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Abstract This paper proposes a supervised sparsity-based
wavelet feature (SSWF) for the detection of bearing fault,
which combines wavelet packet transform (WPT) and sparse
coding. SSWF is extracted from vibration signals by four
main steps: (1) construct aWPTvector using the fault-related
WPT coefficients; (2) design a structured dictionary that
combines the signal characteristics and class information;
(3) use the dictionary to implement the sparse coding of the
WPT vectors, which can be solved by basis pursuit (BP) and
(4) calculate the SSWF from the sparse coefficients. Dur-
ing the process, WPT can detect the fault occurrence of the
bearing signal. Sparse coding based on a structured dictio-
nary can find a robust representation of the signal and at the
same time, integrate the class information. Therefore, SSWF
is able to stably and discriminatively reflect different fault
types, which indicates its potential in bearing fault diagno-
sis. Experiments on two bearing cases are conducted to verify
the advantages of SSWF in the detection of bearing faults.
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Introduction

Fault diagnosis and prognosis have received considerable
attentions because of their importance in preventing unex-
pected machinery breakdowns (Mortada et al. 2014; Aydin
et al. 2015; Shukla et al. 2015). Bearing defects are major
factors for a number of machinery failure in modern indus-
try, which have beenwidely studied in recent years. Vibration
signal based data-driven technology is the most commonly
used method for bearing fault diagnosis. To effectively mon-
itor and recognize the bearing condition, the challenge lies
in extracting reliable features from vibration data that are
usually disturbed by environment noise.

Time–frequency transform is a useful tool for extract-
ing bearing fault features because it provides a syntheti-
cal analysis of time and frequency information. Applying
time–frequency analysis appropriately is able to discover
the changing frequency knowledge over time. For rotating
machines, this information is also an effective tool to reveal
the periodic transient pulses resulting from bearing faults. A
number of time–frequency transforms have been developed,
including the short-time Fourier transform (Chandra and
Sekhar 2016), Hilbert–Huang transform (Siracusano et al.
2016) and wavelet transform (Li et al. 2015a, b). Among
these methods, wavelet transform is able to conduct a multi-
resolution analysis for signals with transient impulses. As a
result, it is more powerful than the others in bearing fault
diagnosis (Yan et al. 2014).

Wavelet packet transform (WPT) is a widely used wavelet
method, which has some quite attractive characteristics, such
as orthogonal, complete, and local properties (Coifman and
Wickerhauser 1992). Based on theWPT coefficients, a num-
ber of feature extraction methods are proposed to identify
different fault types of rolling element bearings, such as the
sub-frequency energy (Zarei and Poshtan 2007), the Kurto-
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sis value (Li et al. 2008) and the Rényi entropy (Bokoski and
Juricic 2012). These features are extracted in a certain pattern
to detect signal’s energy distribution or transient impulses.
Nonetheless, they cannot comprehensively reveal the struc-
ture of the signal, thus showing less effectiveness for some
modern machinery signals with various interference.

Sparse coding is a popular topic in recent years and has
received much attention in signal processing (Pavlidi et al.
2013), image processing (Yeganli et al. 2015) and computer
vision (Sui et al. 2015). A number of state-of-art fault diag-
nosis algorithms are proposed based on this novel signal
representation technique (He et al. 2016; Zhang et al. 2016).
The basic principle of sparse coding is that signal can be
expressed by a few columns, which are also called atoms,
from a specific dictionary. In most cases, two main steps
are needed to finish the representation, defined as dictionary
construction and coefficient solving. A direct way to design
a dictionary is using existing orthogonal basis, such as dis-
crete cosine transform basis and wavelets. Another way is
to learn a dictionary from the data, which is more compli-
cate but can better meet the requirements of the processing
data. Representative dictionary learning algorithms include
the locality constrained linear coding (Rahmani et al. 2016)
and k-singular value decomposition (Aharon et al. 2006). In
this study,we intended to extract fault features in a supervised
way, which means the dictionary should capture both data
character and class information. An efficient and effective
method is to organize the training samples in a class-guided
order to construct a structured dictionary as employed in
Wright‘s research (Wright et al. 2009). After the dictionary
design, we can achieve the sparse coefficients by any of the
two algorithms, includingmatching pursuit (MP) (Mallat and
Zhang 1993) and basis pursuit (BP) (Chen et al. 2001). MP
is famous for its fast convergence rate, whereas BP has the
benefits of super-resolution and better sparsity. In this study,
BP will be adopted to achieve more accurate results.

