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Abstract Slit valves play an important role in semiconduc-
tor manufacturing, enabling creation and maintaining of a
vacuum environment required for wafer processing. Due to
the high volume of production in the modern semiconduc-
tor industry, slit valves could experience severe degradation
over their lifetime. If maintenance is not applied in due time,
degraded valves may lead to defects in finished products due
to pressure loss and particle generation. In this paper, we pro-
pose methods for signal processing and feature extraction
for analysis of slit valve vibration signals. These methods
are then used to demonstrate the ability to reliably, accu-
rately and efficiently distinguish between vibration patterns
of each individual valve via a multi-class classification pro-
cedure. Furthermore, instantaneous time–frequency entropy
of valve vibrations enabled long term monitoring of a slit
valve in production, in spite of variations in valve speed and
operations.

Keywords Slit valves · Semiconductor manufacturing ·
Vibrations basedmonitoring ·Nonstationary signal analysis ·
Multi-class classification

Introduction

Slit valves play an important role in semiconductor man-
ufacturing industry. A slit valve is a gate that separates the
process chamber and the transfer chamber of a semiconductor
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manufacturing tool, enabling creation of a vacuum environ-
ment required for wafer processing. Due to the high volume
of production, as well as high temperatures and corrosive
gases encountered in themodern semiconductor industry, slit
valves could experience severe degradation over their use-
ful lifetime. Once the valve is degraded, vacuum condition
inside the process chamber cannot bemaintained, resulting in
wafer defects. In addition, degraded slit valves may also lead
to particle generation via the erosion of degraded valve seals
and guide ways, causing contamination in both the chamber
and finished products. Considering the very small margin of
error in today’s microelectronic manufacturing, there is an
urgent need for establishing a monitoring and maintenance
plan to set early alarms about degraded slit valves and prevent
potential product flaws.

In majority of today’s semiconductor fabrication plants
(fabs), preventive maintenance of equipment is conducted
following the reliability based maintenance (RBM) paradi-
gm, i.e. based on the elapsed calendar time or usage and
the statistical properties of the useful life distribution of the
relevant population ofmachines (Fulton andKim 2007; Cho-
lettte et al. 2013). Differences between individual machines
in a population based on which RBM policies are postulated
cause RBM to incur losses due to unnecessary maintenance
of equipment that does not really need to be maintained,
or due to unexpected failures of machines whose scheduled
maintenance did not occur soon enough.

An alternative paradigm to address this drawback is the
condition based maintenance (CBM), in which one builds
and uses a connection between the condition of the individ-
ual piece of equipment and sensor reading emitted by that
machine. With such information, maintenance operations
can be performed according to the actual working condition
of the equipment, exactly when needed and exactly where
needed.
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In the past few years, CBM has drawn increasing atten-
tion in the semiconductor manufacturing industry. Advanced
condition diagnostics and prognostics methods have been
employed for various equipment and processes, such as etch-
ing equipment (Shadmehr et al. 1992; Kim and May 1997;
Hong et al. 2012), lithography processes (Facco et al. 2009;
Bao and Spanos 2001; Shen et al. 2011), chemical vapor
deposition (Raoux et al. 1998; Hopfe et al. 2003; Wu et al.
2003), chemical-mechanical planarization (Tang et al. 1998;
Lee et al. 2006) and material handling devices (Jong and Lin
2007; Guan et al. 2011).

As for the problem of condition monitoring of valve
performance, vibration-based methods found wide applica-
tion for various industries. Lee et al. (2010) accomplished
degradation monitoring in a 6-in check valve in a nuclear
power plant by monitoring the dominant frequencies of the
valve’s vibration signals under different temperature condi-
tions. Yang et al. (2005) developed a condition monitoring
scheme using statistical features extracted fromvibration sig-
nals together, based on which a support vector machine was
used to detect the cavitation faults of a butterfly valves in
pumping stations.Wang et al. (2009)were the earliest authors
to employ nonstationary signal analysis methods for valve
condition monitoring. They employed non-negative matrix
factorization and a neural network ensemble to recognize
the diesel valve train fault patterns present in the time–
frequency distributions of valve vibrations. Lin et al. (2013)
propose a novel health condition classification method for
a reciprocating compressor using appropriate partitioning of
the time–frequency plane to enhance the characterization of
valve vibration signals. More recently, Pichler et al. (2016)
presented an effective approach for detecting cracked or
broken reciprocating compressor valves under varying load
conditions by looking at vibration spectrogram difference
and autocorrelation. Similarly, Flett and Bone (2016) imple-
mented an impact strength feature from vibration signals to
investigate diesel engine valve trains with spring faults and
clearance faults.

