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Abstract This paper presents a probabilistic model based
approach for machinery condition prognosis based on parti-
cle filter by integrating physical knowledge with in-process
measurements into a state space framework to account
for uncertainty and nonlinearity in machinery degradation
process. One limitation of conventional particle filter is that
condition prognosis is performed based on the model with
predetermined parameters obtained from simulation stud-
ies or lab-controlled tests. Due to the stochastic nature of
machinery defect propagation under varying operating con-
ditions, model parameters may vary in practice which causes
prediction errors. To address it, an integrated state predic-
tion and parameter estimation framework based on particle
filter and expectation-maximization algorithm is formu-
lated and investigated. The model parameters are adaptively
estimated based on expectation-maximization algorithm uti-
lizing hidden degradation state and available in-process
measurements. Particle filter is then performed on the iden-
tified model with estimated parameters following Bayesian
inference scheme to improve the robustness and accuracy
of machinery condition prognosis. The effectiveness of the
developed method is demonstrated through a simulation
study and an experimental run-to-failure bearing test in a
wind turbine.
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Introduction

Machinery condition prognosis refers to the estimation of
time to failure of the machine, as well as the risk associ-
ated with existing or future failure modes (Heng et al. 2009).
It is critical to establishing optimized maintenance plans to
enhance production, minimize costly downtime, and avoid
catastrophic damage. Different sensing techniques have been
integrated into the manufacturing system for timely acquisi-
tion of its working status to improve the system reliability.
According to the sensing parameters, these sensing tech-
niques can be categorized into direct sensing approach and
indirect sensing approach (Teti et al. 2010). In the direct sens-
ing approach, the actual quantities, such as crack length, tool
wear width, etc. are measured. Such direct sensing approach
could directly indicate the machinery condition, however, it
is usually performed offline, and usually interrupts the nor-
mal operation of the machine. On the contrary, the auxiliary
in-process quantities such as force, vibration, acoustic emis-
sion, and motor current, are measured in the indirect sensing
approach. The indirect sensing approach can online monitor
the machinery, thus it is more suitable for practical applica-
tions. Since the indirect sensing parameters are the indirect
indicators of machinery condition, the machinery condition
is then deduced using different data processing techniques.

Numerous efforts have been made to develop a variety
of methods for machinery condition prognosis. In Jurkovie
et al. (2016), the performance of three different machine
learning methods including support vector regression, poly-
nomial regression and artificial neural network have been
investigated for the prediction of independent output cutting
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Fig. 1 Comparison of different
approaches for machinery
condition prognosis
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parameters in a high speed turning process. In Vogl et al.
(2016), it reviews the challenges, needs, methods and best
practice for PHMwithin manufacturing systems highlighted
by diagnostics, prognostics, dependability analysis, data
management, and business. An integrative method of logical
analysis and non-parametric cumulative incidence functions
is presented to address the multiple failure modes issue in
prognosis and the results shows the competitive performance
of presented method over neural network and support vector
machine (Ragab et al. 2016). The prognostics-based decision
support methods are summarized for condition based main-
tenance and a decision tree learning method is provided to
guide the model selection (Bousdekis et al. 2016).

According to the utilization of sensing information, these
prognosis techniques can be categorized into physics based
approach, data driven approach, and model based approach
(also known as physics-data integrative approach) Peng et al.
(2010) as illustrated in Fig. 1. Physics based approach typi-
cally uses empirical models to describe system physics and
these empirical models are usually expressed by a series of
ordinary or partial differential equations (Peng et al. 2010).
For instance, the bearing degradation could be described by
Paris’ formula (Paris et al. 1961) or empirical equation L10 to
model the crack growth or predict spalling initiation during
the bearing life test.Data driven approach derivesmodel from
online and offline historical measurements based on artificial
intelligence techniques without physical knowledge needed
(Heng et al. 2009; Lever et al. 1997). Different artificial
intelligence techniques have been investigated for machin-
ery condition prognosis, including artificial neural network

(Zhang et al. 2013), support vector regression (Benked-
jouh et al. 2015), ARMA/GARCH model (Pham and Yang
2010), hidden Markov model (Peng and Dong 2011), Naïve
Bayes (Mehta et al. 2015), fuzzy logic (Gokulachandran and
Mohandas 2015), and adaptive neuro-fuzzy inference system
(Sarkeyli et al. 2015), etc.

As shown in Fig. 1, physics based approach usually uti-
lizes curve fitting to identify parameters in an empirical
equation using offline sensing measurements through exten-
sive experiments. The machinery condition prognosis is then
estimated based on deterministic model with determined
parameters. In practice, physics based approach may not be
the most practical solution since the parameters in the model
are validated by large sets of data (Peng et al. 2010). How-
ever, it is usually difficult or impossible to obtain sufficient
offline measurement data in real application. Compared with
physics based approach, data driven approach may be more
available in some practical cases in which it is relatively eas-
ier to gather data than to build accurate physicsmodels (Heng
et al. 2009). However, there are still some limitations. (1) A
large amount of historical data (more than physics based tech-
niques needed) is required to train the model in data driven
approach and the performance of prediction highly relies on
the quality of training data. But it is usually a costly and
time consuming process to obtain the required run-to-failure
experimental data. (2) The model is derived in a determin-
istic fashion and only applicable under specific operating
conditions. On the other hand, physics based approach and
data driven approach do not consider the uncertainty due to
component variation and varying operating conditions in the
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model construction, and are usually difficult to quantify the
uncertainty in the mechanical degradation process.

