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Abstract In this paper, the working parameter optimization
of strengthenwaterjet grinding by employing the orthogonal-
experiment-design-based ANFIS (Adaptive Neural Fuzzy
Inference System), was conducted to obtain an optimal result
of bearing ring machining. An improved ANFIS system
based upon orthogonal experiment design, was proposed
to optimize the working parameters in grinding practices,
which increases the surface hardness of ring surface from
49.0 to 72.0 HRC, topography elasticity variance from 330.0
to 670.0, texture energy from 24.5 to 88.0, decreases the
surface roughness from 0.65 to 0.25µm, and loading devi-
ation from 1860.5 to 1320.0, thereafter an optimal grinding
quality can be obtained. The optimization approach proposed
involve the following steps: Preparation of experimental
environment; Measure index determination for ring surface;
Orthogonal experiment design for making fuzzy logic rules;
Establishment of ANFIS system; Working parameter opti-
mization for waterjet grinding; and Performance verification
for actual grinding. Objective of this research is determin-
ing the optimal working parameters with fewer experimental
iterations compared to other alternative approaches, such
as Genetic parameter optimization, SA–GA parametric pre-
diction, Taguchi parameter estimation, ANN–SA parametric
selection, and GONNs parameter selection method. Statis-
tical analysis and result comparisons support its efficiency
and reliability in machining practices, a stable and reliable
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grinding process can be achieved for typical conditions by
using waterjet pressure at around 310ṀPa, flow rates of
watermass at about 5.8kg/min, attack angle by 60–75◦, mass
rate of abrasive grit by about 0.4kg/min, and traverse speed
by 60mm/min. It was concluded that this proposed ANFIS
system can be used as a suitable and effective tool, to investi-
gate the complicated influential correlation between waterjet
working parameters and grinding effectiveness in bearing
manufacturing, and to give a better machining performance
compared to other experimental practices.

Keywords Working parameter · Optimization · Strengthen
waterjet grinding · Orthogonal experiment design · ANFIS
Part I: Fundamental preparation for experiment

Introduction

Strengthen waterjet grinding is a rapidly developing tech-
nology used for a number of applications including plate
profiling and engineering material machining. During this
process, the mixed water-based abrasive slurry was cov-
erage sprayed on the specimen workpiece surface by the
speed of 100–300m/s and in the jet angle of 15–75◦, there-
fore a continuous violent collision happens between abrasive
grits or steel particles and objective surface to be machined,
makes the lattice relaxation and structure cracking of metal
atoms, thereafter plasma region emerges by a high-energy
electron excitation, thus tribo-chemical reaction induced
between strengthen grindingmodified liquid andmetalmate-
rial, which improves machining quality and releases surface
residual stress in return.

The important working parameters of waterjet grinding
can be categorized as Hydraulic parameters: water pressure
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and water flow rate; Abrasive parameters: abrasive type,
grit size, grit shape, mass rate of abrasive grits; Machining
parameters: traverse rate, stand-off-distance (SOD), num-
ber of passes, attack angle, targeted surface material; and
Mixing parameters: mixingmethod (forced or suction), abra-
sive condition (dry or slurry), mixing chamber dimensions.
Varieties ofmaterials that can bemachined bywaterjet grind-
ing include copper and metal alloys, aluminum, lead, steel,
tungsten carbide, titanium, etc. Best of waterjet machining
processes rely on grit- impacting action of abrasive laden
waterjet for the applications of cutting, grinding, polishing,
cleaning, and decaling of thick sections of very soft to very
hard materials at higher rates (Liang et al. 2013). A stream
of small abrasive grits introduced and entrained by water-
jet in such a manner that the momentum of waterjet was
partly transferred to abrasive grits. The primarily role of car-
rier fluid (water) is to accelerate large quantities of abrasive
grits to a high velocity and to produce a highly coherent
jet.

Resulting from the rapid progresses of AWJ (Abrasive
Waterjet) grinding, the complexity and depth of its research
outperformed the classical machining comparisons or purely
process simulations already (Axinte et al. 2009). Simulta-
neously, the monitory of high-speed waterjet grinding or
material removal touches upon the influence mechanism of
performance optimization, especially the working parameter
optimization during waterjet grinding should be emphasized
by higher attention, cause it presents an obvious impact upon
the following topographic shaping and mechanical charac-
teristics of specimen workpiece surface. Although current
machining researches provide crucial theoretical foundations
and scientific supports to select working parameters in prac-
tices, most of them cannot offer quantitative tools to realize
grinding optimization successfully.

Considering the research results about waterjet grinding,
some original ideas focused on energy beampowered already
(Bilbao Guillerna et al. 2015); meanwhile, an improvement
model of profiling or dressing the grinding wheels was pro-
posed (Axinte et al. 2009). For instance, Schwartzentruber
and Papini (2015) studied on the abrasive waterjet micro-
piercing of borosilicate glass.Besides,Chen and Jiang (2015)
proposed a force controlled grinding-milling technique for
quartz-glassmicromachining. Simultaneously, Srinivasu and
Axinte (2014) reported their latest progresses on the sur-
face integrity analysis of plain-waterjet-milled engineering
compositematerials. Theseworks provide valuable scientific
references for machining investigations in different exper-
imental conditions, but a detailed and systematic analysis
concerning with grinding optimization, not just traditional
process monitory characterized by purely machining tests
or directly calibration with machined results, still not been
studied in-depth yet, which undoubtedly weakens waterjet
grinding researches in accuracy and reliability.

Furthermore, on the topic of ANFIS optimization in
waterjet grinding, Maher et al. (2015) improved wire EDM
(Electrical Discharge Machining) performance at different
machining parameters by ANFIS modeling; a developed
ANFIS system can eliminate the need of extensive experi-
mental work, for selecting themost effectively grinding para-
meters (Sarkheyli et al. 2015; Al-Ghamdi and Taylan 2015);
Abdulshahed et al. (2015a), Abdulshahed et al. (2015b)
and Phootrakornchai and Jiriwibhakorn (2015) respectively
focused on the application of ANFIS prediction for ther-
mal error compensation on CNC machine tools, and on the
online critical clearing time estimation aswell.More relevant
researches on the ANFIS application in machining opera-
tion can be found from the published literature (Abhishek
et al. 2014; Prakash et al. 2014) also. When discussing the
monitoring of tool wear by usingmeasuredmachining forces
and neuro-fuzzymodelling approaches during themachining
process of GFRP (Glass Fibre Reinforced Polymer) compos-
ites, Azmi (2015) has made a detailed report. Meanwhile,
literatures (Shabgard et al. 2013; Labib et al. 2011) published
their latest researches on the fuzzy logic control of EDM. As
they paid high attentions on the fuzzy analysis between the
experimental results and the influence factors of strengthen
waterjet machining, it should be regrettably pointed out that
they hardly cover all involved participant elements in grind-
ing operation, from the selection of grinding parameters to
the resultant grinding optimization.

