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Abstract Wire and arc additive manufacturing (WAAM) is
a novel rapid prototyping process that employs gas tung-
sten arc welding, controlled by a robot, to build complex 3D
parts by successive layer deposition technique. Experimental
studies on WAAM are useful for understanding the physics
of the process however the quantification and optimization
of process parameters is difficult due to complex mecha-
nisms involved in WAAM process. In this present work, the
measurement of two bead dimensions (bead height and bead
width) based on the three inputs (peak current, wire feed
speed, and travel speed) is done using the gas tungsten arc
welding machine. Experimental study is followed by propo-
sition of two variants of advanced evolutionary algorithms
(gene expression programming and multi-gene genetic pro-
gramming) in formulation of the functional expressions for
the two bead dimensions based on the three inputs. The per-
formance analysis of the two proposed models is conducted
based on the four statistical error metrics, hypothesis tests
and cross-validation. The relationships extracted between
the bead dimensions and the three inputs reveals that the
peak current influences both the bead height and bead width
simultaneously. The findings reported will have a positive
implication on the industry in predictive monitoring of the
bead dimensions during the WAAM process.
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Introduction

In recent years, additive manufacturing (AM) has become a
promising technique to fabricate components made of expen-
sive materials for aerospace and automobile industries. Many
metal AM techniques such as selective laser sintering, direct
metal deposition, electron beam melting and shape deposi-
tion manufacturing have been developed to print complex
metal shapes out of computerized 3D model (Gibson et al.
2010; Mahapatra and Panda 2013). Among all, wire and arc
additive manufacturing (WAAM) has received much concern
for its significant advantages of fabricating high dense large
scale near net shape components at a low cost in more envi-
ronmental friendly way (Wangetal. 2011; Brandl etal. 2012).
The technology combines arc welding with wire feeding and
is able to benefit designers to achieve freedom of their design.
It begins with feeding wire into a travelling electric arc and
depositing the molten metal sequentially as per described
path in computer-aided design (CAD) model. The melting of
wire is done by either using a source of laser or a welding
torch which is controlled by a robot in an inert atmosphere
(Baufeld et al. 2011). This allows obtaining a final product
with low oxygen and nitrogen contamination. Also use of
wire as a raw material instead of any powder base material
allows higher deposition rate and less contamination effect
compare to other metal AM processes.

In this WAAM, a gas tungsten arc welding (GTAW) is
employed to deposit molten material layer by layer to pro-
duce complex prototypes out of 3D model. Robotic systems
are most often used to carry out such deposition tasks while
all the movements are controlled by the G-code generated
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from the CAD data (Panda et al. (2016a,b,c); Wang et al.
2015a). Like other AM process, WAAM involves many
process parameters that need to be optimized for produc-
ing quality prototypes in lesser build time (Tay et al. 2016;
Sharma et al. 2016).

Literature reveals that the process is dominated by some
parameters such as welding power supply parameters, wire
feed speed (WFS), travel speed (TS), arc length, interpass
temperature, wire feed angle, gas flow and it is highly neces-
sary to select optimum value of these parameters in order to
the achieve a specific target wall width/height requirement
as denoted in original CAD data. Therefore, investigations
have been done on the effects of arc voltage, travel speed, wire
diameter, and arc current on the quality and bead geometries
(Baufeld et al. 2011). Many researchers have experimentally
studied the effect of process parameters on geometric size,
as reported by Oshima et al. (2005), Ouyang et al. (2002),
Kazanas et al. (2012), and Ding et al. (2015) but they all con-
sidered only one factor in deciding the bead geometry, and
thus, their combined effect were not fully explored. For the
first time, Williams developed a mathematical model of effec-
tive wall width using response surface methodology (RSM)
for depositing Ti—-6A1-4V parts. The model was based on
three input factors and the outcomes were expected to help in
designing an expert WAAM system for effective functioning
and higher productivity purposes. RSM is one of the statis-
tical experimental design methods designed for developing
the optimum process with efficient screening; however, the
regression analysis technique may not perform satisfactory
on unseen test data and is based on the statistical assumptions
(assumption of the model structure ad correlated residuals).
Poor performance of the model on the test data leads to poor
generalization ability and results in false information of the
process input process conditions (Garg and Tai 2012; Garg
et al. 2014; Cicek et al. 2015). A much better alternative
among other evolutionary algorithms such as adaptive neuro-
fuzzy inference system (ANFIS), artificial neural network
(ANN), support vector machine (SVM) is the genetic pro-
gramming (GP) which evolves the functional relationships
between the process parameters automatically (Sohrabpoor
et al. 2016; Garg et al. 2014; Panda et al. 2014; Vijayaragha-
van et al. 2015; Panda et al. 2016). Significant progress in
literature of GP was made which justifies its ability to model
and optimize the complex systems (Nie et al. 2013; Wang
et al. 2015a,b). Therefore, the present work will explore the
ability of the advanced variants of evolutionary algorithms
such as GEP and MGGP in performing the task of formu-
lating the decision support models for bead dimensions of
WAAM process. The decision support model can not only
extrapolate/predict but also suggests the precise selection of
process variables for the improvement of WAAM process.
Experimental procedure resulting in the data generation is
set as input into the framework of these two variants for the
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Fig. 1 Complete procedure of experimental and evolutionary algo-
rithms in investigations of bead dimensions of WAAM process