In comparison, model based approach takes advantage
of the merits in physics based approach and data driven
approach, and addresses their limitations. Given that the
physical knowledge governing defect propagation has been
established in physics based approach,model based approach
integrates physical knowledge and in-process measurements
into a state space model. Since the machinery defect status
is usually not directly accessible using in-process measure-
ments, defect status needs to be estimated or predicted
from in-process measurements, to which Bayesian infer-
ence provides a rigorous mathematic solution. Based on
Bayesian inference, the present defect status is estimated
based on previous defect status in one-step-ahead predic-
tion. The estimated defect status is then updated using
in-process measurements based on Bayes rule. For multi-
step-ahead prediction, recursive process is applied to predict
the defect propagation in the desired prediction horizon.
Depending on the system type and noise assumption, dif-
ferent methods including Kalman filter (for linear system
and Gaussian noise) (Kalman 1960), extended Kalman filter
(for weak nonlinear system and Gaussian noise) (Julier and
Uhlmann 1997), and particle filter (for nonlinear system and
non-Gaussian noise) (Gordon et al. 1993) have been inves-
tigated to implement model based prognosis. Different from
the above-mentioned two methods, model based approach
doesn’t require too much data, and the uncertainty could be
well quantified by way of probability distribution.

Particle filter (PF) is a numerical approximation method
based on Bayesian inference using point mass (or ‘particle’)
representation of probability densities to tackle the nonlin-
earity and non-Gaussianity in modeling system dynamics
(Gordon et al. 1993). It has been investigated for condition
prognosis and remaining useful life prediction in different
applications. In Orchard and Vachtsevanos (2009), a parti-
cle filter framework is investigated to analyse the axial crack
growth in a planetary carrier plate. A regularized auxiliary
particlefilter is presented for battery remaining life prediction
in Liu et al. (2011). In the previous work, model parameters
are usually pre-determined from lab controlled test or FEA
simulation analysis. However, model parameters may vary in
practice due to various factors, including different material
properties, component-to-component variations, or different
operating conditions in the machinery degradation process.

To accommodate parameter variations and improve track-
ing performance, the level of noise associatedwith the system
state and measurement models for degradation modeling can
be increased. The drawback of such an approach, however, is
that it also decreases the prediction accuracy and precision.
Joint state and parameter estimation techniques have been
investigated to address the aforementioned issue, and these
methods can be categorized into Bayesian estimation and

maximum likelihood estimation. In the Bayesian estimation
approach, an auxiliary particle filtering using shrinkagemod-
ification of kernel smoothing technique is firstly presented
in Liu and West (2001) for sequential Bayesian learning
about time-varying state vectors and fixed model parameters
simultaneously. Particle filter is then investigated in Storvik
(2002) for dynamic state space model by marginalizing the
unknown static parameter as part of the state vector. Follow-
ing the similar idea, a Matlab-based tutorial for model-based
prognostic is presented in An et al. (2013) by combining a
physical model with observed data to identifymodel parame-
ter usingBayesian estimation in particle filter.Amean-square
filter is investigated in Basin et al. (2013) for joint state and
parameter estimation in uncertain stochastic nonlinear poly-
nomial systemby incorporating the unknownparameters into
extended polynomial state vector. Parameter estimation is
investigated for batch processes in Zhao et al. (2013) through
the maximum likelihood method which is accomplished by
Expectation-Maximization algorithm. Prior efforts on joint
state and parameter estimation mainly focus on filtering and
control applications.

In line with the above efforts, this study investigates a
joint state prediction and parameter estimation framework
based on particle filter and expectation-maximization (EM)
algorithm for machinery condition prognosis. To account for
the stochastic property of machinery degradation process,
the system is firstly modelled with unknown parameters.
Model parameters are then estimated based on the degra-
dation status (hidden information) and available in-process
measurements using expectation-maximization algorithm.
Machinery degradation status is then predicted by recursively
updating the identifiedmodel with in-processmeasurements,
followingBayesian inference scheme in particle filter. A sim-
ulation study and an experimental bearing run-to-failure test
in a wind turbine gearbox are used to demonstrate the effec-
tiveness of the developed method.

The merits of this study rest on the following. (1) A sto-
chastic state spacemodel is constructed for machinery defect
prognosis comparing with predetermined models in prior
studies. (2) To the best knowledge, it is the first study of
integrative particle filter and EM algorithm investigated for
machinery condition prognosis. (3) Performance compari-
son between Bayesian estimation and presented integrative
PF and EM method is discussed. The rest of the paper
is constructed as follows. After introducing the theoretical
background of particle filter and expectation-maximization
algorithm in Sect. 2, the details of the proposed mathe-
matical framework for joint state prediction and parameter
estimation is discussed in Sect. 3. Additionally, the con-
struction of state space model based on physical knowledge
and in-process data analysis is also discussed respectively.
The effectiveness of the developed method is experimentally
demonstrated based on bearing run-to-failure data acquired
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in a wind turbine gearbox in Sect. 4. To further demonstrate
the performance of the presented method, performance com-
parison with conventional approach is discussed, and their
Pros and Cons are summarized in Sect. 5. Finally, conclu-
sions are drawn in Sect. 6.

