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Abstract This paper proposes a constructive heuristic app-
roach for the assembly line worker assignment and balancing
problem (ALWABP). ALWABP arises when the operation
time for every task differs according to the worker who exe-
cutes the task. Since the operation times of tasks vary due to
the workers, the problem requires a simultaneous solution to
the double assignment problem. Tasks must be assigned to
workers and workers to stations, concurrently. This problem
is especially proposed in sheltered work centers for the dis-
abled.However, it is not only important for the assembly lines
with the disabled, but also for manually operated assembly
lines with high labor turnover. In this paper, a multiple-rule
based constructive randomized search (MRBCRS) algorithm
is proposed in order to solve the ALWABP. Thirty nine task
priority rules and four worker priority rules are defined. Per-
formance of the proposed MRBCRS is compared with the
relevant literature on benchmark data. Experimental results
show that the proposedMRBCRS is very effective for bench-
mark problems. The results show that the algorithm improves
upon the best-performing methods from the literature in
terms of solution quality and time.
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Introduction

Assembly lines are a special case of flow-line production
systems that manufacture standardized commodities in large
amounts. In an assembly process, subassemblies and compo-
nents are put together on the semi-finished assembly which
moves from station to station where the parts are added in
sequence until the final assembly is produced. The tasks can
be executed byworkers, robots or both of them.The assembly
line concept has been present in various types of industries
such as automobiles and other transportation vehicles, house-
hold appliances, electronic goods, computers, engines, and
etc. In today’s highly competitive market trends, compa-
nies need to meet the consumers’ expectations in short time
with minimum acceptable costs in order to be sustainable.
This is why assembly line concept is so popular among all
manufacturing systems. In such environment, an important
decision problem, assembly line balancing problem (ALBP)
arises.

ALBP is relevant for the allocation of the tasks, each hav-
ing an operation processing time and a set of precedence
relations, among workstations so that a given objective func-
tion is optimized and the precedence relations are satisfied.
The most common problems used in the literature are Type-
1 and Type-2 problems and each type of them belong to
the NP-hard class of the combinatorial optimization prob-
lems (Karp 1972). Type-1 problems try to minimize the
number of workstations hence; the cycle time must be pre-
determined. In industrial life this type of balancing problems
is generally occurred when the designing phase of a new
assembly line. On the other hand, Type-2 problems try to
minimize the cycle time for a fixed number of worksta-
tions. So, this type of balancing problems ismore appropriate
when redesigning an existing line. Moreover, Type-E prob-
lems try to maximize the line efficiency by simultaneously
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minimizing the cycle time and the number of workstations.
Type-F problems seek for a feasible assembly line exists or
not for predetermined cycle time and number of worksta-
tions. In classic ALBP, it is assumed that every task has
a fixed operation time. However, in recent years the tradi-
tional ALBP has evolved and it is understood that the fixed
operation time assumption is inconvenient for the real life
manufacturing systems. Because every worker has unique
characteristics such as skill, experience, ability, etc., espe-
cially in labor intensive assembly lines a task operation time
differs depending on the worker who executes the task. In
order to close this gap between the traditional ALBP and
real life assembly line systems, a special case of ALBP
which is called assembly line worker assignment and bal-
ancing problem (ALWABP) is introduced to the assembly
line literature.

ALWABP arises when operation times of tasks vary due
to the worker who executes the task, and some task-worker
incompatibilities are occurred. Since task times are depen-
dent on the worker, the concept of assigning tasks to workers
is occurred in additional to the ALBP. In other words,
ALWABP is a double assignment problem which includes
assigning tasks toworkers andworkers to stations, simultane-
ously. Even the traditionalALBP isNP-hard; theALWABP is
also NP-hard. Since the ALWABP is a NP-hard hot research
topic, many researchers have proposed various solution tech-
niques to solve the problem. However, none of the proposed
solution strategies is proven to be optimal for every bench-
mark test instance, and the problem is still attractive for
researchers. The aim of this paper is to introduce an efficient
solution approach for the ALWABP, which tries to minimize
the cycle time of the line, in order to contribute satisfactory
results to the literature.

The remainder of the paper is organized as follows. In
“Literature review” section, the relevant literature is briefly
reviewed. In “Formal problem definition and mathematical
model” section, the ALWABP is defined and mathematical
model of the problem is presented. Later in “A multiple-rule
based constructive randomized search algorithm for solv-
ingALWABP-2” section, the proposed constructive heuristic
approach is introduced. In “Computational study” section,
computational study and results of experiments are stated.
Finally, “Conclusions” section concludes the paper and sug-
gests some future work.

Literature review

Miralles et al. (2007) introduced the ALWABP for the first
time to the assembly line literature. They proposed the
“Sheltered Workcenters for Disabled” (SWD) concept and
presented a case study in an assembly line that have a
fixed number of workstations. They expressed that disabled

workers can be changed with normal operators without any
production loss by a logical assignment.

