lu 2006).

@ Springer

Table 2 Parameters setup for the proposed MSPG algorithm in the
experiment

Parameter Description Value

E The maximum number of generations 1000

C The number of centers of SOMnn [1, 100]

€ The learning rate of SOMnn 0.8

o The radius of SOMnn 10

G The maximum number of generations of 100,000
SOMnn

8 The learning rate of RBFnn 0.42

S Population size 25

k Weight]eriia [0.4,0.75]

c1, ¢ Acceleration constants 2

P, Mutation probability (one-cut point mutation) [0.02, 0.04]

P. Crossover probability (uniform crossover) [0.5,0.9]

P, Py Addition/deletion probability 0.005

In the GA approach, according to Azadeh and Tarverdian
(2007), Py, shows best while varying between 1 and 5%. In
addition, the P, is recommended from Holland (1975). In
the meanwhile, the P, and P. are decreased linearly from
0.04 to 0.02 and 0.9 to 0.5 with epochs respectively in this
study. Moreover, the P, and P; are assigned as 0.005 from
Sarimveis et al. (2004).

Since the drawback of soft computing techniques is the
parameter setup, this study applies Taguchi method (Taguchi
and Yokoyama 1993) for experimental design. Consequently,
the statistical software MINITAB 14 was used in the analysis
of parameter design for algorithm, where the signal-to-noise
(S/N) ratio (Lin et al. 2009) is used to evaluate the sta-
bility of system quality in the experiment. Afterward, the
Taguchi trials (Taguchi et al. 2005) were configured in an
Lo (3*) orthogonal array for the MSPG algorithm after the
experiment was implemented thirty times. Finally, the MSPG
algorithm starts with the selection of the parameters setting
shown in Table 2 to ensure consistent basis in the experiment.

Performance analysis of experimental results

The best approximation results of the MSPG algorithm for
RBFnn trained in the experiment are showed in Figs. 6 and
7. As shown in Fig. 6, the best approximation results indicate

J Intell Manuf (2019) 30:1137-1154

1147

Amplitude

— Mackey-Glass time series function

— MSPG algorithm prediction

s 2SN
Mot

= ._.

—hm"i_ﬂ“:w
e
WY
Ty,

—tthy
P

: N BN T oy
A

IR |
IERRRER | |
N SRR
o I |
R o ' i o

Time step

Fig. 6 The best approximation result obtained over 1000 trials of the MSPG algorithm with RBFnn trained in Mackey-Glass time series function

prediction

that by using the MSPG algorithm under the circumstances of
Mackey-Glass time series function, the performance resulted
from effective learning of RBFnn can approximately accord
with the curved functions.

The learning of MSPG algorithm on several RBFnn
parameters solutions, which are generated by the population
during the operation of evolutionary procedure in the experi-
ment, is implemented. The MSPG algorithm is used to solve
the optimal RBFnn parameters solution. It generates unre-
peated 65% random training set from 1000 generated data
and inputs the set to network for learning. With the same
method, it then generates another unrepeated 25% random
testing set to verify individual parameters solution in pop-
ulation and calculates the fitness value. Up to this learning
stage, 90% dataset has been used by RBFnn. Once the evolu-
tionary process has progressed for 1000 epochs, the optimal
RBFnn parameters solution is obtained. Lastly, unrepeated
random 10% validation set is generated to prove how the
individual parameter solution approximates four benchmark
problems, and the RMSE values are recorded to confirm the
learning situation of RBFnn.

The learning and validation stages mentioned above were
implements for 50 runs. The average RMSE values were cal-
culated and are shown in Table 3 along with their standard
deviations (SD). The results indicate that the smallest values
are acquired by the MSPG algorithm with stable perfor-
mance during the whole training process in the experiment,
and RBFnn is able to obtain the parameters solution from
the evolutionary learning process in population, which has

achieved the optimal function approximation situation. Once
the training of RBFnn by the MSPG algorithm is finished,
the individual value of parameters (i.e., neuron, width, and
weight) with its optimal solution is then the exact setting of
network.

As shown in Table 3, the trends of training and validation
performance are consistently small, which means RBFnn
trained through the MSPG algorithm provides certain sta-
bility. Such result not only suffices for the training set and
validation set, a generalization could also be made with
regards to other unseen dataset. It may thus be known that
over-fitting and over-training problems do not exist in the
experiment adopting the MSPG algorithm.