Theoretical framework

In machinery condition prognosis, defect status is usually
impossible to be directly observed unless it is measured
offline by costly equipment (e.g., microscope, surface pro-
filer). On the other hand, online sensing techniques, such
as vibration, acoustic emission, dynamic force, temperature
and wear debris, are readily measured in-process. However,
online measurements are usually the indirect indicators of
machinery status. Such scenario can be well described using
state space model in a Bayesian framework (Arulampalam
et al. 2002) as follows.

a) A state equation describing the underlying machinery
degradation process with time:

xt = f (xt−1, ut−1) (1)

where t is time index, and xt is the defect status at time step t .
f (•) describes the state transition function from state xt−1 to
xt considering order-oneMarkov process. ut−1 is the process
noise representing uncertainty in degradation process. The
state transition probability p(xt |xt−1) is the intrinsic property
of machinery degradation, and can be derived from Eq. (1).
The state equation is usually constructed based on physical
knowledge of the degradation process (e.g., Paris’ formula).

b) A measurement equation linking online measurement to
unobservable defect status:

zt = h(xt , vt ) (2)

where zt denotes the online measurement at time step t .
h(•) is a measurement function representing the relationship
between online measurements zt and unobservable defect
status xt . νt is the sequence of measurement noise. The mea-
surement zt is considered to be conditionally independent
given the degradation state xt which is described as mea-
surement probability p(zt |xt ).
c) A set of available online measurements acquired in the

experiments:

Z = {z1, z2, . . . , zN } (3)

Equations (1–2) describe the system equation and measure-
ment equation with known model parameters. In case of

unknown parameters, the general state space models can be
described as follows.

xt = f (xt−1, θ, ut−1) (4)

zt = h(xt , θ, vt ) (5)

where θ represents the unknown parameters need to be esti-
mated. zt is the available in-process measurement at time
step t . xt denotes the hidden defect status. The state transition
probability is denoted as pθ (xt |xt−1)while the measurement
probability is described as pθ (zt |xt ).

Particle filter

In machinery defect prognosis, the idea is to find the poste-
rior probability distribution p(xt+l |zt ) of future defect status
given the present measurements in the state spacemodel with
known parameters. The posterior probability distribution is
recursively computed in two stages: prediction and update.
Given the posterior probability distribution p(xt |zt ) at time
t , the prediction stage is to estimate the probability distri-
bution p(xt+1|zt ) via the Chapman–Kolmogorov equation
(Arulampalam et al. 2002) as:

p(xt+1|zt ) =
∫

p(xt+1|xt )p(xt |zt )dxt (6)

Upon the new measurement zt+1 is available, the posterior
probability distribution p(xt+1|zt ) of defect state xt+1 is
updated via Bayes rule (Arulampalam et al. 2002).

p(xt+1|zt+1) = p(xt+1|zt )p(zt+1|xt+1)

p(zt+1|zt ) (7)

where p(zt+1|zt ) is the normalizing factor which can be cal-
culated as:

p(zt+1|zt ) =
∫

p(xt+1|zt )p(zt+1|xt+1)dxt+1 (8)

As discussed above, Eqs. (6–8) give the exact analytic
Bayesian solution for linear system with Gaussian noise.
However, for nonlinear system, the integral operation in
Eq. (6) is usually intractable due to high dimensional com-
putation. Particle filter is developed using sequential Monte
Carlo sampling method based on random samples (parti-
cle) representation of probability densities for nonlinear or
non-Gaussian system. It has been widely studied in different
applications such as mobile robot localization (Kwok et al.
2003), and object tracking (Hue et al. 2002), which involve
nonlinear system and/or non-Gaussianity noise. Based on
Monte Carlo approximation, the integral operation in Eq. (6)
is transformed into the summarization to address complex
high-dimensional computation in nonlinear system. In par-
ticle filter, the posterior probability distribution p(xt |zt ) at
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time t is represented by a set of random samples or parti-
cles xit , i = 1, 2, . . . , M , with the corresponding weight wi

t .
Then, Eq. (6) can be reformulated as Arulampalam et al.
(2002):

p(xt+1|zt ) =
∫

p (xt+1|xt ) p (xt |zt ) dxt

≈
M∑
i=1

wi
t δ

(
xt − xit

)
p (xt+1|xt )

=
M∑
i=1

wi
t p

(
xt+1|xit

)
(9)

where i is the index of particle, and M is the total number of
particles which affects the accuracy of represented probabil-
ity distribution function and the efficiency of computation.
δ(•) is the delta function. In the update step, the weight of
each particle is then updated based on the likelihood of the
observation zt+1 at time step t + 1 as:

wi
t+1 ∝ wi

t p
(
zt+1|xit+1

)
(10)

In implementation, resampling is applied in every step to
obtain equally weighted samples so as to avoid particle
degeneracy issue of particle filter (Arulampalam et al. 2002).
The particles are resampled from importance distribution
with associated importance weights. Those particles with
very small weights are eliminated, while those particles with
high weights are duplicated. Therefore, particle filter is a
recursive numerical method based on the Bayesian inference
to estimate posterior probability density function of a state
which is represented by a set of random samples (named
particles) with associated weights (Wang and Gao 2013).
Particle filter gives the complete solution of state estimation
in the state space model with known model parameters.

