
J Intell Manuf (2019) 30:405–428
https://doi.org/10.1007/s10845-016-1255-5

Parallel chaotic local search enhanced harmony search algorithm
for engineering design optimization

Jin Yi1 · Xinyu Li1 · Chih-Hsing Chu2 · Liang Gao1

Received: 21 April 2016 / Accepted: 4 August 2016 / Published online: 18 August 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we present a parallel chaotic local
search enhanced harmony search algorithm (MHS–PCLS)
for solving engineering design optimization problems. The
concept of chaos has been previously successfully applied
in metaheuristics. However, chaos sequences are sensitive
to their initial conditions and cause unstable performance
in algorithms. The proposed parallel chaotic local search
method searches from several different initial points and
diminishes the sensitivity of the initial condition, thereby
increasing the robustness of the harmony search method.
Numerical benchmark problems are tested to validate the
effectiveness ofMHS–PCLS. The simulation results confirm
that MHS–PCLS obtains superior results for mathematical
examples compared to other harmony search variants. Sev-
eral well-known constrained engineering design problems
are also tested using the new approach. The computational
results demonstrate that the proposedMHS–PCLS algorithm
requires a smaller number of function evaluations and in the
majority of cases delivers improved and more robust results
compare to other algorithms.

Keywords Harmony search · Parallel chaotic local
search · Intersect mutation operator · Engineering design
optimization

B Xinyu Li
lixinyu@mail.hust.edu.cn

1 The State Key Laboratory of Digital Manufacturing
Equipment and Technology, School of Mechanical Science
and Technology, Huazhong University of Science and
Technology, Wuhan 430074, People’s Republic of China

2 Department of Industrial Engineering and Engineering
Management, National Tsing-Hua University, Hsinchu,
Taiwan

Introduction

Nonlinearity widely exists in real world optimization prob-
lems and seriously complicates the search space, posing
significant challenges in obtaining the global optimality of
interest. Metaheuristic techniques frequently provide satis-
factory solutions to these problems; hence, they have been a
major focus in recent decades (Yang 2010). These techniques
usually mimic some natural or social phenomenon, such as
the biological evolutionary process [e.g., genetic algorithm
(GA) (Sivaraj andRavichandran 2011), differential evolution
(DE) (Das and Suganthan 2011) and biogeography-based
optimization (BBO) (Simon 2008)] or animal behavior [e.g.,
particle swarm optimization (PSO) (Eberhart et al. 1995),
artificial bee colony (ABC) (Karaboga andBasturk 2007), ant
colony optimization (ACO) (Dorigo et al. 2006) and cuckoo
search (CS) (Yang and Deb 2009)].

The harmony search (HS) algorithm is a recently devel-
oped meta-heuristic algorithm (Geem et al. 2001). It imitates
the music improvisation process during which musicians
continuously adjust the pitch of their instruments to obtain
improved harmony. The optimization process is similar to the
music improvisation process. Eachdecisionvariable continu-
ously changes its value during the search process to converge
to the global best. HS has received significant attention and
has been applied in many areas such as renewable energy
systems (Askarzadeh and Zebarjadi 2014; Maleki and Pour-
fayaz 2015), image registration (García-Torres et al. 2014),
robotics (Koceski et al. 2014; Kundu and Parhi 2016), job
shop scheduling (Gao et al. 2014b), transportation (Zheng
et al. 2016; Hosseini et al. 2014; Yassen et al. 2015), assem-
bly sequence planning (Li et al. 2016), computer experiment
designs(Yi et al. 2016b) and wireless sensor networks (Zeng
and Dong 2016). A more detailed survey of HS applications
was summarized by Manjarres et al. (2013). Several studies

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-016-1255-5&domain=pdf

406 J Intell Manuf (2019) 30:405–428

have been proposed for obtaining improved HS performance
andgaining a superior understandingof its concept, including
exploratory power (Das et al. 2011), selection strategies (Al-
Betar et al. 2013), stochastic analysis (Sarvari and Zamanifar
2012) and iterative convergence (Gao et al. 2014a).

With the development of nonlinear dynamics, the con-
cept of chaos has been successfully applied in the area of
optimization methods. Previously, chaotic sequences have
been embedded into metaheuristic methods such as parti-
cle swarm optimization (Gao et al. 2012; Gandomi et al.
2013c), memetic differential evolution algorithm (Jia et al.
2011), artificial bee colony algorithm (Alatas 2010), firefly
algorithm (Gandomi et al. 2013b), imperialist competitive
algorithm (Talatahari et al. 2012), bat swarm optimization
(Jordehi 2015), krill herd algorithm (Wang et al. 2014)
and harmony search (Alatas 2010). In the above methods,
sequences generated from different chaotic systems are used
to substitute random numbers for different parameters. One
of the advantages of chaotic sequences is that chaos can
promote order from disorder. Similarly, many metaheuristic
methods are inspired from biological systems where order
can be realized from disorder. Owing to the similarities
between chaos and metaheuristic methods, the use of chaos
seems to improve the performance of metaheuristics (Kaveh
2014).

However, chaos is sensitive to its initial conditions, and
even small changes in the parameters or the starting values
can lead to vastly different future behaviors. Consequently,
the performance of optimization algorithms is not stable. To
increase the robustness of the optimization algorithm, in this
paper, a parallel chaotic local search method is proposed and
embedded into a modified harmony search with an inter-
sect mutation operation. The proposed new harmony search
variant is called parallel chaotic local search enhanced har-
mony search (MHS–PCLS).MHS–PCLSmaintains the basic
structure of HS and adopts an intersect mutation operation
in the process of improving new harmonies, which helps
to increase the diversity of harmony memory. The paral-
lel chaotic local search is used to detracts the sensitivity of
initial condition of chaotic maps and enhance the exploita-
tion ability of MHS–PCLS. Several well-known numerical
benchmark problems are tested to demonstrate the efficiency,
accuracy and robustness of the new approach. The MHS–
PCLS method is further combined with the improved Deb’s
constrained handling method for constrained optimization
problems, which frequently occur in real world engineering
design. The performance of the extendedmethod is validated
by several constrained engineering design problems and a
complex case study of car side impact design. The test results
confirm that the MHS–PCLS outperforms other algorithms.

The remander of this paper is organized as follows. In
“Previous work” section, the previous work on harmony
search is introduced. The new MHS–PCLS algorithm is

proposed in “Proposed approach” section. “Numerical simu-
lations and analysis” section provides a numerical simulation
of MHS–PCLS on several benchmark functions. The per-
formance of MHS–PCLS combined with a modified Deb’s
constraint handling technique is tested on several constrained
engineering design problems in “Constrained engineering
design problems” section. A case study is investigated in
“Case study: car side impact design” section. Finally, “Con-
clusions” section offers the concluding remarks.

Previous work

The harmony search algorithm is simple in concept and easy
in implementation with only a small number of parameters
(Zarei et al. 2009). However, the performance of the basic HS
is not satisfactory; hence, many previous studies have been
conducted to improve its performance.

Mahdavi et al. (2007) proposed an improved harmony
search (IHS) algorithm. IHS applies the same memory con-
sideration, pitch adjustment and randomselection as the basic
HS algorithm; however, it dynamically updates the values of
the parameters such as the pitch adjustment rate (PAR) and
the bandwidth (BW).

Inspired by the concept of swarm intelligence as proposed
in PSO (Eberhart et al. 1995), Omran and Mahdavi (2008)
proposed another variant of the HS algorithm, called the
Global-best harmony search (GHS) algorithm. In GHS, the
improvised new vector directly adopts the current best pitch
from the harmony memory to simplify the pitch adjustment
step. Moreover, the parameters in GHS are also dynami-
cally adapted in the same procedure as IHS. However, this
variant has a serious deficiency in that it may generate infea-
sible solutions. The deficiency is induced by ignoring the
differences between the decision variables of the different
dimensions.

To overcome the deficiency of GHS, Pan et al. (2010) pro-
posed a self-adaptive global best harmony search (SGHS)
algorithm. The SGHS algorithm employs a new improvi-
sation scheme. The memory consideration procedure was
modified by adding additional adjustment to the original
memory consideration procedure in HS. The pitch adjust-
ment rule was also modified by adopting the corresponding
value from the current best pitch. The SGHS algorithm does
not require a precise setting of specific values for the criti-
cal parameters such as the harmony memory consideration
rate (HMCR), PAR and BW , in accordance with the prob-
lem’s characteristics and complexity. The HMCR and PAR
parameters are dynamically updated to a suitable range by
recording their historical values corresponding to generated
harmonies entering the HM. The value of the BW parame-
ter is decreased with increasing generations by a dynamic
method.

123

J Intell Manuf (2019) 30:405–428 407

Table 1 Information of the considered chaotic maps

Name Mathematical expression Range

Logistic map
xn+1 = μ · xn(1 − xn),
x0 ∈ (0, 1) and x0 /∈ {0, 0.25, 0.5, 0.75, 1.0} (0, 1)

Tent map xn+1 =
{

xn
0.7 , xn < 0.7

(103) · xn(1 − xn), else
(0, 1)

Chebyshev map xn+1 = cos(ϕcos−1xn), ϕ > 0, xn ∈ [−1, 1] (−1, 1)

Circle map xn+1 = xn + θ − (τ
2π)sin(2πxn)mod(1), xn ∈ (0, 1),θ = 0.2 and τ = 0.5 (0, 1)

Cubic map xn+1 = ρxn(1 − x2n), xn ∈ (0, 1), ρ = 2.59 (0, 1)

Gauss map xn+1 =
{

0, xn = 0
1
xn

− [1
xn

], xn �= 0 , xn ∈ (0, 1) (0, 1)

ICMIC map xn+1 = sin(α
xn

), α ∈ (0, 1), xn ∈ (−1, 1) (−1, 1)

Sinusodial map xn+1 = sin(πxn), xn ∈ (0, 1) (0, 1)

Enayatifar et al. (2013) proposed a novel HS algorithm
based on learning automata called LAHS. In the LAHS algo-
rithm, learning ability is employed in the HS to select the
parameters based on spontaneous reactions. To begin, all the
parameter values are randomly selected based on a specific
probability distribution, e.g., uniform distribution. Then, a
reinforcement signal is returned to the parameters after each
fitness evaluation. If the fitness value was improved, the
signal is a reward signal; otherwise, it is a punish signal.
The automaton learning mechanism employs this feedback
to update the existing parameter probability distributions.
Repeating this action increases the probability distribution
of the better parameters and the most favorable parameter
values are eventually determined.

In other research works, selection strategies have been
introduced into the HS algorithm. Al-Betar et al. (2012)
proposed several novel selection schemes to replace the ran-
dom selection scheme in thememory consideration operation
of HS. The novel selection schemes employed the natural
selection principle of “survival of the fittest” to generate the
new harmony by focusing on the better solutions stored in
HM. Computational results verified that the novel selec-
tion schemes directly influenced the performance of HS. In
another research work, Castelli et al. (2014) proposed a geo-
metric selective HS (GSHS). In GSHS, tournament selection
is used to choose two parents for generating new harmonies
by the newly defined mutation operation.