As orthogonal experiment provides a useful tool to study
machining process and obtained results in a more effective
and accurate way, Fan et al. (2015) made orthogonal exper-
iments on the direct reduction of carbon-bearing pellets of
bayer red mud. Besides, He et al. (2015) have made a tribi-
logical performance of connecting rod by using orthogonal
experiment. Thereafter, Zhang et al. (2015) reported their lat-
est progresses on the deposition parameters in the synthesis
of CVD (Chemical Vapor Deposition) microcrystalline dia-
mond powders, which optimized by orthogonal experiment
design.Other similar literatures can be learned fromLee et al.
(2013), Gao et al. (2012) Nagesh et al. (2015), Dong et al.
(2010) also. There is still few published literature focus on
orthogonal experiment design for waterjet grinding evalua-
tion or parameter optimization; thereafter, some fundamental
questions concerning about its quantitative comparison and
mutual- influence identification remain unaddressed, which
makes the systematic research on these theoretical domains
need to be improved and focused further.

This paper was structured as follows: Firstly, “Intro-
duction” section outlines the importance and necessity of
investigating the parameter optimization of strengthenwater-
jet grinding, based on the orthogonal-experiment-design-
basedANFIS; “Establishment of experimental environment”
section discusses the establishment of experimental envi-
ronment; “Measure indexes characterizing the bearing ring
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surface” section proposes a series of measure indexes
characterizing the bearing ring surface, and “Theory of
the orthogonal-experiment-design-based ANFIS” section
explains the theory of ANFIS; then, “Application of ANFIS
optimization” section presents the application process of
ANFIS optimization in details. Finally, based on the all-
around optimization analysis and performance discussions
of this new approach in “Optimization results and perfor-
mance discussions” and “Conclusions” sections concludes
this paper as required.

Establishment of experimental environment

Figure 1 shows the general structure of waterjet grinding
machine used. The experimental set-up was consisted by a
high-performance intensifier pump and a 6-freedom-degree
device fitted with the high-pressure waterjet accessories,
receiver and abrasive feeding/mass flow monitory system.
The intensifier was capable of supplying water up to a maxi-
mum pressure of 55,000psi (380MPa), while the device was
used to position and move the nozzle in order to carry out the
strengthen grinding operation. Water was pumped to water-
jet system via an air-driven water pump, Haskel ASF-60,
and its pressure was stabilized by an accumulator. There-
after the pressurized water was delivered to a pressure tank
where water squeezed into a built-in confined box contain-
ing pre-mixed abrasive slurry. The box was made of steel
for isolating the abrasive slurry from the incoming water.
By this arrangement, it ensured that the abrasive grit con-
centration was controllable and maintained constantly. The
pressure tank was mounted on a shaker vibrating at about
1–5Hz to allow abrasive grits uniformly distributed within
the slurry mixture inside the whole confined box (Mohamad
et al. 2015). Figure 2 illustrates the setup of waterjet grinding
operation and the measured topography of ring surface, its
inner structure can be learned from Fig. 3.

In this experimental set-up, filtratedwater was pressurized
and then forced through a ruby orifice thatmakes the jet travel
to the nozzle body for creating a partial vacuum through the
abrasive inlet. Abrasive grits were accelerated by jet energy
in mixing/focusing tube to form high-speed abrasive water-
jet. Although the full capacity of waterjet system reaches
380MPa, amuch lowerwater pressurewas usedwith selected
feed rates to make sure that the shallow depths of grinding
operation can be observed for performance optimization and
process monitoring. A high nozzle ratio (length to diameter)
allows an effective isolation of upstream disturbance in jet
flow. Nozzle was mounted to a computer controlled x–y–
z stage, with the control resolution by 0.01mm. While the
machine was used to position and move the nozzle in order
to carry out the grinding operation, it was programmed to
execute the linear (traverse speed) motion of nozzle head in
given sequence (Jia et al. 2013). The ring specimen to be
machined was mounted horizontally with its surface perpen-
dicular to the vertically placed waterjet axis and the nozzle
tube moved over it. This arrangement allows abrasive water-
jet to be drained out of the workpiece specimen by gravity
to reduce the likelihood of building up of slurry layers on
the machined surface. Figure 4 shows the objective bearing
rings to be machined, Table 1 gives the key parameters of
experimental device set-up.

The outside surface of bearing ring (AISI52100 orGCr15)
was used as workpiece specimen for grinding research. As
waterjet grinding involves a large number of influential
variables, only those major and controllable dynamic ones
were considered in this study, including waterjet pressure
(Pw/MPa), mass flow rates (Fr/ kg/min), waterjet attack
angle (Wa/

◦), mass rate of abrasive grit (Fa/kg/min), and
traverse speed (Ts/mm/min), while others keeping constant,
as shown by Table 2. To ensure the high repeatability of
testing conditions, following conditions should be met in
advance: Abrasive mass flow was delivered by a controlled
mechanical metering system and calibrated before each test;
the feed speed of jet flow was monitored on line via signal
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Fig. 2 Operation mechanism of waterjet grinding monitory and three-dimensional topography model after strengthen waterjet grinding

acquisition from the computerized quadratic encoder (Yusup
et al. 2014). Besides, computer software with graphic inter-
face was used for the control of data collection, online fusion
and data display (Liang et al. 2013). The dynamometer was
connected to a 3-channel charge amplifier type through a
connecting cable type, which in turn connected to PC by a
37-pin cable from A/D board. Based on these preparations,
a computer-controlled data acquisition system was used to
collect and record the measured index from grinding exper-
iments.

