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Abstract Production and preventive maintenance are very
important functions in industry which act on the same
resources. However, in most real workshops, the scheduling
of their respective activities is independent and the con-
straint that they cannot be accomplished at the same time is
rarely considered. Therefore, we are facing a joint schedul-
ing problem of production and preventivemaintenance tasks.
In addition, this joint scheduling risks at any moment to
deviate from the theoretical desired performances when fac-
ing disturbances due to various causes. Thus, we must still
seek the most robust scheduling, i.e. the one that resists to
uncertainties. This paper proposes a new approach to study
robustness of joint production and maintenance scheduling
in permutation flow shop workshops. The studied scheduling
are generated according to two strategies: sequential and inte-
grated.Asmethods of scheduling resolution,wewill consider
the well-known ants colony optimization, genetic algorithm,
tabu search and some hybridizations of these methods. Our
approach can be applied to other joint scheduling generating
methods. In particular, we study how insertion of mainte-
nance tasks can contribute to the robustness of production
scheduling and how some scheduling strategies and meth-
ods are more robust than others. Several experimental results
show the merits of our approach.
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Introduction

To remain competitive, companies must focus on a contin-
uous improvement of their processes which must meet an
increased customers needs of quality, cost and time of avail-
ability. This improvement is supported by a quick develop-
ment of new information and communication technologies.
In this context, production scheduling and preventivemainte-
nance are important mechanisms that affect performances of
an industrial company. These two functions, generally oper-
ate on the same resources which may cause some conflicts
between their respective objectives. However, in most real
workshops their activities are independents and resources
immobilization for maintenance tasks is rarely planned so
that it does not interfere with productivity. In addition, cost
incurred by a failure (involving a corrective maintenance,
unscheduled stop of production, significant delivery delays,
etc.) can be much higher than a scheduled stop of production
for a preventivemaintenance. Therefore, we are facing a joint
scheduling problem of production and preventive mainte-
nance tasks, with objectives of respecting, firstly, constraints
of delay, cost and quality, and secondly, constraints of func-
tioning security that ensure sustainability of production tools.

In this paper, we are interested in joint production and
maintenance scheduling in permutation flow shopworkshops
(Blazewicz et al. 1996; Malakooti 2013). The complexity
studies have shown that usually the flow shop schedul-
ing problems lie in the NP-hard problem class (Rudek and
Rudek 2013). Difficulty especially rises as the number of
involved jobs or machines increases. In such a situation,
despite the spectacular evolutions in computers calculation
power, techniques that give the exact solution become insuffi-
cient. Thus, several methods were developed to deal with this
issue in case of production scheduling (Gen and Lin 2014;
Yagmahan and Yenisey 2009; Yenisey and Yagmahan 2014).
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Among these methods, our study provides an implementa-
tion of Ants Colony Optimisation (ACO) (Dorigo 1992),
Genetic Algorithms (GA) (Goldberg 1989), Tabu Search
(TS) (Glover 1986) and two hybrid GA an ACO approaches.
Choice of these methods is not arbitrary but based on the
fact that they allow us to obtain solutions as close as possi-
ble to the optimal one with a reasonable processing time.
In case of only production flow shop scheduling, perfor-
mances of these methods were demonstrated in works of
: Alaykyran et al. (2007), Marimuthu et al. (2009) for Ants
Colony Optimisation, Chiou et al. (2012), Ventura and Yoon
(2013) for Genetic Algorithms and Bozejko et al. (2013),
Grabowski and Wodecki (2004) for Tabu Search. We pro-
pose two different strategies to implement these methods for
joint production andmaintenance scheduling : sequential and
integrated. The main difference between these two strategies
is the way in which maintenance tasks will be processed dur-
ing the joint scheduling construction.

The joint scheduling generated by these methods and
strategies may deviate, at any time, from the desired the-
oretical performances. This deviation occurs when the
joint scheduling faces disturbances due to various causes
(machines failures, operators overloading, project objectives
changing, etc.). Therefore, we must still search through
all possible joint scheduling, the most robust ones, i.e. the
most resisting scheduling to uncertainties which represent
an important problem in real workshops. An approach to
address this issue is to keep good performances even in pres-
ence of disturbances inworkshops insteadof trying to achieve
exceptional performances in a deterministic status. This solu-
tion examines reaction of scheduling to disturbances after or
during their generations.

Thus, the main objective of our work is to study robust-
ness of joint production and maintenance scheduling in
permutation flow shop workshops and to demonstrate that
performances loss due to insertion of maintenance tasks
results in a gain of joint scheduling robustness.

Given their complexity, there are few works dealing with
scheduling robustness problems. The cases studied in this
field are mainly those of only production scheduling. Works
in Cui et al. (2004), Leus and Herroelen (2007) address the
problem of finding robust scheduling for a single machine
with failure uncertainty. In Cardin et al. (2013), authors
carry out experimentations on a complex flexible manufac-
turing system in order to determine whether or not flexibility
of scheduling methods can absorb uncertainties. Schedul-
ing robustness for a flexible job shop problem with random
machine failures is addressed in Cardin et al. (2013), He and
Sun (2013),Weckman et al. (2012). Two-stage approaches to
achieve stable and robust scheduling despite uncertain events
are proposed in Alfieri et al. (2012), Huang et al. (2014),
Mirabi et al. (2013), Rahmani and Heydari (2014). Authors
in Ghezail et al. (2010), Rasconi et al. (2010) introduce dif-

ferent methodologies to perform a comparative evaluation
of different approaches used to deal with the problem of
scheduling with uncertainty. It is important to note that one
of the original aspects of our contribution is that all of these
works consider robustness of only production scheduling and
did not study the impact of maintenance on this robustness.

The rest of this paper is organized as follows. “Litera-
ture review” section provides a focused literature review on
joint production and maintenance scheduling. “Study back-
ground” section gives a background to our study describing
the used data, functions, measures and their denotations.
“Joint scheduling strategies” section presents the two joint
production and maintenance scheduling strategies used in
our study to know the sequential and the integrated strategy
with the adaptation of the scheduling generating methods to
each strategy. “Scheduling robustness” section describes our
approach to study the scheduling robustness by presenting
the considered disturbances and the procedures of applying
these disturbances on both production and joint schedul-
ing.“Experimental results” section provides experimental
studies showing the merits of our approach. “Comparative
Study” section presents a comparative study between our
approach and other joint scheduling strategies. “Conclusion”
section concludes this paper.

