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Abstract This paper introduces a novel differential evo-
lution (DE) algorithm for solving constrained engineering
optimization problems called (NDE). The key idea of the
proposed NDE is the use of new triangular mutation rule. It is
based on the convex combination vector of the triplet defined
by the three randomly chosen vectors and the difference vec-
tors between the best, better and the worst individuals among
the three randomly selected vectors. The main purpose of the
new approach to triangular mutation operator is the search
for better balance between the global exploration ability and
the local exploitation tendency as well as enhancing the
convergence rate of the algorithm through the optimization
process. In order to evaluate and analyze the performance
of NDE, numerical experiments on three sets of test prob-
lems with different features, including a comparison with
thirty state-of-the-art evolutionary algorithms, are executed
where 24 well-known benchmark test functions presented in
CEC’2006, five widely used constrained engineering design
problems and five constrained mechanical design problems
from the literature are utilized. The results show that the
proposed algorithm is competitive with, and in some cases
superior to, the compared ones in terms of the quality, effi-
ciency and robustness of the obtained final solutions.
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Introduction

Generally, optimization is the process of finding the best
results for a given problem under certain conditions. In
real world problems, applications and different fields of
science and engineering, most of the optimization prob-
lems are subject to different types of constraints. Thus,
these problems are called constrained optimization problems
(COPs) and are considered challenging and complex due
to their variations in mathematical properties and structures
(Mohamed andSabry 2012; deMelo andCarosio 2012;Dong
and Wang 2014; Elsayed et al. 2014; Akay and Karaboga
2012; Brajevic and Tuba 2013; Yi et al. 2016a, b; Yu et al.
2016; Mohamed 2015b). COPs can be classified in several
ways depending on their mathematical properties. They can
be classified based on the nature of variables, such as real,
integer and discrete, and may have equality and/or inequal-
ity constraints. Another important alternative classification
depends on the type of expression of objective and con-
straints functions. It can be classified as linear or non-linear,
continuous or discontinuous and unimodal or multimodal.
Furthermore, the feasible region of such problems can be
either a tiny or significant portion of the search space. It can
be either one single-bounded region or a collection of multi-
ple disjoint regions.

Due to the above mentioned difficulties characteristics,
over the past decade, many attempts have been made to
solveCOPs using various types of computational intelligence
algorithms together with different constraint-handling tech-
niques. A complete study on the most constraint-handling
techniques used with evolutionary algorithms (EAs) has
been discussed in details (Coello 2002). In this research,
most recent studies and well-known algorithms done over
the past decade are discussed. As a matter of fact, Genetic
Algorithms (GAs) are considered the pioneer algorithm of
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EAs and have been successfully applied to solve constrained
optimization problems. Tessema and Yen (2006) introduced
a GA based on an adaptive penalty function. The intro-
duced method aimed to exploit infeasible individuals with
low objective function values and low constraint violations.
The approach was tested on a set of 13 benchmark prob-
lems with the results showing that the approach was able to
find feasible solutions in all runs. However, its performance
was not robust. A multi-objective optimization based on a
hybrid evolutionary algorithm to solve constrained optimiza-
tion problems, named (HCOEA), was proposed by Wang
et al. (2007). This method consists of two main parts: the
global search model and the local search model. In the global
search model, a niching genetic algorithm is proposed. The
local search model performs a parallel local search opera-
tion based on clustering partition of the population. In this
method, the comparison of individuals is based on multi-
objective optimization technique. Recently, Elsayed et al.
(2011) proposed a self-adaptive multi-operator genetic algo-
rithm (SAMO-GA). In SAMO-GA, the population is divided
into four sub-populations with individual crossover and
mutation where the feasibility rules proposed by Deb (2000)
were used to handle the constraints. SAMO-GA has shown
significant improvement in comparison to other variants of
GAwith a single operator.Many optimization problems have
been solved by using other branches of EAs which are evolu-
tionary strategies (ES) and evolutionary programming (EP).
Mezura-Montes and Coello (2005) proposed a simple multi
membered evolution strategy to solve constrained optimiza-
tion problems (SMES). Instead of using the penalty function
approach, the proposed approach uses a simple diversity
mechanism which allows infeasible solutions to remain in
the population. The approach tested on the benchmark prob-
lems and the results obtained were very competitive when
compared with other techniques in terms of the number of
function evaluations used. On the other hand and as moti-
vated by the ensemble operators technique in the literature, an
ensemble of four constraint handling techniques combined
with evolutionary programming algorithm, named (ECHT-
EP2), is proposed by Mallipeddi and Suganthan (2010). The
performance of ECHT-EP2 is competitive to the state-of-the-
art algorithms. Nonetheless, since most real life problems
can be mathematically formulated as optimization problems,
developing another various types of efficient optimization
techniques to deal with unconstrained and constrained prob-
lems has attracted much research in recent years, such as
swarm intelligence which is nature-inspired algorithms that
include the well-known algorithm, particle swarm optimiza-
tion (PSO). Besides, latest swarm algorithms, the Firefly
Algorithm (FA) was first proposed (Yang 2009), the artificial
bee colony (ABC) was originally proposed (Karaboga 2005)
and Seeker Optimization Algorithm (SOA)was recently pro-
posed (Dai et al. 2006). Elsayed et al. (2014) proposed a

self-adaptive mix of particle swarm methodologies (SAM-
PSO). In the proposed ensemble algorithm, a set of different
PSO variants are used and each of which evolves with dif-
ferent number of individuals from the current population.
Besides, a new PSO variant is developed to balance both
local and global PSO versions. SAM-PSO outperforms other
PSO variants and other state-of-the-art algorithms. A modi-
fied Artificial Bee Colony algorithm (M-ABC) is proposed
(Mezura-Montes and Cetina-Domínguez). Four modifica-
tions are made to improve its performance in a constrained
search space. In order to improve the performance of both
FA and SOA in solving constrained optimization problems,
Tuba and Bacanin (2014) proposed a modified algorithm
that hybridizes FA and SOA, named SOA-FS. It outper-
forms other state-of-the-art swarm intelligence algorithms.
Similar to other Evolutionary algorithms (EAs), differen-
tial evolution (DE) is a stochastic population based search
method, proposed by Storn and Price (1995). The DE algo-
rithm coupling with the constraint-handling technique has
been successfully used for solving the COPs. Becerra and
Coello (2006) proposed a cultural algorithm with a differen-
tial evolution population for the COPs. In this method, this
culture algorithm has used different knowledge sources to
influence the variation operator of the differential evolution
algorithm. Zhang et al. (2008) introduced multi-member DE
with dynamic stochastic ranking to keep the feasible solu-
tions as well as the promising infeasible solution during
the evolution process. After extensive experiments study-
ing the performance of several DE variants for solving the
COPs, Mezura-Montes et al. (2010) combined two variants:
DE/rand/1/bin and DE/best/1/bin into one single approach,
called (DECV). Recently, a novel constrained optimization
based on a modified DE algorithm (COMDE) is proposed
by Mohamed and Sabry (2012), where a new directed muta-
tion strategy and a new dynamic tolerance technique have
been developed to handle equality constraints. Taking advan-
tage of multi-objective optimization techniques, Wang and
Cai (2012) presented a multi-objective optimization based
on differential evolution algorithm, named (CMODE), with
novel infeasible solution replacement mechanism to guide
the population toward feasible region. Gong et al. (2014),
presented the rank-iMDDE method, in which DE is com-
bined with a ranking-based mutation operator to enhance the
convergence speed and an improved dynamic diversitymech-
anism to maintain either infeasible or feasible solutions in
the population. Elsayed et al. (2011) proposed self-adaptive
DE algorithm with multi-operator strategy (SAMO-DE).
In this algorithm, two DE variants rand-to-best and cur-
rent/2/best are used for mutation and Gaussian numbers are
used to generate F and CR values. Motivated by the recent
success of diverse memetic approaches to solve many opti-
mization problems, Dong and Wang (2014) proposed a new
memetic DE algorithm with dynamic preference (MDEDP).
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In this memetic algorithm, DE is the global search and it
is guided by a novel achievement scalarizing function. Sim-
plex crossover (SPX) is used as a local search procedure to
guide the search approaching the boundary of the feasible
region. After performing many experimental analyses using
eight different variants of the DE algorithm to solve COPs,
a self-adaptive multi-strategy DE (SAMSDE) is exhibited
by Elsayed et al. (2012). The proposed algorithm divides the
population into a number of subpopulations, where each sub-
population evolves with its own mutation and crossover. The
population size, crossover rate and scaling factor are adap-
tive to the search progresses. To speed up the convergence of
SAMSDE, the SQP based local search is used to a randomly
selected individual from the entire population. Elsayed et al.
(2013) introduced an improved self-adaptive multi-operator
DE algorithm (ISAMODE-CMA) that adopts a mix of dif-
ferent DE mutation operator. To improve the local search
ability of DE, CMA-ES proposed by Hansen et al. (2003)
is periodically applied. To tackle constraints of the problem,
the dynamic penalty constraints-handling technique is used.
Along the same lines, Asafuddoula et al. (2014), proposed
an adaptive hybrid DE algorithm (AH-DEa). In this algo-
rithm, the basicmutation strategyDE/rand/1/bin is combined
with binomial and exponential crossover. Additionally, the
crossover rate is adaptively controlled based on the success of
the trial solutions generated. The Sequential Quadratic Pro-
gramming (SQP) based local search is invoked from the best
individual found to explore possibilities of further improve-
ment. Following the same concept of parameter adaptation
with different mechanisms, Sarker et al. (2014) presented a
DE algorithmwith dynamic parameters selection (DE-DPS),
where three sets of DE parameters, amplification factor (F),
crossover rate (CR) and population size (NP) are consid-
ered. Each individual is assigned a random combination of F
and CR. For each combination, the success rate is recorded
for a certain number of generations and the one with better
performance is applied for a number of following genera-
tions. This process is repeated for many cycles. From the
above discussion and analysis of the recent studies to solve
COPs, it can be seen that all previous and current attempts
have focused on applying ensemble operator techniques or
hybridizing one ormore algorithms and/or methods coupling
with developing self-adaptivemechanismwhich lead to com-
plicated algorithmswith extra parameters. However, with the
exception of Mohamed and Sabry (2012), few attempts have
been made to develop a new mutation scheme to further
improve the performance of DE. Consequently, motivated
by this analysis and discussion, a novel triangular mutation
rule without any extra parameters is proposed; the aim being
to balance both the exploration capability and the exploita-
tion tendency and enhance the convergence speed of the
algorithm. The proposed algorithm is tested and analyzed
by solving a set of well-known benchmark functions and