processing and analysis. The procedure involving the exper-
imentation planning and the modelling with respect to the
three inputs is shown in Fig. 1. Two variants of GP, i.e.,
MGGP and GEP is used and their performance is compared
for predicting bead dimensions (bead width and height) with
respect to peak current, wire feed speed, and travel speed.
The complexity term based on the minimum order of the
polynomial used in the objective function (Structural risk
minimization principle (SRM)) (Rao and Murthy 2016) of
both these variants is used to investigate the generalization
ability of the proposed models. The 2D and 3D plots are gen-
erated to measure the effect of each input and their interaction
effects on the bead dimensions. The implications arising from
the study is discussed in the end.

Experimental set-up of WAAM

In this section, the complete set-up of WAAM process is dis-
cussed in measurement of bead height (BH) and bead width
(BW) based on the peak current, travel speed and wire feed
speed. The equipment used in this study and the assumptions
behind the experiments are kept same as those discussed in
Gengetal. (2015). A GTAW welding machine (EWM, Tetrix
521 Synergic AC/DC) was used as a source of weld power.
Other parameters such as the background current, pulse fre-
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Table 1 Experimental data obtained from the WAAM process

Peak current  Travel speed ~ Wire feed BH BW
(in amp) (m/min) speed (m/min) (in (in
mm) mm)
140 4 0.2 1.32 6.26
180 4 0.2 0.95 8.56
140 7 0.2 2.16 6.49
180 7 0.2 1.61 8.59
140 4 0.3 1.02 54
180 4 0.3 0.77 7.04
140 7 0.3 1.62 5.53
180 7 0.3 1.24 7.4
126.4 5.5 0.25 1.66 5.24
193.6 5.5 0.25 1.05 8.74
160 2.98 0.25 0.76 6.66
160 8.02 0.25 1.89 6.76
160 5.5 0.17 1.65 7.89
160 5.5 0.33 1.07 5.96
160 5.5 0.25 1.27 6.81
160 5.5 0.25 1.31 6.85
160 5.5 0.25 1.27 6.91
160 5.5 0.25 1.25 6.8
160 5.5 0.25 1.29 6.91
160 5.5 0.25 1.26 6.89

quency and the bead geometry size are kept the same as those
obtained in (Geng et al. 2015).

In this way, by varying the input conditions (peak cur-
rent (A), travel speed (m/min) and wire feed speed (m/min)),
the bead dimensions (BH and BW) are measured (Table 1).
Total of 38 samples are collected from the study measuring
bead dimensions based on the varying the three inputs as
given in Geng et al. (2015). Figures 2 and 3 show the nature
of two bead dimensions (BH & BW) of the WAAM fabri-
cated prototype with respect to the three inputs. Figures 3
and 4 shows that there is high interaction and non-linear cor-
relation between the three inputs and the bead height and
bead width. Five-fold Cross-validation (80% training and
remaining testing data) approach is deployed to select the
appropriate training data set from the five training and five
testing data sets based on the minimum mean absolute per-
centage error (MAPE).

Mean absolute percentage error (MAPE) (%)
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Fig. 2 Line graph showing the nature of a Bead height (BH). b Bead
width (BW) with respect to three inputs

where M; is the predicted value by a model, and A; is the
actual value of the output

Variants of evolutionary algorithms
Multi-gene genetic programming

The present work deploys the genetic programming (Koza
1994) variants for establishing the relationship between the
process parameters. One of the popular variant is multi-gene
genetic programming (MGGP), which works on mechanism
of evolution of the models from the set of genes. The model-
ing and optimization of the complex manufacturing processes
(Liang et al. 2015) has been studied using MGGP. The mech-
anism (Fig. 4) of the algorithm is as follows:

Step 1 The terminal and function set comprising of three
inputs of the process and airthematic functions respectively
are set by the user. The set of genes evolved from these sets
are combined to form the models.