Other researchers have attempted to improve the perfor-
mance of HS by modifying the algorithm structure. Related
research work such as Al-Betar et al. (2015) proposed
an island-based HS (iHS) algorithm. iHS learns from the
concept of the island model, which has been successfully
applied in other evolutionary algorithms (EAs). According
to the island model, iHS divides the HM into several sub-
populations (islands) and each island evolves independently
for a numbers of iterations. Periodically, the islands interact
using a migration process, which is responsible for sending

and receiving certain individuals across islands controlled by
migration rate and migration frequency.

Hybridization of different metaheuristics is also an effi-
cient method to enhance the performance of the algorithms.
It can integrate their advantages and shield their shortcom-
ings. Along with this research line, the HS algorithm was
successfully hybridized with PSO and DE to yield improved
performance (Zhao et al. 2015; Abedinpourshotorban et al.
2016).

Proposed approach

Chaotic sequence

In meta-heuristic optimization, random sequences with a
long period and good uniformity are always required (Schus-
ter and Just 2006). Chaos is the external complexity per-
formance of identifying a nonlinear system with inherent
randomness (Wang and Yao 2009). It has the character-
istics of long-term unpredictability, non-periodicity, non-
convergence and boundedness. Further, it has a sensitive
dependence upon its initial condition and parameter (Schus-
ter and Just 2006). Phatak and Rao (1995) proved that a
chaotic sequence could be used as a possible approach to
obtain random numbers. In this study, eight well-known
one-dimensional chaoticmaps inBaykasoglu (2012) are con-
sidered. The detailed information of these chaotic maps is
presented in Table 1.

To investigate the distribution and ergodic properties of
these different chaotic maps, we run these maps for 10,000
iterations, and obtain the result for the distribution in the
range of (0, 1). The chaotic sequences of the Chebyshev
map and the ICMIC map are normalized. The distribution
properties of the eight different maps are displayed in Fig. 1,
which indicates that the distribution or the ergodic properties
of these chaotic maps are different. Previous studies have

123

408 J Intell Manuf (2019) 30:405–428

Fig. 1 Distribution property comparisons of eight different chaotic
maps

demonstrated that the probability distribution property of
different chaotic maps significantly affect the global search-
ing capability and optimization efficiency (Yang et al. 2014;
Yuan et al. 2014). Therefore, it is advantageous to employ
the chaotic map contributing to a higher convergence rate
and accuracy. This part will be discussed in “Performance of
MHS–PCLS with different chaotic maps” section.

Basic HS algorithm

In the basic HS algorithm, each solution is called a harmony
and is represented by an N -dimension real vector. An initial
population of harmony vectors is randomly generated and
stored in the harmony memory (HM). Then, a new candidate
harmony is improvised from all of the solutions in the HM
using a memory consideration rule, a pitch adjustment rule
and a random re-initialization. Finally, the HM is updated by
comparing the fitness between the new candidate harmony
and theworst harmony in the currentHM.Theworst harmony
vector is replaced by the new candidate harmony vector if
it is better than the worst harmony vector in the HM. The
improvisation and updating process repeat until a predefined
termination criterion is reached. The pseudo code of HS is
illustrated in Algorithm 1. Amore detailed description of HS
can be found in (Mahdavi et al. 2007).

Proposed MHS–PCLS algorithm

HS algorithm with intersect mutation operator

In our previous study, a modified HS variant (MHS) with an
intersect mutation operator was proposed to solve the con-
tinuous function optimization problems (Yi et al. 2016a).

Algorithm 1 Pseudo code of the Harmony Search algorithm
1: Begin HS
2: Define fitness function f i tness(x) = f (x), x = (x1, x2, . . . , xN)

3: Define the lower and upper boundaries: LB,UB
4: Set algorithm parameters: harmony memory size(HMS),
5: harmony memory consideration rate(HMCR),
6: pitch adjustment rate(PAR) and the bandwidth(BW).
7: Set maximum number of iterations N I .
8: HM ← Generate initial population
9: Set t = 0
10: while t < N I do
11: for j = 1 to N /*N denotes the number of variables*/ do
12: if r1 < HMCR /*r1, r2, r3 and r4 are uniformly distributed

continuous random numbers between [0, 1]*/ then
13: x j

new = HM(a, j), a ∈ {1, 2, . . . , HMS} /*Choose a value
from HM for j*/

14: if r2 < PAR then
15: x j

new = x j
new ± r3 · BW /*Pitch adjustment */

16: else
17: x j

new = LB j + r4 · (UB j − LB j) /*Randomly generate a
value */

18: end if
19: end if
20: end for
21: if f i tness(xnew) ≤ worst (f i tness(HM)) then
22: HM ← xnew /*Update the HM */
23: end if
24: t = t + 1
25: end while
26: end

The core idea of MHS is to utilize the intersect muta-
tion operation between the better part and the worse part
to maintain the diversity of the harmony memory. The
intersect mutation operation was proven to be efficient
and is adopted in this study. Figure 2 is the schematic
drawing of the intersect mutation operation. To begin,
all of the harmony vectors are divided into two parts
based on their fitness evaluations. We introduce a con-
stant coefficient M(0 < M < 1), which stands for the
proportion of better harmonies in the harmony memory
pool. In this research, we set M = 0.4. For the bet-
ter part, we mutate the vectors with one harmony (wr1)
chosen from the worse part and two harmonies (br1 and
br2) chosen from the better part, as the formula below
indicates:

xi = xwr1 + F · (xbr1 − xbr2), br1 �= br2 �= wr1 �= i (1)

where F(0 < F < 1) is the mutation parameter. F is set to
0.5 in this study.

For the worse part, we mutate the vectors with one har-
mony (br1) chosen from the better part and two harmonies
(wr1 and wr2) chosen from the worse part, as the formula
below indicates:

xi = xbr1 + F · (xwr1 − xwr2), wr1 �= wr2 �= br1 �= i (2)

123

J Intell Manuf (2019) 30:405–428 409

Fig. 2 Schematic drawing of
the proposed intersect mutation
operation

The detailed pseudo code explaining the various steps
of improvising new harmonies is exhibited in Algorithm 2
for easy implementation and understanding of the proposed
approach.

Algorithm 2 Pseudo code of improvising new harmonies
1: Begin
2: for i = 1 : HMS do
3: for j = 1 : N do
4: if r1 < HMCR then
5: x j

i = HM(a, j), a ∈ {1, 2, . . . , HMS} /*Randomly choose
a value from HM */

6: if r2 < PAR then
7: if i < M ∗ HMS then
8: x j

i = x j
wr1 + F · (x j

br1
− x j

br2
), wr1 �= br1 �= br2 �= i

/*Intersect mutation operation 1 */
9: else
10: x j

i = x j
br1

+ F · (x j
wr1 − x j

wr2), br1 �= wr1 �= wr2 �= i
/*Intersect mutation operation 2 */

11: end if
12: end if
13: else
14: x j

i = LB j + r3 · (UB j − LB j) /*Randomly generate a
variable */

15: end if
16: end for
17: end for
18: End

Parallel chaotic local search

As mentioned in “Chaotic sequence” section, chaos is sen-
sitive to its initial conditions, which leads to an algorithm
with low robustness. To increase the robustness of the algo-

rithm, a parallel chaotic local search (PCLS) is proposed in
this paper. The PCLS method searches from several differ-
ent initial points and hence can diminish the sensitivity of the
initial conditions.

For an optimization problem with decision variables x =
(x1, x2, . . . , xN), N represents the number of decision vari-
ables. In the proposed method, each decision variable is
mapped by m chaotic maps simultaneously. In the PCLS,
a m × N matrix CMS of chaotic maps is generated by,

CMSi =

⎡
⎢⎢⎢⎣

δi11 δi12 . . . δi1N
δi21 δi22 . . . δi2N
...

...

δim1 δim2 . . . δimN

⎤
⎥⎥⎥⎦
m×N

(3)

where δijk is a random number in the range of (0, 1) gen-
erated by the chaotic maps. i is the i th generation, j is the
j th chaotic map and k is the kth variable. δijk is updated in
every generation by the chaotic maps mentioned in “Chaotic
sequence” section.

The candidate solutions in the PCLSmethod are generated
by the following formulas:

CM i = λCBi + (1 − λ)RSi (4)

CBi =

⎡
⎢⎢⎢⎣
X i

X i
...

X i

⎤
⎥⎥⎥⎦
m×N

(5)

X i = [
x1i x2i . . . , xNi

]
(6)

123

410 J Intell Manuf (2019) 30:405–428

Fig. 3 Trend of λ with increasing FEs

where CM i is the candidates matrix of PCLS in the i th gen-
eration, CBi is the matrix consisting of m individuals X i ,
and RSi is generated by the equation RSi = LB+CMSi ·
(UB − LB), where [LB,UB] is the search space of indi-
vidual X i . λ is the weighting factor.

Equation (4) is based on the geometric crossover operation
(Moraglio et al. 2013), where the offspring CM is the linear
combination of the two parents CB and RS. The generated
offspring always stand between the segments delimited by
the two parents and the greater the value of λ, the closer the
offspring is to the current best. A local search is performed to
ensure that the offspring will be produced around the current
best; hence, a greater value of λ is preferred. Moreover, in
case the local search has been trapped into local optima, a
dynamic adjustment strategy on λ according to the logistic
curve (Pearl and Reed 1920) is adopted in this paper:

λ = 0.9 + 0.1 · 1 + e−5

1 + e
10

(
0.5− FEs

mFEs

) (7)

where FEs is the current number of function evaluations, and
mFEs is the maximum number of function evaluations. Fig-
ure 3presents the trendofλwith increasing FEs and assumes
the shape of “S”. Because λ continues to increase during the
entire optimization process, the step length of PCLS will be
decreased; hence, PCLS will enhance the exploration abili-
ties at the beginning phase of the optimization and refine the
solutions in the later phase.

Although the PCLSmethod can enhance the search ability
of the MHS algorithm, it also increases the computational
cost. To avoid premature convergence and save FEs, PCLS
terminates when a superior fitness is obtained. The procedure
for the method is presented as follows and the flowchart is
provided in Fig. 4.

Fig. 4 Flowchart of the proposed MHS–PCLS

Step 1 Initialization

1.1. Set parameters HMS, HMCR, PAR, and the max
iteration number (N I), proportion of the better part
in harmony memories M(0 < M < 1) and mutation
parameter F .

1.2. Initialize all harmonies in HM within the search
space and evaluate their fitness.

1.3. Divide all the harmonies into two parts based on their
fitness.

Step 2 Iteration

2.1. Improvise new harmonies with intersect mutation as
indicated in Algorithm 2.

2.2. Divide all the harmonies into two parts again and
identify the current best harmony in the harmony
memory pool.

Step 3 Apply PCLS on the current best harmony.
Step 4 Check the termination criterion. If the termina-
tion criterion is met, output the best solution. Otherwise,
return to Step 2.