Unfortunately, CBM technology has never been applied
to monitoring of slit valves, in spite of their great impor-
tance and widespread use in semiconductor manufacturing.
Some reasons explaining this may be the lack of appropriate
sensing of relevant signals from slit valves on typical tools
(valve velocities, accelerations, vibrations), as well as the
high complexity and non-stationarity of those signals.

In the research presented in this paper, we sensorized 50
slit valves in a major domestic semiconductor fab with 3-
dimensional accelerometers and developed advanced signal
processing and feature extraction methods for analysis of
their vibration signatures. These methods are then used to
reliably, accurately and efficiently recognize each individual
valve via its vibration signature and a novel multi-class clas-
sification procedure. Furthermore, vibration signatures from

one of those valves were collected over multiple months of
its operation and gradual changes in those vibration patterns
were observed, indicating its degradation. This earlywarning
information about valve degradation can be augmented with
the temporal information as to where along the path of that
valve changes in its vibration patterns occurred, since differ-
ent parts of valve travel can be related to specific component
or components of the valve system, thus pinpointing what
repair/maintenance operation may be needed. In summary,
the research presented in this paper is aimed at illustrating
the feasibility of continuous vibration-based monitoring of
slit valves on semiconductormanufacturing tools during their
regular operation in industrial setting.

This novel condition monitoring application required a
unique combination of signal processing, classification and
condition monitoring methods, which will be described in
the remainder of this paper. To that end, in “Methodology”
section, methods for processing of slit valve vibration sig-
nals andmulti-segment classification of valves based on their
signatures are described in detail. Furthermore, condition
monitoring method based on the entropy of time–frequency
distributions of valve vibrations will also be introduced in
“Methodology” section. “Results” section gives the results
of applying these methods to identification of 50 individ-
ual slit valves operating in a major semiconductor fab, as
well as vibration based monitoring of one slit valve over
several months of its operation, between two overhaul main-
tenance operations done on that valve. Finally, conclusions
and potential future work are presented in “Conclusions and
future work” section.

Methodology

Signal processing and feature extraction

Due to the non-linearity and complexity of valve motions,
the vibration signals emitted by slit valves are highly non-
stationary. This means that frequency contents of those
signals vary significantly over time, which invokes the need
for non-stationary signal analysis tools, such asCohen’s class
time–frequency transform method (Cohen 1995). Cohen’s
general class of time–frequency distribution (TFD) for the
signal x(t) can be described as

Cx (t, ω) = 1

4π2
∫ ∫ ∫ϕ (θ, τ ) x

(
u + τ

2

)
x∗ (

u − τ

2

)

e− j(θ t+τw−θu)dθdτdu (1)

where x (t) and x∗ (t) denote the relevant signal and its com-
plex conjugate respectively, while ϕ (θ, τ ) is the so-called
kernel function of theTFD.The kernel determinesmathemat-
ical properties of the resulting TFD, such as realness of the
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resulting distribution Cx (t,ω), time and frequency support
properties, upholding of the time and frequency marginals,
cross-term suppression, as well as group delay and instan-
taneous frequency properties1 (Jeong and Williams 1992).
Fulfillment of these properties enables interpretation of the
function Cx (t, ω) defined by (1) as a joint 2-dimensional
distribution of signal energy in time and frequency domains.
In this paper, we opted to use the binomial kernel, which can
be considered to be the most advanced signal-independent
reduced interference distribution (RID) kernel (Papandreou-
Suppappola 2002). Its RID character and consequent ability
to suppress cross terms, which are inherently present in
TFDs, is highly desirable, since it is well documented that
cross terms can hamper signal interpretation and classifica-
tion based on TFDs riddled with cross terms (Cohen 1995).
On the other hand, signal independent nature of the bino-
mial kernel is also important because of the sheer volume of
data considered in this study. Namely, signal dependent ker-
nels, such as those introduced by Jones and Baraniuk (1995)
or Coates and Fitzgerald (1999), would be computationally
infeasible in the realm of multiple vibration readings from a
large number of valves collected at sampling rates in the kHz
ranges, which is what we dealt with in this research.

After signal processing stage, numerous features were
extracted from the resulting vibration TFDs and later used
as inputs for the multi-class classifier built to recognize
individual valves based on their vibration signatures. These
features can be partitioned into three categories: timing based
features, time domain based features and time–frequency dis-
tribution based features.