Inspired byWPTand sparse representation theory,we pro-
pose the supervised sparsity-based wavelet feature (SSWF)
for the diagnosis of rolling element bearings. The novel fea-
ture is extracted mainly by the following steps: (1) construct
a WPT vector using the fault-related WPT coefficients; (2)
design a structured dictionary that combines the signal char-
acteristics and class information; (3) use the dictionary to
implement the sparse coding of the WPT vectors, which
can be solved by BP and (4) calculate the SSWF from
the sparse coefficients. Details about the proposed feature
extraction method will be further described in “Method for
extracting SSWFs” section. As seen from the feature extrac-
tion process, SSWF benefits from three aspects. WPT can
detect the fault occurrence of bearing signals. The structured
dictionary integrates the class information with the signal
characters, rendering a supervised feature extraction process.
Sparse coding represents the signal in a robust way. These

advantages make SSWF representative and discriminative,
thereby exhibiting valuable properties in bearing fault recog-
nition.

The remainder of this paper is composed of the fol-
lowing parts. “Brief review of WPT” and “Sparse coding”
section review the WPT method and sparse representation
theory, respectively. “Method for extracting SSWFs” sec-
tion describes the detail process for extracting the proposed
SSWF. “Experiment results” section using two experiments
on rolling element bearings to verify the advantages ofSSWF.
“Conclusions” section provides the conclusions of the whole
study.

Brief review of WPT

WPT has a convenient implementation in practice with the
help of a low-pass filter h(k) and a high-pass filter g(k).
The filters are designed based on ψ(t) and φ(t) by Eq. (1),
which are called the wavelet function and scaling function,
respectively (Mallat 1989).

φ(t) = √
2

∑

k

h(k)φ(2t − k)

ψ(t) = √
2

∑

k

g(k)φ(2t − k), (1)

where
∑

k h(k) = √
2 and

∑
k g(k) = 0. An intuitive

demonstration of the WPT results is illustrated in Fig. 1.
The mathematical expression is

d j+1,2n =
∑

m

h(m − 2k)d j,n

d j+1,2n+1 =
∑

m

g(m − 2k)d j,n, (2)

where j represents the decomposition level, n indicates the
node index, and m denotes the coefficient length.

Sparse coding

Signal sparse representation

The definition of sparse representation explains that an input
x can be represented by a dictionary A as Eq. (3),

x = As =
n∑

j=1

a j s j , (3)

where s = [s1, s2, . . . , sn]T are the coefficients for the
dictionary. The sparsest coefficient set can be obtained by
searching for the solution with the minimum nonzero ele-
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Fig. 1 Demonstration of a 3-level WPT

ments number. Mathematically, the optimization can be
written as

argmin
s

‖s‖0, s.t. x = As, (4)

where‖·‖0 is the l0 norm, representing the number of nonzero
elements in a vector.

Coefficients solving

Solving Eq. (4) exactly is difficult because of the NP-hard
problem (Amaldi andKann 1998). In practice, people change
the l0 optimization to Eq. (5) to seek for an approximate
solution.

argmin
s

‖s‖1, s.t. x = As, (5)

‖s‖1 indicates the l1 norm defined by Eq. (6).

‖s‖1 :=
N−1∑

n=0

|s(n)|. (6)

Equation (5) is called BP (Chen et al. 2001), which is an
effective method for solving sparse coefficients. Generally,
the vibration signal of mechanical equipment measured from
sensors inevitablely contains some noise, which makes the
solution to the basis pursuit denoising (BPD) problem (Eq.
(7)) is more useful in practise (Gunn et al. 2002),

argmin
s

‖x − As‖22 + λ‖s‖1, (7)

where ‖x‖22 := ∑N−1
n=0 |x(n)|2, and λ is the Lagrange multi-

plier.
The BP and BPD problems can be solved by several

algorithms, like the gradient projection sparse reconstruction
(GPSR) (Figueiredo et al. 2007), interior-point method (Kim
et al. 2007), fast iterative-shrinkage thresholding algorithm
(FISTA) (Beck and Teboulle 2009) and split variable aug-
mentedLagrangian shrinkage (SALSA) (Afonso et al. 2010).
In this study, the SALSA algorithm is employed because of
its efficiency and simplicity. In the SALSA framework, the

unconstrained problem in Eq. (7) is replaced by a constrained
optimization [(Eq. (8)] using variable splitting,

argmin
s,u

‖x − Au‖22 + λ‖u‖1, s.t. s − u = 0, (8)

where u represents a created new variable. This problem can
be solved using the following update procedure (Mateos et al.
2010).

u(k+1) = argmin
u

λ‖u‖1 + μ

2
‖u − s(k) − d(k)‖22,

s(k+1) = argmin
s

1

2
‖x − As‖22 + μ

2
‖u(k+1) − s − d(k)‖22,

d(k+1) = d(k) − (u(k) − s(k)). (9)

k denotes the iteration index and μ represents the penalty
parameter.