Chaves et al. (2007) applied a clustering search approach
and tested it on the generated ALWABP-2 data. Since then,
the proposed benchmark data sets, which are composed of
four families (Roszieg, Heskia, Tonge and Wee-Mag), have
beenused in everyALWABP-2 research study.Oneyear later,
Miralles et al. (2008) developed a branch-and-bound algo-
rithm for the ALWABP, enabling the solution of small-sized
instances. They randomly generated data based on the Jack-
son problem from the SALBP (Hoffmann 1990) and solved
the problem via branch and bound. Then, they integrated a
heuristic approach to the branch and bound and applied the
proposed method to an industrial case. Because of the prob-
lem complexity and the need to solve larger instances, the
literature has since then shifted its efforts to heuristic meth-
ods.

Guo et al. (2008) proposed a novel flexible assembly
line balancing problem with work sharing and workstation
revisiting restrictions. They described a two-level solution
procedure that uses both genetic algorithm and heuristic
method. Solution procedure was applied to industrial data
and experimental results showed the effectiveness of the pro-
posed model. Costa and Miralles (2009) incorporates job
rotation to theALWABP. They integrated the training aspects
associated with job rotation and ALWABP and offered a
mixed integer linear model and a heuristic method in order to
cope with to the proposed problem. The results showed that
even in very complex contexts such as in SWD, it is possible
to improve the welfare of workers by applying job rotation,
without important losses in productivity.

Chaves et al. (2009) hybridized clustering search algo-
rithm with the iterated local search in order to solve the
ALWABP-2 benchmark data. They obtained good results
in reasonable computation times. Moreira and Costa (2009)
developed a minimalist tabu search algorithm that tries to be
successful at simplicity, flexibility, accuracy and speed. Blum
and Miralles (2011) proposed an iterated beam search algo-
rithm for the ALWABP-2 and obtained the best results in the
previous literature. Moreira et al. (2012) proposed a simple
constructive heuristic approach that was based on 16 task pri-
ority rules and 3 worker priority rules and hybridized it with
the genetic algorithm. They obtained the fastest results found
so far. Zaman et al. (2012) proposed an operator assignment
problem in an assembly line with fixed number of worksta-
tions and developed a genetic algorithm procedure to tackle
with it. Araujo et al. (2012) introduced two new versions
of the classic ALWABP which are parallelization and col-
laboration between different workers. In order to solve the
proposedproblem, the authors developed an integer program-
ming model and hybridized it with a constructed heuristic
algorithm. Mutlu et al. (2013) proposed an iterative genetic
algorithm for the ALWABP-2 and obtained satisfactory solu-

123



J Intell Manuf (2019) 30:557–573 559

tions in short CPU times. Borba and Ritt (2014) developed an
interval probabilistic beam search and hybridized it with the
branch and bound procedure. Except the Wee-Mag family,
they almost achieved the best results. Vila and Pereira (2014)
developed a branch and bound procedure with three different
remember algorithms by a time constraint of 60, 600s and
with no time constraints. The time constraint of 600s and
no time constraint versions of their approaches acquired the
best solutions in the relevant literature.

Sungur and Yavuz (2014) presented a new assembly line
configuration that consists of workers whose qualification
levels are ranked hierarchically. They proposed a model in
which a lower qualified worker can be substituted by higher
qualified ones with respect to a cost. They proposed an inte-
ger linear programming model in order to tackle with the
problem and obtained good computational results. Polat et al.
(2015) proposed a two-phase variable neighbourhood search
algorithm for solving the ALWABP. They implemented the
proposed method both on the benchmark data and a real
life problem. The results showed the efficiency of the pro-
posed procedure. Ritt et al. (2015) enhanced the ALWABP
by adding stochastic worker availability. The authors pre-
sented a two-stage mixed integer program and local search
heuristics for dealing with the proposed problem. As a result
of computational experiments, they showed that stochastic
modeling is a good idea for improving the line’s efficiency
and obtained good results for instances of small-sized prob-
lems.

Moreira et al. (2015) introduced the Assembly Line
Worker Integration and Balancing Problem (ALWBP) which
contains assembly lines with normal operators and disabled
workers simultaneously. They introduced benchmark data
andpresentedmathematicalmodels andheuristicmethodolo-
gies in order to solve the newly proposed problem. Guo et al.
(2015) proposed a novel harmony search-based memetic
optimization model for integrated production and trans-
portation scheduling. They converted the proposed problem
into an order assignment problem by using the heuristic
approach. The experimental results proved the efficiency
of the proposed solution method. More recently, Zacharia
and Nearchou (2016) are presented a multi-objective evolu-
tionary algorithm in order to solve the bi-criteria ALWABP.
The results showed that the proposed solution procedure as
a very satisfactory performance in terms of solution qual-
ity.