Timing based features consist of times required to com-
plete various portions of the valve movement. In this paper,
for each valve opening or closing cycle, we just recorded the
time interval between twofixed points along the valvemotion
path. Of course, a muchmore elaborate set of timing features
describing the valve motion in finer detail could be pursued,
if adequate discrete control signals are available to reliably
delineate these portions of the valve motions. Such features
are a good indication of machine working condition, since
the time required to accomplish various portions of the des-
ignated motion for a machine with moving parts will usually
vary as the condition of that machine drifts.

Time-domain based features are calculated from the time
domain waveforms of the signals and include signal entropy,
mean signal energy, median energy of the signal, as well as
variance, skewness and kurtosis of the signal energy. Table 1
lists all time-domain based features used in this study and the
formulae according to which they are calculated. These time-
domain based features are intuitive and extensively used as

1 Definitions of those properties, as well as mathematical constraints
on the kernels that are necessary to achieve them are summarized in the
seminal book by Cohen (1995).

Table 1 Time domain features

Feature Formula

Signal energy SumE =
tn∑

t=t1
x(t)2

Signal entropy H =
tn∑

t=t1
− x(t)2

SumE log
x(t)2

SumE

Entropy of signal energy HE =
tn∑

t=t1
− x(t)4∑tn

t=t1
x(t)4

log x(t)4∑tn
t=t1

x(t)4

Maximal energy max x(t)2

Time of maximal energy argmaxt x(t)2

Minimal energy min x(t)2

Time of minimal energy argmint x(t)2

Maximal amplitude max x (t)

Time of maximal amplitude argmaxt x (t)

Minimal amplitude min x(t)2

Time of minimal amplitude argmint x(t)2

Median energy Middle value of x(t)2

Mean energy E
[
x2

] = 1
n

tn∑
t=t1

x (t)2

Variance of energy Var
[
x2

] = 1
n

tn∑
t=t1

(x(t)2 − E
[
x2

]
)2

Skewness of energy Skewness =
1
n

∑tn
t=t1

(x(t)2−E
[
x2

]
)3

(Var[x2])
3
2

Kurtosis of energy Kurtosis =
1
n

∑tn
t=t1

(x(t)2−E
[
x2

]
)4

(Var[x2])2

vibration based measurements of the working condition in
many previous machine monitoring works (Heng and Nor
1998; Saxena and Saad 2007).

Time–frequency distribution based features used in this
study consisted of the so-called time–frequency distribution
moments, entropy and several signal energy related fea-
tures calculated from the binomial distributions of the slit
valve vibrations. Following Cohen (1995), themoment terms
E

[
t pωq

]
can be calculated as

E
[
t pωq] =

tn∑
t=t1

ωm∑
ω=ω1

t pωqCx (t, ω) (2)

where Cx (t,ω) is the time–frequency distribution of the
signal x(t). Since moments of low orders can be used to
approximate the general characteristics of TFDs and success-
fully accomplish clarification based on those TFDs (Cohen
1995; Djurdjanovic et al. 2002). Moments up to 3 were used
in this study to describe the time–frequencypatterns observed
in the slit valve vibrations.

Besides time–frequencymoments, for each signal, entropy
based on its binomial TFD Cx (t, ω) was calculated as

123



1102 J Intell Manuf (2019) 30:1099–1110

Table 2 Time–frequency
domain features

Feature Formula

TFD moments of order up to 3 E
[
tpωq

]
with p+q≤3

Entropy H =
tn∑

t=t1

ωm∑
ω=ω1

− Cx (t,ω)∑tn
t̃=t1

∑ωm
ω̃=ω1

Cx (t̃,ω̃)
log Cx (t,ω)∑tn

t̃=t1

∑ωm
ω̃=ω1

Cx (t̃,ω̃)

Maximal energy max Cx (t, ω)

Time of maximal energy argmaxt Cx (t, ω)

Frequency of maximal energy argmaxω Cx (t,ω)

Minimal energy min Cx (t,ω)

Time of minimal energy argmint Cx (t,ω)

Frequency of minimal energy argminω Cx (t,ω)

Median energy Middle value of Cx (t,ω)

Mean energy E [Cx (t, ω)] = 1
nm

∑tn
t=t1

∑ωm
ω=ω1

Cx (t, ω)