Literature review

In the literature, different ways of understanding and charac-
terizing the problem of production andmaintenance schedul-
ing are proposed. Nevertheless, most works have opted for an
integrated approach to solve a static problem (Ben Ali et al.
2011; Fitouhi and Nourelfath 2014; Wang and Liu 2013;
Cui et al. 2014; Hadidi et al. 2011; Najid et al. 2011). In
other words, maintenance and production tasks are consid-
ered simultaneously and the characteristics (availability date,
operating time, etc.) of these tasks are known a priori. Some
authors propose to carry out themaintenance tasks during the
programmed stops of machines for other activities (quality
control for example) (Ben Ali et al. 2011; Kovács et al. 2011;
Fitouhi and Nourelfath 2014; Gustavsson et al. 2014; Wong
et al. 2013; Roux et al. 2013; Najid et al. 2011; Tsai et al.
2001).

Other works focus on the planning level and propose a
scheduling of maintenance and production operations, with-
out necessarily worrying about operational conflicts that may
arise (Buzacott and Shanthikumar 1993; Boukas et al. 1995;
Rahim and Ben-Daya 2012; Nourelfath and Châtelet 2012;
Wang and Liu 2013). On the other hand, authors in Moradi
et al. (2011), Ben Ali et al. (2011), Kovács et al. (2011), Luo
et al. (2011), Xia et al. (2015), Weinstein and H (1999), Lee
and Chen (2000) deal with scheduling problems by consid-
ering all constraints to optimize a given criterion, regardless
of the decision-making level.
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Many studies in the literature concern single-machine
problems that can form basis of complex scheduling (Wang
and Liu 2013; Cui et al. 2014; Leus and Herroelen 2007;
Mehta 1999; Shrouf et al. 2014; Tambe and Kulkarni 2015).
Other works were interested in the scheduling problems
of parallel machines that can be identical or not (Joo and
Kim 2015; Lee and Chen 2000; Nourelfath and Châtelet
2012; Behnamian and Ghomi 2013; Berrichi and Yalaoui
2013; Mensendiek et al. 2015). The complexity of parallel
machines scheduling prompted the majority of researchers
to propose relaxed simulation of the generalized problems
or some heuristics to solve them (James and Almada-Lobo
2011; Edis et al. 2013;Beraldi et al. 2008). Since the author in
Johnson (1954) proposed a resolution algorithm of the flow
shop model, many works considered this model (Sun et al.
2011; Ribas et al. 2010; Pan and Ruiz 2013; Neufeld et al.
2016; Yenisey and Yagmahan 2014). A part of these works
has been restricted to the case of two machines given the
difficulty of the general flow shop problem (Yang and Wang
2011; Espinouse et al. 2001; Zhao and Tang 2011; Mirabi
et al. 2013; Huang et al. 2014). Furthermore, only few works
are devoted to this model in presence of maintenance tasks,
even if it has many applications in several industrial fields
(Sun et al. 2011; Yenisey and Yagmahan 2014; Neufeld et al.
2016).

In the literature, many works focus on production cri-
teria even in cases where the periods of unavailability are
due to maintenance interventions (Harjunkoski et al. 2014;
Moon et al. 2013; Joo and Kim 2015; Branke et al. 2016).
This gap justified the orientations to give to our study
concerning the consideration of maintenance when solv-
ing the production scheduling problem and the resolution
strategy.

First, we consider the preventive maintenance regarding
its predefined nature (Roux et al. 2013; Ruiz et al. 2007;
Tsai et al. 2001; Wang and Liu 2013; Wong et al. 2013;
Fitouhi and Nourelfath 2014; Gustavsson et al. 2014;Moradi
et al. 2011; Naderi et al. 2011). Unlike the randomness of
corrective maintenance, which acts to repair the failures,
preventive maintenance results in planned interventions or
periodic inspections aimed at avoiding the failures. In this
case, finding the production scheduling is correlated with the
resolution of the maintenance scheduling, which justify the
need of a close cooperation between the departments respon-
sible of these two functions. The literature mainly proposes
two ways to choose periods of preventive maintenance: pre-
determined fixed periods or randomperiods generated during
scheduling (Gertsbakh 2013; Xiong et al. 2013). For our
case study, we consider predetermined periods of preven-
tive maintenance. Nevertheless, we add tolerance intervals
around each maintenance period. During these intervals, the
maintenance cost is considered low, which gives more flexi-
bility to maintenance planning.

Second, we chose a joint policy of production and main-
tenance scheduling. This policy allows companies to have
better control of production andmaintenance costs.An exam-
ple of these costs are shortfalls generated by the production
downtime during failures or maintenance periods (Wong
et al. 2013; Hadidi et al. 2011; Rahim and Ben-Daya 2012;
Tambe and Kulkarni 2015; Beraldi et al. 2008; Najid et al.
2011). Hence, this policy must be the result of a joint consul-
tation between the two respective departments responsible of
production and maintenance functions. Nevertheless, since
production remains the predominant function in manufac-
turing systems, it will be a strong constraint for maintenance
planning. Mainly, because priorities management related to
the machines on which maintenance tasks must run. One
of the main methods proposed to address this constraint
is to take advantage of machines idle time to schedule the
maximum tasks of maintenance and minimize production
downtime (Naderi et al. 2011; Ruiz et al. 2007).

Third, we consider some scheduling strategies to man-
age operational conflicts that may arise when integrating
maintenance into production scheduling. Since the functions
of production and maintenance act on the same resources,
namely machines, three main scheduling strategies of these
two functions were identified. These strategies aim to resolve
most effectively structural conflicts that may exist between
the activities of production and maintenance (Campbell and
Reyes-Picknell 2015; Lee and Chen 2000). The first strat-
egy deals with an independent scheduling of these activities
resulting in additional costs and delays in system operation
(Tsai et al. 2001; Shahidehpour andMarwali 2012). The sec-
ond strategy is to schedule jointly and sequentially the tasks
of production andmaintenance (Wong et al. 2013; Espinouse
et al. 2001; Sloan 2004). The third strategy, called integrated,
is to create a joint and simultaneous scheduling of mainte-
nance and production tasks (Hadidi et al. 2011; Ben Ali et al.
2011; Najid et al. 2011). In our study, we opted for the two
last strategies since they limit the risk of interference between
production and maintenance activities and thus optimize the
scheduling quality.