As it is mentioned above, ALWABP is a relatively new
type of the traditional ALBP. It has been studied for almost
a decade. There are many research attempts to cope with
ALWABP, but none of the relatedwork have obtained optimal
solutions for all of the test instances. The aim of this study is
to make a contribution to the relevant literature by proposing
a new rule based solution procedure in order to obtain good
results in short computational times.

Formal problem definition and mathematical
model

In this section, we present a formal definition of the
ALWABP-2. In analogywith the traditionalALBP;ALWABP
also have the same types of problems such as; -1, -2, -E, and
-F. In ALWABP-1 the number of workstations is tried to be
minimized for a predetermined cycle time; and in ALWABP-
2 the cycle time is tried to be minimized for a fixed number
of workstations. In the relevant literature, single model of
ALWABP-2 with paced line is the most common situation.
The following notation is used in the remainder of this paper:

i, j : task index,
h: worker index,
s: workstation index,
N : set of tasks,
H : set of available workers,
W : set of workstations,
c: cycle time,
thi : processing time of i when worker h executes it,
I Pi : set of immediate predecessors of i ,
xshi : binary variable equal to 1 only if task i is assigned

to worker h in station s,
ysh : binary variable equal to 1 only when worker h is

assigned to station s.

Amathematicalmodel thatwas proposed byMiralles et al.
(2008) can be written as follows:

Min c (1)

subject to:
∑

h∈H

∑

s∈W

xshi = 1 ∀i ∈ N , (2)

∑

s∈W

ysh ≤ 1 ∀h ∈ H, (3)

∑

h∈H

ysh ≤ 1 ∀s ∈ W, (4)

∑

h∈H

∑

s∈W

s · xshi ≤
∑

h∈H

∑

s∈W

s · xsh j ∀i, j/ i ∈ I Pj ,

(5)
∑

i∈N

thi · xshi ≤ c ∀h ∈ H ; ∀s ∈ W, (6)

∑

i∈N

xshi ≤ M · ysh ∀h ∈ H ; ∀s ∈ W

with ysh ∈ [0, 1] ∀s ∈ W, h ∈ H

xshi ∈ [0, 1] ∀s ∈ W, h ∈ H, i ∈ N

M >
∑

h∈H

∑

i∈N

thi (7)

The objective function given in (1) minimizes the cycle
time. The constraint given in (2) ensures that every task i
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Fig. 1 Flowchart of the proposed RBCRS heuristic for the ALWABP-2

is assigned to a single station s and worker h. Constraints
sets given in (3) and (4) expresses that every worker can be
assigned to only one station; and in every station there is
only one worker, respectively. The set of constraints given
in (5) states the precedence relations between tasks i and
j , where i is predecessor of j . Constraints sets given in (6)
and (7) ensures that every worker h assigned to station s
can have more than one task, whenever given cycle time c is
not achieved. As cycle time c and ysh are both variables, (6)
and (7) are defined separately in order to maintain the model
linearity.

A multiple-rule based constructive randomized
search algorithm for solving ALWABP-2

In this study a multiple-rule based constructive randomized
search (MRBCRS) heuristic is developed in order to solve
the ALWABP-2. The heuristic prioritizes tasks and sequen-
tially assigns tasks to the current station in order and then
assigns the best suitable worker to that station. This is called
station-oriented assignment procedure in the relevant litera-

ture (Scholl and Voß 1996). The flowchart of the proposed
algorithm is given in Fig. 1.

Initially, benchmark data is read and by using the data
cycle time values (lower bound, upper bound, average and
expected) are calculated. Assignable tasks are determined
according to the precedence relations and then rule based
search algorithm, which will be explained in detail later, is
applied. After prioritizing tasks, a task is chosen randomly
via roulette wheel selection. All assignable tasks are chosen
one by one and are put in order sequentially. Then, worker
selection rules are applied to the unassigned workers and one
of them is selected.

After determining the worker, it must be checked that, is
there any task which can be operated by only the selected
worker, which is called bottleneck task in this work. If such
a situation exists, it must be controlled that if the task is exe-
cuted on the current station or not. If not, then the solution is
infeasible, because none of the remaining workers can oper-
ate the bottleneck task. If this is not the case then, the selected
worker and tasks, which are a subset of the sequential task
list, are assigned to the current station. While choosing tasks
from the sequential list, two important points must be con-
sidered:
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• If there is a task in the list that cannot be executed by
the current worker, eliminate that one and go on from the
sequential task list.

• Sum of operation times of the assigned tasks, namely
station time, cannot exceed the cycle time.

When the feasible solution is obtained, then the current cycle
time is reduced and the whole process is applied again. By
this way, at every feasible solution cycle time is diminished
andfinally one feasible solutionwith theminimumcycle time
is gathered when maximum iteration number is achieved.

