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Abstract In order to explore the relationship between the
welding process and welded quality, a multiple sensor fusion
system was built to obtain the photodiode and visible light
information during the welding. Features of keyhole, plasma
and spatters were extracted from five sensors, including
two photodiode sensors, one spectrometer sensor, one ultra-
violet and visible light sensing camera and one auxiliary
illumination sensing camera, 15 features were analyzed by
normalization and principle component analysis, and prin-
ciple component numbers was chosen as input parameters
of support vector machine classification, Three weld quality
types were defined according to the weld seam width and
weld depth. The overall accuracy of training data was 98%,
and the overall accuracy of testing data was 91%, respec-
tively. Experimental results showed that the estimation on
welding status was accurate and effective, thus providing an
experimental example of monitoring high-power disk laser
welding quality.

Keywords Laser welding · Multiple sensors · Support
vector machine · Classification

Introduction

Laser welding has been an increasingly important pole of
advanced competitive manufacturing technology during sev-
eral decades (Shayganmanesh and Khoshnoud 2016). With
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its advantages of potential benefits on saving material cost,
high welding speed and small effected zone, recent years
have seen an increasing demand on advanced monitoring
and intelligent control in order to improve the manufacturing
quality and efficiency (Chen et al. 2016; Huang and Kovace-
vic 2011). In the welding, the workpiece was vaporized by a
high density of power within a very short time. The molten
zone tends to be dug by the pressure, which was produced
by the intense vaporization. This made the irradiated zone
keyhole (Shanmugam et al. 2010). For the study of this com-
plex process, several sensing methods for monitoring were
reported recently. A high speed camera has been applied to
detect weld pool during the laser welding, and back prop-
agation neural network and genetic algorithm were used to
improve the accuracy of the weld appearance (Zhang et al.
2015). A infra-red (IR) camera was employed for monitor-
ing and control of the welding process (Chandrasekhar et al.
2015). The coupling mechanism between the melt flow and
the metallic vapor was analyzed by observing their behavior
using a high-speed camera (Luo et al. 2016; Gao et al. 2013).
Magneto-optical sensor was used to obtain weld position in
micro-gap welding (Gao et al. 2016), and seam tracking was
achieved by using Kalman filteringmethod (Gao et al. 2015).
However, the information acquired by one sensor alone is
limited, and the stability might be influenced when the envi-
ronmental noise are taken into consideration. Currently, a
solution to this problem is to combine different kinds of
sensors. A multiple-optics sensing system consisting of four
different sensors, including two photodiode sensors and two
visual sensors, was designed for monitoring laser welding of
stainless steel, the relationship between light emission and
welding status was discussed (You et al. 2013). The behavior
of molten pool, which could be affected by the absorbed
energy distribution in the keyhole, was the key factor to
determine the spatters formation during laser welding. The
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Fig. 1 Experimental set up of high power laserwelding a experimental set up of high power laserweldingwithmultisensors,b photo of experimental
set up

relatively sound weld seam could be obtained during laser
welding with the focal position located inside the metal (Li
et al. 2014). The relationship between an incident beam and
a keyhole was investigated by an X-ray transmission in-site
observation system or a high-speed video camerawith diode-
laser illumination (Kawahito et al. 2011). A pressure gauge
and a high speed camera were applied to obtain dynamic data
and the refraction effect of the induced plasmawas discussed
(Chen et al. 2015). Intelligent sensing algorithm, such as arti-
ficial neural networks and principal component analysis, was
studied and could improve the accuracy of quality inspection
(Ai et al. 2015; Wan et al. 2016).