Numerical simulations and analysis

Experimental setup

In this section, the performance of the proposedMHS–PCLS
algorithm is compared with the original HS algorithm and

123

J Intell Manuf (2019) 30:405–428 411

Table 2 Test functions

Name Function expression Range Global
optimum

Sphere f1(x) = ∑N
i=1 x

2
i [−100, 100]N 0

Schwefel’s problem 2.22 f2(x) = ∑N
i=1 |xi | + ∏N

i=1 |xi | [−10, 10]N 0

Rosenbrock f3(x) = ∑N−1
i=1 (100(xi+1 − x2i)

2 + (xi − 1)2) [−30, 30]N 0

Step f4(x) = ∑N
i=1(�xi + 0.5�)2 [−100, 100]N 0

Rotated hyper-ellipsoid f5(x) = ∑N
i=1(

∑i
j=1 x j)

2 [−100, 100]N 0

Schwefel’s problem 2.26 f6(x) = 418.9829 · N − ∑N
i=1(xi sin(

√|xi |)) [−500, 500]N 0

Rastrigin f7(x) = ∑N
i=1(x

2
i − 10 cos(2πxi) + 10) [−5.12, 5.12]N 0

Ackley f8(x) = 20 + e − 20exp

(
−0.2

√
1
n

∑N
i=1 x

2
i

)
− exp

(1
n cos(2πxi)

) [−32, 32]N 0

Griewank f9(x) = 1
4000

∑N
i=1 x

2
i − ∏N

i=1 cos(xi/
√
i) + 1 [−600, 600]N 0

its prominent variants, including HS, IHS, GHS, SGHS and
LAHS. All of the parameter settings were the same as in
(Enayatifar et al. 2013). Because MHS–PCLS contains a
local search operation, it increased the number of FEs (FEs
indicates the number of function evaluations). To obtain
an unbiased comparison, the termination criterion was set
to 50,000 FEs for all compared algorithms. Several well-
studied benchmark problems were used as test functions;
these are indicated in Table 2. For all of the benchmark func-
tions, the dimensions N was set to 30. Based on our empirical
experience (Yi et al. 2016a), the parameters of MHS–PCLS
were recommended as follows: the size of harmony memory
HMS = 100, HMCR = 0.995, PAR = 0.90, M = 0.4,
and F = 0.5.

A proper search length for the local search is important for
PCLS. A small lengthmay be inefficient in exploring the best
solution and may therefore be unsuccessful at improving the
search quality. Conversely, with a longer length, the PCLS
may consume additional function evaluations unnecessarily.
Based on the recommendations in the literature (Jia et al.
2011), the maximum search length of PCLS in each iteration
was set to Sl = N/5.

The number of parallel chaotic maps is also important
for PCLS. More parallel chaotic maps can increase the
robustness of the algorithm; however, they may consume
additional function evaluations unnecessarily. As a compro-
mise between the above two factors, the number of parallel
chaotic maps was to set to Np = 5.

Performance of MHS–PCLS with different chaotic
maps

As discussed in “Chaotic sequence” section, the search capa-
bility with different chaotic maps can differ in view of
the convergence rate and accuracy. In this section, the per-
formance of MHS–PCLS with different chaotic maps was

compared to identify the best option. To perform a fair com-
parison, all parameter settings of the MHS–PCLS remained
the same. Each benchmark function was tested for 100 runs
and the maximum number of function evaluations mFEs
was set to 10,000. The performance of MHS–PCLS with
different chaotic maps was ranked based on their mean value
of the 100 runs; the results are presented in Table 3. The
performance of MHS–PCLS with an ICMIC map provided
the best performance, which means an ICMIC map has the
potential to generate superior solutions. Hence, the ICMIC
map is selected for the experiments.

Comparison of the optimization results and
computation time among different methods

Table 4 displays the results of all test functions obtained by
HS, IHS,GHS, SGHS,LAHSand the proposedMHS–PCLS.
Each benchmark problem performed 30 independent replica-
tions for all of the compared algorithms. In Table 4, AE and
SD are the average value over 30 runs and the corresponding
standard deviations, respectively. MHS–PCLS generated the
best results for seven out of nine functions. For function f4,
both SGHS and MHS–PCLS obtained the global optimum.
For functions f6 and f7, the results obtained byMHS–PCLS
were inferior to SGHS. To demonstrate the evolution process
of the compared algorithms, the convergence curves of the
competitive algorithms are given in Fig. 5. It can be observed
fromFig. 5 that for themajority of the functions,MHS–PCLS
converged marginally more slowly than the other algorithms
during the initial stage of the evolution process; however
it always overtaken during the later iterations. The average
computation times of the compared methods are presented in
Table 5. It can be seen in Table 5 that although MHS–PCLS
expends extra computation cost on the local search, the total
computation times have no significant difference compared

123

412 J Intell Manuf (2019) 30:405–428

Table 3 Ranking of the
performance of MHS–PCLS
with different chaotic maps

Chaotic maps f1 f2 f3 f4 f5 f6 f7 f8 f9 Average rank

Logistic 4 8 7 1 7 7 4 3 2 4.78(4)

Tent 3 3 5 3 8 6 6 7 3 4.89(7)

Chebyshev 2 2 2 8 4 3 8 8 6 4.78(4)

Circle 6 6 4 4 3 2 2 2 1 3.33(2)

Cubic 5 1 8 7 2 1 7 5 5 4.56(3)

Gauss 8 5 3 2 5 4 3 6 7 4.78(4)

ICMIC 1 4 1 5 1 5 5 1 4 3(1)

Sinusodial 7 7 6 6 6 8 1 4 8 5.89(8)

Table 4 Mean and standard deviation (±SD) of the benchmark functions optimization results (N = 30)

Functions HS IHS GHS SGHS LAHS MHS–PCLS

Sphere

AE 5.3069e+00 1.0468e+01 2.6845e+00 1.7795e−08 5.9674e−04 5.4654e−14

SD 7.4936e−01 7.6135e+00 2.1878e+00 5.1326e−09 5.0773e−04 6.2150e−14

Schwefel’s2.22

AE 8.1786e−01 3.1314e−01 1.9975e−01 4.1256e−04 9.9346e−02 2.8306e−08

SD 7.3159e−02 2.2349e−01 1.5791e−01 8.0259e−05 7.7078e−02 1.0236e−08

Rosenbrock

AE 1.4510e+03 2.7902e+04 3.5423e+03 1.9681e+02 5.1163e+02 2.5882e+01

SD 5.3936e+02 1.0400e+05 1.1570e+03 5.1644e+02 1.1242e+03 3.7270e−01

Step

AE 4.5333e+00 3.4466e+01 5.2333e+00 0.0000e+00 2.3600e+01 0.0000e+00

SD 1.4772e+00 1.8396e+01 4.0470e+00 0.0000e+00 9.3152e+00 0.0000e+00

Rotated hyper-ellipsoid

AE 4.8224e+02 2.1861e+03 8.5693e+02 1.0278e+01 1.3843e+03 4.9226e+00

SD 2.8087e+02 1.2219e+03 5.3388e+02 5.3209e+00 1.1275e+03 2.5088e+00

Schwefel’s2.26

AE 1.7123e+01 2.5574e+01 1.1254e+01 2.5526e−03 3.6695e+01 1.1844e+01

SD 3.6494e+00 1.2954e+01 7.2627e+00 3.6296e−03 2.1410e+01 2.4275e+01

Rastrigin

AE 1.8478e+01 5.2389e+00 2.9195e+00 2.5526e−01 7.8715e+00 6.3579e+00

SD 2.6731e+00 1.9833e+00 1.7135e+00 4.2642e−01 2.0172e+00 4.0371e+00

Ackley

AE 1.1678e+00 1.3712e+00 7.1344e−01 8.0726e−05 1.4502e+00 1.6906e−07

SD 1.8113e−01 3.4720e−01 4.1747e−01 1.3596e−05 3.0848e−01 7.8367e−08

Griewank

AE 1.0480e+00 1.1249e+00 8.8290e−01 7.7119e−02 9.7241e−01 9.2931e−13

SD 6.9077e−03 1.3627e−01 1.9029e−01 4.6151e−02 2.2036e−01 6.6629e−13

Bold values indicate the best results

to the other methods. The possible reason is that the number
of FEs for all methods are the same.

Wilcoxon’s sum rank test

To judge whether the results obtained with the MHS–
PCLSalgorithmdiffer from the results of the other algorithms
in a statistically significant manner, a nonparametric statis-

tical test called Wilcoxon’s rank sum test for independent
samples was conducted. The significance level was set to
5%. The P-values for the compared HS variants over all nine
benchmark functions are provided in Table 6. In Table 6,
the P-values in each row are calculated through the rank
sum between the algorithm that obtained the best solutions
and the remaining algorithms; hence, NA appears when the
algorithms obtained the best solutions for the corresponding

123

J Intell Manuf (2019) 30:405–428 413

(a)

(c) (d)

(e) (f)

(b)

Fig. 5 Convergence graphs of the six compared algorithms on the nine benchmark functions. (f1 − f9)

123

414 J Intell Manuf (2019) 30:405–428

(g) (h)

(i)

Fig. 5 continued

Table 5 The mean computation
time of different methods (in s)

Functions HS IHS GHS SGHS LAHS MHS–PCLS

Sphere 0.996 1.166 0.945 1.190 1.159 1.207

Schwefel’s2.22 1.023 1.258 0.998 1.381 1.268 1.179

Rosenbrock 1.346 1.697 1.320 1.583 1.670 1.187

Step 1.019 1.589 0.960 1.263 1.318 1.185

Rotated hyper-ellipsoid 1.121 1.666 1.029 1.286 1.409 1.315

Schwefel’s2.26 1.099 1.614 1.047 1.302 2.190 1.306

Rastrigin 1.041 1.217 0.973 1.242 1.740 1.254

Ackley 0.984 1.219 0.983 1.252 1.809 1.302

Griewank 1.018 1.258 1.003 1.266 2.266 1.321

123

J Intell Manuf (2019) 30:405–428 415

Table 6 P-values calculated for Wilcoxon’s Rank Sum Test for all of the benchmark problems

P-values HS IHS GHS SGHS LAHS MHS–PCLS

f1 3.01797e−11 3.01986e−11 5.57265e−10 3.01986e−11 3.01986e−11 NA

f2 3.00287e−11 3.01986e−11 3.01986e−11 3.01986e−11 3.01986e−11 NA

f3 3.01986e−11 3.01986e−11 3.01986e−11 4.9426e−5 3.01986e−11 NA

f4 1.0239e−12 1.20192e−12 5.57275e−11 NA 1.10099e−12 NA

f5 3.01986e−11 3.01986e−11 3.01986e−11 1.47332e−7 3.01986e−11 NA

f6 3.01986e−11 3.01986e−11 3.01986e−11 NA 3.01986e−11 1.01761e−05

f7 2.98034e−11 2.98034e−11 2.83766e−10 NA 2.98034e−11 2.98034e−11

f8 3.01986e−11 3.01986e−11 3.01986e−11 3.01986e−11 3.01986e−11 NA

f9 3.01986e−11 3.01986e−11 3.01986e−11 3.01986e−11 3.01986e−11 NA

Table 7 The effect of HMS on
the mean and standard deviation
(±SD) of the benchmark
functions optimization results

Functions HMS = 10 HMS = 30 HMS = 50 HMS = 100

Sphere

AE 3.2874e−10 1.6606e−10 3.9858e−12 5.4654e−14

SD 2.7470e−10 9.8355e−11 1.7388e−12 6.2150e−14

Schwefel’s2.22

AE 5.8130e−06 5.5731e−06 7.3681e−07 2.8306e−08

SD 1.3821e−06 6.8044e−07 2.4299e−07 1.0236e−08

Rosenbrock

AE 2.5879e+01 2.5062e+01 2.4279e+01 2.5882e+01

SD 7.0459e−01 4.6574e−01 8.5616e−01 3.7270e−01

Step

AE 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

SD 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Rotated hyper-ellipsoid

AE 5.6082e+00 5.4184e+00 5.2482e+00 4.9226e+00

SD 8.0463e−01 1.0505e+00 2.2993e+00 2.5088e+00

Schwefel’s2.26

AE 3.4860e+01 6.8675e+00 5.1823e+00 1.1844e+01

SD 4.4215e+01 5.5398e+00 1.0182e+00 2.4275e+01

Rastrigin

AE 1.1584e+01 8.2604e+00 5.9857e+00 6.3579e+00

SD 3.5925e+00 1.5998e+00 3.7882e+00 4.0371e+00

Ackley

AE 3.3428e−06 4.3931e−06 7.1521e−07 1.6906e−07

SD 1.1532e−06 1.0233e−06 2.6728e−07 7.8367e−08

Griewank

AE 4.5470e−10 6.4505e−10 1.3215e−11 9.2931e−13

SD 1.7224e−10 4.0088e−10 5.4922e−12 6.6629e−13

Bold values indicate the best results

benchmark function. The differences between the algorithms
that obtained the best solutions and the other algorithms
and are considered as significant if the P-values are less
than 0.05. It can be observed from Table 6 that MHS–
PCLS achieved statistically superior performance compared
to all other HS variants for six out of nine benchmark func-
tions.