Rule based task and worker selection strategy

In this study, in order to select one task/worker among
tasks/workers in an intelligent manner, we apply 39 rules to
the tasks and 4 to the workers.Most of the following rules are
collected from Baykasoğlu (2006) and Moreira et al. (2012).
Althoughwewill use the notation given above, there are some
additional ones in order to express the proposed algorithm:

I Si : set of immediate successors of i ,
Si : set of all successors of i ,
Pi : set of all predecessors of i ,
UBi : upper bound on the station to which i may be

assigned, U Bi = N +1−
[(

thi + ∑
j∈Si

th j

)
/c

]+
,

L Bi : lower bound on the station to which i may be

assigned, L Bi =
[(

thi + ∑
j∈Pi

th j

)
/c

]+
.

Some rules are based on the cycle time. Because of the vary-
ing operation times, we calculate the expected cycle time
(cexp) and use it instead of cycle time in the relevant rules.
The upper bound (cU B), lower bound (cL B), average (cavg)

and expected (cexp) values of cycle time are calculated as
follows:

cU B = max

{∑ max {thi }
W

,max {thi }
}

∀h ∈ H,∀i ∈ N

(8)

cL B = max

{∑ min {thi }
W

,min {thi }
}

∀h ∈ H,∀i ∈ N

(9)

cavg =
∑

(avg {thi })/W ∀h ∈ H (10)

cexp = 1

6

(
cU B + 4 ∗ cavg + cL B

)
(11)

where max{thi }, min{thi }, avg{thi } are the maximum, min-
imum and average values of the operation time of task i
executed by worker h, respectively.

Task selection rules

Most of the priority rules are based on the task execution
times, which is a parameter that depends on the worker
assigned to eachworkstation in our problem. So, to overcome
this complication we consider a task’s minimum, average
and maximum operation times (tmin

i , tavg
i , tmax

i ). Task pri-
ority rules used in the proposed approach are listed in the
following:

(1) Maximum Longest Processing Time (LPTmax), tmax
i ;

(2) Minimum Longest Processing Time (LPTmin), tmin
i ;

(3) Average Longest Processing Time (LPTavg), tavg
i ;

(4) Maximum Shortest Processing Time (SPTmax), tmax
i ;

(5) Minimum Shortest Processing Time (SPTmin), tmin
i ;

(6) Average Shortest Processing Time (SPTavg), tavg
i ;

(7) Greatest Number of Immediate Successors (GNIS),
|ISi |;

(8) Greatest Number of Successors (GNS), |Si |;
(9) Greatest Number of Immediate Predecessors (GNIP),

|IPi |;
(10) Greatest Number of Predecessors (GNIP), |Pi |;
(11) Random priority (R);
(12) Smallest Task Number (STN), i ;
(13) MaximumGreatestRankedPositionalWeight (GRPW),

tmax
i + ∑i

i∈Si
tmax

j ;
(14) MinimumGreatestRankedPositionalWeight (GRPW),

tmin
i + ∑i

i∈Si
tmin

j ;
(15) Average Greatest Ranked Positional Weight (GRPW),

tavg
i + ∑i

i∈Si
tavg

j ;
(16) MaximumGreatest Average Ranked Positional Weight

(GARPW),

(
tmax
i + ∑tmax

j
j∈Si

)
/ (|Si | + 1);

(17) Minimum Greatest Average Ranked Positional Weight

(GARPW),

(
tmin
i + ∑tmin

j
j∈Si

)
/ (|Si | + 1);

(18) Average Greatest Average Ranked Positional Weight

(GARPW),

(
tavg
i + ∑tavg

j
j∈Si

)
/ (|Si | + 1);

(19) Maximum Smallest Upper Bound (SUB), N + 1 −[(
tmax
i + ∑

j∈Si
tmax

j

)
/cexp

]+
;

(20) Minimum Smallest Upper Bound (SUB), N + 1 −[(
tmin
i + ∑

j∈Si
tmin

j

)
/cexp

]+
;

(21) Average Smallest Upper Bound (SUB), N + 1 −[(
tavg
i + ∑

j∈Si
tavg

j

)
/cexp

]+
;

(22) MaximumSmallest Upper BoundDivided by theNum-
ber of Successors, (S_UB_NS), U Bmax

i / (|Si | + 1);
(23) Minimum Smallest Upper Bound Divided by the Num-

ber of Successors, (S_UB_NS), U Bmin
i / (|Si | + 1);

(24) Average SmallestUpperBoundDivided by theNumber
of Successors, (S_UB_NS), U Bavg

i / (|Si | + 1);
(25) Maximum Greatest Processing Time Divided by the

Upper Bound, (G_PT_UB), tmax
i /U Bmax

i ;
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Algorithm 1. Pseudo code of the proposed rule-based adaptive task search algorithm 

procedure: Rule based adaptive search method
input: assignable tasks, assignable workers 
output: task to assign
BEGIN

FOR each rule
apply rule to assignable tasks;
add points to the appropriate task(s);

ENDFOR
create a task probability list;
FOR each task in assignable tasks

give probability to task directly proportional to task points;
add task probability to task probability list;