engineering and mechanical design problems. The proposed
algorithm shows a superior and competitive performance to
other recent constrained optimization algorithms. It is worth
noting that although this work is an extension and modifi-
cation of our previous work in Mohamed (2015a), there are
significant differences and these are as follows: (1) Previous
work in Mohamed (2015a) is proposed for unconstrained
problems, whereas this work is proposed for constrained
problems. (2) The crossover rate in Mohamed (2015a) is
given by a dynamic non-linear increased probability scheme,
but in this work, the crossover rate is fixed 0.95. (3) in
Mohamed (2015a), only one difference vector between the
best and the worst individuals among the three randomly
selected vectors with one scaling factor, uniformly random
number in (0, 1), is used in the mutation, but in this work,
three difference vectors between the tournament best, better
and worst of the selected vectors with corresponding three
scaling factors, which are independently generated accord-
ing to uniform distribution in (0, 1), are used in the mutation
scheme. (4) the triangular mutation rule is only used in this
work, but in the previous work (Mohamed 2015a), the trian-
gular mutation strategy is embedded into the DE algorithm
and combinedwith the basicmutation strategyDE/rand/1/bin
through a non-linear decreasing probability rule. (5) In the
previous work (Mohamed 2015a) a restart mechanism based
on Random Mutation and modified BGA mutation is used
to avoid stagnation or premature convergence, whereas this
work does not. The rest of the paper is organized as fol-
lows: “Problem formulation and constraint handling” section
presents the formulation of the COPs. “Differential evolu-
tion” section introduces theDE algorithm. The fourth section
proposed NDE is presented in details. “Experimental results
and analysis” section reports on the computational results
of testing benchmark functions and some engineering and
mechanical optimization problems. Besides, the comparison
with other techniques is discussed. Finally, in “Conclusion”
section, the paper is concluded and some possible future
research is suggested.

Problem formulation and constraint handling

In general, constrainedoptimizationproblemcanbe expressed
as follows (without loss of generality minimization is con-
sidered here) (Mohamed and Sabry 2012):

Minimize f (�x), �x = (x1, x2, . . . , xn) ∈ �n (1)

Subject to:

g j (�x) ≤ 0, j = 1, . . . , q (2)

h j (�x) = 0, j = q + 1, . . . , m (3)
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where �x ∈ � ⊆ S,� is the feasible region, and S is an
n-dimensional rectangular space in �n defined by the para-
metric constraints li ≤ xi ≤ ui , 1 ≤ i ≤ n where li and ui

are lower and upper bounds for a decision variable xi , respec-
tively. For an inequality constraint that satisfies g j (�x) =
0( j ∈ 1, . . . , q) at any point �x ∈ �, we say it is active
at �x . All equality constraints h j (�x)( j = q + 1, . . . , m) are
considered active at all points of�.Most constraint-handling
approaches used with EAs tend to deal only with inequality
constraints. Therefore equality constraints are transformed
into inequality constraints of the form

∣
∣h j (�x)

∣
∣−ε ≤ 0 where

ε is the tolerance allowed (a very small value). In order to
handle constraints, we use Deb’s constraint handling proce-
dure. Deb (2000) proposed a new efficient feasibility-based
rule to handle constraint for genetic algorithm where pair-
wise solutions are compared using the following criteria:

• Between two feasible solutions, the one with the highest
fitness values wins.

• If one solution is feasible and the other one is infeasible,
the feasible solution wins.

• If both solutions are infeasible, the one with the lowest
sum of constraint violation is preferred.

As a result, Deb (2000) has introduced the superiority of
feasible solutions selection procedure based on the idea that
any individual in a constrained search space must first com-
ply with the constraints and then with the objective function.
Practically, theDeb’s selection criterion does not need tofine-
tune any parameter. Typically, from the problem formulation
above, there are m constraints and hence the amount of con-
straint violation for an individual is represented by a vector
of m dimensions. Using a tolerance (ε) allowed for equality
constraints, the constraint violation of a decision vector or
an individual �x on the j th constraint is calculated by

cv j (�x) =
{

max(0, g j (�x)), j = 1, . . . , q

max(0,
∣
∣h j (�x)

∣
∣ − ε), j = q + 1, . . . , m

(4)

If a decision vector or an individual �x satisfies the j th con-
straint, cv j (�x) is set to zero, otherwise it is greater than zero.
Thus, in order to consider all the constraints at the same time
or to treat each constraint equally, each constraint violation is
then normalized by dividing it by the largest violation of that
constraint in the population (Venkatraman and Yen 2005).
Thus, the maximum violation of each constraint in the pop-
ulation is given by

cv j
max = max

�x∈s
cv j (�x) (5)

These maximum constraint violation values are used to
normalize each constraint violation. The normalized con-

straint violations are added together to produce a scalar
constraint violation cv(�x) for that individual which takes a
value between 0 and 1

cv(�x) = 1

m

m
∑

j=1

cv j (�x)

cv j
max

(6)

Differential evolution

This section provides a brief summary of the basic Differ-
ential Evolution (DE) algorithm. In simple DE, generally
known as DE/rand/1/bin (Storn and Price 1997; Fan and
Lampinen 2003), an initial random population, denoted by P,
consists of NP individual. Each individual is represented by
the vector xi = (x1,i , x2,i , . . . , xD,i ), where D is the number
of dimensions in solution space. Since the population will
be varied with the running of evolutionary process, the gen-
eration times in DE are expressed by G = 0, 1, . . . , Gmax,
where Gmax is the maximal time of generations. For the i th
individual of P at the G generation, it is denoted by xG

i =
(xG

1,i , xG
2,i , . . . , xG

D,i ). The lower and upper bounds in each
dimension of search space are respectively recorded by xL =
(x1,L , x2,L , . . . , xD,L) and xU = (x1,U , x2,U , . . . , xD,U ).
The initial population P0 is randomly generated according to
a uniform distribution within the lower and upper boundaries
(xL , xU ). After initialization, these individuals are evolved
by DE operators (mutation and crossover) to generate a trial
vector. A comparison between the parent and its trial vec-
tor is then made to select the vector which should survive to
the next generation (Das and Suganthan 2011). DE steps are
discussed below:

Initialization

In order to establish a starting point for the optimization
process, an initial population P0 must be created. Typically,
each j th component ( j = 1, 2, . . . , D) of the i th individuals
(i = 1, 2, . . . , N P) in the P0 is obtained as follows:

x0j,i = x j,L + rand(0, 1) · (x j,U − x j,L) (7)

where rand (0, 1) returns a uniformly distributed random
number in [0, 1].

Mutation

At generation G, for each target vector xG
i , a mutant vector

vG
i is generated according to the following:

vG
i = xG

r1 + F ·
(

xG
r2 − xG

r3

)

, r1 �= r2 �= r3 �= i (8)
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With randomly chosen indices r1, r2, r3 ∈ {1, 2, . . . , N P}.
F is a real number to control the amplification of the dif-
ference vector (xG

r2 − xG
r3 ). According to (Storn and Price

1997), the range of F is in [0, 2]. In this work, If a compo-
nent of a mutant vector violates search space, the value of
this component is generated a new using (7).

Crossover

There are two main crossover types, binomial and exponen-
tial. In the binomial crossover, the target vector is mixed with
the mutated vector, using the following scheme to yield the
trial vector uG

i .

uG
j,i =

{

vG
j,i , i f (rand j,i ≤ C R or j = jrand)

xG
j,i , otherwise

(9)

where rand j,i (i ∈ [1, N P] and j ∈ [1, D]) is a uniformly
distributed random number in [0, 1], C R ∈ [0, 1] called the
crossover rate that controls howmany components are inher-
ited from the mutant vector, jrand is a uniformly distributed
random integer in [1, D] that makes sure at least one compo-
nent of trial vector is inherited from the mutant vector.

Selection

DE adapts a greedy selection strategy. If and only if the trial
vector uG

i yields as good as or a better fitness function value
than xG

i , then uG
i is set to xG+1

i . Otherwise, the old vector
xG

i is retained. The selection scheme is as follows (for a
minimization problem):

xG+1
i =

{

uG
i , f (uG

i ) ≤ f (xG
i )

xG
i , otherwise

(10)

A detailed description of standard DE algorithm is given in
Fig. 1.

The proposal: NDE

In this section, a novel DE algorithmNDE and the constraint-
handling technique used in this research are described and
they explain the pseudo-code of the algorithm in details.

Triangular mutation scheme

DE/rand/1 is the fundamentalmutation strategy developed by
(Storn and Price 1997; Price et al. 2005), and it is reported
to be the most successful and widely used scheme in the
literature (Brest et al. 2006). Obviously, in this strategy,

the three vectors are chosen from the population at ran-
dom for mutation and the base vector is then selected at
random among the three. The other two vectors form the
difference vector that is added to the base vector. Conse-
quently, it is able to maintain population diversity and global
search capabilitywith no bias to any specific search direction,
but it slows down the convergence speed of DE algorithms
(Qin et al. 2009). DE/rand/2 strategy is the same as the
former scheme with extra two vectors that forms another
difference vector, which might lead to better perturbation
than one-difference-vector-based strategies (Qin et al. 2009).
Furthermore, it can provide more various differential trial
vectors than the DE/rand/1/bin strategy which increases its
exploration ability of the search space. On the other hand,
greedy strategies like DE/best/1, DE/best/2 and DE/current-
to-best/1 incorporate the information of the best solution
found so far in the evolutionary process to increase the local
search tendency that leading to fast convergence speed of
the algorithm (Qin et al. 2009). However, the diversity of
the population and exploration capability of the algorithm
may deteriorate or may completely diminish through a very
small number of generations i.e. at the beginning of the
optimization process that causes problems such as stagna-
tion and/or premature convergence. Consequently, in order
to overcome the shortcomings of both types of mutation
strategies, most of the recent successful algorithms utilize
the strategy candidate pool that combines different trail vec-
tor generation strategies that have diverse characteristics
and distinct optimization capabilities, with different con-
trol parameter settings to deal with a variety of problems
with different features at different stages of evolution (Qin
et al. 2009; Mallipeddi et al. 2011; Wang et al. 2011). Con-
trarily, taking into consideration the weakness of existing
greedy strategies, Zhang and Sanderson (2009) introduced
a new differential evolution (DE) algorithm, named JADE,
to improve the optimization performance by implementing
a new mutation strategy called “DE/current-to-p best” with
optional external archive and updating control parameters in
an adaptive manner. Consequently, proposing newmutations
strategies that can considerably improve the search capability
of DE algorithms and increase the possibility of achiev-
ing promising and successful results in complex and large
scale optimization problems is still an open challenge for
evolutionary computation research. Therefore, this research
uses a new triangular mutation rule with a view of balanc-
ing the global exploration ability and the local exploitation
tendency and enhancing the convergence rate of the algo-
rithm. The proposedmutation strategy is based on the convex
combination vector of the triplet defined by the three ran-
domly chosen vectors and three difference vectors between
the tournament best, better and worst of the selected vectors.
The proposed mutation vector is generated in the following
manner:
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Fig. 1 Description of standard
DE algorithm. rand [0, 1) is a
function that returns a real
number between 0 and 1.
randint (min, max) is a function
that returns an integer number
between min and max. NP,
Gmax, CR and F are
user-defined parameters. D is
the dimensionality of the
problem