Measure indexes characterizing the bearing ring
surface

As the surface topography of bearing ring can be approxi-
mated accurately by spatial geometric surface, except some
frequently-used indexes, such as Surface hardness (Hv) and
Surface roughness (Ra), the following physical indexes were
proposed also by reference to free-form surfacing model, in
the desire of describing topography more reliably (Hayasi
and Asiabanpour 2013):
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Fig. 3 The inner structure of waterjet grinding machine

Fig. 4 Objective bearing rings to be machined

Table 1 Key parameters of experimental device set-up

Working parameters Value and units

Nozzle/orifice diameter 0.5mm

Diameter of abrasive
powder

150–300µm

Experimental temperature 26◦

Measuring time interval 90µm

Cutting speed on surface 10m/min

Penetration depth into
material

2.5mm

Experimental device size 1400mm×1000mm×2000mm

Topography elasticity variance (Tv): Surface elasticity
demonstrates the transformation-resisting capability of spa-
tial surface shape under external force loading, it becomes a
typical index to calibrate shape characteristics in coordinate
system, simultaneously surface elasticity shows the concen-
tricity level of characteristic distribution in elasticity values
as well. In this experiment, elasticity variance denotes the
elasticity distribution of certain topography section, which

Table 2 Working parameters used in strengthen waterjet grinding

Working parameter Value

Waterjet pressure (Pw) 250–350 (MPa)

Flow rates of water mass (Fr ) 2.5–7.5 (kg/min)

Waterjet attack angle (Wa) 35◦–85◦

Mass rate of abrasive grit (Fa) 0.30–0.50 (kg/min)

Enhanced liquid: Tri-ethanolamine
solution; AES resin; water

Traverse speed (Ts) 20–70 (mm/min)

makes it conveniently used to illustrate topography charac-
teristics from the perspective of elasticity variance:
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Here W denotes objective ring topography in the form of B-
spline basis function;Wu,Wv,Wuu,Wvv,Wuv are the partial
derivatives of W in the first order, second order and hybrid
state in u, v axes respectively; α1, α2, β1, β2 are the given
coefficients, f (u, v) denotes a given function of surface vec-
tor, m, n denote the order amounts of surface vector in u, v

axes.
Texture energy (Te): Texture energy of surface plays a

prominent role as fairness function in the occasions of geo-
metric modeling or micro-characteristic surface analysis.
Therefore the distribution of surface energy can be computed
and quantified to denote its belonged experimental condi-
tions and geometric characteristics. This measure index was
defined as the scatter level of texture energy in mathematical
sense, for a high value shows a more decentralized scattering
of texture energy in fitted ring surfaces:
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Here Su(ui ), Suu(uii ), Sv(v j ), Svv(v j j ), Suv(uiv j ) denoted
as the first order, second order and hybrid derivatives of
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objective ring surface f (u, v) in the directions of u, v axes
respectively.

Loading deviation of surface topography (Ld ): Since sur-
face construction highly depends on external loading such as
mechanical force and inertia moment, the constructed topog-
raphy results will be deformed in an obviously scale. For the
purpose of showing and quantifying the influential effects
caused from external waterjet force loading, this measure
index was proposed to calibrate the difference deviation and
variation principle between the forced and original surface
topography of ring periphery, as a high value demonstrates a
relative-critically deformation of resultant surface topogra-
phy, with the definition shown as:

ρ = −2
u∑

i=0,mu

v∑

j=0.mv

Vi, j

∫∫
©

i, j∈�

Ni,su (u)

×N j,sv (v)Ni, j (uv) f (u, v)dudv (2)

Here Ni,su(u), N j,sv(v), Ni, j (uv) denote the boundary-
controlled B-spline surfaces in u,v,uv axis respectively, Vi, j
denotes the transitional vector between two adjacent topo-
graphic control vertexes impacted by external loading of the
grinded surface to be investigated.

In order to obtain the detailed measure indexes from the
ring surface to be machined, its periphery has been sam-
pled by 12 measure points for property measurements, as
demonstrated by Fig. 5. A set of FESEM (Field Emission
Scanning Electron Microscopy) has been used to observe
the differences on ring surface micro-topography before and
after waterjet grinding, while surface roughness can be mea-
sured by TIME 3230 roughnessmeasuring instrument for the
sake of following data analysis. The mean values were aver-
aged by three measurement cycles from these 12 measure
points on ring surface periphery.

Measure_Index(k)
mean value =

3∑
i=1

[
12∑
j=1

Measure_Index(k)
(i,j)

]

3 × 12
(3)

Here Measure_I ndex (k)
mean value denotes the mathematical

averages of objective measure indexes
(Measure_I ndex (k)

(i, j)) on ring periphery, as k denotes
Hv, Ra, Tv, Te and Ld respectively; i = 1, 2, 3 shows
the measurement cycles, and j = 1, 2, . . . , 12 denotes the
targeted measure point on ring periphery, on which the
measurements of topography properties were carried out.
Experiments were repeated four times to circumvent all pos-
sible errors, therefore a total of 144 measurements should be
conducted. In each sampled area the distance from the high-
est value peak to the deepest value valley was recorded then
the averages of them can be taken. Figures 6, 7, 8, 9, and

Point 1
Bearing ring surface

Point 3

Point 4

Point 5

Point 6
Point 7

Point 8

Point 9

Point 10

Point 11

Point 12

Fig. 5 Periphery distribution ofmeasure points on bearing ring surface

10 show the mean value comparisons of Hv, Ra , Tv , Te, Ld

grouped from A to J.

Theory of the orthogonal-experiment-design-based
ANFIS

In this section the basic theory of an improved adaptive
neural fuzzy inference network (ANFIS) was presented. As
fuzzy theory is one of the most important mathematical
theories and can be used effectively for the uncertainty,multi-
input and discrete data sets, ANFIS optimization becomes
an absolute measurement of the data differences between
those participant parameter sequences, and is also used to
inspect an approximate classification between black and
white conditions (Sedighi and Afshari 2010; Çaydaş and
Ekici 2012). Since waterjet grinding performance will be
influenced by many unoptimizeable factors and interference
signals, which weaken the reliability of process optimiza-
tion with traditional simulations, ANFIS can deal with this
difficult problem with better efficiency and higher accuracy
(Tangwarodomnukun et al. 2014).