ENDFOR 
Select randomly one task from the task probability list;

END

(26) Minimum Greatest Processing Time Divided by the
Upper Bound (G_PT_UB), tmin

i /U Bmin
i ;

(27) Average Greatest Processing Time Divided by the
Upper Bound (G_PT_UB), tavg

i /U Bavg
i ;

(28) Maximum Smallest Lower Bound (SLB),[(
tmax
i + ∑

j∈Pi
tmax

j

)
/cexp

]+
;

(29) Minimum Smallest Lower Bound (SLB),[(
tmin
i + ∑

j∈Pi
tmin

j

)
/cexp

]+
;

(30) Average Smallest Lower Bound (SLB),[(
tavg
i + ∑

j∈Pi
tavg

j

)
/cexp

]+
;

(31) Maximum Smallest Slack (SSLK), U Bmax
i − L Bmax

i ;
(32) Minimum Smallest Slack (SSLK), U Bmin

i − L Bmin
i ;

(33) Average Smallest Slack (SSLK), U Bavg
i − L Bavg

i ;
(34) Maximum Smallest Number of Successors Divided by

Task Slack, (S_NS_SLK), S/
i

(
U Bmax

i − L Bmax
i

)
;

(35) Minimum Smallest Number of Successors Divided by
Task Slack, (S_NS_SLK), S/

i

(
U Bmin

i − L Bmin
i

)
;

(36) Average Smallest Number of Successors Divided by
Task Slack, (S_NS_SLK), S/

i

(
U Bavg

i − L Bavg
i

)
;

(37) Maximum Greatest Task Time Divided by Task Slack
(TT_SLK), tmax

i /
(
U Bmax

i − L Bmax
i

)
;

(38) Minimum Greatest Task Time Divided by Task Slack
(TT_SLK), tmin

i /
(
U Bmin

i − L Bmin
i

)
;

(39) Average Greatest Task Time Divided by Task Slack
(TT_SLK), tavg

i /
(
U Bavg

i −L Bavg
i

)
.MaximumLongest

Processing Time (LPTmax ), tmax
i .

Worker selection rules

Four worker selection rules are applied in this study:

(1) Greatest Number of Tasks that can be Executed
(GNTE),

∑
Ni ;

(2) Greatest Number of Tasks that can be Executed in
Minimum Time (GNTEMT),

∑
ti/

∑
Ni ;

(3) Maximum Utilization (MU);
(4) Random priority (R).

Assignable tasks (workers) are prioritized by using the above
rules. Then, a task (worker) is randomly selected within
assignable tasks (workers) such that the task (worker) with
the higher priority takes the higher selection probability. This
strategy is called roulette wheel selection in the literature.
The pseudo codes of the proposed rule-based adaptive task
search and worker selection mechanisms are illustrated in
Algorithms 1 and 2, respectively.

Illustrative example

In order to explain the proposed MRBCRS approach more
clearly, a simple numeric example is given in this sec-
tion. Data used in the illustrative example is collected from
a harness production company which manufactures cable
networks for automotive sector. The harness production com-
pany has two main production areas; cable cutting area and
final assembly area. This simple example is gathered from the
final assembly area of themost basic product of the company.
The assembly line is composed of 3 workstations, 3 workers
and 8 tasks. The task operation times per worker and prece-
dence relations are given in Table 1 and Fig. 2, respectively.
“X” in Table 1 represents that there are some task-worker
incompatibles (i.e. worker 1 and tasks 2 and 4).

Cycle time values are found by Eqs. (8)–(11). cU B =
max {64, 42} = 64; cL B = max {38, 22} = 38; cavg =
51.3; cexp = 51.2. For the first iteration we set cycle time
equal to thecU B . In the beginning there are 2 assignable tasks
according to the precedence relations {1, 5}. We apply task
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Algorithm 2. Pseudo code of the proposed rule-based worker selection algorithm 

procedure: Rule based worker selection
input: unassigned workers, sequential task list
output: selected worker 
BEGIN

FOR each rule
apply rule to unassigned workers;
add points to the appropriate worker(s);

ENDFOR
create a worker probability list;
FOR each worker in unassigned workers

give probability to worker directly proportional to worker points;
add worker probability to worker probability list;

ENDFOR 
Select randomly one task from the worker probability list;

END

Table 1 Task execution times
per worker

Tasks Workers

1 2 3

1 8 6 10

2 X 20 22

3 10 X 30

4 X 20 15

5 8 6 X

6 22 32 42

7 25 20 30

8 30 25 15

Fig. 2 Precedence relations of the numeric example

priority rules to the candidate tasks. The prioritized values of
the two candidates are listed in Table 2.