Expectation-maximization algorithm

Because of the stochastic property of machinery degradation
process, the parameters of state spacemodel are unknown. To
solve this issues, the maximum likelihood estimation (MLE)
could be used to deduce the most likely parameters which
satisfy the distribution of in-process measurements. How-
ever, in practice, the measurements are usually incomplete
data which will seriously affect the accuracy of estimation.
On the other hand, the likelihood function is sometimes too
complicated to solve the MLE of corresponding parame-
ters. Expectation-maximization (EM) algorithm (Dempster
et al. 1977; Moon 1996), an iterative algorithm, is devel-
oped for obtaining the MLE of parameters using incomplete
data. Using this method, the complex problem of maximiz-
ing likelihood function is translated into the optimization of
a series of simple functions. The essence of EM algorithm is

the postulation of hidden defect state X and in-process mea-
surements Z to form a complete data set { X, Z}, then the
log-likelihood function is expressed through marginalizing
the joint distribution pθ ( X, Z).

Lθ (X, Z) = log pθ (X, Z) (11)

where X is denoted as the N -dimensional hidden degra-
dation state vector {x1, x2, . . ., xN } while Z represents the
in-process measurement vector {z1, z2, . . ., zN }. To estimate
the parameters, EM algorithm maximizes the cost function
Q(θ, θk) which is formulated as the conditional mean of the
log-likelihood function Lθ( X,Z) (Schon et al. 2011).

Q(θ, θk) =
∫

Lθ (X, Z)pθk (X |Z)dX

=
∫

log pθ (X, Z)pθk (X |Z)dX (12)

where θk is the sequence of estimated parameters. There are
mainly two major steps in parameter estimation. In the first
step, also known as E-step, cost function Q(θ, θk) is com-
puted as shown in Eq. (12) by estimating the joint probability
density of state and in-process measurements based on ini-
tial estimated parameters. Then, in the following M-step,
the cost function Q(θ, θk) is maximized using a gradient
ascent algorithm to obtain the new estimated parameters
θk+1 = argmax Q(θ, θk). These two steps are iterated until
the parameters converge which means the changes of para-
meters after each iteration remainwithin a specified tolerance
level.

One challenge in EM algorithm is to calculate the cost
function Q(θ, θk). Based on Bayes’ rule and Markov prop-
erty, the joint distribution pθ (X, Z) is derived as:

pθ (X,Z) = pθ (X)pθ (Z|X) (13)

where

pθ (X) = pθ (x1)
N-1∏
t=1

pθ (xt+1|xt ) (14)

pθ (Z|X) = pθ (z1|x1)
N∏

t=2
pθ (zt |xt ) (15)

Similarly, the log-likelihood function can be computed as:

Lθ (X,Z) = log pθ (X,Z) = log pθ (Z|X) + log pθ (X)

= log pθ (x1) +
N−1∑
t=1

log pθ (xt+1|xt )

+
N∑
t=1

log pθ (zt |xt ) (16)

123



610 J Intell Manuf (2019) 30:605–621

Table 1 Illustration of EM
algorithm

According to Eqs. (12) and (16), the cost function Q(θ, θk)

is then transformed as Schon et al. (2011):

Q(θ, θk) = I1 + I2 + I3 (17)

where

I1 =
∫

log pθ (x1)pθk
(x1|Z)dx1 (18)

I2 =
N−1∑
t=1

∫ ∫
log pθ (xt+1|xt )pθk

(xt+1, xt |Z)dxtdxt+1

(19)

I3 =
N∑
t=1

∫
log pθ (zt |xt )pθk (xt |Z)dxt (20)

For linear system with Gaussian noise, the cost function
Q(θ, θk) can be calculated analytically, and the explicit
equations for parameter estimation in EM algorithm can
be developed. However, for nonlinear state space model
in machinery defect prognosis, the integral operation in
Eqs. (18–20) is intractable to get a complete solution which
poses challenge in EM algorithm. In such case, particle fil-
ter plays an import role in computation of the cost function,
which will be discussed in the next section of the integrated
framework of particle filter and expectation-maximization
algorithm for machinery defect prognosis. The details of EM
algorithm are given in Table 1.

Formulation of prognosis model

In order to accommodate model dynamics (parameter varia-
tions) and reduce prognosis uncertainty, this paper presents a
computational framework of joint state prediction and para-
meter estimation for machinery condition prognosis based
on particle filter and EM algorithm as shown in Fig. 2.

According to the inherent physical knowledge of differ-
ent applications, a state space model consisting of system
equation and measurement equation is constructed firstly.

With the available in-process measurements, system iden-
tification is performed to identify the model parameters
using expectation-maximization algorithm in the learning
stage. After the model parameters are identified, the sys-
tem state is then predicted based on particle filter in the
desired prediction horizon. The details of the joint state pre-
diction and parameter estimation framework are discussed
below.

Construction of state space model

As discussed in Sect. 2, system equation and measurement
equation are essential to construct the state space model
which describes the machinery degradation process.