Variance of energy Var [Cx (t, ω)] = 1
nm

∑tn
t=t1

∑ωm
ω=ω1

(Cx (t, ω) − E [Cx (t, ω)])2

Skewness of energy Skewness =
1
nm

∑tn
t=t1

∑wn
w=w1

(Cx (t,w)−E[Cx (t,w)])3

(Var [Cx (t,w)])3/2

Kurtosis of energy Kurtosis =
1
nm

∑tn
t=t1

∑wn
w=w1

(Cx (t,w)−E[Cx (t,w)])4

(Var [Cx (t,w)])2

H =
tn∑

t=t1

ωm∑
ω=ω1

− Cx (t, ω)∑tn
t̃=t1

∑ωm
ω̃=ω1

Cx
(
t̃, ω̃

)

log
Cx (t, ω)∑tn

t̃=t1

∑ωm
ω̃=ω1

Cx
(
t̃, ω̃

) (3)

In addition, various signal energy related features were also
extracted from their binomial TFDs, including maximal
energy, as well as the time instance and frequency at which
that maximal energy appeared in the TFD. A complete list of
time–frequency domain features used in this paper is summa-
rized in Table 2.Within this plethora of signal features, not all
will provide useful information for valve recognition. To the
contrary, the so-called curse of dimensionality plagues the
performance of classifiers based on such highly dimensional
feature space and a feature reduction process is needed to
improve the classification process by removing the redundant
and irrelevant features (Kittler 1975). The feature reduction
procedure employed in this study is closely associated with
the classification strategy and is therefore embedded in the
description of the classification framework given below.

Identification of individual valves via classification of
vibration patterns

Individual valve differentiation via their vibration signatures
is a multi-class classification problem. One straightforward
method dealing with this type of problems is to train a uni-
versal multi-class classifier that could take care of all of the
classes simultaneously. In the recent literature, we see such
approaches in Wuxing et al. (2004), as well as in Mahamad
and Hiyama (2011). However, this strategy requires that the
information needed to separate classes 1 and 2 also be suit-

able for differentiating classes 2 and 3 and all other possible
class-pairs. Unfortunately, this assumption turns out to be
overly constraining, especially when the number of classes
involved becomes very large, as it is in the case consid-
ered in this paper (we are dealing with 50 valves and hence
must realize a multi-class classification problem involving
50 classes).

In this study we adopted a classification approach intro-
duced by Kreßel (1999) and recently utilized by Musselman
and Djurdjanovic (2012) for classification of electroen-
cephalogram (EEG) signals based on their time–frequency
signatures. The method is based on repeated pairwise classi-
fications that successively distinguish between all possible
class-pairs in a multi-class classification problem. This
method increases classification accuracy by enabling pair-
wise distinction between any given pair of classes, using a
feature set specifically selected to optimize that particular
classification problem. Thus, this approach uses a divide-
and-conquer paradigm and a variable, customized feature
set, rather than utilizing one universal feature set to tackle
the entire multi-class classification.

More specifically, this method decomposes an n-class

problem into

(
n
2

)
one-against-one pairwise classification

sub-problems, with a specific classifier being trained for each
one of those sub-problems using themost discerning features
for that sub-problem. When a query signal is to be classified,
it is passed through all the pairwise classifiers, each provid-
ing a vote for one of the two classes involved. Eventually, all

the outputs of these

(
n
2

)
subclassifiers are aggregated and

the query signal is assigned to the class receiving the most
votes. Fig. 1 pictorially illustrates this entire process.
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Fig. 1 Pairwise classification
process

For each of the pairwise classification problems, the
features relevant for that problem were selected from the
exhaustive feature set described earlier in this section, using
an inter/intra class distance ratio in the feature space, similar
with the Index introduced by Dunn (1973). Namely, given an
n-class problem and an exhaustive feature set consisting of
m features, the selection process is conducted as follows:

• For each possible pair of classes (νi , ν j ), i ∈ {1, 2, . . . ,
n}, j ∈ {1, 2, . . . , n}, i �= j , and each feature l, l ∈
{1, 2, . . . ,m}, calculate the maximum intra-class Maha-
lanobis distance2 d

(
νi , ν j , l

)
between all points in

classes νi and ν j , as well as the minimum interclass
Mahalanobis distance3 D

(
νi , ν j , l

)
between points in

classes νi and ν j . Then, the inter/intra class distance ratio
is obtained as

r
(
νi , ν j , l

) = D
(
νi , ν j , l

)

d
(
νi , ν j , l

) (4)

• For a specific pair of classes (νi , ν j ), i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , n}, i �= j , features with the highest
inter/intra class distance ratios are selected as the feature
for this class-pair (νi , ν j ). In this way, each pair-wise
classification sub-problem is addressed via features that

2 Observe all Mahalanobis distances between training vectors in class
νi and all Mahalanobis distances among training vectors in class ν j .
Then d(νi , ν j , l) is the maximum of those distances. In a way, this is a
measure of intra-class localization feature l provides for classes νi and
ν j .
3 Observe Mahalanobis distances from any training vector in class νi
to any training vector in class ν j . Then d(νi , ν j , l) is the minimum of
those distances. In a way, this is a measure of inter-class separation
feature l provides for classes νi and ν j .

have high intra-class localization and inter-class separa-
tion.