Additionally, as for the verification of statistical signifi-
cant difference, we obtained the results significantly while
conducting the matched paired sample tests of ¢ test with
the absolute error from the predicted dataset of the source
data in each algorithm. Next, the estimation verification and
the ¢ test results among relevant algorithms are shown in
Table 4, the MSPG algorithm is not statistical significant (p
value larger than 0.05, i.e., there is no significant deviation
between the predicted values and actual values). Thus, the
statistical results indicate that the MSPG algorithm has the
best performance in terms of prediction accuracy among rel-
evant algorithms.

In the next section, a real-world demand estimation case
is applied to verify the accuracy and practicality for the pro-
posed MSPG algorithm.

@ Springer

1148

J Intell Manuf (2019) 30:1137-1154

(a)

Amplitude

Fig. 7 The best approximation result obtained over 1000 trials of the
proposed MSPG algorithm with RBFnn trained in continuous test func-
tions: a original and predicted Rosenbrock function with RBFnn trained

Model evaluation results

RBFnn has already been verified to be able to generate
an accurate approximation on four benchmark problems

@ Springer

Amplitude

by the MSPG algorithm, b original and predicted Griewank function
with RBFnn trained by the MSPG algorithm, ¢ original and predicted
B2 function with RBFnn trained by the MSPG algorithm

through the proposed MSPG algorithm. The results are com-
pared with other algorithms, illustrating the accuracy of the
MSPG algorithm. Afterward, the daily sales observations of
500 cm? containers of papaya milk were offered by a com-

J Intell Manuf (2019) 30:1137-1154

1149

Table 3 Comparison results for relevant algorithms in the experiment

Experiment Rosenbrock function

Griewank function

Algorithm Training set

Validation set

Training set Validation set

RBFnn (Chen et al. 1999)
PSO (Feng 2006)

GA (Sarimveis et al. 2004)
PSO-GA (Yu et al. 2012a)

11,880 4= 1343.4
62.05E—4 + 35.68E—4
7.28E—4 £ 1.12E—4
4.02E—4 £ 0.35E—4

12,731 £ 2555.7
89.63E—4 + 52.15E—4
9.16E—4 + 2.40E—4
491E—4 + 1.04E—4

26.394 + 2.359
6.90E—1 £ 1177.99E—4
5.20E—1+ 117.08E—4
5.05E—1 £ 67.27E—4

27.85 +3.777
7.39E—1 + 1129.46E—4
5.55E—1 %+ 160.69E—4
5.11E—1 + 86.23E—4

MSPG 1.08E—4 + 0.55E—4 1.20E—4 £ 0.21E—4 4.02E—1 + 10.36E—4 4.09E—1 £ 22.15E—4
Experiment B2 function Mackey-Glass time series
Algorithm Training set Validation set Training set Validation set

RBFnn (Chen et al. 1999)
PSO (Feng 2006)

GA (Sarimveis et al. 2004)
PSO-GA (Yu et al. 2012a)
MSPG

5791.5 £+ 403.7
24.79E—2 + 3.86E—3
24.18E—2 £ 4.19E-3
18.17E—2 £ 1.79E-3

6.74E—2 £ 1.27E-3

5848.8 + 673.66
39.40E—2 + 683.88E—3
30.24E—-2 £ 12.74E-3
16.54E—2 £ 5.70E-3

5.43E-2 + 2.03E-3

691 +45.7
4.33E-3 £ 5.56E—4
251E-3 + 1.43E—4
2.14E-3 + 1.26E—4
1.80E—-3 £ 0.72E—4

705 £59.2
4.05E-3 £ 5.84E—4
248E-3 + 1.77E—4
297E-3 + 1.83E—4
2.09E-3 + 0.93E—4

Table 4 The statistical results

Algorithm Paired differences
for ¢ test among relevant
algorithms Mean SD T Significant (2-tailed)
RBFnn (Chen et al. 1999) —502.394 439.074 —3.140 0.011*
GA (Sarimveis et al. 2004) —227.466 428.782 —1.429 0.147*
PSO (Feng 2006) —438.594 433.705 —2.174 0.036*
PSO-GA (Yu et al. 2012a) —352.181 304.391 —2.285 0.023*
MSPG —112.371 214.572 —0.628 0.705

Mean is equal to arithmetic average

*5% significance level

pany of chain convenience stores in Taiwan’s retail industry.
The analysis had assumed that the influence of external exper-
imental factors did not exist. The trend of papaya milk sales
was not interfered by any special events. Moreover, there are
several values of parameters within RBFnn that must be setup
in advance to perform training for the case of estimation anal-
ysis. Relevant algorithms start with parameters setting shown
in Table 5 and are meant to ensure consistent basis in this
case.