System equation

System equation describes machinery defect state evolv-
ing behavior which is usually impossible to be measured
directly through online measurements. Take defect progno-
sis of rolling element bearing as an example, spalling area is
a direct indicator of bearing defect severity. Since the bearing
defect grows slowly and the physics governing its behavior is
known, a physics-basedmodel governing fatigue crack prop-
agation based on Paris’ formula is given by Li et al. (1999):

dx

dt
= α(�k)m (21)

where t is the number of cycles related to bearing running
time, and dx/dt is the defect growth rate. The parameters α

andm are related to material properties, and�k is the ampli-
tude of the stress intensity factor. In the case of bearing defect
propagation, it is difficult to estimate the stress intensity fac-
tor. To circumvent it, an empirical model is developed as Li
et al. (1999):

dx

dt
= cxm (22)

where x represents the spalling area. The defect growth
rate is an exponential function of the existing spalling area.
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Fig. 2 Computational framework for joint state prediction and parameter estimation in machinery condition prognosis

The model parameters c and m are initialized as unknown
variables. Take integration operation on both sides after sep-
arating variables, Eq. 22 can be rewritten in a state transition
form as:

xt =
[
x (1−m)
t−1 + c(1 − m)

]1/(1−m) + ut−1 (23)

where t is the time index, and ut−1 represents the noise in
the state evolving process.

Measurement equation

During machinery degradation process, in-process measure-
ments carrying defect signatures have beenwidely employed.
However, due to the complexity and the low signal to noise
ratio (SNR) of raw measurements, it is difficult to model
the relationship between the measurements and machinery
defect status. To tackle this problem, effective data process-
ing and feature representation techniques are performed to
reduce data dimensionality without losing the information of

defect signature. The relationship between extracted feature
and defect state is expected to be modelled using a simple
function.

Different features from time domain, frequency domain,
and time-frequency domain have been investigated for bear-
ing defect diagnosis and prognosis. Time domain meth-
ods involve statistical features such as root mean square
(RMS), Kurtosis, skewness, crest factor, peak–peak value,
and entropy. The frequency domain methods take advan-
tage of spectrum/time-frequency analysis and extract the
energies at bearing defect characteristic frequencies (e.g.
the ball-pass frequency of outer ring fBPFO , ball-pass fre-
quency of inner ring fBPF I , and ball-spin frequency fBSF )

as features. A number of features are extracted from themea-
surements to represent the bearing defect. However, these
features may contain redundant information. For improved
computational efficiency in machinery condition predic-
tion, a proper feature selection/fusion strategy is needed
to lower the dimension of feature space. Different feature
selection techniques have been investigated in the literature,
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including genetic algorithm (Liao 2014), principle compo-
nent analysis (PCA) (Malhi et al. 2011), and health index
(Bechhoefer and Bernhard 2007), etc. Generally, it is diffi-
cult to determine which feature is more sensitive to bearing
defect propagation. A good feature should present a con-
sistent trend with defect propagation, and is expected to
describe the measurement equation using a simple function.
The assumption on linear relationship betweenbearing defect
status and selected feature, which is often used in the liter-
ature (Pedregal and Carnero 2006), is also adopted in this
study.

zt = xt + vt (24)

where zt denotes the selected feature from in-process mea-
surements, and νt represents the measurement noise.

Formulation of joint parameter estimation and state
prediction

The state space model with unknown parameters has been
constructed. To predict the machinery condition based on
available observation, a mathematic framework based on
particle filter and expectation-maximization algorithm for
joint state prediction and parameter estimation is investigated
in this study. To estimate the parameters in the nonlinear
state space model, the cost function Q(θ, θk) described in
Eqs. (17–20) is computed based on the sequential importance
resampling method in particle filter. From Eqs. (17–20), it is
seen that the computation of quantities I1, I2, and I3 depends
primarily on the smoothed density function pθk(xt | Z). To
estimate the density function pθ (xt | Z), a forward–backward
smoother algorithm is investigated andproofed inSchon et al.
(2011).

pθ (xt |Z) =
∫

pθ (xt |xt+1, z1:t )pθ (xt+1|Z)dxt+1

=
∫

pθ (xt+1|xt )pθ (xt |z1:t )
pθ (xt+1|z1:t ) pθ (xt+1|Z)dxt+1

= pθ (xt |z1:t )
∫

pθ (xt+1|xt )pθ (xt+1|Z)

pθ (xt+1|z1:t ) dxt+1

(25)

Hence, the smoothed density function can be obtained as
the function of filtered state density pθ(xt|z1:t) at time t ,
smoothed density pθ(xt+1|Z) at time t+1, and state predic-
tion density pθ (xt+1|xt). Based on particle approximation in
particle filter, the smoothed density function pθ (xt |Z) can be
obtained following the recursive approximated density func-
tion pθ (xt+1| Z) as:

pθ (xt |Z) ≈
M∑
i=1

ωi
t |N δ

(
xt − xit

)
(26)

where

ωi
t |N = ωi

t

M∑
k=1

ωk
t+1|N

pθ

(
xkt+1|xit

)
∑M

i=1 ωi
t pθ

(
xkt+1|xit

) (27)

Similarly, the quantities I1, I2 and I3 which constitute the
cost function Q(θ, θk) can be obtained accordingly as Schon
et al. (2011):

Q(θ, θk) = I1 + I2 + I3 (28)

where

I1 =
M∑
i=1

ωi
1|N log pθ

(
xi1

)
(29)

I2 =
N−1∑
t=1

M∑
i=1

M∑
j=1

ωi
tω

j
t+1|N pθk

(
x j
t+1|xit

)
∑M

l=1 ωl
t pθk

(
x j
t+1|xlt

) log pθ

(
x j
t+1|xit

)

(30)

I3 =
N∑
t=1

M∑
i=1

ωi
t |N log pθ

(
zt |xit

)
(31)

By recursively maximizing the cost function Q(θ, θk) using
optimization algorithm, such as gradient descent algorithm
(Qian 1999), the parameter vector θ can be determined when
it converges.