Another key point in a classification problem is the selection
of the classification algorithm. In this study, the k-Nearest
Neighbor (kNN) classifier is chosen to discriminate between
different valves. kNN is a non-parametric classification algo-
rithm that determines the class memberships of an unknown
testing point according to the k closest training points in the
feature space (Duda et al. 2000). Because of its simplicity,
kNN is a highly suitable classification algorithm for a clas-
sification strategy based on numerous pairwise classification
problems, such as the one encountered here.

Long-term monitoring of valve vibration patterns

During long-term operation of a slit valve in a semiconductor
manufacturing fab, significant variability in the timing and
speed and speed of its operation could be observed due to nor-
mal changes in operating regimes (recipes). These changes
affect vibration patterns of the valve, but should not be seen
as a sign of degradation and should not lead to alarms. Our
examinations have shown that the instantaneous entropy of
the vibration signal, evaluated from its time–frequency dis-
tribution at any given time t as

Ht =
ωm∑

ω=ω1

− Cx (t, ω)∑ωm
ω=ω1

Cx (t, ω)
ln

(
Cx (t, ω)∑ωm

ω=ω1
Cx (t, ω)

)
(5)

is immune to the aforementioned operating regime-induced
changes in the vibration signal, while still depicting the
changes that occur as the valve deteriorates over time. The
reason for this is that a well-maintained valve shows very
little vibration (it is quiet) and as it degrades, at specific
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time-instances, “disorder” in the vibration patterns appears
and grows, which is readily captured by the instantaneous
entropy (5). Information as to where exactly in the travel of
the valve this “disorder” appears is of high importance, since
it can be used to localize the source of this degradation and
eliminate it through maintenance.

Results

In this section, the signal processing, feature extraction, valve
classification and vibration monitoring methods described in
the previous sectionwill be applied to vibrationmonitoring of
slit valves in a major domestic semiconductor manufacturing
facility.

All valves considered in this paper were pneumatic valves
of identical design, produced by the same manufacturer (i.e.
nominally, they are supposed to be identical).When the valve
closes, a pneumatic cylinder drives the valve plate down
guide rails. Near the bottom of the valve travel, the valve
head encounters a cam, which directs the valve head motion
from downward to forward. At the end of the valve motion,
the valve head makes contact with a base plate of the cham-
ber to create the seal. The motion is reversed when the valve
opens and is schematically illustrated in Fig. 2.

The data acquisition system was based on the sbRIO-
9636 embedded control and acquisition device fromNational
Instruments Corporation (2015). The valve vibrations were
capturedusing3-dimensional (3D) accelerometersADXL327
(Analog Devices 2015) mounted on the valve housing and
their readings were sampled at 5 kHz. The results in this
paper are based on the root mean square (RMS) of the 3D
vibration signals provided by this sensor, as well as the origi-
nal 3D signals, since specific vibration directions can be used
to provide characterization and monitoring of specific por-

Fig. 2 Illustration of valve operation and motion during opening
(dashed line) and closing (solid line)

tions of the valve motion (descent down/ascent up the rail,
camming, valve closing/opening).

In addition, since control signals from the valve were not
available, the timing information about the valve motion was
obtained using two photo-resistors placed over status lights
on the valve housing.One of those lights indicated valve body
passing by afixedpoint near the top of the guide rail,while the
other indicated the valve body passing a fixed point near the
end of the valve movement, where the valve seal makes con-
tact with the chamber wall. Signals from the photo-resistors
were used as automatic markers for valve motions and for
normalization of the valve travel time, which reduced vari-
ability of valve signatures caused by operating-mode (recipe)
induced variations in the valve travel times. Normalization
was accomplished as follows. During valve closing motion,
turning on of the light near the top of valve motion denoted
normalized time 0, while turning on of the light near the
bottom of the valvemotion signified normalized time 1. Con-
versely, during the valve opening motion, normalized time
0 occurred when status light near the bottom of the valve
motion turned off, while normalized time 1 occurred when
the status light at the top of the valve motion path turned off.
One should note that valvemovement pre and post these light
indicators were also collected, resulting in valve vibrations
for normalized times −0.2 to 1.2. Each vibration signal was
divided into three stages in the following manner. During
valve closing, the three segments were valve motion before
the valve-up signal (normalized time−0.2 to 0), valvemotion
between the valve up and valve down signals (normalized
time 0 to 1) and valvemotion after the valve down signal (nor-
malized time 1 to 1.2). Conversely, during valve opening, we
observed valve motion before the valve-down signal turned
off (normalized time −0.2 to 0), valve motion between the
valve down and valve up signals turned off (normalized time
0 to 1) and valve motion after the valve up signal turned off
(normalized time 1 to 1.2). Accordingly, features described
in the previous section were extracted using signal portions
from these three stages separately or from the whole period
(normalized times−0.2 to 1.2), yielding a rich feature library
consisting of 1122 features.4