Input data and RBFnn learning

Most studies in the literatures use convenient ratio of splitting
for in- and out-of-samples such as 70:30, 80:20, or 90:10%
(Zouetal.2007). We use the ratio of 90:10% (Zou et al. 2007)
here as the basis of division. The detailed data distribution of
the case is shown in Table 6.

The application example with papaya milk for historical
sales is based on time series data distribution and applied to
estimation analysis. In order to obtain convergence within a
reasonable number of cycles, the input and output data should

be normalized and scaled to the range of 0—1 by Eq. (14) (Jin
et al. 2011) for data of papaya milk.

Xi — Xmin
Xni = —————— >
Xmax — Xmin

(14)

where x; is the actual value of the observed data, x,x and
Xmin are the maximum and minimum observation values of
the dataset, and x,,; is the normalized value of the observed
data. The first 90% of the observations were used for model
estimation while the remaining 10% were used for valida-
tion and one-step-ahead forecasting. This study elaborates
how data is input to RBFnn for estimation through relevant
algorithms, and comparison with Box—Jenkins models.

Building the Box—Jenkins models

EViews™ 6.0 software was used the analysis of Box—Jenkins
models to calculate the numerical results. If the data is
stationary, model estimation can be implemented directly.
This research precedes the data identification of Box—
Jenkins models through augmented Dickey—Fuller (Dickey

@ Springer

1150

J Intell Manuf (2019) 30:1137-1154

Table S Parameters setting for

relevant algorithms in the Parameter Description Value
demand estimation case E The maximum number of generations 1000
C The number of centers of SOMnn [1, 100]
& The learning rate of SOMnn 0.8
o The radius of SOMnn 10
G The maximum number of generations of SOMnn 100,000
S Population size 30
wdis The width of RBFnn hidden layer [1000, 40,000]
k Weightyeriia 0.5
c1, 2 Acceleration coefficients 2
P, Mutation probability (one-cut point mutation) [0.01, 0.05]
P, Crossover probability (uniform crossover) [0.5, 0.8]
P,, Py Addition/deletion probability 0.005

Table 6 The observations data distribution in the demand estimation case

Case study

The observations: month-day-year (number of samples)

Total number of data

Learning set (90%) Forecasting set (10%)

Papaya milk sales 01/01/1995-01/14/1996

01/01/1995-12/07/1995 12/08/1995-01/14/1996

0.6

—=— Papaya milk actual data
—O— ARMA(1, 2) model

05 1?1;axmwf’1§i:j§<K\“/iifi

0.3

: / // AT “\Z\Z\ —A— MSPG algorithm
0.4

Sales (normalization)

g3

0 \X[e
42 347

3 352 357

362 367 372 377

Number of data

Fig. 8 The estimation results comparison of the proposed MSPG algorithm and ARMA (1, 2) model for the demand estimation case

and Fuller 1981) testing. Next, the study carries out demand
estimation based on ARIMA (p, d, g) models, the proce-
dures can be divided into three steps (Babu and Reddy
2014): (1) identifying the model order (i.e., identifying p and
q)—Akaike (1974) information criterion (i.e., AIC value =
—2.3062) were employed to sift the optimal model out
(Engle et al. 1987) (i.e., ARMA (1, 2) model); (2) estimat-
ing the model coefficients—the results of model diagnosis
reveal that the values of Ljung—Box statistic (i.e., Q-statistic)
(Kmenta 1986) are greater than 0.05 in result of Box—Jenkins

@ Springer

models, in which the results are white noise (i.e., serial non-
correlation) and it had been suitable fitted; (3) forecasting the
data.

Error measure of the estimation performance in the
case

The mean absolute error (MAE), RMSE, and mean absolute
percentage error (MAPE) are applied to evaluate the forecast-
ing accuracy (Zhang et al. 2015b). The results of forecasting

J Intell Manuf (2019) 30:1137-1154

1151

Table 7 The estimation errors comparison for relevant algorithms using the demand estimation case

Algorithm error PSO (Feng 2006) GA (Sarimveis et al. 2004) PSO-GA (Yu et al. 2012a) MSPG ARMA (1, 2) model
RMSE 3.68E—2 78.32E-2 1.97E-2 1.62E—2 0.0946
MAE 5.98E—2 53.60E—2 4.15E-2 1.32E-2 0.0556
MAPE 27.12E—1 192E—1 16.8E—1 5.44E—1 18.9163

set for the case is shown in Fig. 8. Also, the estimation per-
formances of above mentioned algorithms with the case data
is presented in Table 7.