ANFIS uses a given data set of input and output variables
to build up a fuzzy reasoning system. The combination of
input and output proposes a series of positive causal rela-
tionships described by logic rules. In this paper, selection of
input/output values should be able to demonstrate the work-
ing parameters of strengthen waterjet grinding, and then the
resultant topography characteristics of ring surface. There-
fore the input/output parameters were sampled according to
their possible value ranges, and agglomerate concentration
in actual machining condition simultaneously (Odior 2013;
Akhavan Niaki et al. 2016; Abdulshahed et al. 2015a). With
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Fig. 6 Hv (HRC) of bearing ring before and after strengthen waterjet grinding grouped from A to J, as the mean values obtained from 12 measure
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Fig. 7 Ra (um) of bearing ring before and after strengthen waterjet grinding grouped from A to J

the representative input/output values their mutual quantita-
tive relations and complicated influence mechanism can be
described clearly, the maximum reliability of input/output
determination for ANFIS system can be achieved also.

To establish a reliable ANFIS system, more calcula-
tion elements (including nodes, weights, training data pairs,
inputs, …, and so on) introduced, more accurate the ANFIS
model setting and theoretical computation would be, accord-

ingly the calculation time for ANFIS optimization would be
lengthened exponentially also. Considering the existing lim-
itation of workstation computing power, the reliability and
sensitivity of ANFIS parameter setting should be verified in
advance to ensure the stability of computation process and
to determine its selection criterion. As Table 3 shows, seven
typical setting schemes of ANFIS parameter were proposed,
then the distribution variance, convergence time and conver-
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Fig. 8 Tv of bearing ring before and after strengthen waterjet grinding grouped from A to J
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Fig. 9 Te of bearing ring before and after strengthen waterjet grinding grouped from A to J

gence steps of Hv, Ra, Tv, Te and Ld in circular calculations
were focused on as the criterion for ANFIS information
determination, and then compared to each other in an iden-
tical working condition, therefore an optimal scheme setting
can be acquired. As demonstrated by Table 4, they all kept
in a relatively low level from scheme I to III, and obtain-
ing the lowest value by scheme III, which describes that
the ANFIS optimized results on this stage keep stable and

protect the computation model from the negative influences
caused by parameter variation. On the other hand, the distrib-
ution variance, convergence time and steps of Hv, Ra, Tv, Te
and Ld changed significantly when other schemes being
experimented, which reveals that the ANFIS computation
process be more sensitive to parameter changing or envi-
ronmental alternation in these conditions, detrimental to its
accuracy and reliability particularly. Combined with actual
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Table 3 Experimental schemes
of ANFIS parameter setting

Setting scheme I II III IV V VI VII

No. of nodes 85, 568 76, 244 65, 578 58, 668 56, 992 50, 048 48, 226

No. of linear weights 47, 726 38, 668 35, 488 34, 224 32, 226 30, 268 28, 868

No. of nonlinear weights 26, 448 25, 482 20, 090 19, 478 18, 668 17, 886 16, 482

No. of inputs 752 682 625 582 486 368 324

No. of training data pairs 780 726 680 556 534 426 388

No. of checking data pairs 780 682 660 624 582 546 498

No. of fuzzy rules 12, 600 11, 200 10, 000 9200 8000 7600 6000

Epochs for ANFIS training 2800 2600 2400 2200 2040 1860 1600

Table 4 The reliability and
sensitivity verification for
ANFIS parameter setting

Evaluation criterion Setting scheme

I II III IV V VI VII

Hv Distribution variance 23.22 16.15 11.08 22.75 14.65 14.61 14.21

Ra 22.59 17.58 12.14 23.05 13.47 15.18 16.28

Tv 25.33 19.22 13.14 18.75 15.02 16.28 19.84

Te 24.11 18.47 10.22 16.22 17.00 17.71 20.14

Ld 24.15 16.66 12.09 14.17 14.86 15.09 15.35

Hv Convergence time 0.55 0.41 0.34 0.25 0.44 0.62 0.72

Ra 0.48 0.42 0.28 0.36 0.41 0.45 0.58

Tv 0.68 0.53 0.33 0.42 0.51 0.55 0.82

Te 0.77 0.61 0.34 0.47 0.47 0.57 0.87

Ld 0.69 0.67 0.38 0.48 0.57 0.69 0.88

Hv Convergence steps 552 538 361 447 586 669 805

Ra 705 518 343 462 586 833 1129

Tv 664 498 354 447 516 548 865

Te 629 522 298 452 487 511 872

Ld 526 455 318 526 459 596 767

123



842 J Intell Manuf (2019) 30:833–854

240-250

2.0-2.5

35-40

0.30-

20-25

250-260

2.5-3.0

40-45

0.32-

25-30

260-270

3.0-3.5

45-50

0.34-

30-35

270-280

3.5-4.0

50-55

0.36-

35-40

280-290

4.0-4.5

55-60

0.38-

40-45

290-300

4.5-5.0

60-65

0.40-

45-50

300-310

5.0-5.5

65-70

0.42-

50-55

310-320

5.5-6.0

70-75

0.44-

55-60

320-330

6.0-6.5

75-80

0.46-

60-65

330-340

6.5-7.0

80-85

0.48-

65-70

Pw
(M

Pa
)

Fr
(k

g/
m

in
)

W
a(

º)
Fa

(k
g/

m
in

)
T

s(
m

m
/m

in
)

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10

Fig. 11 The recommended levels of working parameters

experimental machining process, all the above-mentioned
verification and determination criterion prove that scheme
III, as highlighted in bold fonts, greatly contributes to para-
meter optimization and data analysis of ANFIS system, thus
a more stable and accurate calculation can be realized.

Based on these steps, Fig. 11 presents the recommended
levels of working parameters (Pw Fr Wa Fa Ts) as input,
and Fig. 12 proposes the partitioned universes of the mea-
sure indexes (HvRaTvTeLd) as output. The input and output
universes should be partitioned into the range of (0–10),
according to the minimum and maximum value allowed for
ANFIS definition, with any value outside assumed to be
infinity or zero (Muhammad et al. 2013). Figure 13 gives
a representative arrangement of membership functions for
Ra .

During the process of strengthen waterjet grinding, there
are many factors influencing machining qualities, in which
the working parameters stands up for key influence factors.
Furthermore, it is the non-linear coupling relation between
working parameters that determines the machining quali-
ties and performance effect, so that the influence mechanism
should be considered.

In order to quantify the non-linear coupling relations
between waterjet working parameters, and investigate the
operation mechanism of parameter combinations by ANFIS
computation, the concept of orthogonal experiment design
was introduced into the formation of fuzzy logic rules,
since it presents a mathematical tool to study the influences
by working parameters on the measure indexes of surface

machined. Through studying the priority order of differ-
ent working parameters, and determining the complicated
correlations between parameter combinations and grinding
performances, the optimal values forworking parameters can
be obtained after variance range analysis.