Method for extracting SSWFs

Features extracted from WPT coefficients are widely used
in machinery fault diagnosis because WPT is able to detect
fault-related impulses embedded in bearing signals (Gao and
Yan 2006). Nevertheless, these features are lack of class label
information, which is quite helpful in fault identification.
To improve the recognition accuracy, this study proposes
the SSWF obtained from sparse coding with WPT-based
structure dictionaries (i.e. the dictionary atoms have cor-
respondence to the class labels), which indicates the new
feature can combine the class label and the signal character-
istics, thus providing more discriminative information. Our
method includes the following parts: WPT-based band selec-
tion and SSWF extraction.

WPT frequency band selection

Considering a set of WPT subbands {w(1), w(2), . . . w(m)},
the average energy of w(i) can be expressed as

e(i) = Ei

Etotal
=

(∑l
j=1 w(i)( j)2

)
/ l

∑m
i=1

((∑l
j=1 w(i)( j)2

)
/ l

) , (10)

where, l is the subband length. The boundary of the selected
subbands can be determined when e(i) attenuates from the
peak to a threshold for the first time. The threshold is set
at 5% in the current study. Considering the case shown in
Fig. 2, the left boundary is 7 and the right boundary is 10,
which indicates subbands 7–10 contains the major vibration
information of the signal. In practice, the final range should
be determined by the union of all fault-related subbands to
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Fig. 2 Energy distribution of a WPT spectrum

comprehensively present useful frequency information. The
selected WPT bands of a signal are arranged as a column
vector as:

x = [w1
s , w2

s , . . . , wk
s ]T , (11)

where wi
s (i = 1, 2, . . . , k) are subbands selected from the

signal.

SSWF calculation

To obtain the SSWF, a structured dictionary need to be con-
structed based on WPT signatures associated with the class
labels. Supposing we have c classes of subjects, the dictio-
nary A is designed as:

A = [A1, A2, . . . , Ac], (12)

where Ai is the subset of the training WPT vectors from
class i . For a selectedWPT vector x from a signal, the sparse
representation ŝ can be solved by Eq. (6). Then, x can be
represented as:

x ≈ Aŝ = A1s1 + A2s2 + · · · + Acsc (13)

More intuitively, the eqnarray can be illustrated in Fig. 3.
It can be seen that x can be approximately described by
the linear combination of atoms and coefficients. A larger
coefficient indicates the atom plays more important role in
representing the original signal. Ideally, most of the coeffi-
cients are zero except those associated with a specific class,
which the signal belongs to. In that case, the coefficients will
have the ability to discard the unrelated data and preserve the
class information. Accordingly, we propose a novel feature
formulated by the sum of absolute value of the coefficients

Fig. 3 Sparse representation of a signal by a structured dictionary

corresponding to a certain class, which can be regarded as
an indicator for the similarity between the signal and class.
Mathematical description is presented in Eq. (14).

fi =
ni∑

j=1

|si ( j)| = ‖si‖1 (14)

Combination of fi for all the classes is the SSWF proposed
in this study.

SSWF = [ f1, f2, . . . , fc] (15)

Thewhole process can be summarized inFig. 4. SSWFhas
the following merits in theory: (1) WPT helps find the fault
impulses of the signal; (2) the structured dictionary integrates
the class information with the signal characters, rendering a
supervised feature extraction process and (3) sparse coding
represents the signal in a robust way. These advantages make
SSWF outperform most traditional WPT features in bearing
fault diagnosis, which will be proved by the following engi-
neering case.

Experiment results

We verify the performance of SSWF on two bearing cases.
Features such as WPT subband energy, Kurtosis and Rényi
entropy are also calculated as a comparison.