Among these algorithms, the results derived from RMSE,
MAE, and MAPE of the proposed MSPG algorithm were the
smallest ones. According to the obtained numerical results,
we know that compared to traditional Box—Jenkins models,
the MSPG algorithm can substantially improve the accuracy
of practical demand estimation.

Moreover, the proposed MSPG algorithm in this study
can be applied to the company’s internal information sys-
tem in the case study to forecast the product demands. It can
be further applied to the intelligent manufacturing system
of the production line to generate different product demand
data forecasts for different clients to manage their supply.
Therefore, it is able to cope with real situation in the indus-
try to meet the need of product demand customization (e.g.,
few items with large demand, many items with less demand,
and many items with large demand), which adjusts supply
dynamically.

Conclusions

Our study for the proposed MSPG algorithm combines the
automatically clustering ability of SOMnn with the PG algo-
rithm, which provides the settings of RBFnn parameters.
The complementation of some evolutionary operations that
improves the diversity of populations also increases the pre-
cision of the results. In addition, a case study and the tuning
values of parameters with RBFnn using the trained algorithm
has been given. The MSPG algorithm has better parameter
setting of network and consequently enables RBFnn to per-
form better learning and approximation in four benchmark
problems and application in the demand estimation case.

In the future, it may be promising to employ different
evolutionary computation algorithms, such as ant colony
optimization (ACO), artificial immune system (AIS), and
ABC algorithms and further training different type NNs.
Afterward, perhaps the sales data in the short term would be
more stable and could be more beneficial to improve demand
estimation. Thus, the accuracy of prediction in product sales
data within shorter period can be further compared in the
future. Additionally, it is common to have significant fluc-

tuation and change in general sales prediction, and it could
be the result of exogenous variables or unexpected variances
such as sales force, promotional campaign, and exposure in
international exhibitions. These exogenous variables were
not considered in this study and thus could be considered for
future work.

Appendix: Four continuous test functions
(Shelokar et al. 2007; Whitehead and Choate 1996)

The first experiment, Rosenbrock function (Shelokar et al.
2007) is expressed as follows:

n—1
RS(xj, xji1)=)_ [100(x7—x;11)°+(xj— 1], n=2
j=1
(15)

(a) search domain: =5 < x; <5, j = 1;
(b) one global minimum: (x1, x2) = (1, 1); RS(x1, x3) =
0.

In the second experiment, Griewank function (Shelokar et al.
2007) is expressed as follows:

n 2 n

j Xj+1
GR(x;,xiy1)= J__ cos({—)—kl,n:l
A ;4000 ,1:11 Jitl

(16)

(a) search domain: —300 < x; = 600, j=1;
(b) one global minimum: (x1, x2) = (0, 0); GR(x1, x2)=0.

In the third experiment, B2 function (Shelokar et al. 2007) is
expressed as follows:

B2(xj.xj41) = x; +2x7,; — 0.3cos(37mx;)

—0.4 cos(4mxjt) +0.7 (17)

(a) search domain: —100 = x; = 100, j = 1;
(b) one global minima: (x, x2) = (0, 0); B2(x1, x2) = 0.

In the fourth experiment, the Mackey-Glass time series
(Whitehead and Choate 1996) is expressed as follows:

@ Springer

1152 J Intell Manuf (2019) 30:1137-1154
dx(1) =0.1x(t) +0.2 - x(t —17) (18) imation problem. Computers and Mathematics with Applications,
d(t) 14+ x(@ —17)10 63, 325-336.

The research for the retrieved time step was in the range from
118 to 1118 with the Mackey-Glass time series function, from
which 1000 samples were generated randomly.

References

Akaike, H. (1974). A new look at the statistical model identification.
IEEE Transactions on Automatic Control, 19, 716=723.

Amraee, T., Ranjbar, A. M., Mozafari, B., & Sadati, N. (2007). An
enhanced under-voltage load-shedding scheme to provide voltage
stability. Electric Power Systems Research, 77, 1038—1046.

Anbazhagan, S., & Kumarappan, N. (2014). Day-ahead deregulated
electricity market price forecasting using neural network input fea-
tured by DCT. Energy Conversion and Management, 78, 711-719.