Effects of changing the parameters on the performance
of the MHS–PCLS

In this subsection, the effect of changing HMS, HMCR,

PAR, Np and Sl on the performance ofMHS–PCLS is inves-
tigated. Tables 7, 8, 9, 10 and 11 presents the effects of these
parameters on themean and standard deviation (±SD) of the
benchmark function optimization results with 30 indepen-

123

416 J Intell Manuf (2019) 30:405–428

Table 8 The effect of HMCR
on the mean and standard
deviation (±SD) of the
benchmark functions
optimization results

Functions HMCR = 0.8 HMCR = 0.9 HMCR = 0.99 HMCR = 0.995

Sphere

AE 9.8543e+03 2.3980e+01 1.0076e−12 5.4654e−14

SD 5.4926e+02 3.2123e+01 4.5427e−13 6.2150e−14

Schwefel’s2.22

AE 4.0852e+01 1.8232e+00 7.7842e−07 2.8306e−08

SD 6.5575e+00 1.4830e+00 2.9447e−07 1.0236e−08

Rosenbrock

AE 5.2437e+06 2.3805e+04 2.5050e+01 2.5882e+01

SD 3.9355e+05 1.6231e+04 4.9070e−01 3.7270e−01

Step

AE 9.1123e+03 3.1667e+01 0.0000e+00 0.0000e+00

SD 5.2181e+02 2.7813e+01 0.0000e+00 0.0000e+00

Rotated hyper-ellipsoid

AE 8.7276e+02 3.6876e+02 6.6023e+00 4.9226e+00

SD 1.1953e+02 2.2313e+02 1.3591e+00 2.5088e+00

Schwefel’s2.26

AE 6.9624e+03 5.4438e+03 4.7375e+01 1.1844e+01

SD 2.3512e+02 5.2434e+02 7.8563e+01 2.4275e+01

Rastrigin

AE 2.2770e+02 1.8915e+02 9.8764e+00 6.3579e+00

SD 1.4419e+01 8.1905e+00 4.1369e+00 4.0371e+00

Ackley

AE 1.4833e+01 2.1449e+00 3.8469e−07 1.6906e−07

SD 5.1367e−01 1.0296e+00 1.8205e−07 7.8367e−08

Griewank

AE 6.0339e+01 1.1837e+00 9.8573e−04 9.2931e−13

SD 7.4048e+00 4.2234e−01 2.9572e−03 6.6629e−13

Bold values indicate the best results

dent runs. It can be observed in Table 7 that the performance
of MHS–PCLS with a smaller HMS is inferior to that with
a larger HMS. This is because MHS–PCLS with a smaller
HMS has poor solutions diversity and can be easily trapped
into local minima. Thus, large value for HMS are suggested.
As indicated in Table 8, the performance difference ofMHS–
PCLS with different values of HMCR is significant, and the
greater the HMCR, the greater the performance. Therefore,
a large value of HMCR is recommended. Table 9 indicates
that there is no single choice for PAR, however, it seems that
using a relatively large value (such as PAR=0.5, 0.7 and 0.9)
improves the performance of MHS–PCLS. As illustrated in
Tables 10 and 11, Np and Sl have similar effects on the per-
formance of MHS–PCLS. It seems that moderate values of
Np and Sl are more suitable.

Constrained engineering design problems

In this section, the proposed MHS–PCLS algorithm is
applied to solve several constrained engineering problems.

These well-known examples have been previously solved
based on a variety of optimization techniques; hence, they
can be compared with the proposed approach and facilitate
validating the effectiveness and efficiency of this approach.
The parameter settings of MHS–PCLS are the same as in
“Numerical simulations and analysis” section.

Modified Deb’s heuristic constrained handling method

Before applying MHS–PCLS algorithm to solve constrained
engineering problems, the constraint handling method must
first be determined first. In general, constrained optimization
problems with m variables and n constraints can be stated as
follows:

Minimize : f (x), (8)

s.t.

⎧⎨
⎩
g j (x) ≤ 0, j = 1, 2 . . . , q
h j (x) = 0, j = q + 1, q + 2 . . . , n
LBi ≤ xi ≤ UBi , i = 1, 2, . . . ,m

(9)

where x = (x1, x2, . . . , xm) is the solution vector, f (x) is
the objective function, and g(x) and h(x) are the inequality

123

J Intell Manuf (2019) 30:405–428 417

Table 9 The effect of PAR on
the mean and standard deviation
(±SD) of the benchmark
functions optimization results

Functions PAR = 0.3 PAR = 0.5 PAR = 0.7 PAR = 0.9

Sphere

AE 2.6711e−01 1.2648e−28 2.6085e−20 5.4654e−14

SD 7.5112e−01 8.5432e−29 2.1217e−20 6.2150e−14

Schwefel’s2.22

AE 3.6107e−03 5.5647e−05 5.4847e−13 2.8306e−08

SD 6.7126e−03 1.6694e−04 2.2936e−13 1.0236e−08

Rosenbrock

AE 1.3792e+02 8.3970e+01 4.3455e+01 2.5882e+01

SD 1.4120e+02 2.4346e+01 2.6051e+01 3.7270e−01

Step

AE 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

SD 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Rotated hyper-ellipsoid

AE 6.5971e+00 4.9902e+00 5.0320e+00 4.9226e+00

SD 2.4016e+00 2.6189e+00 2.6154e+00 2.5088e+00

Schwefel’s2.26

AE 2.6332e+02 2.3606e+02 1.4117e+02 1.1844e+01

SD 1.6245e+02 9.3257e+01 7.4929e+01 2.4275e+01

Rastrigin

AE 2.2418e+01 2.0286e+01 1.4847e+01 6.3579e+00

SD 6.1212e+00 5.0753e+00 3.5205e+00 4.0371e+00

Ackley

AE 4.4757e−01 4.0856e−15 3.2138e−11 1.6906e−07

SD 3.4602e−01 1.7405e−15 8.4277e−12 7.8367e−08

Griewank

AE 2.5916e−03 7.3960e−04 4.3565e−06 9.2931e−13

SD 5.9860e−03 2.2188e−03 3.5425e−06 6.6629e−13

Bold values indicate the best results

and equality constraints, respectively. The values of LBi and
UBi are the lower and upper bounds of xi , respectively.

There is a variety of constraint-handling techniques for
constrained optimization problems (Mezura-Montes and
Coello 2011; Kramer 2010). Themarjority of these are based
on the penalty function method because of its simplicity.
However, even though the penalty function method is simple
and competitive in some numerical optimization problems,
defining the appropriate penalty parameters is significant
challenge, and it influences the feasible and infeasible solu-
tions severely. Deb (2000) proposed a parameter-less penalty
strategy. The primary idea of Deb’s method is to distinguish
infeasible and feasible solutions and to select a feasible solu-
tion or the relatively best infeasible solution. However, the
main drawback of this method is that it is prone to cause
premature convergence, probably owing to its strong prefer-
ence for feasible solutions. Mohamed and Sabry (2012) thus
proposed a modified Deb’s method to address this problem.
According to the new comparison rules, new improvised har-
monies can replace the harmonies stored in the HM if any
of the following rules are true:

1. The new improvised harmony is feasible and the corre-
sponding harmony in HM is infeasible.

2. The new improvised harmony and the corresponding
harmony in HM are both feasible; however, the new
improvised harmony has a smaller or equal fitness value
compare to the corresponding harmony in HM.

3. The new improvised harmony and the corresponding
harmony in HM are both infeasible; however, the new
improvised harmony has a smaller or equal overall con-
straint violation to the corresponding harmony in HM.

The overall constraint violation is calculated by the fol-
lowing steps: first, a tolerance ε is allowed for equality
constraints; the constraint violation of a decision vector or
an individual x on the j th constraint is calculated by

cv j (x) =
{

max(0, g j (x)), j = 1, 2, . . . , q
max(0, |h j (x)| − ε), j = q + 1, q + 2, . . . , n

(10)

Then, the overall violation of n constraints can be calculated
by:

123

418 J Intell Manuf (2019) 30:405–428

Table 10 The effect of Np on
the mean and standard deviation
(±SD) of the benchmark
functions optimization results

Functions Np = 2 Np = 5 Np = 10 Np = 20

Sphere

AE 1.1272e−08 5.4654e−14 3.7705e−13 8.7785e−11

SD 6.0015e−09 6.2150e−14 1.7537e−13 5.1068e−11

Schwefel’s2.22

AE 4.5824e−05 2.8306e−08 2.2555e−07 3.8521e−06

SD 1.5918e−05 1.0236e−08 9.8111e−08 1.3540e−06

Rosenbrock

AE 2.6173e+01 2.5882e+01 2.4697e+01 2.4935e+01

SD 9.8704e−01 3.7270e−01 1.0583e+00 1.6318e+00

Step

AE 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

SD 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Rotated hyper-ellipsoid

AE 6.4372e+00 4.9226e+00 3.0013e+00 1.0124e+01

SD 2.1531e+00 2.5088e+00 1.1954e+00 5.3263e+00

Schwefel’s2.26

AE 7.1063e+01 1.1844e+01 1.3805e+01 4.0673e+01

SD 5.8023e+01 2.4275e+01 2.7610e+01 5.1757e+01

Rastrigin

AE 8.8811e+00 6.3579e+00 7.8926e+00 1.2078e+01

SD 1.0540e+00 4.0371e+00 4.3271e+00 6.4664e+00

Ackley

AE 3.2621e−05 1.6906e−07 1.9604e−07 2.4986e−06

SD 1.0191e−05 7.8367e−08 2.7534e−08 8.0640e−07

Griewank

AE 1.7325e−08 9.2931e−13 1.0932e−12 1.5296e−10

SD 1.1555e−08 6.6629e−13 5.0678e−13 1.1771e−10

Bold values indicate the best results

cv(x) =
n∑
j=1

cv j (x) (11)

This simple modification can reduce the probability of
stagnation and help the algorithm to spread out and search
through the entire solution space. So this method is adopted
in MHS–PCLS to handle the constraints. To validate the per-
formance of the combined method for solving constrained
problems, several engineering design problems were tested
and the results are shown in the next sections.