νG+1
i = x̄G

c +F1 · (xG
best − xG

better ) + F2 · (xG
best − xG

worst )

+ F3 · (xG
better − xG

worst ) (11)

where x̄G
c is a convex combination vector of the triangle and

F1, F2 and F3 are the mutation factors that are associated
with xi and are independently generated according to uni-
form distribution in (0, 1) and xG

best , xG
better and xG

worst are
the tournament best, better andworst three randomly selected
vectors, respectively. The convex combination vector x̄G

c of
the triangle is a linear combination of the three randomly
selected vectors and is defined as follows:

x̄G
c = w1 · xbest + w2 · xbetter + w3 · xworst (12)

where the real weights wi satisfy wi ≥ 0 and
∑3

i=1 wi = 1.
Where the real weights wi are given by wi = pi/

∑3
i=1 pi ,

i = 1, 2, 3. Where p1 = 1, p2 = rand(0.75, 1) and p3 =
rand(0.5, p(2)), rand (a, b) is a function that returns a real
number between a and b. where a and b are not included. For

constrained optimization problems at any generation g >

1, the tournament selection of the three randomly selected
vectors and assigning weights follows one of the following
three scenarios that may exist through generations. Without
loss of generality, we only consider minimization problems:

Scenario 1: If the three randomly selected vectors are
feasible, then sort them in ascending order according to
their objective function values and assign w1, w2, w3 to
xG

best , xG
better and xG

worst , respectively.
Scenario 2: If the three randomly selected vectors are

infeasible, then sort them in ascending order according to
their constraint violations (CV)values and assign w1, w2, w3

to xG
best , xG

better and xG
worst , respectively.

Scenario 3: If the three randomly selected vectors are
mixed (feasible and infeasible), then the vectors are sorted
by using the three criteria: (a) Sort feasible vectors in front
of infeasible solutions (b) Sort feasible solutions according
to their objective function values (c) Sort infeasible solutions
according to their constraint violations. Accordingly, assign
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betterx

worstx

xi

1x

The difference vector 
( )better worstx x

The target vector ix

The scaled difference vector  

2 ( )best worstF x x

Other vectors in parametric 
space (feasible region)

bestx

The newly generated donor 
vector iv corresponding to 

the target vector ix

The scaled difference vector  

3 ( )better worstF x x
The difference vector ( )best worstx x

The difference vector 
( )best betterx x

G
Cx

The scaled difference vector  

1 ( )best betterF x x

Local Exploitation around convex 
combination vector G

cx in the direction 

( )best worstx x  , bestx is the best 
vector and worstx is the worst vector. 

The sum of the three scaled 
difference vectors

Fig. 2 An illustration of the new triangular mutation scheme in two-dimensional parametric space (local exploitation)

w1, w2, w3 to xG
best , xG

better and xG
worst , respectively. Obvi-

ously, from mutation Eqs. (11) and (12), it can be observed
that the incorporation of the objective function value and
constraints violation in the mutation scheme has two bene-
fits. Firstly, the perturbation part of the mutation is formed
by the three sides of the triangle in the direction of the best
vector among the three randomly selected vectors. Therefore,
the directed perturbation in the proposed mutation resembles
the concept of gradient as the difference vector is oriented
from the worst to the best vectors (Feoktistov 2006). Thus,
it is considerably used to explore the landscape of the objec-
tive function being optimized in different sub-region around
the best vectors within constrained search-space through the
optimization process. Secondly, the convex combination vec-
tor x̄G

c is a weighted sum of the three randomly selected
vectors where the best vector has the highest contribution.
Therefore, x̄G

c is extremely affected and biased by the best
vector more than the remaining two vectors. Consequently,
the global solution can be easily reached if all vectors fol-
low the direction of the best vectors together with the fact
that they also follow the opposite direction of the worst vec-
tors among the randomly selected vectors. Indeed, the new
mutation process exploits the nearby region of each x̄G

c in

the direction of (xG
best − xG

worst ) for each mutated vector. In
a nutshell, it concentrates on the exploitation of some sub-
regions of the search space. Thus, it has better local search
tendency so it accelerates the convergence speed of the pro-
posed algorithm.Besides, the global exploration ability of the
algorithm is significantly enhanced by forming many differ-
ent sizes and shapes of triangles in the feasible region through
the optimization process. Thus, the proposed directed muta-
tion balances both the global exploration capability and the
local exploitation tendency. Illustrations of the local exploita-
tion and global exploration capabilities of the new triangular
mutation are illustrated in Figs. 2 and 3, respectively.

Constraint handling

In this paper, Deb’s feasibility rules (Deb 2000) are used
to handle the constraints. As aforementioned in “Prob-
lem formulation and constraint handling” section, in the
constraint-handling technique, the equality constraints are
transformed to inequality constraints by a tolerance value
ε. In the experiments, the tolerance value ε is adopted like
(Mezura-Montes and Coello 2005) and is used in Yang
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betterx

worstx

iv

1x

bestx
G
cx

bestx

bestx

bestx

G
cx

G
cx

G
cx

worstx

betterx

betterx

betterx

iv

iv

iv

worstx

worstx

Fig. 3 An illustration of the new triangular mutation schemewith collection of convex combinations vectors and the newly generated donor vectors
νi corresponding to the target vectors xi in two-dimensional parametric space (global exploration)

(2009). The parameter ε decreases from generation to gen-
eration using the following equation:

ε (g + 1) =
{

ε(g)
1.0168 , i f ε > 10−4

10−4, otherwise.
(13)

where g is the generation number and the initial ε(0) is set
to 5 with all problems with exception to g17 and g23, it is
set to 10. Regarding the boundary-handling method, the re-
initialization method is used (see Eq. 7), i.e. when one of the
decision variables violates its boundary constraint, it is gen-
erated within the uniform distribution within the boundary.
The pseudo-code of NDE is presented in Fig. 4.

Experimental results and analysis

In this section, the performance of NDE is evaluated by
performing comprehensive experiments using benchmark
functions, engineering and mechanical design problems.

Benchmark test functions and parameter settings

In this paper, 24 well-known benchmark test functions from
CEC 2006 mentioned in (Liang et al. 2006) are used. The
features of 24 benchmark functions are listed in Table 1.
Obviously, from Table 1, n is the number of decision vari-
ables. These test functions contain several types of objective
function shapes (e.g. linear, non-linear, and quadratic) as
well as different types of constraints [e.g. linear inequal-
ity (LI), non-linear equality (NE), and non-linear-inequality
(NI)], LI denotes the number of linear inequalities, NE
denotes the number of non-linear equation, NI denotes the
number of non-linear inequalities, a represents the number
of active constraints at the global optimum solution, and
f (x∗) is the objective function value of the best known
solution x∗ . ρ = |F |/|S| is the feasibility ratio between
the feasible region and whole search space. Note that 11
test functions (g03, g05, g11, g13, g14, g15, g17, g20, g21,
g22, and g23) contain equality constraints. The f (x∗) of
g17 in Table 1 is different from that in (Liang et al. 2006)
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Fig. 4 Description of NDE algorithm

because NDE finds a better solution for test function g17
than the best known solutions from (Liang et al. 2006) where
x∗ = (201.7844624935499400, 99.9999999999995310,
383.0710348527716700, 419.9999999999993200, −10.90-
769795937907600000, 0.073148231208428699)with f (x∗)
= 8853.5338748064842000. The three main control param-
eters of NDE algorithm, population sizeNP is 200, crossover
rate Cr is fixed 0.95 with exception to g02 where Cr is 0.25
and the scale factors F1, F2 and F3 are uniformly random
numbers in (0, 1) as mentioned before. The maximum num-
ber of function evaluations (FEs) for all benchmark problems
are set to 240,000 (Gong et al. 2014; Elsayed et al. 2013).
The experiments were executed on an Intel Pentium core i7
processor 1.6GHz and 4GB-RAM. NDE algorithm is coded
and realized inMATLAB. For each problem, 30 independent
runs are performed and statistical results are provided includ-

ing the best, median, mean, worst results and the standard
deviation. Note that two functions (g20 and g22) are highly
constrained problems since they contain 14 and 19 and con-
tain 20 and 22 decision variables, respectively. NDE cannot
obtain a feasible solution over all 30 runs for both functions.
Therefore, in the following experiments, the results of these
two functions are not reported and the analysis is based on
22 test problems as, to the best of our knowledge, no feasible
solutions have been found so far for this test function. On the
other hand, to compare the solution quality from a statistical
angle of different algorithms and to check the behavior of
the stochastic algorithms (García et al. 2009), the results are
compared using three non-parametric statistical hypothesis
tests: (i) the Friedman test (to obtain the final rankings of
different algorithms for all functions); (ii) Iman-Davenport
test (to check the differences between all algorithms for all
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Table 1 Main characteristics of
24 benchmark problems