The bold parts are the superior ones for the corresponding
rule. Among the all 39 rules, Task 1 overperforms for the 34
rules and Task 5 overperforms for 11 rules. So, there will be a
selection with the probabilities:p1 = 34/(34 + 11) = 0.76;
p5 = 11/(34 + 11) = 0.24. We pick a random number
between [0, 1] that is 0.65 which corresponds to the Task 1.
We put Task 1 to the sequential task list as the first element.

Table 2 The prioritized values of the candidate tasks

Tasks Tasks

Rules 1 5 Rules 1 5

1 10 8 21 6 8

2 6 6 22 0.83 2.67

3 8 7 23 1.17 2.67

4 10 8 24 1 2.67

5 6 6 25 2 1

6 8 7 26 0.86 0.75

7 3 1 27 1.33 1.17

8 5 2 28 1 1

9 0 0 29 1 1

10 0 0 30 1 1

11 * 31 4 7

12 1 5 32 6 7

13 154 38 33 5 7

14 88 26 34 1.25 0.29

15 121.83 32 35 0.71 0.29

16 25.67 12.67 36 0.83 0.29

17 20.31 10.67 37 2.5 1.14

18 14.67 8.67 38 0.86 0.86

19 5 8 39 1.33 1

20 7 8

All workers can execute Task 1 and the operation times of
the Workers 1, 2 and 3 are 8, 6 and 10, respectively. Now,
Tasks 2, 3, 4 and 5 are assignable. We apply the priority
rules again for the new tasks adaptively and then select one
of them randomly by considering the probabilities. Let the
newly selected task be the Task 5. Then, the sequential task
list contains 1 and 5. Note that Worker 3 cannot execute Task
5. So, at the end of the iteration if Worker 3 is assigned to
the current station (station 1), Task 5 should be eliminated
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Table 3 Task-worker assignment for the first station

Tasks 1 5 3 7 2 4 6 8

Station time (worker 1) 8 16 26 51 X X - –

Station time (worker 2) 6 12 X 32 52 72 – –

Station time (worker 3) 10 X 40 - 62 77 119 –

Station 1 1 1 1 1 1 1 1

and not assigned to the station. Through the iteration, we
continue to select tasks according to the rule based method
and update the station time. At the end, we obtain the results
as shown in Table 3.

Table 3 represents task and worker assignments to the first
station. First row shows the sequence of tasks (sequential task
list). Rows 2, 3 and 4 illustrates the station times if Worker
1, 2 or 3 are selected, respectively. The sign ’X’ represents
that the currentworker cannot execute the corresponding task
and the ‘–’ sign means that the current worker cannot operate
relevant task because of the precedence relations. Moreover,
bold numbers illustrate that the cycle time is exceeded. For
example, row 4 of Table 3 represents that if Worker 3 is
selected for station1, according to the sequential task list Task
1 must be assigned firstly. Then, task 5 cannot be assigned
becauseWorker 3 is incapable of executing it (“X”). The next
task which is Task 3 should be assigned from the sequential
task list. Now, the next task in the sequential task list is Task
7. However, it cannot be selected because of the precedence
relations. Since Task 7 is an immediate successor of Task 5
and Task 5 is not assigned yet, Task 7 could not be executed
(“-”). Then, Task 2 must be assigned according to the list and
the station time becomes 62s. Since the cycle time is 64 s,
there are not any assignable tasks in the sequential task list
and station must be closed.

Then, in order to select a worker we apply priority rules
to the unassigned workers (see Table 4). According to the
Table 4Workers 1 and 2 are superior for one rule andWorker
3 is superior for three rules. So, the probabilities of selection

Table 4 The prioritized values
of the candidate workers

Rules Workers

1 2 3

1 6 7 7

2 17.17 18.43 23.43

3 0.8 0.81 0.97

4 *

Table 5 Initial solution of the numeric example

Task 1 5 3 7 2 4 6 8

Worker 1 1 1 1 3 3 2 2

Station 1 1 1 1 2 2 3 3

Operation time 8 8 10 25 22 15 32 25

Station time 8 16 26 51 22 37 32 57

of the workers are 0.2, 0.2 and 0.6 for Workers 1, 2 and 3,
respectively. Let the random number be 0.11, then Worker 1
is selected for the first station. Tasks 1, 5, 3 and 7 andWorker
1 are assigned to the station 1, for the first iteration. After
assigning the first station, the whole process is repeated for
the remaining stations. At the end of the first iteration an
initial solution is obtained. Table 5 illustrates the solution
obtained by the end of the first iteration.

Table 5 indicates that Tasks 1, 5, 3 and 7 and Worker 1
are assigned to Station 1; Tasks 2 and 4 and Worker 3 are
assigned to Station 2 and lastly, Tasks 6 and 8 and Worker 2
are assigned to Station 3. Station times of the Stations 1, 2
and 3 are 51, 37 and 57s, respectively. Next, the cycle time
has to be decreased and a new solution will be gathered by
using new cycle time. This process will be continued until
the maximum iteration number, which is 1000 in our case, is
achieved.