This paper presents a multiple sensors detecting system
for the real time laser welding. The system consisted of five
sensors, including two photodiode sensors, one spectrome-
ter and two visual sensors. Visible light intense and reflected
light intense were obtained by the ultraviolet and visible light
senor and the reflected light sensor, respectively. Images of
plasma and spatters were captured by a visible visual cam-
era. Images of keyhole were captured by another camera.
Through image processing technology, features of the plume,
spatters and keyhole were acquired and these features were
contributed to set up a support vector machine (SVM) clas-
sification model.
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Table 1 The welded result and
the signal of the sensors type 0 type 1 type 2

Welded 
result

Beam width

Welded depth

Sensors 
signal

Senor 1 and 
sensor 2
photodiode

Underfill Large width

Shallow depthShallow depth

Sensor 3
spectrometer

Sensor 4
Ultraviolet 
and visible 
light(UVV)

Sensor 5
Auxiliary
Illumination(
AI)

Small plasma

Many spatters
Middle plasma

Few spatters Large plasma

Large keyholeSmall keyholeMiddle size 

Experiment set up

Adisk laser was used in the experiment, themaximum power
was 16kW, the laser wavelength was 1030nm, and the laser
beam diameter was 200µm. Five different sensors were used
to detect the process of laser welding. First, two photodi-
ode sensors were applied to obtain thermal radiation and the
reflected light intensity, respectively. Second, a spectrometer
was applied to obtain the spectral distribution in the welding.
Third, an NAC-FX-6 monochrome high-speed camera was
used to observe the molten pool and keyhole surface by illu-
minating laser (976nm, 30–40W) onto works piece. Fourth,
an NAC-FX-6 color high speed camera with an optical filter
(300–750nm) was used to catch the images of plasma and
spatters, as shown in Fig. 1a, the photo of experimental set
up was shown in Fig. 1b. The laser power was set on 15kW,
welding speed was 8m/min, and the flow rate of the protect-
ing gas Ar was 30L/min, while the defocus was set on +2 at
the beginning, and change uniformly to −4 at the end, this

process took 0.9 s, and two experiments were made for the
training and test data of SVM classification model, respec-
tively (You et al. 2016). And the one of the weld seam and the
signal obtained by the five sensors were shown Table 1. The
weld seam type was sorted based on the weld seam width
and the weld depth.

The classifications of three weld seam types are shown in
Table 1, which indicates the quality of the weld seam of three
different situations based on weld seam width and depth,
and the sample obtained by five sensors are performed corre-
sponding to each type. Type 0 presents the weld seam defect,
whereas the weld depth is desirable. Type 1 presents the weld
seam andweld depth are both desirable. Type 2 presents weld
seam is desirable, whereas the weld depth is defect. Sensor
1 and senor 2 show the trend of visible light intense and the
reflected light intense are different in the three types. The
size of plasma is small in type 0, whereas it is big in type 2,
and there are many spatters in type 0, whereas in type 1 and
type 2, as shown from sensor 3. Signals of sensor 4 show that
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Fig. 2 Process of AI and UVV sensor image. a Image processing for AI image, b image processing for UVV image

the size of the keyhole of type 3 is the largest in the three
type, and the type 2 is smaller than type 1. Accordingly, dif-
ferences among the signals are of great help to a successful
classification.

Feature extraction

Imaging processing

The keyhole was the region of interest in auxiliary illumina-
tion image, it contains four features: (a) keyhole size (Wa); (b)
keyhole perimeter (Wp); (c) keyhole width (Wx) and (d) key-
hole length (Wy). Keyhole size was calculated by the amount
of white pixel in binary image. Keyhole perimeter was calcu-
lated by the amount of white pixel of the edge of the keyhole
image. Keyhole width was defined as the maximum at the x
axis, while the keyhole length was defined as the maximum
at the y axis. The processing of AI and UVV sensor image
is shown in Fig. 2.

Therewere two regions of interest in ultraviolet andvisible
light image: (1) plasma and (2) spatters. Plasma and spatters
can be recognized by imaging process technology, respec-
tively. There were three features interested in the plasma
image: plasma area (Pa); (b) plasma width (Px) and (c)
plasma height (Py). The area of plasma was calculated by

the amount of white pixel in plasma image. Plasma width
and plasma height were defined as the maximum amount of
white pixel at the x axis and the y axis in plasma image,
respectively. There were four features calculated in the spat-
ters image: (a) spatters area(Sa); (b)spatters number(Sn); (c)
spatters image centroid (Scx, Scy), which could reflect the
general trend of the spatters.