Identification of individual valves

From50 individual valves, vibration signals corresponding to
10 openings and 10 closingswere collected, yielding the total
of 1000 signals. From each of those signals, timing based,
time domain and time–frequency domain characteristics

4 From each of the 4 segments, we got 16 time-domain based features
and 19 time–frequency domain based features, for each of the three
directions of vibrations, as well as the vibration RMS. In addition, the
feature set also included the movement times of both closing and open-
ing motions, yielding 1122 features.
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Table 3 Pairwise classification results

Timing features (%) Time domain features (%) TFD features (%) Fusion of timing, time domain,
TFD features (%)

Opening 22.88 96.88 96.99 98.18

Closing 27.54 96.64 96.35 97.93

Opening and closing 60.58 97.15 98.73 98.74

described in “Methodology” section were extracted, based
on which this 50-class classification study was conducted.5

The training set was constructed by randomly picking half of
the recordings from each valve, while the remaining half was
used for testing. Such selection of training and testing sets
was repeated 100 times to objectively evaluate the perfor-
mance of the proposed classification method, independently
of the choice of the training set.

Classification accuracies based on different feature sets
and movement directions of the valves are listed in Table 3.
It is obvious that the use of time-domain features and
time–frequency domain features greatly outperformed the
accuracy of classification based on the timing features alone
(performance of the timing based features is actually quite
poor). In addition, it is visible that the elaborate feature
extraction and classificationmethods introduced in this paper
enabled improved classification results via the fusion of fea-
tures from various domains and valvemotion stages, yielding
the best performance when features from all domains and all
motion stages are included. In that case, average accuracy
of 98.74% was reached over the 100 tests (100 randomly
selected sets of training and testing data), with perfect results
obtained in 7 out of those 100 tests. Furthermore, the consis-
tency of this method in differentiating individual slit valves
was evident in the low variance of classification accuracies
observed over all 100 tests (7.58 × 10−5% of accuracies
observed over the 100 random training/testing sets). From
these results, one can conclude that vibration patterns of
slit valves are so distinctive that they identify individual
valves, similarly to how human’s speech can be used to
identify an individual person. Advanced time–frequency
analysis and sophisticated feature extraction methods intro-
duced in this paper were able to expose those discerning
vibration patterns and enable almost perfect valve identifica-
tion.

Delving deeper into how this remarkable performance
was achieved, we can notice that many of the 1122 features
generated from feature extraction stage were never selected
or were only rarely selected for pairwise classification sub-
problems, while a few happened to be selected and usedmore

5 One should note that our classification method transformed this 50-
class classification into 1225 pairwise classification problems, which
were solved using the kNN classification algorithm.

frequently. For the case of jointly using opening and clos-
ing valve motions, and features from all domains (highest
classification accuracy, as per in Table 3), top 10 most fre-
quently used features are identified in the pareto-chart shown
in Fig 3, and are explained in Table 4. As can be seen in Fig. 3,
median energy in the time–frequency domain of the RMS
of the entire vibration signal is the feature used most com-
monly. It was used in 800 out of 1225, or more than 68% of
the pairwise classification sub-problems. Mean energy in the
time–frequency domain calculated for the RMS of the vibra-
tion signal between the valve up and valve down signals ranks
second in the chart and covers 100 out of 1225 pairwise sub-
problems, which is about 8.16% of sub-problems. Besides
these two features, none of the remaining ones was used in
more than 3.1% classification sub-problem, which implies
that the aforementioned two features can be considered to
be the most discerning features in differentiating the valves
from each other.