Ayala, H. V. H., & Coelho, L. D. S. (2016). Cascaded evolutionary
algorithm for nonlinear system identification based on correlation
functions and radial basis functions neural networks. Mechanical
Systems and Signal Processing, 68-69, 378-392.

Azadeh, A., & Tarverdian, S. (2007). Integration of genetic algorithm,
computer simulation and design of experiments for forecasting
electrical energy consumption. Energy Policy, 35, 5229-5241.

Babu, C. N., & Reddy, B. E. (2014). A moving-average-filter-based
hybrid ARIMA-ANN model for forecasting time series data.
Applied Soft Computing, 23, 27-38.

Bagheri, M., Mirbagheri, S. A., Bagheri, Z., & Kamarkhani, A. M.
(2015). Modeling and optimization of activated sludge bulking
for a real wastewater treatment plant using hybrid artificial neural
networks—genetic algorithm approach. Process Safety and Envi-
ronmental Protection, 95, 12-25.

Barra, T. V., Bezerra, G. B., & de Castro, L. N. (2006). An immunolog-
ical density-preserving approach to the synthesis of RBF neural
networks for classification. In International joint conference on
neural networks (pp. 929-935).

Box, G. E. P, & Jenkins, G. (1976). Time series analysis, forecasting
and control. San Francisco: Holden-Day.

Chan, K. Y., Dillon, T. S., Singh, J. S., & Chang, E. (2012). Neural-
network-based models for short-term traffic flow forecasting using
a hybrid exponential smoothing and Levenberg—Marquardt algo-
rithm. IEEE Transaction on Intelligent Transportation Systems,
13(2), 644-654.

Chang, P.C., & Liao, T. W. (2006). Combining SOM and fuzzy rule base
for flow time prediction in semiconductor manufacturing factory.
Applied Soft Computing, 6, 198-206.

Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least
squares learning algorithm for radial basis function networks.
IEEE Transaction on Neural Networks, 2(2), 302-3009.

Chen, S., Wu, Y., & Luk, B. L. (1999). Combined genetic algorithm
optimization and regularized orthogonal least squares learning for
radial basis function networks. IEEE Transactions on Neural Net-
works, 10(5), 1239-1243.

Chiroma, H., Abdulkareem, S., & Herawan, T. (2015). Evolutionary
neural network model for West Texas Intermediate crude oil price
prediction. Applied Energy, 142, 266-273.

DelaOssa, L., Gamez, J. A., & Puetra, J. M. (2006). Learning weighted
linguistic fuzzy rules with estimation of distribution algorithms. In
IEEE congress on evolutionary computation (pp. 900-907). Van-
couver, BC: Sheraton Vancouver Wall Centre Hotel.

Deng, W., Chen, R., Gao, J., Song, Y., & Xu, J. (2012). A novel parallel
hybrid intelligence optimization algorithm for a function approx-

@ Springer

Denker, J. S. (1986). Neural network models of learning and adaptation.
Physica D, 22, 216-232.

Dey, S., Bhattacharyya, S., & Maulik, U. (2014). Quantum inspired
genetic algorithm and particle swarm optimization using chaotic
map model based interference for gray level image thresholding.
Swarm and Evolutionary Computation, 15, 38-57.

Dickey, D. A., & Fuller, W. A. (1981). Likelihood ration statistics for
autoregressive time series with a unit root. Econometrica, 49(4),
1057-1072.

Du, W., Leung, S. Y. S., & Kwong, C. K. (2015). A multiobjective
optimization-based neural network model for short-term replen-
ishment forecasting in fashion industry. Neurocomputing, 151,
342-353.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene
analysis. New York: Wiley.

Duman, S., Yorukeren, N., & Altas, I. H. (2015). A novel modified
hybrid PSOGSA based on fuzzy logic for non-convex economic
dispatch problem with value-point effect. Electrical Power and
Energy Systems, 64, 121-135.

Engle, R. F,, Robert, F., & Yoo, B. S. (1987). Forecasting and testing in
cointegrated systems. Journal of Econometrics, 35, 588-589.
Er,M.J.,Li, Z., Cai, H., & Chen, Q. (2005). Adaptive noise cancellation
using enhanced dynamic fuzzy neural network. I[EEE Transactions

on Fuzzy Systems, 13(3), 331-342.

Feng, H. M. (2006). Self-generation RBFNs using evolutional PSO
learning. Neurocomputing, 70, 241-251.