Problem n Type of f ρ (%) LI NI LE NE a f (x∗)

g01 13 Quadratic 0.0003 9 0 0 0 6 −15.0000000000

g02 20 Nonlinear 99.9971 0 2 0 0 1 −0.8036191042

g03 10 Polynomial 0.0000 0 0 0 1 1 −1.0005001000

g04 5 Quadratic 52.1230 0 6 0 0 2 −30665.53867178

g05 4 Cubic 0.0000 2 0 0 3 3 5126.4967140071

g06 2 Cubic 0.0066 0 2 0 0 2 −6961.813875580

g07 10 Quadratic 0.0003 3 5 0 0 6 24.3062090681

g08 2 Nonlinear 0.8560 0 2 0 0 0 −0.0958250415

g09 7 Polynomial 0.5121 0 4 0 0 2 680.630057374402

g10 8 Linear 0.0010 3 3 0 0 6 7049.2480205286

g11 2 Quadratic 0.0000 0 0 0 1 1 0.7499000000000

g12 3 Quadratic 4.7713 0 1 0 0 0 −1.000000000000

g13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539415140

g14 10 Nonlinear 0.0000 0 0 3 0 3 −47.7648884595

g15 3 Quadratic 0.0000 0 0 1 1 2 961.7150222899

g16 5 Nonlinear 0.0204 4 34 0 0 4 −1.9051552586

g17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5396748064

g18 9 Quadratic 0.0000 0 13 0 0 6 −0.8660254038

g19 15 Nonlinear 33.4761 0 5 0 0 0 32.6555929502

g20 24 Linear 0.0000 0 6 2 12 16 0.2049794002

g21 7 Linear 0.0000 0 1 0 15 6 193.7245100700

g22 22 Linear 0.0000 0 1 8 11 19 236.4309755040

g23 9 Linear 0.0000 0 2 3 1 6 −400.0551000000

g24 2 Linear 79.6556 0 2 0 0 2 −5.5080132716

functions); and (iii) multi-problem Wilcoxon signed-rank
test at a 0.05 significance level (Gong et al. 2013). Given k
algorithms and N data sets, the Friedman test ranks the per-
formance of algorithms for each data set (in case of equal
performance, average ranks are assigned) and tests if the

measured average ranks R j = (1/N )
N∑

i=1
r j

i (r j
i as the rank

of the j th algorithm on the i th data set) are significantly
different from the mean rank. Under the null hypothesis,
which states that all the algorithms behave similarly and
thus their rank should be equal, the Friedman statistic used

is χ2
F = 12N

K (K+1)

[
∑k

j=1 R2
j − k(k+1)2

4

]

which follows a

χ2 distribution with k − 1 degrees of freedom, and the

Iman-Davenport statistic is FF = (N−1)χ2
F

N (k−1)−χ2
F
which is dis-

tributed according to Fischer’s F-distribution with k −1 and
(k − 1) (N − 1) degrees of freedom (Demšar 2006). Regard-
ing multi-problem Wilcoxon signed-rank test, R+ denotes
the sum of ranks for the test problems in which the first algo-
rithm performs better than the second algorithm (in the first
column), and R− represents the sum of ranks for the test
problems in which the first algorithm performs worse than
the second algorithm (in the first column). Larger ranks indi-
cate larger performance discrepancy. The numbers in Better,

Equal and worse columns denote the number of problems in
which the first algorithm is better than, equal or worse than
the second algorithm. As a null hypothesis, it is assumed that
there is no significant difference between the mean results of
the two samples. Whereas the alternative hypothesis is that
there is significance in the mean results of the two samples,
the number of test problems N = 22 and 5% significance
level. use the p value and compare it with the significance
level. Reject the null hypothesis if the p-value is less than or
equal to the significance level (5%). Based on the result of
the test, one of three signs (+, −, and ≈) is assigned for the
comparison of any two algorithms (shown in the last column),
where (+) sign means the first algorithm is significantly bet-
ter than the second, (−) sign means the first algorithm is
significantly worse than the second, and (≈) sign means that
there is no significant difference between the two algorithms.
All the p values in this paper were computed using SPSS (the
version is 20.00).

Results of the proposed approach (NDE)

The statistical results of the NDE on the benchmarks are
summarized in Table 2. It includes the known optimal solu-
tion for each test problem and the obtained best, median,
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Table 2 The results of NDE on the benchmarks, where “–” means no feasible solution is found

Problem Optimal Best Median Mean Worst SD

g01 −15.000000 −15.000000 −15.000000 −15.000000 −15.000000 0.00E+00

g02 −0.803619 −0.803480 −0.801962 −0.801809 −0.800495 5.10E−04

g03 −1.000000 −1.0005001 −1.0005001 −1.0005001 −1.0005001 0.00E+00

g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 0.00E+00

g05 5126.49671 5126.49671 5126.49671 5126.49671 5126.49671 0.00E+00

g06 −6961.8138 −6961.813875 −6961.813875 −6961.813875 −6961.813875 0.00E+00

g07 24.306209 24.306209 24.306209 24.306209 24.306209 1.35E−014

g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 0.00E+00

g09 680.630057 680.630057 680.630057 680.630057 680.630057 0.00E+00

g10 7049.248020 7049.248020 7049.248020 7049.248020 7049.248020 3.41E−09

g11 0.750000 0.749999 0.749999 0.749999 0.749999 0.00E+00

g12 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000 0.00E+00

g13 0.0539415 0.0539415 0.0539415 0.0539415 0.0539415 0.00E+00

g14 −47.7648885 −47.7648885 −47.7648885 −47.7648885 −47.7648885 5.14E−15

g15 961.7150223 961.7150223 961.7150223 961.7150223 961.7150223 0.00E+00

g16 −1.90515525 −1.90515525 −1.90515525 −1.90515525 −1.90515525 0.00E+00

g17 8853.533874806 8853.533874806 8853.533874806 8853.533874806 8853.533874806 0.00E+00

g18 −0.8660254 −0.8660254 −0.8660254 −0.8660254 −0.8660254 0.00E+00

g19 32.655593 32.65559377 32.65560741 32.65562603 32.65570220 3.73E−05

g20 – – – – – –

g21 193.7245101 193.7245101 193.7245101 193.7245101 193.7245101 6.26E−011

g22 – – – – – –

g23 −400.05510000 −400.05510000 −400.05510000 −400.05510000 −400.05510000 3.45E−09

g24 −5.50801327 −5.50801327 −5.50801327 −5.50801327 −5.50801327 0.00E+00

mean, worst values and the standard deviations. Addition-
ally, Figs. 5, 6, 7, 8, 9 and 10 show the convergence graphs
of log10 (f(x)− f(x*)) over FEs at the median run for each
test problem with 240,000 FEs, where x* is the best solu-
tion found. As shown in Table 2, NDE is able to find the
global optimal solution consistently in 20 out of 22 test func-
tions over 30 runs with the exception of test functions (g02
and g19). With respect to these test functions, although the
optimal solutions are not consistently found, the best result
achieved is very close to the global optimal solution which
can be verified by the very small standard deviation. Addi-
tionally, it is able to provide the competitive results. NDE
is also able to find new solution to test functions g17 which
is better than the best known solutions from (Liang et al.
2006). From Figs. 5, 6, 7, 8, 9 and 10, it can be obviously
seen that a fast convergence (less than 50,000 FES) can be
achieved for the test functions (g04, g06, g08, g09, g12, g16,
g18, g24). Moreover, for test functions (g01, g03, g05, g07,
g10, g11, g13, g14, g15, g17), less than 150,000 FES are
needed. In addition, by using about 200,000 FES, the conver-
gence is achieved for (g19, g21, and g23). However, among
those problems, g02 is multi-modal, that contains many local
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Fig. 5 Convergence graph for g01–g04

optima near the global minimum (Asafuddoula et al. 2014).
Thus, all 240,000 FES are needed. From the above analysis, it
can be concluded that NDE has a fast convergence speed for
most of these 22 test functions. Accordingly, the main ben-
efits of the new triangular mutation are the fast convergence
speed and the extreme robustness which are the weak points
of all evolutionary algorithms. Therefore, the proposed NDE
algorithm is proven to be an effective and powerful approach
to solve constrained global optimization problems.
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Comparisons with current state-of-the-art competitive
DE approaches

The NDE was compared to seven state-of-the-art DE
approaches for COPs that were all tested on benchmark
functions presented in CEC’2006 mentioned in (Liang et al.
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Fig. 10 Convergence graph for g21, g23 and g24

2006). These algorithms are rank-iMDDE (Gong et al. 2014),
ISAMODE-CMA(Elsayed et al. 2013), SAMO-DE (Elsayed
et al. 2011), MDEDP (Dong and Wang 2014), AH-DEa
(Asafuddoula et al. 2014), DE-DPS (Sarker et al. 2014),
and DECV (Mezura-Montes et al. 2010). The selected algo-
rithms had the appropriate performances available to make
this comparison possible and used the same maximum num-
ber of function evaluations (FEs) (240,000). The best, the
median, the mean, the worst, and the standard deviation of
the objective function values of the final solutions for each
algorithm are listed in Table 3. A result in boldface indi-
cates the best result or the global optimum. NA means not
available. The results provided by these approaches were
directly taken from the original references for each approach.
According to the results shown in Table 3, it can be obviously
seen that NDE consistently exhibits high quality results in
all benchmark problems as compared with other seven DE
algorithms. For g02, only DE-DPS was able to find the opti-
mal solution consistently. Besides, NDE is slightly worse
than ISAMODE-CMA, MDEDP and DE-DPS in function
g19. However, MDEDP, AH-DEa, DE-DPS and DECVwere
unable tofind theglobal optimal solution for g17 consistently.

In order to perform the Friedman test, we first rank all the
algorithms according to the mean values in Table 4. From
Table 4, NDE and DE-DPS get the first ranking among the
eight algorithms on 22 test functions. Figure 11 shows the
average ranking of the considered DE algorithm based on the
Friedman test. ForN=22 and k = 8, the Friedman statistic is
χ2

F = 12×22
8×9

[

(3.795452 + 3.909092+4.045452+5.068182

+ 4.727272+4.636362+3.840912 + 5.977272) − 8×92
4

]

=
14.89462.