Study background

In this section we first describe data used in our work and
their denotations, to know data of the permutation flow shop
workshops and those relating to the systematic preventive
maintenance as shown in Fig. 1. Then, we present the objec-
tive function used in our study.

Joint scheduling data

In this studywe are interested in permutation flow shopwork-
shops which are frequently encountered in practice. Letm be
the number of machines in the workshop and n the number of
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Fig. 1 Temporal characteristics of production and maintenance tasks

jobs to be processed. A job is defined as a sequence ofm ele-
mentary production tasks following the order of machines.
We denote by j (1 ≤ j ≤ m) a machine, i(1 ≤ i ≤ n) a
job and P(i, j) a production task of a job i processed on a
machine j . It is also noted for each job i :

ri : release date (the arrival date of the job i in the work-
shop).
di : due date (the delivery date of the job i).
ti j : starting date on a machine j .
ci j : completion date on a machine j .
pi j : processing time on a machine j .
Cmaxi : max(ci j ), the completion date of the last task
of the job i .

In a permutation flow shop workshop, we consider that
eachmachine can be subjected to one ormore systematic pre-
ventive maintenance tasks which are periodic interventions.
Each preventive maintenance task is characterized by some
parameters predetermined by the maintenance department
or by the manufacturer of the involved equipments. In prac-
tice some positive or negative deviations are tolerated about
the ideal maintenance period. These deviations are supported
by some tolerance intervals around each maintenance period
(Benbouzid et al. 2003). In our study, the cost of a mainte-
nance task if it is advanced or delayed within these intervals
is acceptable. These intervals denoted give more flexibility
to the maintenance planning if necessary and they represent
a compromise between the maintenance cost and the risk of
machine availability loss. In the following we denote by :

Mj : the maintenance task associated with the machine
j . A machine may be subjected to several interventions
(occurrences of Mj )
T ∗
j : the optimumperiodicity of themaintenance taskMj .

Tminj : the minimum time between two successive main-
tenance tasks Mj on a machine j .
Tmax j : themaximum time between two successivemain-
tenance tasks Mj on a machine j .

p′
j : the processing time of the maintenance task Mj . It

is assumed to be known and constant.

The following notations are related to the kth occurrence
of the maintenance task Mj :

t ′jk : the start date of the kth occurrence of Mj .
c′
jk : the completion date of the kth occurrence of Mj .

And the tolerance interval of the kth occurrence of the
maintenance task Mj [Tminjk, Tmax jk] is determined as
follows :

Tminjk = t ′jk−1+ p′
j +Tminj and Tmax jk = t ′jk−1+ p′

j −
Tmax j .

Objective function

The objective function to optimize is a compromise between
goals we want to achieve for a joint scheduling of produc-
tion and maintenance tasks. Several constraints imposed by
customers to their suppliers often imply the minimization of
the manufacturing total time or makespan Cmax .

The respect of customers constraints imposes a proper
functioning of suppliers production system which requires a
plannedmaintenance periods.Wedenote by f1 the evaluation
function of this maintenance planning expressed by:

f1 =
m∑

j=1

k j∑

k=1

E ′
jk + L ′

jk (1)

where : k j is the number of effective occurrences of themain-
tenance task Mj .
E ′

jk : the advance of the kth occurrence of Mj .

E ′
jk = max(0, (t ′jk−1 + p′

jk + Tminjk) − t ′jk)

L ′
jk : the delay of the kth occurrence of Mj .

L ′
jk = max(0, t ′jk − (t ′jk−1 + p′

jk − Tmax jk)

To optimize the two evaluation function Cmax and f1 we
consider the following objective function:

f = αCmax + β f1 (2)

α and β are parameters that measure the respective contribu-
tions of production and maintenance in the global objective
function. In case of only production scheduling, the objective
function is obtained by putting the coefficient β equal to 0.
The objective function is first used to generate initial joint
scheduling using methods and strategies presented in “Joint
scheduling strategies” Section. Then, it is used to evaluate
performances deviation of these scheduling after applica-
tion of disturbances according to the procedure presented
in “Scheduling robustness” section.
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Joint scheduling strategies

The activities of production and maintenance appear as
antagonistic. Indeed, if the production has the role of operat-
ing a system to achieve certain objectives, maintenance often
requires system stops tomaintain it. However, the connection
between these two functions is necessary in order to achieve
an optimal system functioning. The objective is to respect
the best equipments maintenance frequency with a minimal
damage to the production plan. To do this, we will con-
sider two options: the sequential strategy supported by two
separate services and the integrated strategy supported by a
single production and maintenance service. These strategies
use methods of solving permutation flow shop workshops
scheduling that are based on techniques of combinatorial
optimization.

Traditionally, the field of combinatorial optimization has
preferred the exact methods to the detriment of approximate
methods. The use of accuratemethods allows benefiting from
strong theoretical results accompanying notions of conver-
gence and global optimality. Thus, several classical problems
(reasonably sized) can be solved exactly, in a reasonable
period of time. The exact methods generally involve enumer-
ating all solutions of the search space inorder to select the best
one. In addition, to improve the enumeration of solutions,
exact methods have techniques to detect the earliest possible
failures and specific heuristics to guide choices. However,
the computation time of such methods is exponential which
increases as a function of the problem size. Therefore, these
methods are only usable on problems where the number of
combinations is small enough to explore the solutions space
in a reasonable time. As exact methods applied to produc-
tion scheduling problem, we can cite linear and dynamic
programming (Johnson and Montgomery 1974) and Branch
and Bound algorithm (Park and Kim 2000).

Recently, there is growing interest for the ability of the
approximatemethods, particularlymetaheuristics, to provide
high quality solutions for a reasonable computation time.
The loss of optimality with these methods is compensated by
the decrease of calculation time and therefore an increased
responsiveness.Metaheuristics also benefit fromother signif-
icant advantages such as their quick adaptation to structural
changes of the problem. All metaheuristics are based on a
balance between intensifying research and diversifying it.
On the one hand, intensification allows searching for higher
quality solutions based on already found ones and on the
other hand, diversification implements strategies to explore
a larger solutions space and escape from local minima. We
present in the following an adaptation of some joint schedul-
ing resolutionmetaheuristics, that provide this balance, to the
sequential and integrated strategies. Before that, we give the
solution coding that we used to represent joint scheduling.