Bearing case I

Data instruction

Firstly, we evaluate the SSWF using a benchmark bearing
dataset from the Case Western Reserve Lab (CWRU) (Lei
et al. 2008; Ding et al. 2015). The experimental setup is
shown in Fig. 5. Signals are collected by accelerometers
with a 12 kHz sampling frequency from the testing bearing,
which is located at the drive end. Bearings with 0.007-in.
single point faults at the outer raceway, inner raceway and
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Fig. 4 Procedure of SSWF extraction method

Fig. 5 Experimental apparatus in bearing case I

the rolling-elements are collected under four different motor
speeds. In total, three defective states and one healthy state
are used for the evaluation of SSWF. Typical waveforms of
different fault types are illustrated in Fig. 6. We collected
400 samples for each bearing health condition under differ-
entmotor speeds. The sample length is set at 1024. These 400
samples are randomly split into training and testing datasets,
each containing 200 samples. Considering there are 4 health
states, we will finally obtain a training dataset with 800 sam-
ples and a testing dataset with the same size.

Bearing case I subband selection

TheWPT decomposition level for this case is set at 4 and the
corresponding results are demonstrated in Fig. 7. Energy is
concentrated in subbands 7–10 for rolling-element defect, 7–
11 for inner-raceway and outer-raceway fault. Accordingly
(“WPT frequency band selection” section), the final subband
range is 7–11 for keeping the fault-related information as
much as possible.
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Fig. 6 Waveforms for different fault types in bearing case I

SSWFs for bearing case I

Based on the description in “SSWF calculation” section, we
construct the dictionary using the fault-related WPT sub-
bands of the training samples. Considering the 1024-point
sample signal, the data length of each subband should be
1024/24 = 64. The 5 selected subbands form a WPT vec-
tor with 64 × 5 = 320 points [Eq. (11)], thus achieving
a 320 × 800 dictionary A. The sparse coefficients can be
solved by SALSA [Eq. (9)] with λ = 0.04, μ = 2. Based on
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Fig. 7 WPT results of four health conditions in bearing case I: a rolling-elements defect; b inner-raceway defect; c outer-raceway defect and
d healthy

the coefficients, SSWF is obtained by Eq. (15). The dimen-
sion of SSWF is coincident with the class number c = 4.
Intuitive demonstration of each dimension of SSWFs for
the training samples can be found in Fig. 8. It is clearly
presented that SSWF has quite regular distribution. Each
dimension highlights a certain health state, which indicates
the SSWF can be regarded as an indicator of the similar-
ity between the sample signal and a certain class in the
structured dictionary. Therefore, with a well construct dic-
tionary and a stable representation (sparse coding), SSWF
can definitely reveal the internal relationship of the signal
and different fault types, thus achieving a successful fault
recognition.

Classification evaluation

The final diagnosis result is presented in this part. For a
comprehensive evaluation, three widely used WPT-based
features, including subband energy (Zarei andPoshtan 2007),
Kurtosis (Li et al. 2008) andRényi entropy (Bokoski and Juri-
cic 2012), are calculated as a comparison. The classification
is conducted by the simple nearest neighbor classifier (Onan
2016), which implement the classification based on sample
distance in the feature space.

As discussed before (“Data instruction” section), the train-
ing and testing dataset are randomly constructed. To make
the result more convincing, the classification is conducted
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Fig. 8 SSWF features for bearing case I

Table 1 Classification error
rates (mean ±
standard-deviation %) for
different features of bearing
case I

Item SSWF Subband energy Kurtosis Rényi entropy

Healthy 0 0 0 0.06 ± 0.03

Rolling-element 0.06 ± 0.13 0.51 ± 0.22 0.74 ± 0.23 0.36 ± 0.33

Inner-raceway 0.1 ± 0.08 0.21 ± 0.14 1.27 ± 0.38 0.19 ± 0.11

Outer-raceway 0.15 ± 0.12 0.59 ± 0.18 1.35 ± 0.52 0.4 ± 0.19

Overall 0.43 ± 0.33 1.31 ± 0.27 3.36 ± 0.55 1.01 ± 0.44

Table 2 Wilcoxon test for the
classification result of bearing
case I

Item SSWF > Subband energy SSWF > Kurtosis SSWF > Rényi entropy

Significance level 3.97 × 10−4 3.97 × 10−4 0.0043

repeatly for 50 times using different randomly constructed
dataset. The recognition error rates are reported in Table 1,
which tells that the SSWF is superior to the other three fea-
tures with the lowest error rate in the recognition of all kinds
of fault types. Besides, to conduct a more convincing evalua-
tion, we use the Wilcoxon test (Wilcoxon 1945) to check the
significance of the result as listed in Table 2. The significance
level of all the comparisons is lower than 0.05%, which fur-
ther confirms the proposed SSWF performs better than the
subband energy, Kurtosis and Rényi entropy features.