θk+1 = θk − γ · ∇Q(θ, θk) (32)

where γ is the step size, ∇(·)is the gradient function. In
machinery condition prognosis, we are interested in degra-
dation state prediction with the identified model parameter
vector θ . For l-step ahead prediction, the posterior proba-
bility distribution pθ(xt+l |zt ) can be obtained according to
Eqs. (4–6) as Zio and Peloni (2011):

pθ (xt+l |zt ) =
∫

· · ·
∫ N+l∏

t=N

pθ (xt+1|xt )pθ (xt |zt )
N+l∏
t=N

dxt

(33)

To eliminate the computation of integral operation in non-
linear system, particle filter is used to calculate the posterior
probability distribution pθ(xt+l |zt ) as:

pθ (xt+l |zt ) ≈
M∑
i=1

wi
t+l−1 pθ

(
xt+l |xit+l−1

)
(34)
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Fig. 3 The simulated data and
defect state
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Simulation study

To evaluate the performance of the developed joint state pre-
diction and parameter estimation algorithm, the state space
model described in Eqs. (23–24) is used as an example.

xt+1 =
[
x (1−m)
t + c(1 − m)

]1/(1−m)

zt=xt+vt

+ ut

[
ut
vt

]

∼ N

([
0
0

]
,

[
q 0
0 r

])
(35)

here, the parameters q and r are the variances of noises in sys-
tem equation and measurement equation, respectively. The
simulated data is firstly generated by the above model with
preset parameters in order to be similar with the experimental
data in Sect. 4. The parameters are preset as:

θ∗ = [m∗, c∗, q∗, r∗] = [0.9305, 0.0053, 0.0015, 0.252]
(36)

By setting the initial state x1 as 0.27, the simulated data z
and defect state x can be generated as shown in Fig. 3.

The developed algorithm is investigated to determine the
parameters and to predict the future state x on the basis
of available observation z1:200. Using EM algorithm, it is
straightforward to estimate the parameters as described in
Table 2. It is seen that the estimated parameters match well
with the preset values. It is noted that the estimated variance
q of the state vector is less than the preset value with an error
of 13.3% which means the estimated state is smoother than
the simulated state.

Next, particle filter is used to estimate the future state
based on available observation and estimated parameters.

Table 2 The preset and estimated parameters used in the simulation
study

Parameters Preset value Estimated value Error (%)

m 0.9305 0.9301 0.0043

c 0.0053 0.0053 0

q 0.0015 0.0013 13.3

r 0.252 0.2468 2.06

Figure 4 shows the quantified uncertainty of predicted state
on the basis of available observation z1:250 under 50 steps
ahead prediction. Since the estimated states follow probabil-
ity distributions, the probability distributions of the estimated
states ×150, ×250 and ×300 are illustrated in the zoomed
regions.

To quantify the prediction accuracy, root mean square
error (RMSE) is defined as the square root of the average
of the square of all difference between predicted state x̂ and
simulated state x .

RMSE =
√

1

N

∑N

j=1
(x̂ j − x j )2 (37)

Figure 5 shows the root mean square error of the predicted
state under different-steps-ahead prediction (e.g., 10, 20,
50, 100, and 150 steps) using the developed algorithm. It
is found that the prediction error in short term prediction
(e.g., around 0.05% in 10, 20, and 50 steps ahead) is less
than that of long term prediction (e.g., around 0.2% in
100 and 150 steps ahead). The prediction error is relative
small in all cases which demonstrates the effectiveness of
the developed algorithm in parameter estimation and state
prediction.
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Fig. 4 Uncertainty
quantification of predicted state
in simulation study
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Fig. 5 Prediction error of the developed algorithm under different-
step-ahead prediction

Experimental evaluation

To experimentally evaluate the joint state prediction and
parameter estimation method based on particle filter and
expectation-maximization algorithm, a set of vibration sig-
nals measured on a wind turbine gearbox in a run-to-failure
test is analyzed, and the analysis results are discussed as
below.

Experimental setup

Experimental data measured on a wind turbine gearbox was
made available in a field test. The tested turbine is a stall-
controlled, three-bladed, upwind machine with 2MW rated
power. The wind turbine gearbox is composed of one low

speed planetary stage and two parallel stages, and its detailed
configuration is described in Fig. 6. The defect was initiated
from a rolling element bearing A in the high speed shaft
as shown in Fig. 6b. The tested bearing run continuously for
about 107million revolutions in the field to the end of service
life.

Data preprocessing

With the growth of bearing defect, the energies at bearing
defect characteristic frequencies are increased, and thus they
can be extracted as the representative features of bearing sta-
tus.Due to the varying speed operating conditions of thewind
turbine, an integrated approach of complex wavelet trans-
form and computed order tracking can be used to extract the
energies at the bearing defect characteristic frequencies as
representative features (Wang et al. 2014). Figure 7 shows the
extracted energies at bearing defect characteristic frequen-
cies as the indicators of bearing status in the run-to-failure
test. It is found that the energies at the frequency fBPFI show
a clearly increasing trend which means bearing experienced
a defect on the inner raceway. The defect may propagate into
the cage and the outer raceway since the energies at the fre-
quencies fFTF and fBPFO also show an increasing trend.