The signals obtained by the spectrometer showed the
range of spectral lines. Two wave bands 975nm (Sp1) and
650nm (Sp2) were chosen as spectral features. The feature
Sp1 obtained information of reflection of illustration light-
ness, and the feature Sp2 could reflect the welding state.
Two groups of signals obtained by the photodiode showed
the visible light intensity (V ) and reflective light intensity
(R), which were chosen as features. The intensity of visi-
ble light and reflective light both have connection with the
welding stability. Thus, there were 15 features extracted
from 5 sensors, including the signal of 650nm (Sp1), the
signal of 975nm (Sp2), visible light intensity(V ), reflected
light intensity(R), keyhole area(Wa), keyhole perimeter(Wp),
keyhole width(Wx), keyhole length(Wy), plasma area(Pa),
plasmawidth(Px), plasma height(Py), spatters area(Sa), spat-
ters number(Sn), and spatters cancroids (Scx, Scy), as shown
in Formula 1. The curves of features, weld seam top photo
and side photo are shown in Figs. 3 and 4.
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Fig. 3 Features and weld seam
photos of training data. a Curves
of photodiode, spectrometer and
AI sensor features, b curves of
plasma and spatters features, c
top view of weld seam, d side
view of weld seam
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Fig. 4 Features and weld seam
photos of testing data a curves
of photodiode, spectrometer and
AI sensor features, b curves of
plasma and spatters features c
top view of weld seam, d side
view of weld seam
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Table 2 Mean value of features of the training samples

Mean value Type 0 Type 1 Type 2 Overall

Sp1 (a.u.) 10,903.61 6258.06 15,562.60 8252.36

Sp2 (a.u.) 1830.48 2009.21 6349.71 2590.27

V (a.u.) 0.91 1.12 7.71 2.01

R (a.u.) 0.73 1.24 1.52 1.20

Wa (P) 260.33 256.80 1106.19 376.24

Wp (P) 64.12 67.10 151.75 78.51

Wx (a.u.) 19.31 15.28 40.67 19.43

Wy (a.u.) 18.19 23.43 41.60 25.19

Pa (P) 1688.03 2418.77 16,995.10 4350.66

Px (a.u.) 44.27 50.73 159.37 64.98

Py (a.u.) 70.84 81.66 261.95 105.29

Sa (P) 941.72 623.22 692.73 680.37

Sn (a.u.) 25.43 13.72 26.89 17.31

Scx (a.u.) 361.54 376.76 378.28 374.71

Scy (a.u.) 216.69 186.41 184.16 190.60

Table 3 Mean value of features of the testing samples

Mean value Type 0 Type 1 Type 2 Overall

Sp1 (a.u.) 10,266.03 6964.76 15,324.40 8675.50

Sp2 (a.u.) 2106.15 2382.88 5506.76 2817.42

V (a.u.) 1.19 1.35 7.38 2.24

R (a.u.) 0.68 1.27 1.58 1.24

Wa (P) 264.74 312.17 1011.29 411.39

Wp (P) 66.50 76.31 139.13 84.48

Wx (a.u.) 18.54 16.52 37.47 19.96

Wy (a.u.) 19.89 26.62 40.04 27.73

Pa (P) 828.07 388.01 604.23 480.34

Px (a.u.) 29.11 15.30 24.93 18.63

Py (a.u.) 367.31 372.59 354.01 369.07

Sa (P) 941.72 623.22 692.73 680.37

Sn (a.u.) 25.43 13.72 26.89 17.31

Scx (a.u.) 361.54 376.76 378.28 374.71

Scy (a.u.) 216.69 186.41 184.16 190.60

X = [x1, x2, . . . , x15]
= [Sp1, Sp2, V, R,Wa,Wp,Wx,Wy,

Pa, Px, Py, Sa, Sn, Scx, Scy] (1)

Mean value analysis of features

The mean value of 15 features of Type 0, Type 1 and Type
2 were calculated, and compared to the overall mean value.
The mean values of most features in type 2 were larger than
the mean values in overall, whereas mean values of most
features in type 0 were smaller than the mean values in over-
all. The mean values of the training samples features and

the testing samples features were shown in Tables 2 and 3,
respectively. And the mean value of features of training and
testing samples were shown in Figs. 5 and 6 with bars,which
the comparison of the value could be outlined immediately.