Step 2 The models performance is computed by fitting
the output values obtained from it on the objective function
structural risk minimization (SRM) given by
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(2)

where j equals to order of the polynomial, SSE is the sum of
square of error, n is the size of the training set, M; is the value
predicted by a model and ¥; is the actual value of the output.
The complexity (/) is defined by the order of the polynomial
varying from 1 to 6. The order of the polynomial that best
fits the data is the complexity of the model.

Step 3 The models are ranked as per the objective values.
If any of the model does not satisfy the termination crite-
rion, the new set of models (new population) is generated
using the standard genetic operators such as the crossover,
reproduction and mutation.

Step 4 The procedure of producing the new generations
continuous unless the termination criterion is not met. In this
work, the termination criterion is the number of runs. Each
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run corresponds to the number of generations, which is also
defined by the user.

The parameter setting is adjusted using a trial-and-error
approach. The simulations for MGGP are performed in MAT-
LAB R2010 with the parameters such as population size,
number of generations, depth of the tree, tournament size,
number of iterations set at 400, 120, 8, 6 and 10 respectively.
The MGGP method when applied on the WAAM processed
data, the Eqgs. (4-5) are generated as shown in “Appendix”.

Gene expression programming (GEP)

An advanced variant of GP known as gene expression pro-
gramming (GEP) was developed by Candida Ferreira (2001).
GEP is another powerful variant of GP, with only difference
between them is that in GEP, the solutions are represented in
linear structure or Expression trees (ET) (Fig. 5). This way
of defining the tree structures of GP simplifies the diversity
of the population.
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Fig. 5 Mathematical expression represented by free

The linear representation of the ETs is given by
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Fig. 6 Br graph showing a and b minimum MAPE for MGGP and
GEP models on bead height data set 2 ¢ and d minimum MAPE for
MGGP and GEP models on bead width data set 3
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Table 2 Statistical metrics of

2
the bead dimension models Models R RMSE (%) MAPE (%)
Training Testing Training Testing Training Testing
phase phase phase phase phase phase
Bead height (mm)
MGGP 0.97 0.92 0.029 0.06 1.23 10.92
GEP 0.98 0.99 0.013 0.03 0.70 2.62
Bead width (mm)
MGGP 0.96 0.93 0.030 0.102 0.23 0.73
GEP 0.99 0.98 0.014 0.020 0.16 0.30
Table 3 Actualand model No. Actual MGGP GEP BH Actual MGGP GEP
values obtamned from the bea BH BH (mm) (mm) BW BW BW
dimension models
(mm) (mm) (mm) (mm)
1 0.928849 0.904845 0.908451 7.127267 7.119676 7.138363
2 1.985034 1.987653 1.959247 7.279766 7.28416 7.245672
3 0.635216 0.637449 0.63531 5.418944 5.441217 5.456515
4 1.562305 1.539545 1.565381 5.245077 5.230549 5.220528
5 1.75587 0.992976 1.699543 4.660088 4.704544 4.680927
6 0.86687 0.927042 0.895195 4.998289 5.049107 5.040942
7 2.334786 2.050188 2.277063 5.131481 5.113188 5.133766
8 1.021051 1.012766 1.038228 5.401869 5.375534 5.385919
9 0.772196 0.761816 0.738456 7.050346 7.104516 7.058387
10 1.623134 1.609771 1.635782 5.53632 5.583049 5.531658
Comparison of models based on complexity and Comparison of models based on complexity and
(a) accuracy (b) accuracy
100 70
90 61
90 81 60
80
70 50 46
60 40
50
40 30
30 20
ig 10.92 10
2.62 0.73 0.3
MGGP GEP MGGP GEP
@ Complexity values ® MAPE @ Complexity values ® MAPE

Fig. 7 Complexity and MAPE of the proposed models a BH, b BW

The past studies (Sabar et al. 2015; Wang et al. 2015a,b)
have shown the ability of GEP in modelling the complex
processes. The settings in this work for GEP includes the
population size of 400, number of generations 100, the max-
imum depth of the ET as 7 and the number of runs chosen as
20. In the present work, GeneXpro Tool (GEPSOFT 2014) is
used to implement GEP on data discussed in “Experimental
set-up of WAAM?” section in formulating the bead dimen-
sions models (Egs. 5 and 7 in the “Appendix”). Bar graph
shown in Fig. 6 reveals that the mean absolute percentage
error (MAPE) of both the models is minimum correspond-
ing to data set 2 for BH and data set 3 for BW models. The
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best MGGP and GEP models (Egs. 6 and 7 in the “Appen-
dix”) corresponding to data set 2 and data set 3 is therefore
selected for analysis of BH and BW respectively. The details
numerical investigation of the two models is discussed in
“Performance analysis for the bead dimension models”.