Solution coding

A joint scheduling solution describes the executing sequence
of production and maintenance tasks on all machines. There-
fore, each solution is encoded by two components. The first
component is a sequence Swhich represents order of produc-
tion tasks execution coding as vector of size n (number of
tasks) which elements represent tasks numbers. The second
component is a matrix M that represents the insertion loca-
tions of maintenance tasks. An elementM[ j, k] of thematrix
M represents the insertion location of the kth maintenance
task on the j th machine according to the sequence S. For
example, M[1, 2] = 5 means that the second maintenance
task of the first machine is inserted at the 5th position in the
sequence S.

Sequential strategy

We give in the following settings and algorithms of the
approaches that we used in the first phase of the sequen-
tial strategy to know the production scheduling generating.
Then, we present the second phase of this strategy which
concerns the heuristic of maintenance tasks insertion.

Ant colony optimization

Ant colony optimization (ACO) is a metaheuristic proposed
by in Dorigo (1992) for solving combinatorial problems. It
has proved its efficiency in many optimization problems,
especially in production scheduling (Alaykyran et al. 2007;
Marimuthu et al. 2009). In the following we show our ACO
implementation for generating a joint scheduling with the
sequential strategy in a permutation flow shop workshop.

(1) Pheromone information initialization we represent
pheromone information (called also intensity) in a gen-
eral matrix τ of dimension n × n with n the number of
tasks. A value of an element τ [i, r ], such that i represents
the source task and r the destination task is initialized by
a real value equal to 0.1.
(2) Heuristic information initialization this information,
called also visibility, is represented by a global matrix η

of dimension n × n, such that n is the number of tasks.
An element η[i, r ] represents quality of a task r for an
ant positioned on a task i . Elements of the matrix η are
initialized by values related to the processing times of the
tasks belonging to the neighbourhood of an ant a using
the following formula:

ηir = 1 −
∑

j pr j∑
l∈Na

i

∑
j pl j

(3)
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where:

i : current task;
pr j : processing time of a task r on a machine j
l : tasks belonging to the neighbourhood Na

i of the ant a;
(3) Ants positioning each ant is positioned on a randomly
chosen taskwhichwill be inserted into a Tabu list belong-
ing to this ant. Tabu list of an ant is a vector of amaximum
size equal to the number of tasks in the problem.
(4) Solution construction (production sequence) each ant
a selects the next task to be scheduled by calculating a
transition probability at a time t given by:

�a
ir = [τir (t)]α [ηir (t)]β∑

l∈Na
i [τir (t)]

α[ηir (t)]β
(4)

where: Na
i : set of neighbours of task i not yet visited by

ant a; α and β are two parameters controlling the relative
intensity τir and the visibility ηir of the track (i, r).
Then, the selected task in the previous step is inserted in the
Tabu list of the ant a. An ant moving from a task i to a task
r reduces the value of the pheromone information value τir
on the track (i, r). This update is performed in order to make
less attractive the visited task to further research. The new
value of τir is calculated as following :

τir (t + 1) = (1 − ρ)τir (t) + ρτ0 (5)

where:

ρ : the evaporation rate of pheromone with ρ ∈ [0, 1];
τ0 : the initial value of the pheromone on the track (i, r).
If there are still tasks to be scheduled by the ant a,
then the construction process is repeated. The production
sequence obtained by the ant a is the sequence contained
in its Tabu list.
(5) The best solution updating once each ant has con-
structed a solution (production sequence), an update is
performed to the circuit of the ant that generated the best
solution. This update concerns the matrix τ (pheromone
information) and it is made according to the following
formula:

τir (t + 1) = (1 − α)τir (t) + α�τir (t) (6)

where : �τir (t) = 1/Objective f unction.

(6) Solution improvement a kind of hybridization of the
ACO algorithm and the local search heuristic (Michiels
et al. 2010) is used in order to improvegenerated solutions
and then accelerate the convergence process. In our ACO
implementation, three levels of improvements are used
(presented in Algorithm 1).

(7) Stop criterion The ant colony is restarted from step
(3) while the fixed number of generations is not reached.
We give in the following the general algorithm (Algo-
rithm 1) that illustrates the different stages of our ACO
implementation.

Algorithm 1: ACO algorithm

begin
Parameters initialization : Pheromone and Heuristic
information
while the stop criterion is not reached do

Ants positioning
foreach ant do

while there are still tasks to be scheduled by the
current ant do

Select the next task to be scheduled
Insert the selected task in the Tabu list
Update the pheromone information value

end
Improvement level 1

end
Improvement level 2
Update the best solution

end
Improvement level 3

end

Genetic algorithm

Genetic algorithm (GA) (Goldberg 1989) belongs to the class
of evolutionary algorithms. These algorithms generate solu-
tions to optimization problems using techniques inspired by
natural evolution. GA has already demonstrated its perfor-
mances to solve production scheduling problems (Chiou et al.
2012; Ventura and Yoon 2013). We present here steps of our
GA implementation for a joint production and maintenance
scheduling problem using sequential strategy.

– Initial population generating initial population is formed
by a set of randomly generated individuals representing
production sequences.

– Adaptation function as dealing with a problem that aims
a minimization of the objective function, we chose the
following adaptation value : 1/(1+objective f unction).
The objective function is added to 1 to avoid division by
zero.

– Selectionweused the roulettewheelmethod that provides
a selection of the best individuals by rank and tournament
(Goldberg 1989).

– Crossover the objective is to combine two individuals
called parents to make one or two new individuals called
sons. In our case the k-point crossover (Goldberg 1989)
is used. Its principle is to randomly generate k points of
crossover which provides k + 1 segments in each parent.
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Then to copy odd parts (respectively even parts) of the
first parent in the first son (respectively the second son).
Themissing segments are completed by themissing tasks
according to their apparition order in the second parent.

– Mutation it consists of swapping tasks of two randomly
chosen positions of an individual according to some
mutation rate.

– Replacementwe implemented theN-Best strategy (Gold-
berg 1989) where the N (given as parameter) best
individuals are chosen to form the new population.

– Evaluation adaptation values (fitness) are used to favour
the best individuals. This evaluation is only conducted
on new individuals selected for replacement.

– Stopping criterion the algorithm stops when the number
of generations which is defined by the user is reached or
when a stagnation of the best solution is observed.