And the Iman-Davenport statistic is FF = 21×14.89462
22×7−14.89462 =

2.2486.
F-distribution with (k − 1) and (k − 1)(N − 1) degrees

of freedom. The critical value of F (7, 147) for α = 0.05 is
2.07 . Therefore, the null-hypothesis that ranks do not sig-
nificantly differ is rejected. Thus, it can be concluded that
there is a significant difference between the performances of
the algorithms. Additionally, due to the importance of the
multiple-problem statistical analysis, Table 5 summarizes
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Table 4 Algorithm ranking by the objective function values for all test functions

NDE rank-iMDDE ISAMODE-CMA SAMO-DE MDEDP AH-DEa DE-DPS DECV

g01 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g02 3.0 2.0 6.0 5.0 7.0 4.0 1.0 8.0

g03 4.0 4.0 4.0 4.0 4.0 4.0 4.0 8.0

g04 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g05 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g06 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g07 3.5 3.5 3.5 7.0 3.5 3.5 3.5 8.0

g08 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g09 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g10 3.0 3.0 3.0 7.0 6.0 3.0 3.0 8.0

g11 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g12 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g13 4.0 4.0 4.0 4.0 4.0 4.0 4.0 8.0

g14 3.5 3.5 3.5 7.0 3.5 3.5 3.5 8.0

g15 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g16 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

g17 2.0 2.0 2.0 4.0 5.5 5.5 7.0 8.0

g18 3.0 3.0 3.0 6.0 8.0 3.0 3.0 7.0

g19 5.0 4.0 2.0 7.0 2.0 8.0 2.0 6.0

g20 – – – – – – – –

g21 2.5 2.5 2.5 5.0 8.0 6.0 2.5 7.0

g22 – – – – – – – –

g23 1.5 4 5 7 3 8 1.5 6

g24 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Average rank 3.84091 3.86364 4.0 5.11364 4.72727 4.63636 3.84091 5.97727

the statistical analysis results of applying Wilcoxon’s test
between NDE and other seven compared algorithms. From
the results shown in Table 5, we can see that NDE provides
higher R+ values than R− in all the cases with exception to
DE-DPS case. Precisely, we can draw the following conclu-
sions: NDE outperforms SAMO-DE, AH-DEA and DECV
significantly, and it is comparable with other algorithms.

Comparisons with other state-of-the-art EAs

To further verify the performance of NDE, comparisons are
carried out with seven competitive state-of-the-art evolution-
ary algorithms. These algorithms are SAM-PSO (Elsayed
et al. 2014), SAMO-GA (Elsayed et al. 2011), ECHT-EP2
(Mallipeddi and Suganthan 2010), M-ABC (Mezura-Montes
and Cetina-Domínguez 2012), SOA-FS (Tuba and Bacanin
2014), HCOEA (Wang et al. 2007) and SMES (Mezura-
Montes and Coello 2005). The selected algorithms had the
appropriate performances available to make this comparison
possible and used the same maximum number of function
evaluations (FEs) (240,000). The best, the median, the mean,
the worst, and the standard deviation of the objective func-

tion values of the final solutions for each algorithm are
listed in Table 6. A result in boldface indicates the best
result or the global optimum. NA means not available. The
results provided by these approaches were directly taken
from the original references for each approach. Note that
SOA-FS,HCOEAand SMES algorithms solved only the first
13 benchmark problems. According to the results shown in
Table 6, it can be obviously seen that almost all the eight
algorithms can find the optimal solution consistently for six
test functions (g01, g03, g04, g08, g11, g12). With respect
to the mean results, only NDE was able to obtain the best
result or global optimal in functions (g02, g19, g21, g23).
Moreover, NDE had almost better performance with 0 stan-
dard deviations in most cases. All in all, NDE is superior to
all compared EAs algorithms.

In order to perform the Friedman test, we rank all the
algorithms according to the mean values in Table 7. From
Table 7, NDE gets the first ranking among the five algorithms
on 22 test functions. Figure 12 shows the average ranking of
the considered DE algorithm based on the Friedman test. For
N=22 and = 5, the Friedman statistic is
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Fig. 11 Average ranking of
NDE, rank-Imdde,
ISAMODE-CMA, SAMO-DE,
MDEDP, AH-DEa, DE-DPS
and DECV by the Friedman test
for the 22 functions in terms of
the mean value
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Table 5 Results of
multiple-problem Wilcoxon’s
test for NDE versus
rank-iMDDE,
ISAMODE-CMA, SAMO-DE,
MDE-DP, AH-DEa, DE-DPS
and DECV over all functions at
a 0.05 significance level

Algorithm R+ R− p value Better Equal Worse Dec.

NDE versus rank-iMDDE 7 3 0.465 2 18 2 ≈
NDE versus ISAMODE-CMA 67 38 0.363 9 8 5 ≈
NDE versus SAMO-DE 173 17 0.002 16 3 3 +
NDE versus MDE-DP 95 41 0.163 9 6 7 ≈
NDE versus AH-DEa 115 21 0.015 12 6 4 +
NDE versus DE-DPS 53 67 0.691 7 7 8 ≈
NDE versus DECV 162 9 0.001 16 4 2 +

χ2
F = 12 × 22

5 × 6

[

(2.022732 + 2.636362 + 3.613642

+ 2.795452 + 3.931822) −5 × 62

4

]

= 20.89097.

FF = 21 × 20.89097

22 × 4 − 20.89097
= 6.537278.

F-distribution with (k − 1) and (k − 1)(N − 1) degrees of
freedom.

The critical value of F(4, 84) for α = 0.05 is 2.4803.
Therefore, the null-hypothesis that ranks do not signifi-
cantly differ is rejected. Thus, it can be concluded that
there is a significant difference between the performances of
the algorithms. Additionally, due to the importance of the
multiple-problem statistical analysis, Table 8 summarizes
the statistical analysis results of applying Wilcoxon’s test
between NDE and other four compared algorithms. From the
results shown inTable 8,we can see thatNDEprovides higher
R+ values than R− in all the cases. Precisely, we can draw
the following conclusions: NDE outperforms SAMO-GA,

ECHT-EP2 and M-ABC significantly, and it is comparable
with SAM-PSO.

In order to perform the Friedman test, we rank all the
algorithms according to the mean values in Table 9. From
Table 9,NDEgets the first ranking among the four algorithms
on 13 test functions. Figure 13 shows the average ranking of
the considered DE algorithm based on the Friedman test. For
N= 13and = 4, the Friedman statistic is

χ2
F = 12 × 13

4 × 5

[

(1.842 + 2.692 + 2.162 + 3.312) − 4 × 52

4

]

=9.69852.

FF = 12 × 9.69852

13 × 3 − 9.69852
= 3.97189.

F-distribution with (k − 1) and (k − 1)(N − 1) degrees of
freedom.

The critical value of F (3, 36) forα = 0.05 is 2.866. There-
fore, the null-hypothesis that ranks do not significantly differ
is rejected. Thus, it can be concluded that there is a signifi-
cant difference between the performances of the algorithms.
Additionally, due to the importance of the multiple-problem
statistical analysis, Table 10 summarizes the statistical anal-
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Table 7 Algorithms ranking by
the objective function values for
all test functions

NDE SAM-PSO SAMO-GA ECHT-EP2 M-ABC

g01 3.0 3.0 3.0 3.0 3.0

g02 1.0 4.0 5.0 2.0 3.0

g03 3.0 3.0 3.0 3.0 3.0

g04 3.0 3.0 3.0 3.0 3.0

g05 2.0 2.0 4.0 2.0 5.0

g06 3.0 3.0 3.0 3.0 3.0

g07 2.0 2.0 4.0 2.0 5.0

g08 3.0 3.0 3.0 3.0 3.0

g09 1.5 3.5 1.5 5.0 3.5

g10 1.0 2.0 4.0 3.0 5.0

g11 3.0 3.0 3.0 3.0 3.0

g12 3.0 3.0 3.0 3.0 3.0

g13 2.0 2.0 4.0 2.0 5.0

g14 1.0 2.0 5.0 3.0 4.0

g15 1.0 2.0 4.0 3.0 5.0

g16 3.0 3.0 3.0 3.0 3.0

g17 1.0 2.5 4.0 2.5 5.0

g18 2.0 2.0 4.0 2.0 5.0

g19 1.0 3.0 5.0 2.0 4.0

g20 – – – – –

g21 1.0 2.0 4.0 3.0 5.0

g22 – – – – –

g23 1.0 2.0 4.0 3.0 5.0

g24 3.0 3.0 3.0 3.0 3.0

Average rank 2.02273 2.63636 3.61364 2.79545 3.93182
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Fig. 12 Average ranking ofNDE, SAM-PSO, SAMO-GA,ECHT-EP2
and M-ABC by the Friedman test for the 22 functions in terms of the
mean value

ysis results of applying Wilcoxon’s test between NDE and
other four compared algorithms. From the results shown in
Table 10, we can see that NDE provides higher R+ values

than R− in all the cases. Precisely, we can draw the follow-
ing conclusions: NDE outperforms SOA-FS, HCOEA and
SMES.

In the final analysis, the performance of the NDE algo-
rithm is superior and competitive to the state-of-the-art
well-knownDEapproaches andEAs in termsof final solution
quality and robustness. Moreover, it is easily implemented
and is considered a reliable approach to constrained opti-
mization problem. In all the rankings the NDE is a powerful
algorithm showing fast convergence, providing good final
results and significantly outperformingmost of the compared
algorithms.

NDE for constrained engineering design problems

In order to study the performance of the proposed algo-
rithmNDEon real-world constrained optimization problems,
five widely used constrained engineering design problems
have been solved. The five problems are: (i) welded beam
design (Huang et al. 2007), (ii) tension/compression spring
design (Ray and Liew 2003), (iii) speed reducer design (Ray
and Liew 2003), (iv) three-bar truss design (Ray and Liew
2003), and (v) pressure vessel design (Huang et al. 2007). For
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Table 8 Results of
multiple-problem Wilcoxon’s
test for NDE versus SAM-PSO,
SAMO-GA, ECHT-EP2 and
M-ABC over all functions at a
0.05 significance level

Algorithm R+ R− p value Better Equal Worse Dec.