The extracted energies at defect characteristic frequencies
are denoted as condition indicators (CI) which mean these
features indicate the bearing conditions. However, each CI
only contains partial information of bearing status or it is
sensitive to only one failure mode of bearing. To compre-
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Fig. 6 Illustration of the tested wind turbine gearbox, a 3D gearbox structure, b internal configuration

Fig. 7 The extracted energies
at bearing defect characteristic
frequencies
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hensively describe the degradation process, the health index
(HI) algorithm illustrated inBechhoefer andBernhard (2007)
is used to fuse all these CIs:

HI =
√
CIT	−1CI × 0.7/v (38)

where vector CI represents the energies at bearing defect
characteristic frequencies fFTF, fBSF, fBPFI and fBPFO, and
	 is the sample covariance from a set of nominal bearings.
The term v is a normalized factor (Bechhoefer and Bernhard
2007). The obtained fused feature describes a clearly trend
representing bearing defect growth as shown in Fig. 8.

Based on statistical information (e.g., probability distrib-
ution of feature), the fused feature is scaled to represent the
defect severity. Based on the rulewhich has been successfully
implemented in aerospace condition monitoring (Beckhoe-
fer et al. 2011), the amplitude in the range of [00.5] is set
as normal or healthy condition, while the range of [0.50.75]
is set as mild defective condition, and the amplitude above
0.75 is considered as severely defective condition. The value
greater than 1 indicates that the continuous operations may
result in collateral damage to other components in the gear-
box. Therefore, the threshold is set as 1 to determine the
component remaining useful time. It is seen that the fused
feature presents dominant noise which causes computational
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Fig. 8 The fused feature
obtained in health index
algorithm
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Fig. 9 Uncertainty
quantification of predicted state
using integrative PF and EM
method
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difficulties of the remaining useful life (RUL). However, due
to the dominant noise in fused feature, it is difficult to deter-
mine the remaining useful life from the fused feature. The
developed joint state prediction and parameter estimation
algorithm can quantify the uncertainty of defect growth and
reduce the noise variance in fused feature, and thus reduce
the false alarm rate in threshold setting as discussed below.

Analysis results

The fused features from time steps [300500] are chosen as the
available observation to predict the bearing defective status
in future. The bearing defect growth process is modeled by
the system equation and measurement equation in the state
space model as described in Eq. 35. According to available
observation, the parameters in the state spacemodel arefirstly
estimated using EM algorithm as:

θ̂ = [m̂, ĉ, q̂, r̂ ] = [0.9322, 0.0052, 0.021, 0.2512] (39)

Thus, the state space model can be identified as:

xt+1 =
[
x0.0678t + 0.0052 ∗ 0.0678

]1/0.0678
zt=xt+vt

+ ut

[
ut
vt

]
∼ N

([
0
0

]
,

[
0.021 0
0 0.2512

])
(40)

Next, particle filter is used to predict the future bearing defec-
tive state based on available observation and identified state
space model. The predicted bearing defect status with quan-
tified uncertainty in next 100 steps is shown in Fig. 9, and the
probability distributions of estimated bearing states are illus-
trated in zoomed regions. It is found that the predicted bearing
defect state using integrative PF and EMmethod closely fol-
lows the trend of observation with highly reduced variance in
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Fig. 10 The probability
distribution of bearing
remaining useful life
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Fig. 11 Predicted bearing
defect growth using the ARMA
model
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uncertainty. Because of the defect accumulating effect in the
system equation, the predicted bearing defect status grows
monotonically since mechanical defect could not heal itself.
It can facilitate the remaining useful life (RUL) calculation
of the bearing. Bearing RUL is defined as the service time
until the defect state reaches the threshold as illustrated in
Fig. 9.

RUL(t) = tr − ts (41)

where ts is the present time and tr is the timewhen the bearing
defect state reaches the threshold. By setting the threshold as
1, the probability distribution of the bearing remaining use-
ful life can be computed as shown in Fig. 10. It is seen that
the remaining useful life of bearing is around 33 time steps

(e.g., about 180,000REV.) by selecting the highest probabil-
ity distribution.

A data driven approach is also investigated for themachin-
ery condition prediction using the same experimental data for
performance comparison.Given the limited number of exper-
imental data set, an autoregressive moving average (ARMA)
model is used to predict the bearing defect growth, and the
results are shown in Fig. 11. It is found that the prediction
results of the ARMA model follow the trend closely; how-
ever, it could not quantify prediction uncertainty. The up and
down trend also causes the difficulty to determine the remain-
ing useful life of bearing.

From the above analysis, the integrated PF and EM algo-
rithmcan incorporate the estimation ofmodel parameters and
prediction of hidden defect state in one framework. By tak-
ing advantage of physical knowledge, the hidden defect state
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Fig. 12 Distribution of model
parameters m̄ and c̄ using
conventional PF approach
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of bearing can be inferred from noisy measurement based on
Bayesian inference. The estimated defect state with thresh-
old setting can be used to determine the remaining useful life
of bearing. The uncertainty of remaining useful life is also
quantified in a probabilisticmanner. Therefore, the developed
method can facilitate the threshold setting with estimated
defect state (reduced variance) instead of noisymeasurement
to reduce false alarm rate and improve the maintenance strat-
egy in practice.