Feature normalization and selected by PCA

Principal component analysis (PCA) is widely used to ana-
lyze high-dimensional data. And it is well known that PCA
helps to decrease the number of redundant features. Feature
values were obtained from different sensors, and large value
may have grater interference than small ones. In order to
eliminate the differential data and relieve interference, each
feature variable was normalized with Formula (2). Feature
vector xi (t) consists the feature above, and its number is M ,
and every feature sample number is N , which is 450, so total
15×450 (M × N ) samples were processed. The normalized
formula could be expressed as,

x̂i (t)=2× (xi (t)−xmin)/(xmax−xmin)−1, i=1, 2, . . . , N

(2)

where xmax and xmin are the maximal and minimal values, all
the feature values x̂(t) were within the same range between
−1 and 1 after normalization. PCA transformed x̂i into a new
vector Zi , i.e.,

Z = BT x̂ (3)

where B is the M × M orthogonal matrix, and the i th eigen-
vector of the D is the i th colimn bi , and solving the eigen
value problem, i.e.,

D = 1

N
x̂T x̂ (4)

λi b = Dbi , i = 1, 2, . . . , M (5)

where λi is one of the eigen value of D, and bi is the cor-
responding eigenvector, the component Zi can be calculated
as the orthogonal transformations of x̂i , i.e.,

Zi = bTi x̂, i = 1, 2, . . . , M (6)

Experiment of SVM classification

Principle of SVM classification model

Support Vector Machine is based on statistical learning the-
ory and structural riskminimization,which has the advantage
of getting model with good generalization ability through
high-dimensional small sample learning. The kernel func-
tion is used and the calculation process is independent for the
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Fig. 5 Mean value of features
of the training samples showed
in figure bars

Fig. 6 Mean value of features
of the testing samples showed in
figure bars

sample dimension. SVM decision function can be described
as (He and Li 2016; Scholkopf et al. 1997).

f (z) = sign

(
N∑
i=1

yiai k(zi , z) + d

)
(7)

where yi is a class label corresponding to the i th train-
ing or testing sample, N is the number of samples, ai is a
Lagrange parameter, d is a bias, and k(zi , z j ) is the kernel
function, There are four representative kernel functions taken
into consideration: linear kernel function, polynomial func-
tion, sigmoid function and radial basis function(RBF), The
Gaussian radial basis function was chosen as the kernel func-
tion for taking the non-linearity, complexity and applicability
into consideration.

k(zi , z) = exp
(
−g ‖z − zi‖2

)
(8)

where g is a kernel parameter. This RBF kernel maps the
samples into a higher dimensional space, and linear classi-
fication can be conducted. The discriminant function can be
calculated by solving the following dual optimization prob-
lem:

max
a

⎛
⎝ N∑

i=1

ai − 1/2 ×
N∑

i, j=1

aia j yi y j k(zi , z)

⎞
⎠

Subject to
N∑
i=1

ai yi = 0, 0 ≤ ai ≤ C (9)
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Fig. 7 SVM train experiment.
a CVA of different PC numbers,
b CVA reached 98% when
C = 3.0314 and g = 0.5743, c
estimated result of SVM train
experiment
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Fig. 8 SVM test experiment. a
CVA of different PC numbers, b
estimated result of SVM test
experiment
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where xi is a support vector corresponding to nonzero ai , and
C is the regularization constant that decides on the degree of
classification errors.

parameter selection for SVM

SVM parameters, C and g were selected by training the
training data. Grid search technique was used to improve

the training accuracy and to ensure the parameter optimiza-
tion. The range of C and g was from 2−8 to 28, search step
of C and g was be set on 1, the threefold cross-validation
accuracy of the SVM model was calculated,

CV A = 1

3

3∑
j=1

(c j/nt × 100) (10)
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where c j is the successful classification number of j fold
cross-validation, and nt is the sample number of cross-
validation test.