NDE versus SAM-PSO 31 5 0.069 6 14 2 ≈
NDE versus SAMO-GA 152 1 0.000 16 5 1 +

NDE versus ECHT-EP2 85 6 0.006 10 9 3 +

NDE versus M-ABC 134 2 0.001 15 6 1 +

Table 9 Algorithm ranking by the objective function values for first 13
test functions

NDE SOA-FS HCOEA SMES

g01 2.5 2.5 2.5 2.5

g02 1.0 3.0 2.0 4.0

g03 2.5 2.5 2.5 2.5

g04 2.5 2.5 2.5 2.5

g05 1.0 3.0 2.0 4.0

g06 2.0 2.0 2.0 4.0

g07 1.0 3.0 2.0 4.0

g08 2.5 2.5 2.5 2.5

g09 1.5 3.0 1.5 4.0

g10 1.0 3.0 2.0 4.0

g11 2.5 2.5 2.5 2.5

g12 2.5 2.5 2.5 2.5

g13 1.5 3.0 1.5 4.0

Average rank 1.84 2.69 2.16 3.31

reasons of (limited) space, interested readers can find the for-
mulation of these problems in their corresponding literature.
For each problem, 30 independent runs are performed and
statistical results are provided including the best, median,
mean and worst results and the standard deviation. More-
over, the statistical results provided by NDE were compared
with some algorithms used in literature. The same settings of
parameters are used. However, due to the different character-
istics of different problems,NDEutilizes different population
size, maximum number of generation (Gmax), andmaximum
number of function evaluations (FEs) for each test function
and are listed in Table 11. The best values of objective func-
tion, design variables and constraints obtained by NDE in
each problem are presented in Table 12. The statistical results
of all engineering design problems that measure the quality
of results (best, median,mean, worst, and standard deviation)
are summarized in Table 13. From Table 13, it can be con-
cluded thatNDE is able to consistently find the global optimal
in all engineering problems with a very small standard devi-
ation and with a very small (FEs). This indicates that the
proposed NDE has a remarkable ability to solve constrained
engineering design problems with a perfect performance in
terms of high quality solution, rapid convergence speed, effi-
ciency and robustness.
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Fig. 13 Average ranking of NDE, SOA-FS, HCOEA and SMES by
the Friedman test for the 13 functions in terms of the mean value

Welded beam design problem

This problem was previously solved by several approaches
in the literature. NDE is compared with twelve optimiz-
ers: (COMDE) (Mohamed and Sabry 2012), differential
evolution with level comparison (DELC) (Wang and Li
2010), multiple trial vector based DE (MDDE) (Mezura-
Montes et al. 2007), particle swarm optimization (CVI-PSO)
(Mazhoud et al. 2013), genetic algorithm with automatic
dynamic penalization (BIANCA) (Montemurro et al. 2013),
multi-view differential evolution (MVDE) (de Melo and
Carosio 2013), (Rank-iMDDE) (Gong et al. 2014), hybrid
particle swarm optimization (HPSO) (He and Wang 2007),
co-evolutionary DE (Co-DE) (Huang et al. 2007), mine
blast algorithm (MBA) (Sadollah et al. 2013), water cycle
algorithm (WCA) (Eskandar et al. 2012), and social-spider
algorithm (SSO-C) (Cuevas and Cienfuegos 2014). The
results of these algorithms are shown in Table 14. A result
in boldface means a better (or best) solution obtained. It
can be obviously seen from Table 14 that NDE is able to
find the optimal solution consistently and its statistical result
is similar to COMDE, DELC, MDDE, Rank-iMDDE and
MBA algorithms and is superior to the remaining algo-
rithms. However, It is to be noted that the improvement
percentage of NDE in terms of FEs in comparison to
COMDE, DELC, MDDE, Rank-iMDDE and MBA is 40,
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Table 10 Results of
multiple-problem Wilcoxon’s
test for NDE versus SOA-FS,
HCOEA and SMES over 13
functions at a 0.05 significance
level

Algorithm R+ R− p value Better Equal Worse Dec.

NDE versus SOA-FS 35 1 0.017 7 5 1 +

NDE versus HCOEA 28 0 0.018 7 6 0 +

NDE versus SMES 28 0 0.018 7 6 0 +

Table 11 The required population size, maximum number of gen-
eration and number of function evaluations for engineering design
problems

Problem n NP Gmax FEs

Welded beam 4 40 200 8000

Spring design 3 60 400 24,000

Speed reducer 7 40 450 18,000

Three-bar truss 2 40 100 4000

Pressure vessel 4 125 160 20,000

40, 33.33, 46.67 and 82.77%, respectively. Therefore, NDE
is considered the most efficient with the smallest (FEs)
among all compared algorithms. The convergence graph
of NDE for the welded beam design problem is plotted in
Fig. 14.

Tension/compression spring design problem

The approaches applied to this problem for the compar-
ison include (COMDE), (DELC), (MDDE), (CVI-PSO),
(BIANCA), (MVDE), (Rank-iMDDE), (HPSO), (Co-DE),
(MBA), (WCA), (SSO-C), dynamic stochastic ranking based
DE (DSS-MDE) (Zhang et al. 2008), and accelerated adap-
tive trade-off model based EA (AATM) (Wang et al. 2009).
The results are tabulated in Table 15. It can be observed that
there are seven algorithms (NDE, COMDE, DELC, DSS-
MDE, Rank-iMDDE, HPSO, and SSO-C) that are able to
find the optimal solution in this problem but DELC has the
lower standard deviation. The mean value obtained by NDE
is slightly worse than the mean values obtained by DELC
and Rank-iMDDE. However, NDE performs better than the
remaining algorithms in terms of the mean value. The con-
vergence graph of NDE for the tension/compression spring
design problem is plotted in Fig. 15.

Table 12 Best values of objective functions, design variables and constraints for engineering design problems

Welded beam Spring design Speed reducer Three-bar truss Pressure vessel

x1 0.2057296389468447 0.0516890589523321 3.5000000000000000 0.78867531961558757 0.8125000000000

x2 3.4704887037902257 0.3567176885468677 0.7000000000000000 0.40824776714655764 0.4375000000000

x3 9.0366239107577062 11.288968756392725 17.000000000000000 – 42.098445595800

x4 0.2057296397864752 – 7.3000000000000000 – 176.63659584330

x5 – – 7.7153199114882929 – –

x6 – – 3.3502146660972438 – –

x7 – – 5.2866544649806402 – –

x8 – – – – –

x9 – – – – –

x10 – – – – –

f (x) 1.7248523125432824 0.0126652327883194 2994.4710661479908 263.8958433765157 6059.714335

g1 −0.000063341994974 0 −0.073915280398147 −0.070525402833398 −0.000000000000014

g2 −0.000002714066795 0 −0.197998527142186 −1.467936135628140 −0.000358808290162

g3 −0.000000000839631 −4.053785529111818 −0.499172248101439 −0.602589267205258 −0.000000016703270

g4 −3.432983781912939 −0.727728835000534 −0.904643904555729 - −0.633634041563814

g5 −0.080729638946845 – −0.000000000000702 – –

g6 −0.235540322586703 – −0.000000000000235 – –

g7 −0.000000209275640 – −0.702499999999991 – –

g8 – – −0.000000000000209 – –

g9 – – −0.795833333333279 – –

g10 – – −0.051325753542591 – –

g11 – – −0.000000000001243 – –
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Table 13 Statistical results obtained by NDE with 30 independent runs on five engineering design problems

Problem Optimal Best Median Mean Worst SD

Welded beam 1.724852309 1.724852309 1.724852309 1.724852309 1.724852309 3.73E−12

Spring design 0.012665233 0.012665232 0.012665423 0.012668899 0.012687092 5.38E−06

Speed reducer 2994.4710661 2994.4710661 2994.4710661 2994.4710661 2994.4710661 4.17E−12

Three-bar truss 263.89584338 263.8958434 263.8958434 263.8958434 263.8958434 0.00E+00

Pressure vessel 6059.714355 6059.714335 6059.714335 6059.714335 6059.714335 4.56E−07

Table 14 Results of Welded beam design problem

Algorithm Best Median Mean Worst SD FEs

NDE 1.724852309 1.724852309 1.724852309 1.724852309 3.73E−12 8000

COMDE 1.724852 1.724852 1.724852 1.724852 1.60E−12 20,000

DELC 1.724852 1.724852 1.724852 1.724852 4.10E−13 20,000

MDDE 1.725 NA 1.725 1.725 1.00E−15 24,000

CVI-PSO 1.724852 NA 1.725124 1.727665 6.12E−04 25,000

BIANCA 1.724852 NA 1.752201 1.793233 2.30E−02 80,000

MVDE 1.7248527 NA 1.7248621 1.7249215 7.88E−06 15,000

Rank-iMDDE 1.724852309 NA 1.724852309 1.724852309 7.71E−11 15,000

HPSO 1.724852 NA 1.749040 1.814295 4.0E−02 81,000

Co-DE 1.733461 NA 1.768158 1.824105 2.22E−02 240,000

MBA 1.724853 NA 1.724853 1.724853 6.94E−19 47,340

WCA 1.724856 NA 1.726427 1.744697 4.29E−03 46,450

SSO-C 1.7248523085 NA 1.746461619 1.799331766 2.57E−02 25,000

Speed reducer design problem

This problem has been solved by (COMDE), (DELC),
(MDDE), (MVDE), (rank-iMDDE), (MBA), (WCA), (DSS-
MDE), and (AATM), and the results are shown in Table 16.
It is clear that NDE, COMDE, DELC, DSS-MDE and Rank-
iMDDE are able to find the optimal solution consistently in
all runs but NDE has the smallest FEs among them. Note that
the best result provided by MBA is slightly worse than the
optimal solution although it used the least FEs. Thus, NDE is
considered the most efficient with the smallest (FEs) among
superior compared algorithms. The convergence graph of
NDE for the speed reducer design problem is plotted in
Fig. 16.

Three-bar truss design problem

This problem has been solved by (COMDE), (DELC),
(MVDE), (Rank-iMDDE), (MBA), (WCA), (DSS-MDE),
and (AATM), and the results are shown in Table 17. It is clear
that NDE, COMDE, DELC, and Rank-iMDDE are able to
find the optimal solution consistently in all runs. Besides,
the standard deviation of NDE and rank-iMDDE are equal to
zero.Moreover,NDE is considered themost efficientwith the
smallest (FEs) among all compared algorithms. The conver-
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Fig. 14 Convergence graph of NDE for welded beam design problem

gence graph of NDE for the three-bar truss design problem
is plotted in Fig. 17.