The general functioning principle of Genetic Algorithm
used with the sequential strategy is given in the following
(Algorithm 2).

Algorithm 2: Genetic Algorithm
Data: P0 : Initial population of n production sequences

(individuals); n : The requested size of population; i :
Population index; S1, S2, S′

1, S
′
2 : Production sequences

begin
i ← 0
while the stop criterion is not reached do

i ← i + 1
Let Pi be an empty population
while Pi does not contain n production sequences do

Randomly select two production sequences S1 and S2
from Pi−1
Apply the crossover operator on S1 and S2 to get two
sons S′

1 and S′
2

Add S′
1 and S′

2 to Pi
end
Apply the mutation operator on some production
sequences of Pi
Pi ← Pi ∪ Pi−1 // Apply the replacement
operator
Apply the selection operator on Pi

end
Select the best production sequence from Pi

end

Tabu search

Tabu search (TS) is an iterative metaheuristic introduced
by Glover (1986). It is very effective to solve a consid-
erable number of combinatorial optimization problems, in
particular production scheduling problem (Bozejko et al.
2013; Grabowski and Wodecki 2004). In the following, we
present our adaptation of Tabu search used with the sequen-
tial strategy for solving the joint production andmaintenance
scheduling.

Initial solution and neighbourhood generating To generate
an initial production sequence of size n, we first initial-
izes it with a canonical solution {0, 1, 2, . . . , n}. Then, some
changes are performed on this solution by randomly generat-
ing two positions and switching the tasks in these positions.
The same principal is used to generate neighbourhood of a
production sequences used by Tabu search algorithm (Algo-
rithm 3).

Tabu list Tabu list allows to avoid blockages in local minima
by prohibiting consideration of previous configurations. The
list size is maintained throughout the method evolution. If its
size is reached while a good solution is presented then the
oldest solution in the list is removed to insert the new one.

Stopping criterion Search stops when a certain number of
iterations is reached (defined as parameter) or when no
improvement is observed for somenumber of iterations (stag-
nation). Algorithm 3 presents our adaptation of Tabu search
used with the sequential strategy.

Algorithm 3: Tabu search algorithm
Data: S : current solution; S∗ : best solution; S′, S′′ :

intermediate solutions; f : objective function; NbI ter :
Number of iterations

begin
Randomly generate an initial solution S; Insert S in Tabu list;
S∗ ← S
NbI ter ← 1
while the stop criterion is not reached do

Generate a neighbourhood N (S) of S
S′ ← the best solution of N (S)

if f (S′) < f (S) then
S ← S′
S∗ ← S
Insert S′ in Tabu list

else
Randomly take S′′ out of Tabu list
S ← S′′
Increment stagnation parameter

end
NbI ter ← NbI ter + 1

end
end

Maintenance tasks insertion

The principle of maintenance tasks insertion in a production
sequences obtained by one of the previous algorithms is to
process all maintenance tasks of the first machine, then we
move to the second and so on until the lastmachine according
to the depth-first search algorithm (Kleinberg et al. 2006).
This strategy does not bear risks of missing tasks and has the
advantage that an inserted maintenance task will no longer
be shifted.
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Insertion of the kth occurrence of a maintenance task on
a machine j is done at locations that minimize a partial
objective function (a partial evaluation of the obtained joint
scheduling) according to the following cases:

– Within its tolerance interval [Tminj , Tmax j ]. In this case,
there is no delay of a maintenance task.

– Before its Tminjk . To avoid having a large number of
maintenance tasks too close, this insertion is possible
only if Tminjk does not exceed a margin τ × Tminj (0 <

τ < 1) : Tminjk − t ′jk ≤ τ × Tminj .
– After its Tmax jk (delayed task). To ensure that no mainte-
nance task will be missed, this insertion is possible only
if its delay does not exceed a margin τ × Tmax j (0 < τ <

1) : t ′jk − Tmax jk ≤ τ × Tmax j .

Integrated strategy

The integrated strategy consists on ordering production and
maintenance tasks at the same time, while optimizing the
overall objective function. In the following, we present the
integrated versions of the same approaches used with the
sequential strategy.

Integrated ant colony optimization

Steps for generating an ACO joint scheduling using the
integrated strategy are the same as those of the sequential
strategy. The main modifications concern the solution con-
struction and the best solution updating. These modifications
are given in the following.

Construction of a joint solution (production andmaintenance
sequence) In this step, each ant builds a production sequence
using the same procedure described in the sequential strat-
egy. Thenmaintenance tasks are inserted using the depth-first
search algorithm after each production sequence generating
by each ant. The insertion of maintenance tasks at this level
allows the evaluation to be done on the joint sequence and
not only on the production sequence. The best solution is
the joint scheduling that optimizes (minimizes) the overall
objective function.

The best solution updating Once each ant in the colony built
a solution (joint scheduling), an update is performed to the
circuit of the ant which obtained the best solution at each
generation. The considered best solution here is the one that
minimizes the overall objective function given in formula (2).

Integrated genetic algorithm

The main difference between GA using the integrated strat-
egy and GA using the sequential strategy is that, with the

integrated strategy, the crossover andmutation operators con-
sider at the same time production and maintenance tasks. In
the following, we present the principle of these operators.

Crossover The final crossover operators are obtained by
combining crossovers operators on production and those on
maintenance. Crossover operators on production tasks are
those defined for the sequential strategy and presented in
“Genetic algorithm” section. The new crossover operator on
maintenance is inspired by the k-points crossover operator
principle. It consists on generating k (k ∈ [0 . . .m]) ran-
dom points of crossover on each parent (this provides k + 1
segments in each parent). Then, copying maintenance tasks
located in the even parts (respectively odd parts) of the first
parent into the even parts (respectively odd parts) of the first
son (respectively the second son). In the same way, copying
maintenance tasks located in the odd parts (respectively even
parts) of the second parent into the odd parts (respectively
even parts) of the first son (respectively the second son).

Mutation The mutation operator on production follows the
same principle as that of the sequential strategy. At the same
time, locations of maintenance tasks will be changed rela-
tively to the new locations of the production tasks. In addition,
randomly shifts to the left, or to the right, are applied on some
maintenance tasks.

Integrated tabu search

In the following, we present the main changes of the inte-
grated Tabu search algorithm compared to that used with the
sequential strategy.