Orthogonal experiment design proposes a reliable founda-
tion to establishANFIS logic rules.As the number ofworking
parameter combinations is often so large that it is impracti-
cal to test all computation experiments, which provides the
best combination of participant parameter levels by draw-
ing representative samples. Thanks to the parameter levels
characterized by uniform distribution and mutual compara-
ble, the number of ANFIS logic rules and experimental tests
can be decreased significantly, which offering a simplified
combination of factor levels for practical working analysis,
and deleting the grinding defects on objective ring surface,
therefore the orthogonal- experiment-design-based ANFIS
logic rule benefits the improvement of strengthen grinding
quality undoubtedly.

Orthogonal experiment works on an orthogonal array
(OA) and factor analysis (FA) method. An OA with N fac-
tors and Q levels per factor was denoted by LM (QN ), where
L denotes the orthogonal array and M gives the number of
experiment combinations. To establish OA several arrange-
ment principles should be followed: Firstly, those important
elements paying remarkable influences on orthogonal factors
should be selected carefully, excluding the uncontrollable
or negligible ones; Secondly, the influence factors should
be arranged appropriately, their changing ranges or variance
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Fig. 12 The recommended ranges for the partitioned universes of the measure indexes

Fig. 13 A representative
arrangement of membership
functions for Ra (um)
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levels should be identified according to practical machining
capabilities or experimental condition, and homogenized-
distributed in the whole universe of their possible values.
Thirdly, the number of OA column keeps larger than that
of influence factors. Based on these preconditions for factor
settling and interaction determining, a relatively-small OA
can be obtained to decrease experiment times or data pairs
at the most extent. Finally, the freedom degree of OA keeps
higher than that of factor, interaction, and error freedoms in
total, the main effect of OA should be kept away from the
significant interference caused by factor interactions.

Following steps were employed to establish fuzzy logic
rules: Determining the experiment objective (the optimal
working parameters for waterjet grinding) and establish-
ing the target function (the ANFIS optimization function);
Selecting the experimental indexes for ANFIS optimization

(the measure indexes of ring surface grinded); Arranging
the appropriate value levels for objective indexes; Mak-
ing a suitable orthogonal combination array; Analysis of
ANFIS optimization or orthogonal experiments; Calculating
the optimal parameter combination for actual performance.
Since the huge amount of full rule combinations can not be
tested in ordinary condition, Table 5 gives the fuzzy logic
rules according to orthogonal experiment arrangement, with
the working parameters scattered uniformly over the space
of all possible value combinations. For the purpose of clearly
enunciating the logic rules of ANFIS operation, MATLAB’s
ANFIS editor offers typical types of membership functions
for selection, including triangular, parabolic, Gaussian, Bell,
Sigmoid, and trapezoidal-shaped functions, they were eval-
uated in precision and reliability sequentially, and thereafter
triangular-shape membership function outperformed other
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Table 5 Description of the orthogonal-experiment-design-based fuzzy
logic rules for ANFIS system

No Exp. run of input levels Exp. run of output levels

Pw Fr Wa Fa Ts Hv Ra Tv Te Ld

1 1 1 1 1 1 4 5 2 1 9

2 1 1 2 1 3 5 3 6 5 5

3 1 2 3 1 5 6 3 7 4 2

4 1 2 4 2 9 8 8 8 7 8

5 2 3 5 2 10 7 7 1 9 5

6 2 3 6 2 2 10 1 5 5 6

7 2 4 7 3 7 5 2 1 1 2

8 2 4 8 3 8 6 4 2 2 4

9 3 5 9 3 6 2 8 4 6 10

10 3 5 10 4 4 4 9 4 10 4

11 3 6 1 4 2 8 10 7 4 8

12 3 6 2 4 5 1 2 5 1 5

13 4 7 3 5 7 3 5 2 8 9

14 4 7 4 5 1 5 7 6 2 1

15 4 8 5 5 3 4 4 2 6 4

16 4 8 6 6 10 1 3 7 3 5

17 5 9 7 6 8 2 6 5 5 6

18 5 9 8 6 9 2 8 2 4 10

19 5 10 9 7 6 5 10 4 7 8

20 5 10 10 7 4 8 4 8 5 4

21 6 1 1 7 3 6 2 9 9 2

22 6 1 2 8 8 9 5 10 5 2

23 6 2 3 8 7 8 9 5 6 5

24 6 2 4 8 2 10 1 10 3 8

25 7 3 5 9 1 5 1 4 8 6

26 7 3 6 9 5 4 2 8 4 10

27 7 4 7 9 9 7 2 1 1 7

28 7 4 8 10 10 2 3 10 5 5

29 8 5 9 10 6 2 4 3 6 3

30 8 5 10 10 4 6 8 5 2 5

31 8 6 1 9 8 5 6 2 8 8

32 8 6 2 9 6 5 4 6 9 6

33 9 7 3 9 4 8 8 7 4 4

34 9 7 4 8 3 7 2 9 6 3

35 9 8 5 8 2 3 7 2 5 5

36 9 8 6 8 5 2 6 4 5 8

37 10 9 7 7 9 4 2 7 6 10

38 10 9 8 7 1 5 6 3 7 2

… … …

100 10 10 10 6 7 2 2 2 5 2

counterparts and yielded the best results. Amount of mem-
bership functions was chosen based on the number of input
variables, since they should be kept fewer than the number
of training data pairs. To make sure that the initial com-

bination of input variables do not influence on the final
optimized results, more than 80% of the inputs were selected
for training while tenfold cross validation was conducted in
ANFIS learning, both the training and testing sets should be
uniformly sampled according to the orthogonal experiment
table. Thanks to all these presupposed arrangements, ANFIS
architecture can be formed by using five network layers and a
set of orthogonal-experiment- design-based rules (Sarkheyli
et al. 2015). Figure 14 illustrates the predetermined fuzzy
logic rules of ANFIS system realized by Matlab, and Fig. 15
presents the ANFIS architecture used in this research, with
its input and output variables outlined.