Pressure vessel design problem

This problem has been studied by several approaches in the
literature, including (COMDE), (DELC), (MDDE), (CVI-
PSO), (BIANCA), (MVDE), (rank-iMDDE), (HPSO), (Co-
DE), (MBA), and (WCA). The statistical results of all
algorithms are listed in Table 18. From the results only
five algorithms (NDE, COMDE, DELC, MDDE, and rank-
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Table 15 Results of tension/compression spring design problem

Algorithm Best Median Mean Worst SD FEs

NDE 0.012665232 0.012665423 0.012668899 0.012687092 5.38E−06 24,000

COMDE 0.012665233 0.012665423 0.012667168 0.012676809 3.09E−06 24,000

DELC 0.012665233 0.012665233 0.012665267 0.012665575 1.30E−07 20,000

DSS-MDE 0.012665233 0.012665304 0.012669366 0.012738262 1.25E−05 24,000

MDDE 0.012665 NA 0.012666 0.012674 2.00E−06 24,000

AATM 0.012668262 NA 0.012708075 0.012861375 4.50E−05 25,000

CVI-PSO 0.0126655 NA 0.012731 0.0128426 5.58E−05 25,000

BIANCA 0.012671 NA 0.012681 0.012913 5.12E−05 80,000

MVDE 0.012665272 NA 0.012667324 0.012719055 2.45E−06 10,000

Rank-iMDDE 0.012665233 NA 0.012665264 0.01266765 2.45E−07 19,565

HPSO 0.0126652 NA 0.0127072 0.0127191 1.6E−05 81,000

Co-DE 0.0126702 NA 0.012703 0.012790 2.7E−05 240,000

MBA 0.012665 NA 0.012713 0.012900 6.30E−05 7650

WCA 0.012665 NA 0.012746 0.012952 8.06E−05 11,750

SSO-C 0.012665232 NA 0.012764888 0.012867916 9.28E−06 25,000
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Fig. 15 Convergence graph of NDE for tension/compression spring
design problem

iMDDE) are able to solve this problem consistently in all
runs but MDDE has the lower standard deviation. Moreover,
NDE is considered the most efficient with the smallest (FEs)
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Fig. 16 Convergence graph of NDE for speed reducer design problem

among all compared algorithms. The convergence graph of
NDE for the pressure vessel design problem is plotted in
Fig. 18.

Table 16 Results of speed reducer design problem

Algorithm Best Median Mean Worst SD FEs

NDE 2994.4710661 2994.4710661 2994.4710661 2994.4710661 4.17E−12 18,000

COMDE 2994.4710661 2994.4710661 2994.4710661 2994.4710661 1.54E−12 21,000

DELC 2994.471066 2994.471066 2994.471066 2994.471066 1.90E−12 30,000

DSS-MDE 2994.471066 2994.471066 2994.471066 2994.471066 3.60E−12 30,000

MDDE 2996.357 NA 2996.367 2996.39 8.20E−03 24,000

AATM 2994.516778 NA 2994.585417 2994.659797 3.30E−02 40,000

MVDE 2994.471066 NA 2994.471066 2994.471069 2.82E−07 30,000

rank-iMDDE 2994.471066 NA 2994.471066 2994.471066 7.93E−13 19,920

MBA 2994.482453 NA 2996.769019 2999.652444 1.56E+00 6300

WCA 2994.471066 NA 2994.474392 2994.505578 7.40E−03 15,150
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Table 17 Results of three-bar
truss design problem

Algorithm Best Median Mean Worst SD TNFE

NDE 263.8958434 263.8958434 263.8958434 263.8958434 0.00E+00 4000

COMDE 263.8958434 263.8958434 263.8958434 263.8958434 5.34E−13 7000

DELC 263.8958434 263.8958434 263.8958434 263.8958434 4.34E−14 10,000

DSS-MDE 263.8958433 263.8958433 263.8958436 263.8958498 9.7E−07 15,000

AATM 263.8958435 NA 263.90041 263.8966 1.10E−03 17,000

MVDE 263.8958434 NA 263.8958434 263.8958548 2.58E−07 7000

rank-iMDDE 263.8958434 NA 263.8958434 263.8958434 0.00E+00 4920

MBA 263.895852 NA 263.897996 263.915983 3.93E−03 13,280

WCA 263.895843 NA 263.895903 263.896201 8.71E−05 5250
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Fig. 17 Convergence graph of NDE for three-bar truss design problem

Based on the above analysis, results and comparisons, the
proposed NDE algorithm is of better searching quality, effi-
ciency and robustness for solving constrained engineering
design problems and besides the fact that its performance is
superior and competitive with all compared algorithms.

NDE for constrained mechanical design problems

To further verify the performance of NDE on solving real-
world constrained optimization problems, five widely used
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Fig. 18 Convergence graphofNDE for pressure vessel design problem

constrained mechanical engineering design problems have
been solved. The five problems are: (i) step-cone pulley (Rao
et al. 2011), (ii) hydrostatic thrust bearing (Rao et al. 2011),
(iii) Rolling element bearing (Rao et al. 2011), (iv)Belleville
spring (Rao et al. 2011), and (v) gear train (Sadollah et al.
2013). All these problems have different natures of objec-
tive functions, constraints and design variables (Rao et al.
2011). The objective functions of all problems areminimized
herein. For reasons of space, interested readers can find the

Table 18 Results of pressure vessel design problem

Algorithm Best Median Mean Worst SD TNFE

NDE 6059.714335 6059.714335 6059.714335 6059.714335 4.56E−07 20,000

COMDE 6059.714335 6059.714335 6059.714335 6059.714335 3.62E−10 30,000

DELC 6059.7143 6059.7143 6059.7143 6059.7143 2.1E−11 30,000

MDDE 6059.702 NA 6059.702 6059.702 1.00E−12 24,000

CVI-PSO 6059.7143 NA 6292.1231 6820.4101 2.88E+02 25,000

BIANCA 6059.9384 NA 6182.0022 6447.3251 1.22E+02 80,000

MVDE 6059.714387 NA 6059.997236 6090.533528 2.91E+00 15,000

rank-iMDDE 6059.714335 NA 6059.714335 6059.714335 1.95E−12 23,465

HPSO 6059.7143 NA 6099.9323 6288.6770 86.2 81,000

Co-DE 6061.0777 NA 6085.2303 6371.0455 43.0 240,000

MBA 5889.3216 NA 6200.64765 6392.5062 160.34 70,650

WCA 5885.3327 NA 6198.6172 6590.2129 213.0490 27,500
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Table 19 the required population size, maximumnumber of generation
and number of function evaluations for mechanical design problems

Problem n NP Gmax FEs

Step-cone pulley 5 50 300 15,000

Hydrostatic thrust bearing 4 80 300 24,000

Rolling element bearing 10 50 300 15,000

Belleville spring 4 50 200 10,000

Gear train 4 25 40 1000

formulation of these problems in their corresponding litera-
ture. For each problem, 30 independent runs are performed
and statistical results are provided including the best,median,
mean andworst results and the standard deviation.Moreover,

the statistical results provided by NDE were compared with
some algorithms used in the literature. The same settings of
parameters are used. However, due to different characteris-
tics of different problems, NDE utilizes different population
size, maximum number of generation (Gmax), andmaximum
number of function evaluations (FEs) for each test func-
tion that are listed in Table 19. The best values of objective
function, design variables and constraints obtained by NDE
in each problem are presented in Table 20. The statistical
results of all mechanical design problems that measure the
quality of results (best, median, mean, worst, and standard
deviation) are summarized in Table 21. From Table 21, it
can be concluded that NDE is able to consistently find the
global optimal in rolling element bearing, Belleville spring
and gear train problems with a very small standard deviation

Table 20 Statistical results obtained by NDE with 30 independent runs on five mechanical design problems

Problem Best Median Mean Worst SD

Step-cone pulley 14.4919913809279 14.492006805051977 14.522307912133043 14.823926095157306 1.00E−01

Hydrostatic thrust bearing 1625.4427649676115 1674.4064507478774 1692.672623443781 1789.2330193627886 53.7568525

Rolling element bearing −85549.239142260223 −85549.239092671458 −85549.23290360783 −85549.16997388922 1.81E−2

Belleville spring 1.9796747595734621 1.9796747729266873 1.9796747713912306 1.9796747801380858 9.41E−09

Gear Train 270085715E−12 9.7456E−10 1.317E−09 6.512E−09 1.753E−09

Table 21 Values of objective functions, design variables and constraints for mechanical design problems

Step-cone pulley Hydrostatic thrust bearing Rolling element bearing Belleville spring Gear train

x1 99.999998938907020 5.9557804954072431 125.7190556146683 12.00999999516319 43

x2 34.587680024467569 5.3890130457499099 21.42559024077250 10.03047328200870 16

x3 47.584054369346779 0.0000053586972684 11 0.204143354252978 19

x4 63.441402209442454 2.2696559656861695 0.515000000000388 0.200000000186008 49

x5 76.086394586806078 – 0.515000016599447 – –

x6 – – 0.459856414789225 – –

x7 – – 0.619398026392338 – –

x8 – – 0.300000000001946 – –

x9 – – 0.044951766218101 – –

x10 – – 0.654902937732652 – –

f(x) 14.4919913809279 1625.4427649676115 −85549.239142260223 1.979674759573462 270085715E−12

g1 −0.0000000003235 −0.000000063708285 −0.000000000020725 −0.000029842136428 –

g2 −0.0000000001318 −0.000000009546739 −10.661231446299219 −0.000014270942302 –

g3 −0.0000000003731 −0.000000043195541 −0.506681365918652 −0.779703706879640 –

g4 −0.9903991779813 −0.000324362507723 −1.778502108792939 −1.595856644178049 –

g5 −0.9985532013866 −0.566767449657333 −0.719055614668292 −0.000000007042010 –

g6 −1.10085573350032 −0.000996361387052 −10.518885939856887 −1.979526724875687 –

g7 −1.10165766981873 −0.000001006240382 −0.000000000006155 −0.198965748370059 –

g8 −706.394806606583 – −0.000000000000388 – –

g9 −486.900698162025 – −0.000000016599447 – –

g10 −216.910383706140 – 0.000000000000000 – –

g11 −0.0000002726796 – – – –

123



688 J Intell Manuf (2018) 29:659–692

Table 22 Results of step-cone pulley problem

Algorithm Best Median Mean Worst SD FEs

NDE 14.49199138 14.49200681 14.52230791 17.74707691 8.72E−01 15,000

Rank-iMDDE 14.487968 – 15.472300 17.833931 – 15,000

TLBO 16.634510 – 24.011358 74.022951 – 15,000

ABC 16.634655 – 36.099500 145.470500 – 15,000
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Fig. 19 Convergence graph of NDE for step-cone pulley problem

and with small (FEs). For the step-cone pulley problem and
hydrostatic thrust bearing problem, although the best solu-
tion are not consistently found, the results achieved in all
runs are very close to the best solution which can be verified
by the small standard deviation. Clearly, it indicates that the
proposed NDE algorithm is proven to be an effective and
powerful approach to solve constrained mechanical design
problems.