Tension/compression string design problem

The tension/compression string design problem was first
introduced by Arora (2004), as illustrated in Fig. 6. In this
problem, the weight of a string is subject to constraints on
minimumdeflection, shear stress, surge frequency, and limits
on the outside diameter. The design variables are: the wire
diameter d(x1), the mean coil diameter D(x2) and the num-

ber of active coils P(x3). The mathematical model of this
problem can be found in “Appendix”.

This problem has been previously solved by GA through
the use of dominance-based tournament selection (DGA)
proposed by Coello and Montes (2002), an effective co-
evolutionary particle swarm optimization approach (CPSO)
proposed by He and Wang (2007a), hybrid particle swarm
optimization (HPSO) proposed by He and Wang (2007b),
co-evolutionary differential evolution (CDE) proposed by
Huang et al. (2007), improved harmony search (IHS) pro-
posed byMahdavi et al. (2007),hybrid Nelder-Mead simplex
search and particle swarm optimization (NM-PSO) proposed
byZahara andKao (2009), another improved harmony search
(IPHS) variant proposed by Jaberipour and Khorram (2010),
teaching and learning based optimization (TLBO) proposed
byRao et al. (2011), articial bee colony (ABC) algorithmpro-
posed by Akay and Karaboga (2012), upgraded articial bee
colony (UABC) algorithm proposed by Brajevic and Tuba
(2013), mine blast algorithm (MBA) proposed by Sadollah
et al. (2013), hybrid cuckoo search algorithm based on Solis
and Wets local search technique that relies on an augmented

123

J Intell Manuf (2019) 30:405–428 419

Table 11 The effect of Sl on
the mean and standard deviation
(±SD) of the benchmark
functions optimization results

Functions Sl = 2 Sl = 6 Sl = 10 Sl = 20

Sphere

AE 3.4108e−10 5.4654e−14 4.1557e−11 5.5604e−10

SD 2.0180e−10 6.2150e−14 4.2439e−11 2.2712e−10

Schwefel’s

AE 7.8994e−06 2.8306e−08 1.5502e−06 1.3837e−05

SD 4.2182e−06 1.0236e−08 3.7182e−07 5.3213e−06

Rosenbrock

AE 2.5589e+01 2.5882e+01 2.5274e+01 2.5092e+01

SD 1.1031e+00 3.7270e−01 9.1516e−01 3.9348e−01

Step

AE 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

SD 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

Rotated hyper-ellipsoid

AE 5.6852e+00 4.9226e+00 6.3221e+00 5.4973e+00

SD 3.3562e+00 2.5088e+00 9.5187e−01 1.6518e+00

Schwefel’s2.26

AE 2.3689e+01 1.1844e+01 5.1917e+01 5.5950e+01

SD 4.7375e+01 2.4275e+01 5.4944e+01 5.3369e+01

Rastrigin

AE 1.0791e+01 6.3579e+00 1.5703e+01 1.2607e+01

SD 5.8709e+00 4.0371e+00 5.4659e+00 5.2183e+00

Ackley

AE 4.1419e−06 1.6906e−07 1.3810e−06 8.4684e−06

SD 1.3733e−06 7.8367e−08 6.0305e−07 4.1550e−06

Griewank

AE 1.0549e−09 9.2931e−13 5.3670e−11 2.9475e−09

SD 6.4970e−10 6.6629e−13 2.3278e−11 1.2390e−09

Bold values indicate the best results

Lagrangian function for constraint handling (HCS-LSAL)
proposed by Long et al. (2014), social spider optimization
(SSO-C) proposed by Cuevas and Cienfuegos (2014), and
adaptive firefly algorithm (AFA) proposed by Baykasoğlu
and Ozsoydan (2015). These algorithms are also used to dis-
cuss thewelded beam design problem and the pressure vessel
design problem. A comparison of the best solution among
these algorithms is given in Table 12. The results obtained
by the compared methods are taken from the previous litera-
ture. It should be noted that the results obtained by NM-PSO
are infeasible because the first two constraints were violated.

The statistical results of 30 independent runs obtained
by the considered methods and MHS–PCLS are presented
in Table 13. As can be observed in Table 13, MHS–PCLS
obtained the function value 0.0126652 in every independent
run with 10,000 function evaluations. MBA required only
7650 function evaluations to obtain the function value of
0.012665; however, its performance was less robust than
MHS–PCLS from the perspective of statistics. The per-
formance of TLBO is virtually the same as MHS–PCLS,
whereas the performances of other algorithms such as ABC,

Fig. 6 The tension/compression string design problem

CPSO, HPSO, CDE, and SSO-C are less robust than MHS–
PCLS with more function evaluations.

123

420 J Intell Manuf (2019) 30:405–428

Welded beam design problem

The welded beam design problem was first proposed by
Coello (2000). The aim of the problem is to design a welded
beam that has minimum cost subject to constraints on shear
stress(τ), bending stress in the beam (σ), buckling load on
the bar Pc, end deflection of the beam (δ), and side con-
straints. There are four design variables: h(x1) , l(x2), t (x3)
and b(x4), as illustrated in Fig. 7. The mathematical model
of this problem can be found in “Appendix”.

A comparison of the best solutions given by the men-
tioned algorithms is presented in Table 14. A comparison
of the statistical results is given in Table 15. The best solu-
tion was obtained by NM-PSO with an objective function
value of 1.724717 after 80,000 function evaluations, whereas

the best solution obtained by MHS–PCLS was 1.724852
with only 10,000 function evaluations. From Table 15, it
can be observed that the performance of MHS–PCLS was
more stable than the other algorithms and the mFEs of
MHS–PCLS were less than the other algorithm, except for
TLBO.

Pressure vessel design problem

In the pressure vessel design problem, proposed by Kan-
nan and Kramer (1994), the aim is to minimize the total cost,
which consists of thematerial, forming cost andwelding cost.
A cylindrical vessel is capped at both ends by hemispherical
heads, as displayed in Fig. 8. There are four design variables:
Ts(x1, thickness of the shell), Th(x2, thickness of the head),

Table 12 Comparison of the best solution obtained by various algorithms for the tension/compression spring design problem

Methods x1(d) x2(D) x3(Pb) g1(x) g2(x) g3(x) g4(x) f (x)

DGA 0.051989 0.363965 10.890522 −1.3e−5 −2.1e−5 −4.061 −0.723 0.0126810

CPSO 0.051728 0.357644 11.244543 −8.45e−4 −1.3e−5 −4.051 −0.727 0.0126747

HPSO 0.051706 0.357126 11.265083 −3.07e−6 1.4e−6 −4.055 −0.727 0.0126652

CDE 0.051609 0.354714 11.410831 −3.9e−5 −1.8e−4 −4.048 −0.729 0.0126702

NM-PSO 0.051620 0.355498 11.333272 0.001 0.001 −4.061 −0.729 0.0126302

IHS 0.051154 0.349871 12.076432 0.000000 −7.0e−6 −4.027840 −0.736572 0.0126706

IPHS 0.051861 0.360858 11.050339 −2.1963e−6 −2.8408e−7 −4.061873 −0.724854 0.0126658

ABC 0.051749 0.358179 11.203763 −0.000000 −0.000000 −4.056663 −0.726713 0.012665

UABC 0.051691 0.356769 11.285988 −0.000000 −0.000000 −4.053886 −0.727694 0.012665

MBA 0.051656 0.355940 11.344665 0 0 −4.052248 −0.728268 0.012665

HCS-LSAL 0.051689 0.356718 11.28896 −6.4e−6 −3.9e−6 −4.054 −0.728 0.0126652

SSO-C 0.051689 0.356718 11.28896 −6.4e−6 −3.9e−6 −4.054 −0.728 0.0126652

AFA 0.051667 0.356198 11.319561 −3.99e−5 2.42e−5 −4.054 −0.728 0.0126653

MHS–PCLS 0.05168918 0.35672077 11.288788 −2.2128e−10 −4.5078e−11 −4.0538 −0.7277 0.0126652

Bold values indicate the best results

Table 13 Comparison of the
statistical results of various
algorithms for the
tension/compression spring
design problem

Algorithms Best Mean Worst Std N FE T ime(s)

DGA 0.0126810 0.0127420 0.0129730 5.90e−05 80, 000 −
CPSO 0.0126747 0.0127300 0.0129240 5.20e−04 200, 000 −
HPSO 0.0126652 0.0127072 0.0127190 1.58e−05 81, 000 −
CDE 0.0126702 0.012703 0.012790 2.70e−05 204, 800 −
NM-PSO 0.0126302 0.0126314 0.0126330 8.74e−07 80, 000 −
ABC 0.012665 0.012709 NA 0.012813 30, 000 −
UABC 0.012665 0.012683 NA 3.31e−05 15, 000 −
TLBO 0.012665 0.01266576 NA NA 10000 −
HCS-LSAL 0.0126652 0.0126683 0.0126764 5.37e−07 150, 000 −
MBA 0.012665 0.012713 0.012900 6.30e−05 7650 −
SSO-C 0.012665233 0.012764882 0.012867917 9.29e−5 25, 000 −
AFA 0.0126653 0.0126770 0.0127117 1.28e−5 50, 000 −
MHS–PCLS 0.0126652 0.0126652 0.0126652 3.6008e−11 10, 000 1.238

Bold values indicate the best results

123

J Intell Manuf (2019) 30:405–428 421

Fig. 7 Welded beam design problem

Table 14 Comparison of the
best solution obtained by
various algorithms for the
welded beam problem

Methods x1(h) x2(l) x3(t) x4(b) f (x)

DGA 0.205986 3.471328 9.020224 0.206480 1.728226

CPSO 0.202369 3.544214 9.048210 0.205723 1.728024

HPSO 0.205730 3.470489 9.036624 0.205730 1.724852

CDE 0.203137 3.542998 9.033498 0.206179 1.733462

IHS 0.20573 3.47049 9.03662 0.20573 1.7248

IPHS 0.20573 3.47049 9.03662 0.20573 1.7248

ABC 0.205730 3.470489 9.036624 0.205730 1.724852

UABC 0.205730 3.470489 9.036624 0.205730 1.724852

MBA 0.205729 3.470493 9.036626 0.205729 1.724853

NM-PSO 0.205830 3.468338 9.036624 0.205730 1.724717

SSO-C 0.2057296 3.470489 9.036624 0.205729 1.7248523

AFA 0.205730 3.470489 9.036624 0.205730 1.724852

MHS–PCLS 0.205730 3.470489 9.036624 0.205730 1.724852

Bold value indicates the best result

Table 15 Comparison of the
statistical results given by
various algorithms for the
welded beam problem

Methods Best Mean Worst Std N FE T ime(s)