Part II: Application of ANFIS for grinding parameter
optimization

Application of ANFIS optimization

As the ANFIS system discussed by this paper, it was the
training and testing strategies that distinguish it from other
alternatives. In ANFIS setting, the gradient-based learn-
ing algorithm was compared with other typical leaning
algorithms in reasoning performance and calculation pre-
cision, such as Hybird Algorithm, Maximum Likelihood
Method, Genetic Algorithm, Least Square Method, and
Particle Swarm Optimization. After experimental running
and data analysis, it was found that the gradient-based
learning algorithm was characterized by simpler logic struc-
ture, fewer setting parameters, more reliable calculation
performance, more effective process optimization, stronger
searching capability, rapider convergence speed, and enjoys
a profound background of intelligent control. This proposed
learning algorithm can distinguish different input variables
and initialize fuzzy logic rules automatically by its own fuzzy
identification system, so that the membership functions, net-
work weights and construction parameters can be adjusted
adaptively.

A neuron in the orthogonal-experiment-design-based
ANFIS network produces its output by processing the net
input through nonlinear activation (transfer) function. As sig-
moidal activate functionwas themost frequently utilized one,
which updates the weight and derivative values of ANFIS
according to resilient back propagation algorithm; therefore,
it was usually trained for updating ANFIS networks, with the
minimumMean Square Error (MSE) between the calculation
results caused by the network output and input variables of
targeted neuron, were predetermined as the ultimate training
objective.

With this training operation, the updated weight for
ANFIS increases whenever the derivative value of its perfor-
mance functionhas the same sign for two successive calculate
iterations; on the other hand it decreases according to the
derivative valuewith respect to thatweight changes sign from
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Fig. 14 The predetermined fuzzy logic rules of ANFIS system realized by Matlab

the previous iteration. If the derivative value keeps zero, the
updated value for ANFIS weight remains the same; if the
objectiveweight continues to change in the samedirection for
training iterations, the magnitude of weight change increases
accordingly (Teimouri et al. 2015; Gajate et al. 2012).

When focusing on the ANFIS testing, it should be noted
that the idea used for testing networks and applying test vec-
tors was a multi-case test vector to determine the decision

strength of this network. 300 data samples were prepared
to describe the working parameters of strengthen waterjet
grinding (Liang et al. 2012). Such a large testing case amount
was employed to minimize the uncertainty of performance.
Then, according to the membership functions of working
parameters, they were inputted into the established ANFIS
system and then check the obtained measure index results
in sequence. The maximum possible reiteration times was
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Fig. 15 ANFIS architecture used in this research, with its input and output variables outlined

17,000 to prevent the case of training threshold does not be
met; the learning rate coefficient was supposed as 0.78, the
momentum factor as 0.67, the training step as 1.36, and the
interval illustration factor was predetermined as 50. Error
function was defined to assess the ANFIS performance.

To evaluate the effectiveness of ANFIS, F-ratio-tests were
applied to classify the total fluctuation of data into the part
of the fluctuation caused by the change of influence factor
(working parameter) level, and the remaining part caused

by experimental error. Larger F-ratio value indicates that
the influence factor, or working parameter, makes a greater
impact on ANFIS performance. In addition, the contribu-
tion rate of working parameters was introduced to compare
the relative importance of every parameter factor concerning
with surface measure index Sevil Ergur and Oysal (2015).

The importance analysis of influence factors were shown
in Tables 6, 7, 8, 9, and 10. Here, ** represents a highly
significant factor; * denotes significant factor; and O means
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Table 6 Importance analysis of factors for Hv

Influential factors SSe DfT Q Fj Significance

Pw 65.25 8 1.875 14.15 **

Fr 7.22 8 0.358 2.11 O

Wa 39.25 8 1.511 18.47 **

Fa 18.14 8 0.698 9.87 *

Ts 39.77 8 1.475 16.55 **

Table 7 Importance analysis of factors for Ra

Influential factors SSe DfT Q Fj Significance

Pw 48.78 8 2.577 17.78 **

Fr 36.55 8 2.389 16.89 **

Wa 12.14 8 1.844 5.24 *

Fa 5.15 8 0.784 2.11 O

Ts 3.66 8 0.644 3.18 O

Table 8 Importance analysis of factors for Tv

Influential factors SSe DfT Q Fj Significance

Pw 15.74 8 1.925 8.26 *

Fr 14.22 8 1.875 7.14 *

Wa 36.88 8 5.478 18.14 **

Fa 16.34 8 1.648 6.89 *

Ts 6.59 8 0.598 2.34 O

Table 9 Importance analysis of factors for Te

Influential factors SSe DfT Q Fj Significance

Pw 36.54 8 2.879 19.45 **

Fr 10.25 8 1.548 8.47 *

Wa 12.47 8 1.722 7.48 *

Fa 16.22 8 1.324 9.65 *

Ts 40.21 8 2.265 18.78 **

Table 10 Importance analysis of factors for Ld

Influential factors SSe DfT Q Fj Significance

Pw 6.55 8 0.547 3.68 O

Fr 18.47 8 1.226 9.22 *

Wa 40.21 8 3.654 21.44 **

Fa 36.47 8 2.568 18.47 **

Ts 17.26 8 1.482 10.25 *

no impact. As can be seen that the effects of Pw, Wa and
Ts on surface hardness are remarkable; Pw and Fr have
greater impact on surface roughness than other alternatives.
Simultaneously, the influence caused by Wa on elasticity

Fig. 16 Representative performance effectiveness by using two work-
ing parameter groups

variance cannot be ignored. Further analysis shows that Pw

and Ts were the most powerful influence factors for tex-
ture energy, while Wa or Fa become crucial for topography
loading deviation. After identifying the influences caused by
waterjet working parameters, the optimized results of ANFIS
system can be controlled through verifying the correspond-
ingly influence factors. Figure 16 presents the representative
performance effectiveness of waterjet grinding on bearing
ring surface, by using two working parameter groups. Fig-
ure 17 illustrates the grinding performances by using the
ANFIS-optimizedworking parameters, fromwhich the result
improvements can be observed more closely.