Results and discussion

Figure 7 shows the classification result of experiment with
training data. As shown in Fig. 7a, the CVA of type 0 is low
in the few principle components, with the principle compo-
nents increase, the CVA of type 0 increases quickly, whereas
the CVA of type 1 and type 2 maintain high, and the total
CVA becomes stable when the principle component is larger
than 9. So the number of principle component is determined
10 for parameter optimization at the follow experiment. Fig-
ure 7b shows the result of parameter optimization, best CVA
is obtained when C is equal to 3.30314 and g is equal to
0.57435. Figure 7c shows the classification of three types.
Most of the samples were correctly sorted, few samples of
type 0 was sorted to type 1.

So the SVM model was established by using the optimal
parameter C and g from training the training data. The test
experiment was performed based on the SVMmodel, and the
classification results with the principle components changing
are shown in Fig. 8a, the CVA of type 0 reach biggest when
the principle component is 3, and shaking at 60% when the
the number of principle component increase larger than 3,
the CVA of type 1 and type 2 have a little decrease with the
number of principle component increases, while still keeping
above 80%. The totalCVA is keeping above 80% and reaches
the 91% when principle component is 3. Figure 8b shows
the specific classification of each type, as can be seen, some
sample of type 0 is sorted to type 1, and some sample of
type 1 is incorrectly sorted to type 2, few sample of type 1
is sorted to type 0. Substantially, the overall classification
accuracy has a high level from 80 to 91%.

In order to verify the accuracy of the SVM classification
model, a three layer conjugate gradient back propaga-
tion (CGBP) neural network classification experiment was
carried out, which has been widely applied in pattern recog-
nition. 15 principle components and 3 weld seam types were
considered as inputs and outputs, respectively. So there were
15 inputs and 3 outputs in the network, and sigmoid func-
tion was used as the transfer function. There were S neurons
in the hidden layer. Six experiments of different S neurons

Table 4 Accuracy of training and testing samples using Neural work
results with different neurons

S neurons 6 8 10 12 14 16

Training samples 98.7 98.0 97.3 98 97.1 98.4

Testing samples 71.1 71.8 67.1 68.9 65.8 68.7

(S = 6, 8, 10, 12, 14, 16) were carried out. Table 4 shows
the accuracy of training and testing sample using neural net-
work with different S. When S was chosen as 8, the overall
accuracy of testing samples was the best 71.8%, while the
overall classification accuracy of the proposed model was
higher (80–91%).

Conclusions

This paper introduces welded status recognition based on
SVM classification model, the training and testing data
were obtained by using multisensory system, including
photodiode sensor, ultraviolet and visible light sensor and
auxiliary illumination sensor. Features of welding process
were extracted by using image processing technology. A
automatic weld seam status identification and classification
is proposed in this paper, which of novelties include: firstly,
three types of welded seamwere defined based on the welded
seam’s width and depth, and the difference of sensor signal
among the three types was discussed; secondly, the PCA-
SVM was adopted to process the training and testing data,
in order to classify the weld seam status accurately. The
trained SVM model was used to give a judgment of three
types of weld status. The result of experiments proved that
the SVM model could be applied to judge three types of
weld status, which were determined by weld seam width and
weld depth. The overall inspection accuracy can reach 91%.
Compared with the CGBP neural network, the accuracy of
proposed model is superior. To be more detailed, the classi-
fication accuracy of type 0, type1, and type 2 are 73, 93 and
98%, respectively. Experiment results show that the classifi-
cation model is effective distinguishing different weld status,
and provide foundations for identification of weld process-
ing. The current research has some practical significance for
laser welding under multiple conditions.
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