Initial solution generating To obtain the initial solution,
Tabu search began by randomly generating a production
sequence using the sameprincipal presented in “Tabu search”
section. Then, it inserts maintenance tasks in the obtained
production sequence using the heuristic presented in “Main-
tenance tasks insertion” section.

Neighbourhood generating We present in the following two
principles of movements used to generate the neighbourhood
solutions :

1. Neighbourhood generating by maintenance tasks shift-
ing: a maintenance task can have several possible loca-
tions in its tolerance interval. Therefore, it is useful to
generate the neighbourhood of a solution using somepos-
sible locations that one or more maintenance tasks can
have on one or more machines.

2. Neighbourhood generating by production tasks swap-
ping: the purpose of this operation is to create new
individuals by changing the execution order of produc-
tion tasks groups using the same principle presented in
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“Tabu search” section, but keeping the right maintenance
tasks location in relation with production tasks.

Hybrid methods

This trend of solutions aimed hybridization of optimization
methods by making two or more of these methods working
together to achieve the best solutions (Costa et al. 2015; Laha
and Chakraborty 2009; Meeran and Morshed 2012). In our
study, a hybridization between methods mentioned above is
tried. Hybridizations are performed on the two joint schedul-
ing strategies, the sequential and the integrated one. In the
following, we propose two hybrid methods used in our study.

GA hybridization with tabu search (GAH) GA algorithm
generates an initial solution for Tabu search. Then, Tabu
search try to improve this solution.

ACO hybridization with tabu search (ACOH) The same
precedent principle is applied, Tabu search starts with an
initial solution generated by the ACO algorithm, then try to
improved it.

Parameter tuning

Manyparameters have to be tuned for themetaheuristics used
in our study. In literature, there are two different strategies
for parameter tuning : the off-line parameter initialization (or
meta-optimization) and the online parameter tuning strat-
egy (Talbi 2009). In off-line parameter initialization, the
values of different parameters are fixed before the execu-
tion of the metaheuristic, while in the online approach, the
parameters are updated dynamically during the execution
of the metaheuristic. In our experimentations, we used the
off-line tuning method “irace” (López-Ibánez et al. 2011),
a publicly available implementation of Iterated F-Race pro-
posed by Balaprakash et al. (2007) and further developed
by Birattari et al. (2010). The main purpose of irace is to
automatically congure optimization algorithms by nding the
most appropriate settings given a set of tuning instances of
an optimization problem. Irace starts by sampling a number
of parameter settings of a given algorithm uniformly at ran-
dom. Then, at each iteration, it selects a set of best settings
using a racing procedure (Maron andMoore 1997) and Fried-
man’s non-parametric two-way analysis of variance by ranks
(Daniel et al. 1990). This racing procedure iteratively runs
the algorithm settings on a sequence of problem instances,
and rejects settings as soon as there is enough statistical evi-
dence that they perform worse than the best one. Then, the
best settings are used to bias a local samplingmodel. The next
iteration begins by selecting new settings from this model,
then it applies the racing procedure to these settings with
the previous best settings. This procedure continues to run

until a given computational budget is exhausted. This com-
putational budget may be an overall computation time or a
number of experiments, where an experiment is the appli-
cation of a configuration to an instance. In our study, we
tuned each optimization algorithm (ACO, GA and TS) using
a budget of 5000 experiments.

Scheduling robustness

In literature of scheduling in dynamic and stochastic envi-
ronments, the robustness of a solution usually refers to a
scheduling prepared for uncertainties of future unknown
events (Cowling and Johansson 2002; Jensen 2001; Yellig
andMackulak 1997). The uncertainties may be from changes
in the environment or from inaccurate execution of the solu-
tion itself. This is why the authors in Billaut et al. (2013),
Pinedo (2012) noted that the robustness is a difficult concept
to measure or even to define. Some authors prefer to use the
concept of robust methods to describe amethod that provides
scheduling which preserves its performances in the pres-
ence of disturbances (Daniels and Kouvelis 1995; Shafaei
and Brunn 1999).

The notion of disturbances here, is defined generally as
any unanticipated operational event introduced during the
implementation of the scheduling and which can affect its
performances (Cowling and Johansson 2002; Mehta 1999;
Shafaei and Brunn 1999). The disturbances considered in our
study concern extensions of tasks processing time according
to some classes and levels. These extensions can be justified
by the need of having a better product quality or by conse-
quences of eventual machines failures.

In literature, there are several approaches proposed to han-
dle disturbances when solving optimization problems, a part
of these approaches are cited in Bertsimas et al. (2011). How-
ever, a practical drawback of these approaches is that they are
note computationally tractable for some optimization prob-
lemswhere the number of possible combinations is important
(case of flow shop scheduling when considering a significant
number ofmachines and tasks). In addition, these approaches
generally have some cost in terms of optimality associated
with robustness (Bertsimas and Sim 2004).

In the following, we give some necessary definitions for
designing a model to study the robustness of joint production
and maintenance scheduling in the presence of disturbances.
In this model, we generate and apply disturbances on both
production and joint scheduling. Our approach doesn’t han-
dle disturbances when generating scheduling but it evaluates
the robustness of the generated scheduling using algo-
rithms presented in “Joint scheduling strategies” section.
Our approach can also be adapted to study the robustness
of joint scheduling generated using other metaheuristics or
exact methods.
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The disturbances classes represent the rate of tasks
assigned to themachines subjected to disruptions (whichwill
fail for example). Three classes intervals noted ci (ci ∈ {
[0, 40%], ]40, 70%], ]70, 100%] }) are considered. The dis-
turbances rate Uc is randomly chosen following a uniform
distribution in the interval ci . Uc ∼ U [ai , bi ] with ai and bi
are the interval bounds.

Disturbances levels are used to calculate the maximum
extending processing time rate of tasks subjected to distur-
bances. Ten intervals noted li are considered. The extending
rate is randomly chosen following a uniform distribution in
the interval li (li ∈ { [0, 10%], ]10, 20%], ..., ]90, 100%] }).
Ul ∼ U [αi , βi ] with αi and βi are the interval bounds.

Assuming that there are n production tasks then the total
number of tasks to disturb NT is given by the following
formula:

NT = [n ∗Uc] (7)

where : [i] is the integer part of i .
Note that a total number of tasks to disrupt NT equal to 0
can be obtained using the latter formula. To avoid this case,
NT is considered to be at least equal to 1.