Optimization results and performance discussions

Figures 18, 19, 20, 21, and 22 present the result improve-
ments of grinded surface between using and not using the
ANFIS- optimized working parameters, as the influences
caused by Pw, Fr , Wa , Fa , and Ts were emphasized in
sequence. In these figures, red column demonstrates the opti-
mized working parameters, while the original ones without
ANFIS optimization were highlighted in blue. Horizontal
axes denote the targeted measure indexes of ring surface
topography under the influences of working parameters (or
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Fig. 17 Performance of strengthen waterjet grinding on bearing ring surface by using the ANFIS-optimized working parameters
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Fig. 18 Result improvements
between using and not using the
ANFIS-optimized working
parameters, considering the
influences caused by Pw
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Fig. 19 Result improvements
between using and not using the
ANFIS-optimized working
parameters, considering the
influences caused by Fr
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Fig. 20 Result improvements
between using and not using the
ANFIS-optimized working
parameters, considering the
influences caused by Wa

called as the grinding performance indexes), while vertical
axes show the result comparisons with and without ANFIS
optimization accordingly, as the mean values of measure
indexes were employed. It can be learned from them that

the optimized working parameters result to remarkable qual-
ity improvements on surface topography compared to those
original ones, though some deviations exist because of noise
data or truncate error caused from ANFIS calculation Liang
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Fig. 21 Result improvements
between using and not using the
ANFIS-optimized working
parameters, considering the
influences caused by Fa

Fig. 22 Result improvements
between using and not using the
ANFIS-optimized working
parameters, considering the
influences caused by Ts

et al. (2015). In this work, ANFIS optimizations of working
parameter depend on the past observations for times using
the historical measurements of surface measure indexes on
different ring specimens Liang et al. (2012). In this sense,
optimization process was linked to the fuzzy logic environ-
ment and the innovative architecture of ANFIS, providing a
better performance over other traditional works.

With Fig. 18 and Table 6 it can be obviously seen that
surface hardness was remarkably influenced by Pw. And
it was also easily impacted by Wa and Ts . Surface hard-
ness describes the inherent capabilities of grinded surface to
resist external waterjet impact force, thereafter Ts becomes a
basic theoretical foundation for grinding stress control, espe-
cially for topography elasticity variance or texture energy.
This figure shows that surface hardness caused by the opti-
mized working parameters keeps higher than that of other
alternative samples. Moreover, texture energy reaches an
optimal state, which explains the wide applications of Fr in
a preliminary hardness increment or material characteristic

improvement of waterjet semi- finishing processes, espe-
ciallywhen the layermetallographic variances of ring surface
were fully considered about (Liang et al. 2016).

Surface roughness (Fig. 19; Table 7) obviously keeps a
considerable close correlation with Pw or Fr , it also highly
dependents upon Wa in practical operation. Due to the pro-
posed ANFIS system gives a reference index for surface
roughness, its variation causes a correspondingly fluctua-
tion in texture unit density. The proposed ANFIS system can
be fully employed to promulgate the distribution rationality
of loading deviation and texture energy. Result comparison
of roughness values on ring samples demonstrates that with
the application of ANFIS optimization, surface roughness
keeps a remarkably decreasing state, showing that ANFIS
optimization plays an important role in the equilibriumdistri-
bution of surface roughness, and contributes to a more stable
grinding performance on ring surface as respected.

Topography elasticity variance (Fig. 20;Table 8)markedly
affected by Wa and keeps a close correlation with Pw or
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Fr , which shows the probability and feasibility of trans-
forming surface shape and elasticity stress distribution by
considering impacting loading orwork-hardening capacities.
This figure shows that, although performance improvements
were realized in elasticity variance, the ANFIS-optimized
one still keeps in a more stable state, provides a useful
tool to markedly eliminate elasticity loading interference
(Liang et al. 2014); simultaneously, it also ensures a much
better grinding effectiveness, and maintains stable load-
ing deviation when the self-adaptive synchronous grinding
employed. Elasticity variance was usually used for calibrat-
ing the obtained ring surface under the influences of residual
stress distribution.

Texture energy (Fig. 21; Table 9) was obviously influ-
enced by Pw or Ts . It also highly dependent upon Wa ,
together with Fa being considered. It was learned that the
optimized parameters present a more equally distribution
of grinding allowances when severe conditions happened.
Result comparisons demonstrate that although texture energy
improvementswere realized,machining accuracy and texture
density still kept in an unimproved situation, showing that the
optimal flatness degree or surface plainness can not be eas-
ily ensured, unless effective optimization were accompanied
with (Nguyen et al. 2008). Parameter optimization neglects
some kinds of machining errors or grinding defects such
as transitional stepping and concentrated wearing, which
explains its currently wide application in the finished shape
calibration, especially when the force interference emerged,
or the residual stresses of bearing ring surfaces were paid
high attention to.

Loading deviation (Fig. 22; Table 10) keeps a rather
closely relation with Wa and Fa , it also partially deter-
mined by Fr and Ts . The ANFIS optimization of working
parameters maintains better machining quality and stable
finishing precision on curvature tolerance ormachining accu-
racy, according to the above-mentioned process illustrations.
The loading deviation in finished surface keeps a relatively
superior performance; consequently, it improves the pre-
cision and accuracy of surface topography (Teimouri and
Baseri 2015).When faced with interferential machining con-
ditions, this optimization method provides a useful process
feedback or standard check index to present an optimal para-
meter group. It also can be learned that the manufacturing
performance and surface quality highly depend upon sur-
face hardness and roughness, with a high-level parameter or
diminished forming error were strongly recommended for,
so that loading deviation and texture energy can be improved
obviously.

In order to compare this new approach with other alterna-
tive ones, several typical parameter selection methods were
testified, including Genetic parameter optimization, SA–GA
(Simulated Annealing-Genetic Algorithm) parametric pre-
diction, Taguchi parameter estimation, ANN–SA (Artificial

Neural Network-Simulated Annealing) parametric selection,
and GONNs (Genetically Optimized Neural Network Sys-
tems) parameter selection aswell. It is noteworthy to point out
that an identical machining condition proposed by “Estab-
lishment of experimental environment” section and Tables 1
and 2 was prepared, exampled by one complete surface-
machining cycle for the outer ring of GCr15 deep groove ball
bearing (DGBB) sized by 72.00mm in diameter. The resul-
tant grinding performances by using all these approaches
were observed closely, then a detailed note can be taken
about the measure indexes from the 1st to 10th machining
cycles; thereafter, a statistical assessment on their average
performances was conducted.