Galvez, A., & Iglesias, A. (2013). A new iterative mutually coupled
hybrid GA-PSO approach for curve fitting in manufacturing.
Applied Soft Computing, 13, 1491-1504.

Garcia-Gonzalo, E., & Fernandez-Martinez, J. L. (2012). A brief his-
torical review of particle swarm optimization (PSO). Journal of
Bioinformatics and Intelligent Control, 1(1), 3-16.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization &
machine learning. Reading, MA: Addison-Wesley.

Golub, G. H., & Loan, C. E. V. (1996). Matrix computations (3rd ed.).
Baltimore, MD: Johns Hopkins Univ. Press.

Hadavandi, E., Shavandi, H., Ghanbari, A., & Naghneh, S. A. (2012).
Developing a hybrid artificial intelligence model for outpatient
visits forecasting in hospitals. Applied Soft Computing, 12, 700—
711.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: MIT Press. Reprinted in 1998.

Hsu, S. H., Hsieh, J. P. A,, Chih, T. C., & Hsu, K. C. (2009). A two-
stage architecture for stock price forecasting by integrating self-
organizing map and support vector regression. Expert Systems with
Applications, 36, 7947-7951.

Huang, C. M., & Wang, F. L. (2007). An RBF network with OLS and
EPSO algorithms for real-time power dispatch. IEEE Transaction
on Power Systems, 22(1), 96-104.

Jaipuria, S., & Mahapatra, S. S. (2014). An improved demand fore-
casting method to reduce bullwhip effect in supply chains. Expert
Systems with Applications, 41, 2395-2408.

Jin, D., Wang, P., Bai, Z., Wang, X., Peng, H., Qi, R., et al. (2011).
Analysis of bacterial community in bulking sludge using culture-
dependent and-independent approaches. Journal of Environmental
Sciences, 23, 1880-1887.

Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee
colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697.

Katherasan, D., Elias, J. V., Sathiya, P., & Haq, A. N. (2014). Simulation
and parameter optimization of flux cored arc welding using arti-
ficial neural network and particle swarm optimization algorithm.
Journal of Intelligent Manufacturing, 25, 67-76.

J Intell Manuf (2019) 30:1137-1154

1153

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In
Proceedings of IEEE international conference on neural networks
(pp. 1942-1948). Perth: IEEE Service Center.

Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo,
CA: Morgan Kaufmann.

Ketabchi, H., & Ataie-Ashtiani, B. (2015). Evolutionary algorithms for
the optimal management of coastal groundwater: A comparative
study toward future challenges. Journal of Hydrology, 520, 193—
213.

Kmenta, J. (1986). Elements of econometrics (2nd ed.). New York:
Macmillan Publishing Co.

Kohonen, T. (1987). Self-organizing and associative memory (2nd ed.).
Berlin: Springer.

Kohonen, T. (1990). The self-organizing map. Proceedings of IEEE,
78(9), 1464-1480.

Kuo, R. J., & Han, Y. S. (2011). A hybrid of genetic algorithm and par-
ticle swarm optimization for solving bi-level linear programming
problem: A case study on supply chain mode. Applied Mathemat-
ical Modelling, 35(8), 3905-3917.

Kuo, R. J., Syu, Y. J,, Chen, Z. Y., & Tien, F. C. (2012). Integration
of particle swarm optimization and genetic algorithm for dynamic
clustering. Information Sciences, 195, 124-140.

Kurt, I., Ture, M., & Kurum, A. T. (2008). Comparing performances of
logistic regression, classification and regression tree, and neural
networks for predicting coronary artery disease. Expert Systems
with Applications, 34, 366-374.

Kuzmanovski, I., Lazova, S. D., & Aleksovska, S. (2007). Classification
of perovskites with supervised self-organizing maps. Analytica
Chimica Acta, 595, 182-189.

Lee, Z.J. (2008). A novel hybrid algorithm for function approximation.
Expert Systems with Applications, 34, 384-390.

Lin, C. F, Wu, C. C,, Yang, P. H., & Kuo, T. Y. (2009). Application
of Taguchi method in light-emitting diode backlight design for
wide color gamut displays. Journal of Display Technology, 5(8),
323-330.

Lin, G., & Wu, M. (2009). A hybrid neural network model for typhoon-
rainfall forecasting. Journal of Hydrology, 375, 450-458.

Lin, G. F, & Wu, M. C. (2011). An RBF network with a two-step
learning algorithm for developing a reservoir inflow forecasting
model. Journal of Hydrology, 405, 439-450.