On the other hand, a disturbance level is used to specify
the maximum extension rate of production tasks processing
times. New processing times of tasks subjected to distur-
bances is calculated using the following formula:

p′′
i j = pi j ∗ (1 + ξi j ) (8)

where :

p′′
i j : the newprocessing timeof the disturbed task P(i, j).
pi j : the initial processing time before disturbing the task
P(i, j).
ξi j : the disturbance coefficient of the task P(i, j).
For production scheduling, before inserting maintenance
tasks, ξi j is equal to Ul .

For joint production and maintenance scheduling, the cal-
culation of ξi j is more complicated. In fact, the insertion of
maintenance tasks in the production scheduling may reduce
themachines failures. Since themachines reliability does not
last a long time, the risk of failure increase, the further one
gets away from the last maintenance intervention. Thus, the
evolution of the failure (disturbance) intensity in a period
of time bounded by two successive maintenance operations
on the same machine can be divided into two intervals. A
first interval where the failure intensity is nil, which means
that no disruption application is allowed since the machine is
just subjected to a maintenance operation. This first interval
is denoted by R j for a given machine j . A second interval
where the risk of a machine failure increases progressively

as her reliability decreases. This interval is called the distur-
bance interval and denoted by Djk for a given maintenance
occurrence k on a machine j .

Within the second interval, calculation of disturbances
coefficient ξi j depends on the level of disturbances (the max-
imum disturbance intensity to be considered) and the the
distance of the production task from the last maintenance
task performed on the same machine. For this reason it was
assumed to divide the disturbance interval Dj in ten subdi-
visions. These subdivisions are used to realize the effect of
maintenance tasks on production tasks.

If we consider these dependencies, the value of ξi j in case
of a joint scheduling is given by the following formula:

ξi j = χi j ∗Ul (9)

where χi j depends on the subdivision in which the task
P(i, j) is located. In the following we present the steps of
finding the formula used to calculate its value: First, the dura-
tion ρ between the starting date ti j of the task P(i, j) and
the end date of the reliability interval R j , is calculated by the
following formula:

ρ = ti j − (c′
jk + R j)

Now, if we denote by I jk the time between two successive
maintenance tasks on the same machine j (between the kth
and the (k + 1)th occurrences) then the duration of the dis-
turbance interval Djk is given by the following formula :
Djk = I jk − R j .
By performing a three-rule, the number of subdivisions x in
ρ may be calculated, in order to find the subdivision in which
the task P(i, j) is located as follows : x = ρ ∗ 10/Djk .
Finally, by substituting x in the formula χi j = x/10, we will
have:

χi j = (ti j − (c′
jk + R j))/(I jk − R j)

Thus, the general formula of the disturbance coefficient is
given by :

ξi j = ti j − (c′
jk + R j)

Djk − R j
∗Ul (10)

The application of disturbances to the scheduling causes
some problems due to the new coordinates of production
tasks, which do not respect the nature of the workshop and
the precedence constraints between tasks. In other words,
overlaps, which are defined as an interlacing or a superposi-
tion of two tasks, have a great chance to appear. Two types of
overlaps can be encountered : horizontal overlaps (between
two tasks in succession on the same machine) and vertical
overlap (between tasks of the same job).

To address this problem, we opted for the right shift
approach (Vieira et al. 2003), which is a reactive approach
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to solve the problem of overlaps while maintaining the tasks
order. This order should be maintained to make a valid com-
parison between performances of the initial scheduling and
performances of the disturbed ones.

If the task concerned by an overlap is a maintenance task,
two situations arise. If its shifting does not cause exceeding
of its Tmax , then this shifting will be performed. Else it will
be switched with the production task that caused the overlap.
The switched production task will not be disturbed since it
will be located just after the maintenance task, i.e. in the
reliability interval. The starting date of the maintenance task
will be chosen so that it does not come before its Tmin .

Since the calculation of the new processing times after
disturbances uses a deterministic function (formula (10)),
the complexity of our approach is mainly related to the right
shift algorithmwhen overlaps occur. Right shift rescheduling
means simply to delay the entire scheduling by the duration of
the overlap. Since this is done by adding a fixed increment of
time to each tasks of the scheduling, the right shift algorithm
is clearly polynomial, since the computation only involves
the addition of a time increment to each of the remaining
operations. At most m*n operations are concerned by this
shift.

The general principle of disruption is given in the Algo-
rithm 4.

Algorithm 4: Disruption scheduling algorithm
Data: n : number of tasks; m : number of machines; Uc : rate of

tasks that will be disturbed; Ul : extension rate of
processing times; αi , βi , ai , bi : interval bounds;

begin
foreach disturbances class interval ci = [ai , bi ] do

foreach disturbances level interval li = [αi , βi ] do
Generate Uc ∼ U [ai , bi ]
for nt ← 1 to [n ∗Uc] do

Generate Ul ∼ U [αi , βi ]
Generate i ∼ U [0, n]
Generate j ∼ U [0,m]
Locate Mjk // the last occurrence of
the maintenance task (the kth
occurrence on the j th machine)
if ti j > (c′

jk + R j ) then

ξi j = ti j−(c′
jk+Rj)

I jk−Rj ∗Ul

p′′
i j = pi j ∗ (1 + ξi j ) // Calculate the

new processing time of the task
P(i, j)
Update scheduling with consideration of the
new processing time and overlaps

end
end
Calculate the performances measures of the disturbed
scheduling

end
end

end

Experimental results

To implement the model presented in the previous sections, a
sample of 20 initial scheduling is generated by each method
and strategy presented in “Joint scheduling strategies” sec-
tion. Each initial scheduling is disturbed according to 10
levels and 3 classes. For each class and level, 100 sim-
ulations are performed and the averages results of these
100 simulations are considered. The differences between the
objective functions values of the disturbed scheduling and
the initial scheduling (before application of disturbances) are
considered to evaluate the performances deviations of these
scheduling.

Benchmarks ofTaillard (1993) andReeves (1995) are used
as production data.Maintenance data are randomly generated
using a specific service developed to perform this study.

The experimental studies presented in this section try to
answer the two essential questions of our study, to know :
are there robust schedulingmethods?Doesmaintenance con-
tribute to the robustness of joint scheduling? In the following
we present the experimental results according to these two
questions.