Performance analysis for the bead dimension
models

The performance analysis of the MGGP and GEP models
(Egs. 4-7 in the “Appendix”) is conducted by using the met-
rics (Egs. 8-10 in “Appendix”).
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Fig. 8 Fitting plots of the proposed GEP models a Bead height, b Bead
width on training and testing data

Table 2 shows the values of R2, RMSE and MAPE of the
two models for prediction of bead width and bead height.
In light of the training aspects, the performance of both the
models are comparable. It is clear that the models formulated
by GEP have performed better than the MGGP models with
R2achieved as high as 0.99. Table 3 shows the actual and
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Goodness of fit (hypothesis) tests (¢-test for mean and f-test
for variance) is applied on both the models. It was found
that the p-values for all the models for is greater than 0.05,
which suggests that the predicted and actual values are close
to each other. Figure 7 shows the performance comparison of
the two models based on size. It is clear that the GEP models
have achieved higher accuracy and lower size of the models.
Figure 8a (BH) and Fig. 8b (BW) shows the accurate line
curve fitting of the GEP models with respect to the training
and testing data. Figure 9a, b illustrates the box plots of the
relative error for the GEP models. It shows that the variations,
mean, median, maximum and minimum of relative error is
quite low (Table 4).

Thus, the analysis depicts that the GEP models for BH
and BW have performed better than that of MGGP models.

2D and 3D plots for main and interaction effect of
the GEP based bead dimensions models

The 2D and 3D analysis for the GEP models is carried by
following the mathematical procedure given in Vijayaragha-
van et al. (2015). 2D plots shown in Fig. 10a shows the effect
of each input on BH and BW of the process. It clearly shows
that the BH decreases non-linearly with an increase in peak
current and wire feed speed while increases with an increase

Bead width

T |
1

Training data

Relative error (%) of GEP model @

o

Testing data

Fig. 9 Statistical distribution of relative error of the GEP model of training and testing data set a BH, b BW
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Fig. 10 a 2D and b 3D plots showing the relationships of the bead height and bead width with respect to the three inputs

in values of travel speed. The decrease rate is higher when the
peak current is varied as compared to wire feed speed. On the
other hand, the BW increases non-linearly with an increase
in values of peak current while decreases with an increase
in values of wire feed speed. There was hardly any effect
noticed on the impact of travel speed on the BW. The inter-
action effect between the two inputs on the bead dimensions
is evaluated and shown by 3D plots in Fig. 10b. Figure 10b
shows that the combined effect of peak current and travel
speed on bead height and the combined effect of peak cur-
rent and wire feed speed on the BW. This indicates that there
were higher variations and interaction effect was noticed on

@ Springer

the BH than that of the combined effect of inputs on the
BW.

Sensitivity of the inputs (Fig. 11) to the bead dimensions
is determined by finding range from the 2D plots. It clearly
shows that the peak current has the highest influence on the
BH values followed by travel speed and wire feed speed.
For BW, the peak current also have the highest impact fol-
lowed by wire feed speed and travel speed. Thus, it can
be concluded that the most common and dominant input is
peak current which influences both the BH and BW simul-
taneously. This interpretation from the sensitivity analysis is
also in line with the findings from the experimental findings
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Fig. 11 Percentage contribution of the three inputs to a Bead height,
b Bead width

discussed in Geng et al. (2015). Thus, the statistical perfor-
mance and the 2D and 3D analysis of the GEP models can be
useful in accurate prediction and monitoring of the WAAM
process.

Uncertainty analysis of the GEP models for bead
height and bead width

The GEP models for bead height and bead width could
be simulated in uncertain inputs conditions. The simulation
profiler is designed by assuming the inputs as the normal dis-
tribution with the minimum and maximum values set same
as those of the respective inputs. The analysis could pro-

vide us the reliability or the robustness of the models with
respect to the variations in inputs. Figure 12a, b shows the
distributions resulting from the designed simulation of 5000
iterations. Comparison of both the distributions shows that
an approximate normal trend is observed in both the plots
of Fig. 12. Figure 12a shows that the distribution is a lit-
tle skewed towards the right, which suggests that the GEP
based bead height model (Fig. 12a) is sensitive to the vari-
ations in inputs when compared to the bead width model
(Fig. 12b). The reason attributed for this performance could
be the non-linear nature of data resulting in such distribu-
tions.