In addition, the 10 most utilized features listed in Fig. 3
and Table 4 happen to be selected for use in around 90% of
all the pairwise classification sub-problems, with 51 features
covering all 1225 sub-problem pairs. It is an indication that
valve identification information could be stored in 51 or even
fewer vibration based metrics instead of the whole vibration
signature from three channels, implying that efficient valve
monitoring could be accomplished without excessive data
storage requirements.

Long-term monitoring of an individual valve

Vibrations from one of the slit valves in the fab were col-
lected over the period of several months, starting with an
overhaul maintenance of that valve (consisting of lubrication
of the valve body and placement of a fresh seal) and ending
with its next overhaul maintenance. As mentioned in “Long-
term monitoring of valve vibration patterns” section, due to
significant variabilities in timing and speed due to normal
changes in operations (recipes) executed on the tool, instan-
taneous time–frequency entropy of valve vibrations was used
for its monitoring and Fig 4. shows the progression of those
entropies in the valve closing motion, as the valve degraded
during the monitoring period. Horizontal axis in this figure
corresponds to the time, or rather the increasing number of
cycles this valve executed, while the vertical axis denotes the
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Fig. 3 Pareto Chart of most
commonly used features in the
classification scheme that led to
98.74% accuracy (highest
accuracy achieved in this study)

position of the valve within any given motion cycle. Gradual
increase in the instantaneous time–frequency entropies is evi-
dent in several sections of the valve travel and those portions
are emphasized in the figure (encircled with dashed lines).
This change in entropies denotes increased “disorder” in the
time–frequency distributions of valve vibrations correspond-
ing to those portions of its travel (notably, most pronounced
changes were observed toward the end of the valve closing
travel, indicating deterioration in the portion of valve motion
corresponding to the seal making contact with the chamber
door just before normalized valve travel time equal to 1, as
well as valve system movements just after the seals have
made contact with the chamber door, corresponding to valve
travel times just after 1).

Figures 5 and 6 provide further characterization of what
causes the entropy (disorder) growth apparent in Fig. 4. They
respectively show instantaneous frequency and instantaneous
frequency variance and are organized similarly to Fig. 4, in
the sense that their horizontal axes correspond to the increas-
ing number of cycles this valve executed, while their vertical
axes denote the position of the valve within any givenmotion
cycle.

Inspection of expected instantaneous frequencies in the
areas in Fig. 56 emphasized by dashed lines implies that
instantaneous frequencies near the normalized travel time
corresponding to 1 (during the end stages of camming and
seal contact with the chamber door) evolve toward lower
values as the valve executes more and more cycles (as we
go from left to right in Fig. 5). Namely, from the frequency
point of view, quiet valve vibrations look like white noise and

6 Those areas correspond to the portions of valve travel where increases
in entropies were observed.

display frequencies in various parts of the spectrum, includ-
ing high frequencies, leading to relatively high expected
instantaneous frequencies. On the other hand, when some
time–frequency structure appeared in the signals (e.g. when
we have metal to metal contact or poor vibration dissipation
due to a degraded seal), the instantaneous frequency was
lowered compared to the “white noise-like” vibrations.

Inspection of same emphasized areas in Fig. 6 shows that
instantaneous variances of frequencies evolve towards lower
values just before the normalized valve travel time 1 (dark
lines pointed by arrows in that figure), which corresponds
to the period when seal contacts the chamber door. This
is indicative of an increase in valve vibrations at a fairly
localized frequency, which illustrates decreased ability of
the seal to dissipate vibrations (i.e. a degraded seal). Fur-
thermore, one can note growth of instantaneous variances of
vibration frequencies just after the normalized valve travel
1, which corresponds to the movements of the valve mecha-
nism after the seal makes contact with the chamber door. It
is likely indicative of impulse-like metal-to-metal contacts
(impulse-like signals have a wide spread frequency con-
tent), which are occurring because of degraded lubrication
of the portion of the valve mechanism responsible for that
motion.

Information about the time of appearance and character
of anomalies in valve vibrations, as well as their location in
the normalized valve travel (where in the normalized travel
anomalies occur) yielded by Figs. 4, 5, 6 is of paramount
importance for scheduling andplanningofmaintenanceoper-
ations on those valves (when to take a valve down for
maintenance and what to do with it, in the sense should one
lubricate the valve guides, replace the seal or both).
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Table 4 Most commonly used features