DGA 1.728226 1.792654 1.993408 7.47e−02 80, 000 −
CPSO 1.728024 1.748831 1.782143 1.29e−02 200, 000 −
HPSO 1.724852 1.749040 1.814295 4.01e−02 81, 000 −
CDE 1.733461 1.768158 1.824105 2.22e−02 204, 800 −
ABC 1.724852 1.741913 NA 3.1e−02 30, 000 −
UABC 1.724852 1.724853 NA 1.7e−06 15, 000 −
TLBO 1.724852 1.72844676 NA NA 10,000 −
NM-PSO 1.724717 1.726373 1.733393 3.50e−03 80, 000 −
MBA 1.724853 1.724853 1.724853 6.94e−19 47, 340 −
SSO-C 1.7248523085 1.746461619 1.746461619 0.025729853 25, 000 −
AFA 1.724852 1.724852 1.724852 0.00 50, 000 −
MHS–PCLS 1.724852 1.724852 1.724852 8.11e−10 10,000 1.438

Bold values indicate the best results

123

422 J Intell Manuf (2019) 30:405–428

Fig. 8 Pressure vessel design problem

Table 16 Comparison of the best solution obtained by various algorithms for the pressure vessel design problem

Methods x1(Ts) x2(Th) x3(R) x4(L) g1(x) g2(x) g3(x) g4(x) f (x)

DGA 0.8125 0.4375 42.0974 176.6540 −2.01e−02 −3.58e−02 −24.7593 −63.3460 6059.9463

CPSO 0.8125 0.4375 42.0974 176.7465 −1.37e−06 −3.59e−04 −118.7687 −63.2535 6061.0777

HPSO 0.8125 0.4375 42.0984 176.6366 −8.80e−02 −3.58e−02 3.1226 −63.3634 6059.7143

CDE 0.8125 0.4375 42.0984 176.6376 −6.67e−07 −3.58e−02 −3.7051 −63.3623 6059.7340

NM-PSO 0.8036 0.3972 41.6392 182.4120 3.65e−05 3.79e−05 −1.5914 −57.5879 5930.3137

ABC 0.8125 0.4375 42.098446 176.636596 0.000000 −0.035881 −0.000226 −63.3634 6059.71433

UABC 0.8125 0.4375 42.098446 176.636596 0.000000 −0.035881 −0.00000 −63.3634 6059.71433

MBA 0.7802 0.3856 40.4292 198.4964 0 0 −86.3645 −41.5035 5889.3216

AFA 0.8125 0.4375 42.0984 176.636589 −8.8e−07 −3.58e−02 3.1839 −63.363 6059.71427

MHS–PCLS 0.8125 0.4375 42.098446 176.636596 −1.6928e−11 −3.59e−02 −1.7664e−05 −63.3634 6059.71433

Bold values indicate the best results

R(x3 , inner radius) and L(x4, length of the cylindrical sec-
tion of the vessel, not including the head). Among the four
variables, Ts and Th are integer multiples of 0.0625in; the
available thicknesses of rolled steel plates. R and L are con-
tinuous variables. The mathematical model of this problem
can be found in “Appendix”.

A comparison of the best solutions given by the men-
tioned algorithms is presented in Table 16. A comparison
of the statistical results is given in Table 17. The best solu-
tions obtained by NM-PSO and MBA are infeasible because
the first two design variables of NM-PSO and MBA are
not integer multiples of 0.0625. From Table 17, it can
be observed that MHS–PCLS and TLBO obtained more
stable results with less mFEs compared to the other algo-
rithms.

Speed reducer design problem

A speed reducer is part of the gear box of mechanical sys-
tems; it is also used for many other applications (Cuevas
and Cienfuegos 2014). The design of a speed reducer is
considered a challenging optimization problem in mechani-

cal engineering (Jaberipour and Khorram 2010). The aim of
this problem is to minimize the weight of the speed reducer
while considering constraints on the bending stress of the
gear teeth, surface stress, transverse deflections of the shafts,
and stresses in the shafts (see Fig. 9). The problem contains
seven variables: b(x1, face width), m(x2, module of teeth),
z(x3, number of teeth in the pinion), l1(x4, length of the first
shaft between bearings), l2(x5, length of the second shaft
between bearings),d1(x6, diameter of the first shaft), and
d2(x7, diameter of the second shaft).This is a mixed inte-
ger programming problem. The third variable x3(number of
teeth) is an integer value and all other variables are contin-
uous. The mathematical model of this problem is given in
“Appendix”.

A comparison of the best solutions compared to previ-
ous methods is presented in Table 18. Table 19 presents a
comparison of the statistical results obtained by the different
algorithms. The best solution of this problem was obtained
by DSS-DE, DELC and MAL-DE with an objective func-
tion value of 2994.471066. As can be seen in Table 19,
MHS–PCLS obtained similar results to DSS-DE, DELC and
MAL-DE with significant fewer mFEs.

123

J Intell Manuf (2019) 30:405–428 423

Table 17 Comparison of the
statistical results given by
various algorithms for the
pressure vessel design problem

Methods Best Mean Worst Std N FE T ime(s)

DGA 6059.9463 6177.2533 6469.3220 130.9297 80, 000 −
CPSO 6061.0777 6147.1332 6363.8041 86.45 240, 000 −
HPSO 6059.7143 6099.9323 6288.6770 86.20 81, 000 −
CDE 6059.7340 6085.2303 6371.0455 43.0130 204, 800 −
NM-PSO 5930.3137 5946.7901 5960.0557 9.161 80, 000 −
ABC 6059.714 6245.308 NA 205 30, 000 −
UABC 6059.71433 6192.116211 NA 204 15, 000 −
TLBO 6059.71433 6059.71434 NA NA 10, 000 −
MBA 5889.3216 6200.64765 6392.5062 160.34 70, 650 −
AFA 6059.71427 6064.33605 6090.52614 11.28785 50, 000 −
MHS–PCLS 6059.71433 6059.71434 6059.71439 1.28120e−05 10, 000 1.301

Bold values indicate the best results

Fig. 9 Speed reducer design problem

Case study: car side impact design

In this section, a case study of car side-impact design is inves-
tigated. A car side is a weak part of the entire car body.
According to a Chinese accident statistical report for the year
2007 (Zhou 2015), the proportion of casualties caused by
car side impact represented 36% of the total accident casu-
alties. Many countries have established their test standard
of car side impact. In this paper, the European Enhanced
Vehicle-Safety Committee (EEVC) side impact procedure
is used. The EEVC side impact procedure offers the low-
est safety standard for the dummy, including head injuries,
load in abdomen, pubic force and rib deflection. The main

objective of the design is to maintain the total weight min-
imized while additional constraints are addressed. These
constraints include load in the abdomen(g1), dummy upper
chest (g2), dummy middle chest (g3), dummy lower chest
(g4), upper rib deflection(g5), middle rib deflection (g6),
lower rib deflection (g7), pubic force (g8), velocity of V-
Pillar at middle point (g9), and velocity of front door at
V-Pillar (g10). There are 11 decision variables. These are the
thicknesses of B-Pillar inner(x1), B-Pillar reinforcement(x2),
floor side inner(x3), cross members(x4), door beam(x5), door
beltline reinforcement(x6), roof rail (x7), material of B-Pillar
inner(x8), floor side inner (x9), barrier height(x10), and hit-
ting position (x11). The finite element model of a test case is

123

424 J Intell Manuf (2019) 30:405–428

Table 18 Comparison of the best solutions obtained by various algorithms for the speed reducer design problem

Methods x1 x2 x3 x4 x5 x6 x7 f (x)

DSS-DE 3.50000000 0.700000 17.0000000 7.300000 7.715319 3.350214 5.286654 2994.471066

DELC 3.50000000 0.700000 17.0000000 7.300000 7.715319 3.350214 5.286654 2994.471066

HEA-ACT 3.500022 0.700000 17.00001 7.300427 7.715377 3.350230 5.286663 2994.499107

MDE 3.500010 0.700000 17 7.300156 7.800027 3.350221 5.286685 2996.356689

MAL-DE 3.50000000 0.700000 17.0000000 7.300000 7.715319 3.350214 5.286654 2994.471066

ABC 3.499999 0.7 17 7.3 7.8 3.350215 5.287800 2994.471066

UABC 3.50000 0.7 17 7.3 7.715320 3.350215 5.286654 2997.058412

MBA 3.50000000 0.700000 17.0000000 7.300033 7.715772 3.350218 5.286654 2994.482453

SSO-C 3.50000000 0.700000 17.0000000 7.30001 7.71532 3.35021 5.28665 2996.113298

AFA 3.50000000 0.700000 17.0000000 7.302489 7.800067 3.350219 5.286683 2996.372698

MHS–PCLS 3.50000000 0.700000 17 7.30000 7.7153199 3.3502146 5.2866545 2994.471068

Bold values indicate the best results

Table 19 Comparison of the
statistical results given by
various algorithms for the speed
reducer design problem

Methods Best Mean Worst Std N FE T ime(s)

DSS-DE 2994.471066 2994.471066 2994.471066 3.6e−12 30, 000 −
DELC 2994.471066 2994.471066 2994.471066 1.9e−12 NA −
HEA-ACT 2994.499107 2994.613368 2994.752311 7.0e−02 40,000 −
MDE 2996.256689 2996.367220 NA 8.2e−03 24000 −
MAL-DE 2994.471066 2994.471066 2994.471066 0.00 120, 000 −
ABC 2997.058 2997.058 NA 0.00 30, 000 −
UABC 2994.471066 2994.471072 NA 5.98e−06 15, 000 −
TLBO 2996.34817 2996.34817 NA 0 10, 000 −
MBA 2994.482453 2996.769019 2999.652444 1.56e+00 6300 −
SSO-C 2996.113298 2996.113298 2996.113298 0.00 25, 000 −
AFA 2996.372698 2996.514874 2996.669016 0.09 50, 000 −
MHS–PCLS 2994.471068 2994.471077 2994.471106 7.142949e−06 10, 000 1.606

Bold values indicate the best results

Fig. 10 The finite element model of the car side impact design (Gan-
domi et al. 2013a)

illustrated in Fig. 10. Gu et al. (2001) developed the response
surface model (RSM) of the objective function and the con-

straints based on the Latin hypercube sampling method. The
mathematical model of this problem is provided in “Appen-
dix”.

In this case study, the result obtained by MHS–PCLS
is compared with PSO, DE, GA, firefly algorithm (FA)and
cuckoo search algorithm (CS). The results of these algo-
rithms are taken from the previous literature (Gandomi et al.
2011, 2013a). The simulations were conducted with 20,000
FEs for all the algorithms. Because the number of indepen-
dent runs are not reported in Gandomi et al. (2011), Gandomi
et al. (2013a), 30 independent runswere conducted forMHS–
PCLS.The computation results are presented inTable 20.The
results confirm that the proposed MHS–PCLS can achieve
the best results in terms of Mean,Worst , and SD indexes.
Although MHS–PCLS cannot obtain the best result of Best ,
it has the minimum solution differences, which indicates that
it has the best robustness. It can be concluded that the MHS–
PCLS is competitive and more robust compared to PSO, DE
GA, FA, and CS in solving this complex design problem.