Step-cone pulley problem

This problem was previously solved using (rank-iMDDE),
teaching–learning-based optimization (TLBO) (Rao et al.
2011), Artificial Bee Colony (ABC) (Rao et al. 2011). The
comparison of the obtained statistical results for different
algorithms is given in Table 22. From Table 22, almost NDE
and rank-iMDDE obtain the same best solution. However,
NDE obtains the best results compared with other optimiz-
ers in terms of mean and worst solution with the same used
FEs. Thus, NDE is more robust than other compared algo-
rithms. The convergence graph of NDE for the step-cone
pulley problem is shown in Fig. 19. It can be easily seen
from Fig. 19. That NDE converged to near best solutions in
early generations.

Hydrostatic thrust bearing problem

This problem was previously solved using (rank-iMDDE),
teaching–learning-based optimization (TLBO) (Rao et al.
2011), Artificial Bee Colony (ABC) (Rao et al. 2011). The
comparison of the obtained statistical results for different

algorithms is given in Table 23. From Table 23, NDE consis-
tently obtains the best results comparedwith other algorithms
in terms of best, mean and worst solutions with least FEs and
smallest standard deviation. The convergence graph of NDE
for the hydrostatic thrust bearingproblem is plotted inFig. 20.
Clearly, NDE has a fast convergence speed to achieve best
solutions in early generations.

Rolling element bearing problem

This problem was previously solved using (rank-iMDDE),
teaching–learning-based optimization (TLBO) (Rao et al.
2011), Artificial Bee Colony (ABC) (Rao et al. 2011), MBA
(Sadollah et al. 2013), WCA (Eskandar et al. 2012) and
Genetic Algorithm (GA) (Gupta and Tiwari 2007). The
statistical results of all algorithms are listed in Table 24.
Surprisingly, NDE is also able to find new solutions to this
test functions which is better than the best known solutions
from (Eskandar et al. 2012). Moreover, it almost obtains the
best solution consistently in all runs with very small stan-
dard deviation. In fact, NDE detected the new best solution
with significant difference over the previous solutions from
(Sadollah et al. 2013; Eskandar et al. 2012) during the early
generations as can be seen from the convergence graph of
NDE for the Rolling element bearing problem in Fig. 21.

Belleville spring problem

This problem was previously solved using (rank-iMDDE),
(TLBO), (ABC), andMBA. The statistical results of all algo-
rithms are listed in Table 25. Almost all optimizers obtain the
same best solution.NDE is slightlyworse thanRank-iMDDE
in terms of mean and worst results. However, NDE obtains
the best solution consistently in all runs and it is considered
themost efficientwith the smallest FEswith fast convergence
speed as depicted in the convergence graph of NDE for the
Belleville spring problem in Fig. 22.

Gear train problem

This problem was previously solved using Unified Parti-
cle Swarm Optimization (UPSO) (Parsopoulos and Vrahatis
2005), (ABC), and MBA. The statistical results of all algo-
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Fig. 20 Convergence graph of NDE for hydrostatic thrust bearing
problem

rithms are listed in Table 26. Obviously, all optimizers obtain
the same best solution. NDE is slightly worse than ABC in
terms of mean result. NDE is better than UPSO and MBA in
termsofmean andworst results.However,ABC is considered
the most efficient with the smallest FEs followed by NDE,
MBA and UPSO. Nonetheless, it is noteworthy that there is
a remarkable difference between the FEs used by NDE and
MBA algorithms and FEs used by UPSO, the ratio is (1:100)
which supports the claim that NDE is highly efficient. The
convergence graph of NDE for the Gear train problem is
plotted in Fig. 23.

Conclusion

Over the last decade, many EAs have been proposed to solve
constrained optimization problems. However, all these algo-
rithms including DE have the same shortcomings in solving
optimization problems. These shortcoming are as follows:
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Fig. 21 Convergence graph of NDE for rolling element bearing prob-
lem

(i) premature convergence and stagnation due to the imbal-
ance between the twomain contradictory aspects exploration
and exploitation capabilities during the evolution process,
(ii) sensitivity to the choice of the control parameters which
are difficult to adjust for different problems with different
features, (iii) their performances decrease as search space
dimensionality increases (Das et al. 2009; Wagdy Mohamed
et al. 2011). Moreover, most real world optimization prob-
lems are limited by a set of constraints i.e. imposing con-
straints on the optimization problems. To optimize these con-
strained optimization problems, the optimal solution does not
only taken into consideration the objective function value but
it has also to satisfy the added constraints and this increases
the difficulty to all EAs including DE of finding the global
solution through the optimization process. Consequently, to
overcome these obstacles, a considerable number of research
studies have been proposed and developed to enhance the
performance of DE, and they can be classified into three
categories.

Table 23 Results of hydrostatic thrust bearing problem

Algorithm Best Median Mean Worst SD FEs

NDE 1625.44276496 1674.40645074 1692.67262344 1789.233019362 53.7568525 24,000

Rank-iMDDE 1625.460142 – 1724.727935 1894.734127 – 25,000

TLBO 1625.443000 – 1797.707980 2096.801270 – 25,000

ABC 1625.442760 – 1861.554000 2144.836000 – 25,000

Table 24 Results of Rolling element bearing problem

Algorithm Best Median Mean Worst SD FEs

NDE −85549.239142260 −85549.239092671 −85549.23290360 −85549.16997388 1.81E−2 15,000

Rank-iMDDE −81859.732421 NA −81859.010377 −81838.757577 NA 10,000

TLBO −81859.740000 NA −81438.987000 −80807.855100 NA 10,000

ABC −81859.741600 NA −81496.000000 −78897.810000 NA 10,000

MBA −85535.9611 NA −85321.4030 −84440.1948 211.52 15,100

WCA −85538.48 NA −83847.16 −83942.71 488.30 3950

GA −81843.3 NA NA NA NA 225,000
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Table 25 Results of Belleville
spring problem

Algorithm Best Median Mean Worst SD FEs

NDE 1.97967477 1.97967501 1.97967661 1.97969110 4.82E−06 10,000

Rank-iMDDE 1.979675 NA 1.979675 1.979683 NA 15,000

TLBO 1.979675 NA 1.97968745 1.979757 0.45 15,000

ABC 1.979675 NA 1.995475 2.104297 0.07 15,000

MBA 1.9796747 NA 1.984698 2.005431 7.78E−03 10,600
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Fig. 22 Convergence graph of NDE for Belleville spring problem

1. Using adaptive or self-adaptive mechanisms to adapt
strategies and parameters of DE combined with single
search operator or multiple search operators.

2. Controlling the population diversity of DE by introduc-
ing new parameters to measure the diversity during the
evolution process.

3. Hybridizing DE with another evolutionary algorithm
or classical method or incorporating local search tech-
niques.

Although all of the above method can probably enhance
the performance of Basic DE, they definitely increase the
complexity of the algorithm by introducing extra parameters
and/or complicated mechanisms. Nonetheless, so far, there
have been a few attempts in the literature to introduce novel
mutations that can balance the general trade-off between the
global exploration and local exploitation with fast conver-
gence speed (Das and Suganthan 2011). Thus, in this paper,
a new triangular mutation rule is proposed. It is based on
the convex combination vector of the triplet defined by the
three randomly chosen vectors and the difference vectors
between the best, better and the worst individuals among
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Fig. 23 Convergence graph of NDE for gear train problem

the three randomly selected vectors. The main benefit of the
proposed algorithm is that it neither adds extra parameters
nor hybrids with another algorithm. Besides, no ensemble
operators or complicated self-adaptive mechanism has been
added. Thus, it can be obviously proven that the proposed
triangular mutation represents a unique and significant step
and a novel trend in developing the existing DE approaches.
It also opens new research horizons in the field of global
optimization. The performance of the proposed algorithm
is evaluated on three well-known benchmark problem sets.
The three sets are 24 well-known benchmark test functions
presented in CEC’2006; five widely used constrained engi-
neering design problems and five constrained mechanical
design problems, respectively. The proposedNDE algorithm
has been compared with 30 recent Evolutionary Algorithms.
The experimental results and comparisons have shown both
a remarkable performance of NDE on solving all three test
functions with different characteristics and superiority when
compared with other recent EAs. There are five possible
directions of futurework. Firstly, to study the effect of adapta-
tion techniques on the performance of NDE, NDE will com-
bine with self-adaptive controlling parameters. Secondly, the

Table 26 Results of gear train problem

Algorithm Best Median Mean Worst SD FEs

NDE 2.70085715E−12 9.7456E−10 1.317E−09 6.512E−09 1.753E−09 1000

UPSO 2.700857E−12 NA 3.80562E−08 NA NA 100,000

ABC 2.700857E−12 NA 3.641339E−10 NA NA 60

MBA 2.700857E−12 NA 2.471635E−09 2.062904E−08 NA 1120
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performance of the NDE algorithm in solving unconstrained
and constrained multi-objective benchmark problems will be
investigated. Thirdly, the proposed triangle mutation opera-
tor will be joined with other compared DE based algorithms
to study its impact on the optimization process. Moreover,
Future research studies may focus on applying the algorithm
to solve other complex real-world and engineering optimiza-
tion problems. Finally, this would be greatly beneficial for
theoretical analysis and the study of the stochastic behav-
ior and properties of the proposed triangular mutation. The
Matlab source code of NDE can be downloaded from https://
sites.google.com/view/optimization-project/files.
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