Feature Feature name Direction of valve
motion

Channel of the
vibration signal

Portion of the
signal

Usage

median
[|sig (t, f)|2] Median energy in the

time–frequency domain
Closing RMS Entire Signal 68.65%

E
[|sig (t, f)|2] Mean energy in the

time–frequency domain
Closing RMS Between 8.16%

TMovement_Closing Movement time Closing 3.02%

median
[|sig (t, f)|2] Median energy in the

time–frequency domain
Closing RMS Post 2.12%

argmaxt |sig (t)|2 Position of maximum
energy in the time domain

Opening X-direction Pre 2.04%

E
[|sig (t)|2] Mean energy in the time

domain
Closing Y-direction Between 1.80%

E
[|sig (t)|2] Mean energy in the time

domain
Closing RMS Between 1.71 %

median
[|sig (t, f)|2] Median energy in the

time–frequency domain
Closing X-direction Entire Signal 1.63 %

Sum |sig (t)|2 Total energy in the time
domain

Opening RMS Post 0.90 %

In the column describing portions of the signal, “Pre” denotes portion of the signals before the valve open signal (normalized times −0.2 to 0),
“Between” denotes portion of the vibration signals between the valve-open and valve closed signals (normalized times 0 to 1), “Post” denotes
portion of the vibration signals after the valve closed signal (normalized times 1 to 1.2) and “Entire Signal” denotes the entire vibration signal
obtained during a given valve motion (normalized times −0.2 to 1.2)

Fig. 4 Progression of
instantaneous time–frequency
entropies of valve vibrations,
starting from an overhaul
maintenance event (left side of
the figure), until the next
overhaul maintenance event
(right hand side of the figure)

• Increasing entropy indicating increase in “disordered” in the TFDs of 
acceleration signals in certain portions of valve travels 

• This valve seems to be degrading at the end of its closing travel (seal contact 
with the chamber door and valve movements after that contact is made) 

Time 
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Fig. 5 Evolution of
instantaneous expected
frequencies evaluated from
time–frequency distributions of
valve vibrations

Instantaneous expected value of the normalized frequency (also known in 
signal processing as the instantaneous normalized frequency) evolves 
downwards in portions of the valve path corresponding to the end of valve travel 
during closing (seal contact with the chamber door and valve movement after 
the seals contacted the chamber door) 

Time 

Fig. 6 Evolution of
instantaneous frequency
variances evaluated from
time–frequency distributions of
valve vibrations

• Instantaneous variance of the normalized frequency evolves towards lower 
values just before the normalized valve travel time 1 (corresponding to the 
period when seals contact the chamber door) 

• Instantaneous variance of the normalized frequency evolves upward just after 
the normalized valve travel time 1 (corresponding to movements of the valve 
mechanism after the seals made contact with the chamber door) 

Time 
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Conclusions and future work

In this paper, we conducted a classification study in which
numerous slit valves used in a major semiconductor manu-
facturing fab were individually recognized using their vibra-
tion signatures. By applying an advanced time–frequency
signal processing and feature extraction method, the slit
valve vibration signals were transformed into a set of
descriptive metrics that were used for characterization of
vibration patterns of each individual valve. A kNN based
multi-class classification approach was used to recognize
the source of the unclassified vibration signals, leading
to almost perfect recognition of 50 individual valves in
the fab. The few mis-classification occurred within the
“quiet” valves, whose motion did not awaken a lot of
noticeable vibrations, and thus the valves ended up being
confused.

Moreover, long term monitoring of one of the slit valves
was accomplished using instantaneous entropy of the time–
frequency distributions of its vibrations, in spite of the
operational variations in the speed and timing of its travel.
Time localization of instantaneous entropies enabled local-
ization of the valve degradation (what part of its travel was
affected by it). Furthermore, a closer look at the expected
values and variances of instantaneous frequencies of valve
vibrations further characterizes the valve degradation in the
sense that it can be used to detect metal-to-metal contact
or seal degradation. Such information is highly important
for subsequent maintenance and repair of the degraded
valve.

In summary, novel contributions of this paper can be sum-
marized as follows. Vibration based characterization and
condition monitoring of slit valves in semiconductor man-
ufacturing is a new application that necessitated the use of a
novel combination of nonstationary signal analysis, pattern
recognition andmonitoring methods. In addition, implemen-
tation of the methodology in a real fab is an important contri-
bution because collecting and processing of signals coming
from fab machines rather than from valves operating in a lab
carries significant challenges in terms of enabling automated
triggering of signal collection and removing fab noise.

Future work consists of implementing the monitoring
solution across all the valves in the relevant fab and study-
ing their degradation patterns (what portions of the valve
travel are susceptible to degradation), as well as how to more
efficiently operate them (what speeds lead to slower degra-
dation) and maintain them (optimal scheduling and planning
of maintenance operations on the valves).
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