Are there robust scheduling methods?

Figure 2 shows the performances deviations averages of the
production scheduling calculated from the combined levels
and classes of disturbances according to the used method
and the workshop size. The main remark, is that methods
robustness is inherent with small benchmarks for the most
cases of the disturbance protocol. Moreover, the results of
hybrid methods, ACO andGA are generally better than those
of Tabu search.

Figure 3 shows the performances deviations averages of
the joint scheduling obtained from the combined levels and
classes of disturbances using the sequential strategy accord-

Fig. 2 Performances deviations averages of the production scheduling
methods
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Fig. 3 Performances deviations averages of the joint scheduling meth-
ods using the sequential strategy

Fig. 4 Performances deviations averages of the joint scheduling meth-
ods using the integrated strategy

ing to the initial scheduling method and the workshop size.
The general trend of the curves is towards a full influence
of machines and tasks number. We note again that generally,
results of small benchmarks are better than those of big ones.
Furthermore, in the first position we have the results of the
hybrid methods which are better than those of the evolution-
ary methods (ACO and GA). In the last position we have
results of the iterative method TS.

Figure 4 shows the performances deviations averages of
the joint scheduling using the integrated strategy calculated
from the combined levels and classes of disturbances accord-
ing to the initial scheduling methods and the workshop size.
Again, the conclusion remains the same, since the robustness
of scheduling methods is related to the disturbance proto-
col (level, class and size of the studied problems). Thus, the
general trend remains towards results deterioration which
increases by raising the workshop size. Although, the best
results are those given by the hybrid methods followed by
the evolutionary methods (ACO and GA) which give better
results than the iterative method TS.

Fig. 5 Performances deviations averages of joint and production
scheduling

Does maintenance contribute to the robustness of joint
scheduling?

The objective is to demonstrate that, when disturbances
occur, performances loss of joint production and mainte-
nance scheduling is less than performances loss of only
production scheduling. Figure 5 shows the performances
deviations averages of the joint scheduling strategies com-
pared to those of the production scheduling obtained from the
combined levels and classes of disturbances of all scheduling
methods presented in “Joint scheduling strategies” section.

The first observation concerns the impact of mainte-
nance on robustness of scheduling. If we take any workshop
(small or big), we note a clear performance stability of
joint production and maintenance scheduling compared to
only production scheduling. On average, 75% of disrupted
production scheduling (different levels and classes) have
a deviation over than 30%. Another remark is that for
small workshops, scheduling using the integrated strategy
generally gives the best results. Also, it is important to
note that the results of small workshops (sequential and
integrated strategy) are better than those of the big ones
because of the high density of these latter on tasks and
machines.

As conclusion of this part, we can say that the insertion of
maintenance tasks in production scheduling is certainly done
at the expense of performance of these later (while remaining
in very acceptable limits), but it provides a gain in terms of
robustness. Indeed the contribution ofmaintenance is located
at the reliability intervals of the maintained machines which
allows the absorption of some disturbances. Furthermore,
the general trend is the same for both strategies, however,
the generated scheduling by the integrated strategy are more
robust than those generated by the sequential strategy if we
consider the small workshops.
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Comparative study

This section gives a comparative study between the robust-
ness of our joint scheduling strategies using hybridization
of ACO and Tabu search approach (which gave the best
results in “Experimental results” section) and other strategies
used to generate production and maintenance scheduling.
In the following, we denote by ACOHSEQ and ACOHINT,
our sequential and integrated strategy using hybridization of
ACO and Tabu search approach. This study uses the same
experimental conditions presented in “Experimental results”
section.

The first strategy considered in our study, called SALPT,
was presented in Allaoui and Artiba (2004). To develop this
strategy, the authors used the simulated annealing heuristic
(Černỳ 1985), a dispatching rule that sequences the jobs in
a decreasing order of the total processing times and a flexi-
ble simulation model. The second strategy of our study was
presented in Ruiz et al. (2007). This strategy, called PACO,
is an adaptation of the ant colony optimization algorithm
to implicitly consider preventive maintenance operations in
a permutation flow shop problem. The proposed preventive
maintenance policy aims to maintain a minimum level of
reliability after the production period. The third strategy
was proposed in Wong et al. (2013) and considers multi-
ple resources and preventive maintenance tasks in traditional
production scheduling. This strategy, called joint schedul-
ing (JS), adopts the multi-resource maintenance modelling
approach where the starting times of the preventive tasks
were treated as decision variables. The new problem is for-
mulated as an integer-programming model and is solved by
the genetic algorithm approach.

Figure 6 shows the performances deviations averages of
the obtained joint scheduling calculated from the combined
levels and classes of disturbances according to the used
strategy and the workshop size. The main remark is that

Fig. 6 Comparative study between joint scheduling strategies

the robustness of joint scheduling strategies is related to
the considered number of machines and tasks. Thus, the
general trend of the curves is towards results deterioration
which increases by raising the workshop density on tasks
and machine. Although, the hybrid method using our inte-
grated strategy (ACOHINT)gives better results than the other
strategies.

Another observation concerns the impact of maintenance
on robustness of scheduling. If we consider the results pre-
sented in Figs. 2 and 6, whatever the considered strategy,
performance loss of disturbed joint scheduling is less than
performance loss of only production scheduling.

Conclusion

This paper proposed a study of joint production and main-
tenance scheduling robustness in a permutation flow shop
workshop using two strategies : sequential and integrated. As
methods of scheduling resolution, we proposed an adaptation
of Tabu Search, Genetic Algorithm, Ants Colony Optimiza-
tion and some hybridizations of these methods.

Since in the real industrial workshops, the generated joint
scheduling of production and maintenance tasks will be
inevitably disrupted, we proposed a new approach to study
the robustness of these scheduling. Our approach consid-
ers disturbances on the processing time of production tasks
according to some levels and classes. Several experimen-
tal studies were conducted in this paper. Results of these
experimentations show first the merits of maintenance on
production scheduling robustness. Then, the comparative
study of all studied methods showed that the integrated strat-
egy is more robust than the sequential one, and that the
hybrid and the evolutionary approaches generally give the
best results.

Future work is to investigate the robustness of other
scheduling methods with other workshops models such us
job shop and open shop (Blazewicz et al. 1996; Malakooti
2013). For the scheduling robustness study, we can define
another protocol and type of disturbances.
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