Algorithm 3. Pseudo code of the cycle time update algorithm

procedure: Cycle time update method
input: cycle time,  cUB
output: new cycle time
BEGIN
IF (cycle time / cUB) > 0.75 THEN

new cycle time = cycle time * 0.75
ELSE IF (currentCycleTime / cUB) > 0.6 THEN

new cycle time = cycle time * 0.85 
ELSE

new cycle time = cycle time * 0.99
END IF
END
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Table 6 Test instance
characteristics

Family Number of tasks (N) Number of workers (W) Order strength (OS)

Roszieg 25 (low) 4 (groups 1–4) or 6 (groups 5–8) 71.67 (high)

Heskia 28 (low) 4 (groups 1–4) or 7 (groups 5–8) 22.49 (low)

Tonge 70 (high) 10 (groups 1–4) or 17 (groups 5–8) 59.42 (high)

Wee-Mag 75 (high) 11 (groups 1–4) or 19 (groups 5–8) 22.67 (low)

Table 7 Test groups
characteristics

Factor Low High

Relation between tasks and operators 1, 2, 3, 4 5, 6, 7, 8

Variability of operation times 1, 2, 5, 6 3, 4, 7, 8

Percentage of task-worker incompatibilities 1, 3, 5, 7 2, 4, 6, 8

Cycle time update

The algorithmwhose pseudo code is illustrated in Algorithm
3 tries to find the minimum cycle time in the feasible search
space. Inertia weight is used in order to decrease cycle time
efficiently. In the relevant literature in order to obtain fast con-
vergence, several cycle time update mechanism are applied
(Simaria and Pedro 2004; Akyol and Bayhan 2011; Bansal
et al. 2011; Mutlu et al. 2013). In this study, the ratio of
the current cycle time to the upper bound of the cycle time is
used. If this ratio is greater than 75%, itmeans that the current
cycle time is far away from the minimum cycle time in the
feasible search space and it should be decreased drastically.
If the ratio is between 75–60%, then the current cycle time is
nearer to the minimum cycle time and the moves should be
made more slightly when finding the new cycle time. Lastly,
if the ratio is smaller than 0.60, the new cycle time should be
obtained by decreasing the current cycle time in very small
steps in order not to miss the minimum cycle time.

Computational study

In this section, a computational study of the proposed
MRBCRS heuristic is presented. The proposed heuristic is
implemented in Microsoft Visual Studio Premium 2012 C#
version 11.0.1. The testswere run on aCore 2Duo i7 2.2GHz
processor and 6 GB main memory running the Windows 7
operating system.

Benchmark data is generated from the corresponding
SALBP benchmark data set (Chaves et al. 2007). Test
instances are derived by using five experimental factors at
a low and a high level. These factors are the number of tasks,
the number ofworkers, the order strength (OS), the variability
of the task execution time, and the number of infeasible task-
worker pairs (OS = the number of precedence relations/
[N∗(N−1)]). The details of these characteristics are given in
Tables 6 and7.There are 320 test instanceswhich are grouped
into four families: Heskia, Roszieg, Tonge and Wee-Mag.

Each one of the families contains 80 instances. There are
32 task groups that each of them contains 10 test instances.
Each task group is defined by the family name and a number
between 1 and 8.

Because the proposed algorithm is a heuristic method, in
order to obtain accurate results we run every single instance
10 times (10 replications) for 1000 iterations. Itmeans thatwe
run our program for 3200 times and every run has amaximum
iteration number of 1000. Table 8 reports the detailed results
of the comparison of our proposed algorithm to the relevant
literature.

The first column represents the benchmark data family,
while the second one represents the group number of that
family. As it is stated previously, each family group consists
of 10 instances, so the table shows the average results of
10 instances for each group of each family. The third col-
umn reports the optimum results found so far in the relevant
literature under no running time constraints. The rest of the
columns represent the referred papers and their solution tech-
niques and results. CPU times of the solution procedures
are reported in Table 9. The CPU times of Vila and Pereira
(2014) for the Roszieg and Heskia families are not given,
because they are not reported in the corresponding paper.
Authors claimed that their proposed algorithm solves every
instance from the Heskia and Roszieg groups in less than
one second. According to Tables 8 and 9, the results show
that our proposed MRBCRS algorithm is superior to the all
other techniques in general, but a detailed examination may
indicate the following findings:

• We obtain the best results for the 75% of the 320 test
instances for the ALWABP-2.

• For the Roszieg family, we report the best feasible solu-
tions for all of the test instances. None of the referred
papers have found results close to ours yet.

• For the Heskia family, we obtain the very best results
found so far for 6 of the 8 test groups (1, 2, 4, 5, 6 and 7).
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Also, we get the best results for the remaining groups 3
and 8. These results are pioneer in the relevant literature.