Conclusion

This work presents the experimental and evolutionary algo-
rithm variants for study of bead dimensions of the wire
and arc additive manufacturing process. The variants of the
advanced evolutionary algorithms such as GEP and MGGP
are proposed in developing the framework for obtaining
the functional expressions for bead height and bead width
in circumstance of partial information about the process.
These variants provide an alternative to the Response sur-
face methodology, which relies on the statistical assumptions
and may induce uncertainty in model formulation. The mod-
els developed represents the explicit functions which can be
used offline by industry experts for generalization of bead
height and bead width values based on the three inputs. This
could perhaps avoid the usage of vital experimental resources
thus saves time, cost and increases productivity of WAAM
process. The performance analysis concluded that the GEP
modes for both the bead height and bead width performs bet-
ter than that of the MGGP models. The uncertainty analysis
of the GEP models suggests that the models are reliable and
can be used in uncertain input conditions. The findings from
2D and 3D analysis reported that the peak current and travel
speed influences the bead height the most whereas the peak
current and wire feed speed influences the bead width the
most. The most dominant input influencing the bead height
and bead width was found to be peak current. Future work
for authors is to upgrade the WAAM process by addition of
inputs such as the machine type and arc type generation and
then experimentally and numerically investigate the process
and evaluate any physically differences based on the current
study.
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Fig. 12 Simulation profiler for GEP models with variations in the inputs from its mean values a Bead height model, b Bead width model
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— ((x1)*((1.158172)))) — ((tan((x2)

—((x2)*(x3))))*(tan(x1)))) + (—0.0052258)

*((tan((x1)*(x3)))* (cos((tan(((x2)

—(x2))*(x1))) = ((x1)*(tan((x1)*(x3)))))))

+(0.0018798)* ((x1) — ((x1)*(x2)))

+ (—0.022407)* (tan((exp(tanh(x2)))* ((tan(x3))* (x2))))

Bead heightggp(mm) = —0.27529 + (0.0029583)*
(tan((tan((x2)* ((14.502281))))* (x1))) 4 (—0.029465)*
(cos(((tanh(x2)) + ((x2)* (tan((x3)* (x1)))))*(x1)))

+ (=0.20681)* (((tan((x3)* (x1)))* (x3))*(x3))

+ (=0.0015171)* ((x2)* (x1)) 4 (—0.6226)* ((tanh(cos((x3)

+ ((3.678354))))) + ((x2)*((tanh(x3))

— (tanh((14.502281)))))) + (—0.019202)*
((sin(sin((plog (x1))*((x2)* (exp(x2))))))

+ (sin(sin((plog (x1))* ((x1)* (exp(x2)))))))

+(0.041126)* ((tan((x2)*(x1)))*(x3)) + (0.0012584)*
((tan((tanh(x3))*(x1)))*((x2)*((tanh(x3))

— (tanh((14.502281))))))

Bead widthyggp (mm) = 4.5428 + (0.08313)*((x1) — (x2))

+ (—0.0093962)*((exp(tan(x1))) + ((x1) — (x2)))

+ (=0.19108)* ((sin(((—15.924689)) — (x3)))* (((x3)* (x1))

— (x2))) + (34.0543)* (plog(sin(((—15.924689)) — (x3))))

+ (—14.6929)* (plog(x3)) + (0.032877)* (sin((((sin(x3))*
(x1)) — (x2)) — (x2))) + (0.093567)* (exp(cos(x2)))

+ (0.74232)* (cos(sin(cos((exp(x1)) + (x2)))))

Bead widthggp (mm) = —4.2408 4 (—0.00047266)*

(xD*(((x1) = (x2)*(x3)))

+(—0.18222)* (cos(tan(exp(x1))))

+ (—0.06944)*(cos(tan(((x1) — (x2))*(x3))))

+ (0.089221)*(x1) + (—0.12007)* (cos(cos(tan(((x1)

— (x2))*(x3))))) + (—0.054305)*

(sin(sin(sin(tan(plog(tan(x3)))))))

+(=0.030142)* (sin(((((x1) — (x2))*(x3))

+ (plog(tan(((—4.416740))*(x2)))))

+(sin(tan (plog(sin(x2))))))

+ (0.075278)* (sin((plog(tan(x3))) + (tan(tan(tan(x2))))))
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