A set ofMeasure Level Index (MLI) returns the value level
on which the measure index of surface topography situates.
As theMLI of Hv value used as a representative example and
shown as follows:

MLI (Hv) =

k∑
m=1

mHv(m)

k∑
m=1

Hv(m)

;m = 1, 2, . . . , k (4)

Average Relative Percent (ARP) of optimal measure index
was proposed to assess actual working capabilities:

Ei (Hv) =
[

(MLI (Hv))original,i − (MLI (Hv))optimal,i

(MLI (Hv))original,i

×100%

]
(5)

Here i represents the number of experimental samples. The
ARP indexes ofmeasure indexes by using different optimiza-
tion algorithms can be illustrated in radar diagram as Fig. 23;
Considering the fact that each algorithm has its own superi-
orities in different measure indexes, their performances can
be evaluated and compared in the form of pentagon areas, as
encircled by their ARP indexes in radar diagram axes:

Performance Improvement Index = Area(Pentagoni)

= 1

2
sin

360◦

5
[Ei (Hv)·Ei (Ra) + Ei (Tv)·Ei (Ra)

+ Ei (Tv)·Ei (Te) + Ei (Te)·Ei (Ld) + Ei (Ld)Ei (Hv)]
(6)

Comparing the pentagon areas resulted by different opti-
mizationmethods, pentagonwith themaximumarea presents
the most remarkable performance improvement in overall
consideration, therefore an integrated performance evalua-
tion of strengthenwaterjet grinding can be obtained. Through
working comparisons of performance improvement indexes,
Genetic parametric optimization ensures a good performance

123



852 J Intell Manuf (2019) 30:833–854

Fig. 23 Performance comparisons of different optimization methods
by use of radar diagrams, as three representative examples selected out
from 10 working conditions

in Hv and Ra , since it is more suitable to rapidly pro-
mote the effectiveness concentration of multi-phase waterjet
flow on objective ring surface; SA–GA parametric predic-
tion returns an excellent grinding performance when Tv

to be highly emphasized on; ANN–SA parametric selec-
tion provides a remarkable improved result in Te or Tv .
Taguchi and GONNs methods have good capabilities in

Te and Ld , which deserve a more robust surface quality
of waterjet grinding effectiveness in machining domain;
Finally, Fig. 23 shows that the ARP indexes of ANFIS opti-
mization outperforms other alternatives in pentagon areas,
especially in Ra , Tv and Ld , demonstrating that ANFIS
provides an optimal performance improvement in actual
machining experiments. Its parametric optimization based
on the assumption that the interaction between the given
strengthen waterjet conditions and the concentration state
of grinding effectiveness was an empirical—imprecise rela-
tionship. Performance comparison proves the validation and
efficiency of this improved ANFIS-based parameter opti-
mization method, therefore, its application and superiority
can be verified accordingly.

Table 11 presents the statistical information of the optimal
working parameters by ANFIS optimization, the machining
processes and result comparisons indicate that:

* Higher level of Pw or Fr were necessary for increas-
ing surface hardness, when those bearing-ring specimens
processed with comparatively higher Wa and lower Ts ;
* The optimal Pw for strengthen waterjet grinding is
around310MPa,while the best value range forWa should
be limited into 60 − 75◦;
* When discussing the optimal Ts , about 85.3% surface
quality improvementswere obtained at about 60mm/min,
the optimized Fr was about 5.8kg/min, and Fa about
0.4kg/min;
* Away from the optimal working parameters, actual per-
formance of strengthen waterjet grinding was worse than
that by using the ANFIS-optimized ones for normal ring
machining, in an obviously way.

Following theoretical superiorities can be learned from
this paper: As traditional studies did not touched upon the
waterjet-machined qualities of bearing ring, a series of phys-
ical measure indexes were proposed to calibrate its surface
topography; For the ordinary researches simply focused
on waterjet grinding evaluation without any further con-
siderations about the important impact caused by working
parameters, this research tried to made comparisons between

Table 11 Statistical information of the optimal working parameter by ANFIS optimization

Working parameter Optimal value Standard error Confidence interval of 95%

Upper limit Lower limit

Waterjet pressure (Pw/MPa) 310 4.2 314.2 305.8

Flow rates of water mass (Fr/ kg/min) 5.8 0.12 5.92 5.68

Waterjet attack angle (Wa/
◦) 70 1.3 71.3 69.7

Mass rate of abrasive grit (Fa/kg/min) 0.4 0.07 0.47 0.33

Traverse speed (Ts/mm/min) 60 1.2 61.2 58.8
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thewaterjet grinding performance by using ordinary parame-
ters, and that by using the ANFIS-optimized ones obtained
fromorthogonal experiment andmiscellaneous data analysis;
Different from traditional investigations concluding water-
jet grinding effectiveness from a macro-scale data statistics
or dynamic machining simulation, an improved ANFIS sys-
tem based upon orthogonal experiment design, was proposed
to optimize the working parameters of waterjet grinding,
and to distinguish different influences of participant para-
meters on the ring surface machined; Therefore this research
fulfilled the task of determining the optimal working parame-
ters for strengthen waterjet grinding, with fewer experiment
iterations compared to other alternative approaches. Final
conclusionswere obtained based on the theoretical investiga-
tions, and result comparisons between the strengthenwaterjet
grinding performances by employing the ANFIS-optimized
working parameters and other ordinary ones.

Conclusions

This paper sought to optimize the working parameters of
strengthen waterjet grinding with an orthogonal-experiment-
design-based ANFIS system. Actual performance evaluation
and working parameter optimization concerning with the
measure indexes of bearing-ring surface, together with the
application of ANFIS system, were the main focus of this
research. It can be realized by establishing an applicable
ANFIS system generated from fuzzy membership func-
tions, orthogonal experiment combinations and fuzzy logic
rules, thereafter this proposed system quantitatively evalu-
ates and demonstrates the complicated interrelation among
all participant influence factors in waterjet grinding effec-
tiveness. Actual machined results obtained indicate that
remarkable improvements in machining performance can be
achieved byusing this approachwith an appropriate setting of
working parameters. Comparison between waterjet grinding
processes with and without ANFIS optimization greatly help
to provide a useful theoretical basis for machining improve-
ment in return, which explains its preferences on realizing
grinding optimization and facilitating machining efficiency
in practical experiments.

As future work the specific influence factors of strengthen
waterjet grinding and their inherent interrelation mecha-
nism will be investigated further, especially on other key
working parameters and their optimal combination settings;
Furthermore more kinds of abrasive grits, grinding enhanced
liquid and their physicochemical influences on machining
process are going to be studied, in the hope of assessing the
actual working effectiveness simultaneously. Additionally,
the quantitatively correlations between waterjet parame-
ters and their resultant dynamic grinding processes will be
observed also, for the purpose of providing more reliable

data references for grinding monitory in practical industrial
conditions.
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