123

J Intell Manuf (2019) 30:405–428 425

Table 20 Statistical results of
the car side impact design
example by different methods

Methods PSO DE GA FA CS MHS–PCLS

x1 0.50000 0.50000 0.50005 0.50000 0.50000 0.50004

x2 1.11670 1.11670 1.28017 1.36000 1.11643 1.11640

x3 0.50000 0.50000 0.50001 0.50000 0.50000 0.50003

x4 1.30208 1.30208 1.03302 1.20200 1.30208 1.30230

x5 0.50000 0.50000 0.50001 0.50000 0.50000 0.50000

x6 1.50000 1.50000 0.50000 1.12000 1.50000 1.50000

x7 0.50000 0.50000 0.50001 0.50000 0.50000 0.50000

x8 0.3450 0.3450 0.34994 0.3450 0.3450 0.34499

x9 0.19200 0.19200 0.19200 0.19200 0.19200 0.19215

x10 −19.54935 −19.54935 10.3119 8.87307 −19.54935 −19.5690

x11 −0.00431 −0.00431 0.00167 −18.99808 −0.00431 0.19207

Best 22.84474 22.84298 22.85653 22.84298 22.84294 22.84361

Mean 22.89429 23.22828 23.51585 22.89376 22.85858 22.84501

Worst 23.21354 24.12206 26.240578 24.06623 23.25998 22.84906

SD 0.1507 0.34451 0.66555 0.16667 0.07612 0.0011

Time(s) − − − − − 1.739

Bold values indicate the best results

Conclusions

A parallel chaotic local search enhanced harmony search
(MHS–PCLS) algorithm was proposed in this paper. This
algorithm conducts a parallel chaotic local search from
several different initial points and thus reduces the sensi-
tivity of the initial chaotic maps. This mechanism provides
improved robustness in the search process. In the numerical
simulations, the performance of MHS–PCLS with different
chaotic maps was investigated. The ICMIC map performed
marginally better than the other maps. Several well-known
benchmark problems were tested, and the results confirmed
that MHS–PCLS achieved statistically superior performance
compare to the other HS variants with a significance level
at 5%. MHS–PCLS was further combined with a modified
Deb’s constraint handling method to adapt to constrained
optimization problems. The test results of several engineer-
ing design optimization problems and a complex case study
of car side impact design validated its effectiveness. MHS–
PCLS not only obtains competitive results compared to the
previous methods, but also requires fewer function evalua-
tions in the majority of cases.The proposed method is thus an
efficient solver in constrained optimization problems. In the
future, MHS–PCLS can be extended to solve engineering
design optimization problems involving expensive simula-
tion.

Acknowledgements The authors would like to thank the cloud system
in HUST for providing us the computing services. This research work is
supported by theNational Natural Science Foundation of China (NSFC)
under Grant Nos. 51435009, 61232008 and 51421062, and Youth Sci-
ence & Technology Chenguang Program of Wuhan under Grant no.
2015070404010187.

Appendix: Mathematical model of the design prob-
lems

1. Design of tension/compression spring

Minimize : f (x) = (x3 + 2)x2x
2
1 , (12)

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1(x) = 1 − x32 x3
71785x41

≤ 0

g2(x) = 4x22−x1x2
12566(x2x31−x41)

+ 1
5108x21

− 1 ≤ 0

g3(x) = 1 − 140.45x1
x22 x3

≤ 0

g4(x) = x1+x2
1.5 − 1 ≤ 0

(13)

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

2. Design of welded beam

Minimize : f (x) = 1.10471x21 x2
+ 0.04811x3x4(14.0 + x2), (14)

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = τ(x) − 13000 ≤ 0
g2(x) = σ(x) − 30000 ≤ 0
g3(x) = x1 − x4 ≤ 0
g4(x) = 0.1047x21+ 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0
g5(x) = 0.125 − x1 ≤ 0
g6(x) = δ(x) − 0.25 ≤ 0
g7(x) = 6000 − Pc(x) ≤ 0

(15)

123

426 J Intell Manuf (2019) 30:405–428

where τ(x) =
√

(τ
′
)2 + 2τ ′

τ
′′ x2
2R + (τ

′′
)2, τ

′ = 6000√
2x1x2

τ
′′ = MR

J ,M = 6000(14 + x2
2),R =

√
x22
4 + (x1+x3

2)2

J = 2{√2x1x2[x
2
2
12 + (x1+x3

2)2]}, σ(x) = 504000
x4x23

δ(x) = 2.1952
x23 x4

,Pc(x) = 64746.022(1 − 0.0282346x3)x3x34
0.1 ≤ x1 ≤ 2,0.1 ≤ x2 ≤ 10,0.1 ≤ x3 ≤ 10,0.1 ≤ x4 ≤ 2.

3. Design of pressure vessel

Minimize : f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x21 x4 + 19.84x21 x3, (16)

Subject to :

⎧⎪⎪⎨
⎪⎪⎩
g1(x) = −x1 + 0.0193x3 ≤ 0
g2(x) = −x2 + 0.00954x3 ≤ 0
g3(x) = −πx23 x4 − 4

3πx33 + 1296000 ≤ 0
g4(x) = x4 − 240 ≤ 0

(17)

where 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤
x4 ≤ 200.
4. Design of speed reducer

Minimize :
f (x) = 0.7854x1x

2
2 (3.3333x

2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x27) + 7.4777(x36 + x37)

+ 0.7854(x4x
2
6 + x5x

2
7) (18)

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = 27
x1x22 x3

− 1 ≤ 0

g2(x) = 397.5
x1x22 x

2
3

− 1 ≤ 0

g3(x) = 1.93x34
x2x46 x3

− 1 ≤ 0

g4(x) = 1.93x35
x2x47 x3

− 1 ≤ 0

g5(x) = [745(x4/x2x3)2+16.9×106]1/2
110x36

− 1≤0

g6(x) = [745(x5/x2x3)2+157.5×106]1/2
85x37

− 1≤0

g7(x) = x2x3
40 − 1 ≤ 0

g8(x) = 5x2
x1

− 1 ≤ 0

g9(x) = x1
12x2

− 1 ≤ 0

g10(x) = 1.5x6+1.9
x4

− 1 ≤ 0

g11(x) = 1.1x6+1.9
x5

− 1 ≤ 0

(19)

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x4 ≤ 3.9, 5.0 ≤
x4 ≤ 5.5.
5. Car side impact design

Minimize : f (x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 − 1.508x1(x
2
6 + x27)

+ 7.4777(x36 + x37) + 0.7854(x4x
2
6 + x5x

2
7) (20)

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = Fa = 1.16 − 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0
g2 = VCu = 0.261 − 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+0.080405x6x9 + 0.00139x8x11 + 0.00001575x10x11 − 0.32 ≤ 0
g3 = VCm = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7

+0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10
+0.00121x8x11 − 0.32 ≤ 0

g4 = VCl = 0.074 − 0.061x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.27x22 − 0.32 ≤ 0
g5 = �ur = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32 ≤ 0
g6 = �mr = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10

−9.98x7x8 + 22.0x8x9 − 32 ≤ 0
g7 = �lr = 46.36 − 9.9x2 − 12.9x1x8 + 0.1107x3x10 − 32 ≤ 0
g8 = Fp = 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x211 − 4 ≤ 0
g9 = VMBP = 10.58 − 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 − 9.9 ≤ 0
g10 = VFD = 16.45 − 0.489x3x7−0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x211 − 15.7 ≤ 0

(21)

where 0.5 ≤ x1 ∼ x7 ≤ 1.5, x8, x9 ∈ (0.192, 0.345),
−30 ≤ x10, x11 ≤ 30.

References

Abedinpourshotorban, H., Hasan, S., Shamsuddin, S. M., & As’ Sahra,
N. F. (2016).Adifferential-based harmony search algorithm for the

123

J Intell Manuf (2019) 30:405–428 427

optimization of continuous problems. Expert Systems with Appli-
cations, 62, 317–332

Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for
large-scale problems and engineering design optimization. Journal
of Intelligent Manufacturing, 23(4), 1001–1014.

Alatas, B. (2010). Chaotic bee colony algorithms for global numerical
optimization. Expert Systems with Applications, 37(8), 5682–
5687.

Al-Betar,M.A.,Awadallah,M.A.,Khader,A.T.,&Abdalkareem,Z.A.
(2015). Island-based harmony search for optimization problems.
Expert Systems with Applications, 42(4), 2026–2035.

Al-Betar,M.A.,Doush, I.A.,Khader,A.T.,&Awadallah,M.A. (2012).
Novel selection schemes for harmony search. Applied Mathemat-
ics and Computation, 218(10), 6095–6117.

Al-Betar, M. A., Khader, A. T., Geem, Z. W., Doush, I. A., & Awadal-
lah, M. A. (2013). An analysis of selection methods in memory
consideration for harmony search.AppliedMathematics andCom-
putation, 219(22), 10753–10767.

Arora, J. (2004). Introduction to optimum design. NewYork: Academic
Press.

Askarzadeh, A., & Zebarjadi, M. (2014). Wind power modeling using
harmony search with a novel parameter setting approach. Journal
of Wind Engineering and Industrial Aerodynamics, 135, 70–75.

Baykasoglu,A. (2012).Design optimizationwith chaos embedded great
deluge algorithm. Applied Soft Computing, 12(3), 1055–1067.

Baykasoğlu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm
with chaos for mechanical design optimization problems. Applied
Soft Computing, 36, 152–164.

Brajevic, I., & Tuba, M. (2013). An upgraded artificial bee colony (abc)
algorithm for constrained optimization problems. Journal of Intel-
ligent Manufacturing, 24(4), 729–740.

Castelli, M., Silva, S., Manzoni, L., & Vanneschi, L. (2014). Geometric
selective harmony search. Information Sciences, 279, 468–482.

Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for
engineering optimization problems. Computers in Industry, 41(2),
113–127.

Coello, C. A. C., & Montes, E. M. (2002). Constraint-handling in
genetic algorithms through the use of dominance-based tourna-
ment selection. Advanced Engineering Informatics, 16(3), 193–
203.

Cuevas, E., & Cienfuegos, M. (2014). A new algorithm inspired in the
behavior of the social-spider for constrained optimization. Expert
Systems with Applications, 41(2), 412–425.

Das, S., Mukhopadhyay, A., Roy, A., Abraham, A., & Panigrahi, B.
K. (2011). Exploratory power of the harmony search algorithm:
Analysis and improvements for global numerical optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 41(1), 89–106.

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of
the state-of-the-art. IEEE Transactions on Evolutionary Compu-
tation, 15(1), 4–31.

Deb, K. (2000). An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and Engi-
neering, 186(2), 311–338.

Dorigo,M., Birattari,M.,&Stützle, T. (2006). Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4), 28–39.

Eberhart,R.C.,Kennedy, J., et al. (1995).Anewoptimizer usingparticle
swarm theory. InProceedings of the sixth international symposium
on micro machine and human science, New York, NY (Vol. 1, pp.
39–43).

Enayatifar, R., Yousefi, M., Abdullah, A. H., & Darus, A. N. (2013).
Lahs: A novel harmony search algorithm based on learning
automata. Communications in Nonlinear Science and Numerical
Simulation, 18(12), 3481–3497.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed vari-
able structural optimization using firefly algorithm. Computers &
Structures, 89(23), 2325–2336.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013a). Cuckoo search
algorithm: A metaheuristic approach to solve structural optimiza-
tion problems. Engineering with Computers, 29(1), 17–35.