• For the Tonge family, we report the minimum cycle time
value that have ever found for the group number 4; and
for the rest of the family we obtain the best values found
so far in the recent literature. As it can be seen from
Table 8, only the last two references could have report
the best values for some of the test groups. Except our
algorithm, none of the above methods can get optimum
solutions for all Tonge groups.

• We could not obtain the best results for all of the Wee-
Mag family thismay be related to problem size.However,
for group 5 our solution is 15.0 which is much more
less than the solutions obtained by Chaves et al. (2009)
and Moreira and Costa (2009). Also, we obtained better
results than Moreira and Costa (2009) for the groups 6,
7 and 8.

• Order strength of the Roszieg family is pretty high, but
it contains a limited number of tasks (see Table 6). Simi-
larly, the number of tasks of the Heskia family is also low.
From this point of view, it can be claimed that the pro-
posed solution procedure is capable of obtaining much
better results for small sized test instances.

• Tonge is one of the large-scaled problem families with
order strength of 59.42 and task number of 70. The pro-
posed algorithm performs very well on Tonge family;
it finds the very best result so far on test group 4 and
obtained the best results on rest of them.None of the stud-
ies in the relevant literature could obtain the best results
for all groups of the Tonge family. Our work not only
gets the best results for all of the groups, but also found
a new best solution for the group 4. Moreover, test group
4 includes high percentage of task-worker incompatibil-
ities and high operation times variability (see Table 7).
Hence, it can be concluded that our algorithmworks well
on high task-worker incompatibilities and operation time
varibilities.

• Table 9 compares the CPU times of our proposed algo-
rithm to the other approaches in the literature. Note that
all of the algorithmswere run on different computerswith
different operating systems and performances. Thus, it is
not logical to compare them in terms of the computational
time. However, it can be stated that our proposed algo-
rithm performs better results in limited times and obtains
minimum CPU times at every data family.

Conclusions

Human factors play an important role in labor intensive
assembly lines. Since every worker has his own character-
istics, such as skill, ability, morale, experience, etc., it is
inappropriate to consider workers as unique. However, in

classical assembly line balancing literature, this aspect is
disregarded and all workers are assumed to be unique. Con-
sequently, task operation times are assumed to be fixed and
do not depend on the workers. But this assumption does not
represent the real life assembly systems. In order to relax fix
operation times assumption, ALWABP is introduced to the
assembly line literature, recently.

ALWABP is a decision problem that occurs when opera-
tion times of tasks differs according to the operator. Although
the operation time of a task is assumed to be fixed in clas-
sical ALBP, it depends on the operator who executes the
task in ALWABP. Even though ALWABP is a relatively
new problem, it has attracted the scientists’ interest. Many
research studies have been made to solve ALWABP in recent
years, but one optimum solution method cannot be found
so far. Minimizing the cycle time is commonly used as
a primary objective in ALWABP literature (ALWABP-2).
Even traditional ALBP is NP-hard, this much more complex
ALWABP-2 is NP-hard, of course. Because of the complex
problem nature, optimum seekingmethods are not capable of
solving it. So, in this paper a rule based constructive heuristic
approach was proposed in order to solve ALWABP-2. In the
proposed MRBCRS heuristic, 39 task priority rules and 4
worker priority rules were used to sequence tasks and select
workers. In order to evaluate the performance of the proposed
solution procedure, it is tested on ALWABP-2 benchmark
data which consists of four families, each having 80 test
instances. Every test instancewas run for 10 replications, and
our proposed heuristic was executed for 3200 times, in total.
Experimental results showed that our proposed algorithm
outperforms all others in the relevant literature. Concisely,
the contribution of this study to the relevant literature is that
a novel solution procedure for solving ALWABP-2 was pre-
sented and the proposed solution procedure was proven to be
efficient in terms of solution quality.

Possible future research directions for both the problem
and the solution method include; the proposed solution pro-
cedure could be applied to a real life assembly line; some
other task/worker selection rules may be added to the heuris-
tic approach; and the proposed heuristic could be extended
to solve different assembly line balancing problems with dif-
ferent line configurations such as U-shaped line, stochastic
worker availability, multi/mixed model assembly lines.

References

Akyol, S. D., & Bayhan, G. M. (2011). ‘A particle swarm optimization
algorithm for maximizing production rate and workload smooth-
ness. In Third World Congress on Nature and Biologically Inspired
Computing (NaBIC), IEEE, October, Spain (pp. 44–49).

Araujo, F. F. B., Costa, A. M., & Miralles, C. (2012). Two extensions
for the ALWABP: Parallel stations and collaborative approach.

123



J Intell Manuf (2019) 30:557–573 573

International Journal of Production Economics, 140(1), 483–495.
doi:10.1016/j.ijpe.2012.06.032.

Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S. &
Abraham, A. (2011). ‘Inertia weight strategies in particle swarm
optimization. In Third World Congress on Nature and Biolog-
ically Inspired Computing (NaBIC), IEEE, October, Spain (pp.
633–640).
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