Looney, C. G. (1996). Advances in feedforward neural networks:
Demystifying knowledge acquiring black boxes. IEEE Transac-
tions on Knowledge and Data Engineering, 8(2), 211-226.

Lopez, M., Valero, S., Senabre, C., Aparicio, J., & Gabaldon, A. (2012).
Application of SOM neural networks to short-term load forecast-
ing: The Spanish electricity market case study. Electric Power
Systems Research, 91, 18-27.

Lu,J.,Hu, H., & Bai, Y. (2015). Generalized radial basis function neural
network based on an improved dynamic particle swarm optimiza-
tion and AdaBoost algorithm. Neurocomputing, 152, 305-315.

Mezura-Montes, E., & CoelloCoello, C. A. (2011). Constraint-handling
in nature-inspired numerical optimization: Past, present and future.
Swarm Evol. Comput., 1(22), 173-194.

Olabi, A. G. (2008). Using Taguchi method to optimize welding pool of
dissimilar laser-welded components. Optics & Laser Technology,
40, 379-388.

Ozturk, C., Hancer, E., & Karaboga, D. (2015). A novel binary artifi-
cial bee colony algorithm based on genetic operators. Information
Sciences, 297, 154-170.

Qasem, S. N., Shamsuddin, S. M., & Zain, A. M. (2012). Multi-objective
hybrid evolutionary algorithms for radial basis function neural net-
work design. Knowledge-Based Systems, 27, 475-497.

Qiu, X., & Lau, H. Y. K. (2014). An AIS-based hybrid algorithm for
static job shop scheduling problem. Journal of Intelligent Manu-
facturing, 25, 489-503.

Rezaee-Jordehi, A., & Jasni, J. (2013). Parameter selection in particle
swarm optimisation: A survey. Journal of Experimental & Theo-
retical Artificial Intelligence, 25(4), 527-542.

Rocha, I. B. C. M., Parente, E, Jr., & Melo, A. M. C. (2014). A hybrid
shared/distributed memory parallel genetic algorithm for optimiza-
tion of laminate composites. Composite Structures, 107, 288-297.

Rumbell, T., Denham, S. L., & Wennekers, T. (2014). A spiking self-
organizing map combining STDP, oscillations, and continuous
learning. IEEE Transaction on Neural, Networks and Learning
Systems, 25(5), 894-907.

Sarimveis, H., Alexandridis, A., Mazarakis, S., & Bafas, G. (2004).
A new algorithm for developing dynamic radial basis function
neural network models based on genetic algorithms. Computers
and Chemical Engineering, 28, 209-217.

Sattari, M. T., Yurekli, K., & Pal, M. (2012). Performance evaluation of
artificial neural network approaches in forecasting reservoir inflow.
Applied Mathematical Modelling, 36, 2649-2657.

Savsani, P, Jhala, R. L., & Savsani, V. (2014). Effect of hybridizing
biogeography-based optimization (BBO) technique with artificial
immune algorithm (AIA) and ant colony optimization (ACO).
Applied Soft Computing, 21, 542-553.

Shafie-khah, M., Moghaddam, M. P., & Sheikh-El-Eslami, M. K.
(2011). Price forecasting of day-ahead electricity markets using
a hybrid forecast method. Energy Conversion and Management,
52,2165-2169.

Shelokar, P. S., Siarry, P., Jayaraman, V. K., & Kulkarni, B. D. (2007).
Particle swarm and colony algorithms hybridized for improved
continuous optimization. Applied Mathematics and Computation,
188, 129-142.

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm
optimization. In Evolutionary programming VII: Proceedings of
EP98 (pp. 591-600). New York: Springer.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J. D.
Sehafter (Ed.), Proceedings of the third international conference
on genetic algorithms and their applications (pp. 2-9). San Mateo:
CA Morgan Kaufmann Publishers.

Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engi-
neering handbook. Hoboken, NJ: Wiley.

Taguchi, G., & Yokoyama, T. (1993). Taguchi methods: Design of exper-
iments. Dearbon, MI: ASI Press.

Tsai, J. T., Chou, J. H., & Liu, T. K. (2006). Tuning the structure and
parameters of a neural network by using hybrid Taguchi-genetic
algorithm. /IEEE Transactions on Neural Networks, 17(1), 69-80.

Tsekouras, G. E., & Tsimikas, J. (2013). On training RBF neural net-
works using input—output fuzzy clustering and particle swarm
optimization. Fuzzy Sets and Systems, 221, 65-89.