Discussions

To compare the performance of developed method, the con-
ventional PF approach, which takes the unknown parameters
as the part of state vector based on Bayesian estimation,
is investigated here. The conventional method still uses the
state space model denoted by Eq. 35 as its system equa-
tion and measurement equation. The same fused features
are chosen as training data of the conventional particle
filter to predict the RUL of bearing. In the conventional
method, the initial parameters of model are set as probabil-
ity distributions. If no prior information is available, uniform
distribution is usually chosen and the probability parameters
of lower and upper bounds are empirically selected. With the
prior knowledge about parameter estimated using EM algo-
rithm, the uniformdistributions of parameters are determined
as:

θ̄ = [m̄ ∼ (0.7, 1), c̄ ∼ (0.003, 0.005)] (42)

Here, the terms m̄ and c̄ represent the parameters in system
equation. The process noise u and the measurement noise

v are ignored since they can be handled through the uncer-
tainty in model parameters. With the available measurement
information, model parameters could be updated based on
Bayesian estimation and the results are shown in Fig. 12. It
is found that the probability distribution of model parame-
ters m̄ and c̄ fluctuate continuously during the learning stage,
but they remain constant during the prediction stage because
no measurement is available to update the model parame-
ters. Thus, in the prediction stage, the state space model
is determined and particle filter is used for bearing defect
prognosis. Figure 13 shows the long-term bearing defect
prediction results using the conventional PF approach. It is
found that the median of the predicted bearing defect state
closely follows the trend of observation, and the uncertainty
of prediction result is well demonstrated through the 90%
confidence interval.

Comparing the integrated PF and EM algorithm with the
conventional particle filter, it is found that both methods
could follow the bearing defect propagation trend closely
and quantify the uncertainty of prediction process in the form
of confidence intervals. However, the distribution interval of
predicted RUL using the integrated PF and EM algorithm is
much smaller than that using the conventional particle filter.
On the other hand, the prediction accuracy of conventional
particle filter approach highly relies on the initial selection
of model parameters since the estimation error of model
parameters could be propagated in the sequential Bayesian
estimation process. In essence, the conventional algorithm
and the presented algorithmare based onBayesian estimation
and maximum likelihood estimation, respectively. Bayesian
estimation could adapt to the local variation (e.g., the vari-
ation of measurement) and update the relevant parameters.
Therefore, there are fluctuations during the learning stage
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Fig. 13 Uncertainty
quantification of predicted state
using conventional PF approach
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Table 3 The comparison between the conventional approach and presented method

Methods Conventional PF approach (Bayesian esti-
mation)

Integrative PF and EM method (maximum
likelihood estimation)

Parameter value Probability distribution Deterministic value

Computational efficiency High Low

Adapt to local variation Yes No

Global property No Yes

Error propagation Yes No

Effect of initial parameter selection Probability distribution of parameter needs to
be known, inappropriate parameter
selection may lead to unsatisfactory results

Good initial selection of parameters improve
computational efficiency, but the initial
selection of parameters do not affect the
prediction accuracy

as shown in Figs. 12 and 13. On the contrary, maximum
likelihood estimation calculate model parameters as deter-
ministic value. Once parameters are determined, theywill not
change during the prediction process. Because of the com-
prehensive consideration of all available measurements in
parameters determination, maximum likelihood estimation
has the global property in parameter estimation. The parame-
ters with themaximum likelihood probability are determined
during the learning stage, thus the estimation error is not
propagated. The Pros and Cons of these two approaches are
summarized in Table 3.

Conclusions

Data analytic methods have been extensively investigated
to complement sensing techniques for improved systems
diagnosis, prognosis, and reliability. This paper presents

a joint state prediction and parameter estimation method
to address nonlinearity and stochastic properties that are
typically associated with machine degradation processes,
based on integrated particle filtering (PF) and expectation
maximization (EM). From the results obtained, following
conclusion can be drawn:

1. The presentedmethodmakes use of prior physical knowl-
edge about the system being estimated as well as new
measurement data, and presents solution in a Bayesian
framework. Uncertainty associated with the degradation
state prediction can be quantified in terms of probability
distribution functions.

2. The integration of EM with PF improves the accuracy of
system parameter estimation based onmeasurements. As
a result, the presented method can be applied to degra-
dation prediction of systems with limited known model
parameters.
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3. The presented method can minimize the effect of vari-
ance in prediction, caused by measurement noise, thus
improving the overall robustness in sensing data thresh-
olding for alarm triggering and maintenance scheduling.

The performance of the presented method has been verified
using both simulation and a run-to-failure experimental test
on a bearing for wind turbines. Several limitations remain
to be further investigated. For example, the computational
efficiency of the presented method is low, due to the low
convergence rate of the EM algorithm. It was also noted that
initial selection of parameters during the model parameters
estimation process can significantly affect the computational
efficiency. Future research will be directed towards improv-
ing the computational efficiency by e.g., replacing the EM
algorithm with methods of higher convergence rate, such
as Expectation Conditional Maximization (ECM) or Expec-
tation/Conditional Maximization Either (ECME) (Mkhadri
1998). Further systematic experiments will be performed to
investigate the robustness of the developed method.
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