Gandomi, A., Yang, X. S., Talatahari, S., & Alavi, A. (2013b). Firefly
algorithm with chaos. Communications in Nonlinear Science and
Numerical Simulation, 18(1), 89–98.

Gandomi, A. H., Yun, G. J., Yang, X. S., & Talatahari, S. (2013c).
Chaos-enhanced accelerated particle swarm optimization. Com-
munications in Nonlinear Science and Numerical Simulation,
18(2), 327–340.

Gao, W. F., Liu, S. Y., & Huang, L. L. (2012). Particle swarm opti-
mization with chaotic opposition-based population initialization
and stochastic search technique. Communications in Nonlinear
Science and Numerical Simulation, 17(11), 4316–4327.

Gao, L. Q., Li, S., Kong, X., & Zou, D. X. (2014a). On the iterative
convergence of harmony search algorithm and a proposed modifi-
cation. Applied Mathematics and Computation, 247, 1064–1095.

Gao, K., Suganthan, P. N., Pan, Q. K., Chua, T. J., Cai, T. X., & Chong,
C. (2014b). Pareto-based grouping discrete harmony search algo-
rithm formulti-objective flexible job shop scheduling. Information
Sciences, 289, 76–90.

García-Torres, J. M., Damas, S., Cordón, O., & Santamaría, J. (2014).
A case study of innovative population-based algorithms in 3d
modeling:Artificial bee colony, biogeography-based optimization,
harmony search. Expert Systems with Applications, 41(4), 1750–
1762.

Geem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic
optimization algorithm: Harmony search. Simulation, 76(2), 60–
68.

Gu, L., Yang, R., Tho, C., Makowskit, M., Faruquet, O., Li, Y., et al.
(2001). Optimisation and robustness for crashworthiness of side
impact. International Journal of Vehicle Design, 26(4), 348–360.

He, Q., & Wang, L. (2007a). An effective co-evolutionary particle
swarm optimization for constrained engineering design problems.
Engineering Applications of Artificial Intelligence, 20(1), 89–99.

He, Q., & Wang, L. (2007b). A hybrid particle swarm optimization
with a feasibility-based rule for constrained optimization. Applied
Mathematics and Computation, 186(2), 1407–1422.

Hosseini, S. D., Shirazi, M. A., & Ghomi, S. M. T. F. (2014). Harmony
searchoptimization algorithm for a novel transportationproblem in
a consolidation network.EngineeringOptimization,46(11), 1538–
1552.

Huang, F. Z., Wang, L., & He, Q. (2007). An effective co-evolutionary
differential evolution for constrained optimization. Applied Math-
ematics and computation, 186(1), 340–356.

Jaberipour, M., & Khorram, E. (2010). Two improved harmony search
algorithms for solving engineering optimization problems. Com-
munications in Nonlinear Science and Numerical Simulation,
15(11), 3316–3331.

Jia,D., Zheng,G.,&Khan,M.K. (2011).Aneffectivememetic differen-
tial evolution algorithm based on chaotic local search. Information
Sciences, 181(15), 3175–3187.

Jordehi, A. R. (2015). Chaotic bat swarm optimisation (cbso). Applied
Soft Computing, 26, 523–530.

Kannan, B., &Kramer, S. N. (1994). An augmented lagrange multiplier
based method for mixed integer discrete continuous optimization
and its applications to mechanical design. Journal of Mechanical
Design, 116(2), 405–411.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (abc)
algorithm. Journal of Global Optimization, 39(3), 459–471.

123

428 J Intell Manuf (2019) 30:405–428

Kaveh, A. (2014). Chaos embedded metaheuristic algorithms. In
Advances in metaheuristic algorithms for optimal design of struc-
tures (pp. 369–391). Cham, Switzerland: Springer.

Koceski, S., Panov, S.,Koceska,N., Zobel, P.B.,&Durante, F. (2014).A
novel quad harmony search algorithm for grid-based path finding.
International Journal of Advanced Robotic Systems, 11, 144–155.

Kramer, O. (2010). A review of constraint-handling techniques for
evolution strategies. Applied Computational Intelligence and Soft
Computing, 2010, 1–11.

Kundu, S., & Parhi, D. R. (2016). Navigation of underwater robot based
on dynamically adaptive harmony search algorithm. Memetic
Computing, 8(2), 125–146.

Li, X., Qin, K., Zeng, B., Gao, L., & Su, J. (2016). Assembly sequence
planning based on an improved harmony search algorithm. The
International Journal of Advanced Manufacturing Technology
84(9), 2367–2380.

Long, W., Liang, X., Huang, Y., & Chen, Y. (2014). An effective
hybrid cuckoo search algorithm for constrained global optimiza-
tion. Neural Computing and Applications, 25(3–4), 911–926.

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved
harmony search algorithm for solving optimization problems.
Applied Mathematics and Computation, 188(2), 1567–1579.

Maleki, A., & Pourfayaz, F. (2015). Sizing of stand-alone photo-
voltaic/wind/diesel system with battery and fuel cell storage
devices by harmony search algorithm. Journal of Energy Storage,
2, 30–42.

Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.
N., Salcedo-Sanz, S., et al. (2013). A survey on applications of the
harmony search algorithm. Engineering Applications of Artificial
Intelligence, 26(8), 1818–1831.

Mezura-Montes, E., & Coello, C. A. C. (2011). Constraint-handling in
nature-inspired numerical optimization: Past, present and future.
Swarm and Evolutionary Computation, 1(4), 173–194.

Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization
based on modified differential evolution algorithm. Information
Sciences, 194, 171–208.

Moraglio, A., Togelius, J., & Silva, S. (2013). Geometric differential
evolution for combinatorial and programs spaces. Evolutionary
Computation, 21(4), 591–624.

Omran, M. G., & Mahdavi, M. (2008). Global-best harmony search.
Applied Mathematics and Computation, 198(2), 643–656.

Pan, Q. K., Suganthan, P. N., Tasgetiren, M. F., & Liang, J. J. (2010). A
self-adaptive global best harmony search algorithm for continuous
optimization problems. Applied Mathematics and Computation,
216(3), 830–848.

Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population
of the united states since 1790 and its mathematical representation.
Proceedings of the National Academy of Sciences, 6(6), 275–288.

Phatak, S., & Rao, S. S. (1995). Logistic map: A possible random-
number generator. Physical Review E, 51(4), 3670.

Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching-learning-
based optimization: A novel method for constrained mechanical
design optimization problems. Computer-Aided Design, 43(3),
303–315.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013).
Mine blast algorithm: A new population based algorithm for solv-
ing constrained engineering optimization problems. Applied Soft
Computing, 13(5), 2592–2612.

Sarvari, H., & Zamanifar, K. (2012). Improvement of harmony search
algorithm by using statistical analysis. Artificial Intelligence
Review, 37(3), 181–215.

Schuster, H. G., & Just, W. (2006). Deterministic chaos: An introduc-
tion. New York: Wiley.

Simon, D. (2008). Biogeography-based optimization. IEEE Transac-
tions on Evolutionary Computation, 12(6), 702–713.

Sivaraj, R., & Ravichandran, T. (2011). A review of selection methods
in genetic algorithm. International Journal of Engineering Science
and Technology, 1(3), 3792–3797.

Talatahari, S., Azar, B. F., Sheikholeslami, R., & Gandomi, A. (2012).
Imperialist competitive algorithm combined with chaos for global
optimization. Communications in Nonlinear Science and Numer-
ical Simulation, 17(3), 1312–1319.

Wang, Y., & Yao, M. (2009). A new hybrid genetic algorithm based
on chaos and pso. In IEEE International conference on intelligent
computing and intelligent systems, 2009. ICIS 2009. IEEE (Vol. 1,
pp. 699–703).

Wang, G. G., Guo, L., Gandomi, A. H., Hao, G. S., &Wang, H. (2014).
Chaotic krill herd algorithm. Information Sciences, 274, 17–34.

Yang, X. S., & Deb, S., (2009). Cuckoo search via lévy flights. In
World congress on nature and biologically inspired computing
2009. NaBIC 2009. IEEE (pp. 210–214).

Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Beck-
ington: Luniver press.

Yang, D., Liu, Z., & Zhou, J. (2014). Chaos optimization algorithms
based on chaotic maps with different probability distribution and
search speed for global optimization. Communications in Nonlin-
ear Science and Numerical Simulation, 19(4), 1229–1246.

Yassen, E. T., Ayob, M., Nazri, M. Z. A., & Sabar, N. R. (2015). Meta-
harmony search algorithm for the vehicle routing problem with
time windows. Information Sciences, 325, 140–158.

Yi, J., Gao, L., Li, X., &Gao, J. (2016a). An efficient modified harmony
search algorithmwith intersectmutation operator and cellular local
search for continuous function optimization problems. Applied
Intelligence, 44(3), 725–753.

Yi, J., Li, X., Xiao, M., Xu, J., & Zhang, L. (2016b). Construction
of nested maximin designs based on successive local enumeration
andmodified novel global harmony search algorithm.Engineering
Optimization, 1–20.

Yuan, X., Zhao, J., Yang, Y., & Wang, Y. (2014). Hybrid parallel chaos
optimization algorithm with harmony search algorithm. Applied
Soft Computing, 17, 12–22.

Zahara, E.,&Kao,Y. T. (2009). Hybrid nelder-mead simplex search and
particle swarm optimization for constrained engineering design
problems. Expert Systems with Applications, 36(2), 3880–3886.

Zarei, O., Fesanghary, M., Farshi, B., Saffar, R. J., & Razfar, M.
(2009). Optimization of multi-pass face-milling via harmony
search algorithm. Journal of Materials Processing Technology,
209(5), 2386–2392.

Zeng, B., & Dong, Y. (2016). An improved harmony search based
energy-efficient routing algorithm for wireless sensor networks.
Applied Soft Computing, 41, 135–147.

Zhao, F., Liu,Y., Zhang,C.,&Wang, J. (2015).A self-adaptive harmony
pso search algorithm and its performance analysis. Expert Systems
with Applications, 42(21), 7436–7455.

Zheng,Y. J., Zhang,M.X.,&Zhang,B. (2016).Biogeographic harmony
search for emergency air transportation. Soft Computing, 20(3),
967–977.

Zhou, Y. (2015). Analysis, improvement and application of differential
evolution (Unpublished doctoral dissertation). China: Huazhong
University of Science and Technology.

123

	Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization
	Abstract
	Introduction
	Previous work
	Proposed approach
	Chaotic sequence
	Basic HS algorithm
	Proposed MHS--PCLS algorithm
	HS algorithm with intersect mutation operator
	Parallel chaotic local search

	Numerical simulations and analysis
	Experimental setup
	Performance of MHS--PCLS with different chaotic maps
	Comparison of the optimization results and computation time among different methods
	Wilcoxon's sum rank test
	Effects of changing the parameters on the performance of the MHS--PCLS

	Constrained engineering design problems
	Modified Deb's heuristic constrained handling method
	Tension/compression string design problem
	Welded beam design problem
	Pressure vessel design problem
	Speed reducer design problem

	Case study: car side impact design
	Conclusions
	Acknowledgements
	Appendix: Mathematical model of the design problems
	References