Vitorino, L. N., Ribeiro, S. F., & Bastos-Filho, C.J. A. (2015). A mecha-
nism based on artificial bee colony to generate diversity in particle
swarm optimization. Neurocomputing, 148, 39-45.

Wang, D., & Lu, W. Z. (2006). Forecasting of ozone level in time series
using MLP model with a novel hybrid training algorithm. Atmo-
spheric Environment, 40, 913-924.

Wang, W. M., Peng, X., Nhu, G. N, Hu, J., & Peng, Y. H. (2014).
Dynamic representation of fuzzy knowledge based on fuzzy petri
net and genetic-particle swarm optimization. Expert Systems with
Applications, 41, 1369-1376.

Whitehead, B. A., & Choate, T. D. (1996). Cooperative—competitive
genetic evolution of radial basis function centers and widths for
time series prediction. /EEE Transaction on Neural Networks,
7(4), 869-880.

Wu, J. D, & Liu, J. C. (2012). A forecasting system for car fuel con-
sumption using a radial basis function neural network. Expert
Systems with Applications, 39, 1883—1888.

Xu, R., Venayagamoorthy, G. K., & Wunsch, D. C. (2007). Modeling
of gene regulatory networks with hybrid differential evolution and
particle swarm optimization. Neural Networks, 20, 917-927.

@ Springer

1154

J Intell Manuf (2019) 30:1137-1154

Yadav, V., & Srinivasan, D. (2011). A SOM-based hybrid linear-neural
model for short-term load forecasting. Neurocomputing, 74,2874—
2885.

Yousefi, M., Enayatifar, R., & Darus, A. N. (2012). Optimal design
of plate-fin heat exchangers by a hybrid evolutionary algorithm.
International Communications in Heat and Mass Transfer, 39,
258-263.

Yu, L., Wang, S., Lai, K. K., & Wen, F. (2010). A multiscale neural
network learning paradigm for financial crisis forecasting. Neuro-
computing, 73, 716-725.

Yu, S., Wang, K., & Wei, Y. M. (2015a). A hybrid self-adaptive particle
swarm optimization-genetic algorithm-radial basis function model
for annual electricity demand prediction. Energy Conversion &
Management, 91, 176-185.

Yu, S., Wei, Y. M., & Wang, K. (2012a). A PSO-GA optimal model
to estimate primary energy demand of China. Energy Policy, 42,
329-340.

Yu, S., Wei, Y. M., & Wang, K. (2012b). China’s primary energy
demands in 2020: Predictions from an MPSO-RBF estimation
model. Energy Conversion & Management, 61, 59-66.

@ Springer

Yu, S., Zhang, J., Zheng, S., & Sun, H. (2015b). Provincial carbon
intensity abatement potential estimation in China: A PSO-GA-
optimized multi-factor environmental learning curve method.
Energy Policy, 77, 46-55.

Yu, S.,Zhu, K., & Gao, S. (2009). A hybrid MPSO-BP structure adaptive
algorithm for RBFNSs. Neural Computing and Applications, 18,
769-779.

Zhang, Z., Su, S., Lin, Y., Cheng, X., Shuang, K., & Xu, P. (2015a).
Adaptive multi-objective artificial immune system based virtual
network embedding. Journal of Network and Computer Applica-
tions, 53, 140-155.

Zhang, J. L., Zhang, Y. J., & Zhang, L. (2015b). A novel hybrid method
for crude oil forecasting. Energy Economics, 49, 649-659.

Zou, H. F, Xia, G. P, Yang, F. T., & Wang, H. Y. (2007). An investi-
gation and comparison of artificial neural network and time series
models for Chinese food grain price forecasting. Neurocomputing,
70, 2913-2923.

	Combining SOM and evolutionary computation algorithms for RBF neural network training
	Abstract
	Introduction
	Literature review
	Radial basis function (RBF) neural network (RBFnn)
	Self-organizing map (SOM) neural network (SOMnn)
	Evolutionary computation algorithms (ECAs)

	Methodology
	The analysis of the MSPG algorithm
	The detailed description of the MSPG algorithm

	Experimental simulation results
	Four benchmark problems
	Parameters setup
	Performance analysis of experimental results

	Model evaluation results
	Input data and RBFnn learning
	Building the Box–Jenkins models
	Error measure of the estimation performance in the case

	Conclusions
	Appendix: Four continuous test functions (Shelokar et al. 2007; Whitehead and Choate 1996)
	References