Bearing case II

Data instruction

To highlight the advantages of the SSWF, another set of bear-
ingswas experimentedusing the apparatus inFig. 9.Different
defects are set in the test bearings as illustrated in Fig. 10.
During the experiment, the motor speed was set at 900, 1200,
1350 and 1450 rpm for each test. Signals are collected by
accelerometers with the sample frequency set at 10 kHz. Fig-

ure 11 presents waveforms for different health states. We can
see that noise corruption of this case is heavier than bearing
case I, especially for the rolling-element defect with weak
regularity of fault-induced impulsive information. The train-
ing and testing datasets are formed by the approach similar
to Bearing case I. Each dataset contains 800 samples with
the signal length set at 1024.

Bearing case II subband selection

This set of signals are decomposed by WPT in three lev-
els, resulting in 23 = 8 subbands with 128 points each. The
WPT results of signals under different health conditions are
demonstrated in Fig. 12, which shows the fault-related sub-
bands are roughly in the range 3–8.

SSWFs for bearing case II

Realign the 6 selected subbands to construct a 768-point
WPT vector, thus achieving a 768 × 800 dictionary A. The
sparse coefficients are solved by SALSA [Eq. (9)] with
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Fig. 9 Experimental apparatus
in bearing case II

Fig. 10 Defectives in bearing case II: a rolling-element defect; b inner-raceway defect and c outer-raceway defect

0 0.02 0.04 0.06 0.08 0.1
−0.5

0

0.5

H
ea

lth
y

0 0.02 0.04 0.06 0.08 0.1
−1

0

1

B
al

l

0 0.02 0.04 0.06 0.08 0.1
−0.5

0

0.5

In
ne

r

0 0.02 0.04 0.06 0.08 0.1
−0.5

0

0.5

O
ut

er

Time (s)

Fig. 11 Waveforms for different fault types in bearing case II

λ = 0.025, μ = 2.5. Based on the coefficients, SSWF is
obtained by Eq. (15). The dimension of SSWF is also 4 in
this case and intuitive demonstration of each SSWF dimen-
sion for the training samples can be found in Fig. 13. This

distribution is still with strong regularity like bearing case
I even under heavier noise corruption. Features from differ-
ent dimensions separate one health class from the others and
the variance within one class is small enough to achieve an
excellent fault classification. Again, this feature illustrates
the merits of strong stability and discriminability.

Classification evaluation

Again, the SSWF is compared with other traditional fea-
tures (subband energy, Kurtosis and Rényi entropy) using the
nearest neighbor classifier. The training and testing dataset
are still randomly constructed for 50 times as described in
“Classification evaluation” section. The classification error
rates are summarized in Table 3. In comparison, the SSWF is
still more effective than the others. which reaches the lowest
overall error rates 0.75%. As for the recognition for a certain
fault type, SSWF performs the best except for the diagnosis
of outer-raceway defect (the Rényi entropy makes no mis-
take). The Wilcoxon test result is shown in Table 4 with all
the significance level lower than 0.05%, which again proves
the superiority of SSWF in detecting bearing faults.
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Fig. 12 WPT results of four health conditions in bearing case II: a rolling-elements defect; b inner-raceway defect; c outer-raceway defect and
d healthy
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Fig. 13 SSWF features for bearing case II
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Table 3 Classification error
rates (mean ±
standard-deviation %) for
different features of bearing
case II

Item SSWF Subband energy Kurtosis Rényi entropy

Healthy 0 0 1.07 ± 0.54 0.51 ± 0.22

Rolling-element 0.36 ± 0.28 0.62 ± 0.28 0.93 ± 0.30 0.45 ± 0.15

Inner-raceway 0.26 ± 0.21 0.31 ± 0.09 0.91 ± 0.39 0.3 ± 0.12

Outer-raceway 0.13 ± 0.1 0.45 ± 0.16 0.15 ± 0.13 0

Overall 0.75 ± 0.3 1.38 ± 0.18 3.06 ± 0.83 1.26 ± 0.22

Table 4 Wilcoxon test for the
classification result of bearing
case II

Item SSWF > Subband energy SSWF > Kurtosis SSWF > Rényi entropy

Significance level 2.97 × 10−4 1.77 × 10−4 0.0012

Discussions

This study proposes the SSWF for mechanical fault diagno-
sis, which can preserve the intrinsic vibration pattern of the
original signal and sparsely represents it in a robust way. The
SSWF can accurately reveal signal fault pattern by activating
the atoms from a specific class of the dictionary and dis-
card useless ones. The excellent performance in experiments
shows the stability and discriminability of SSWF, which can
be observed in Figs. 8 and 13 as well as the classification
accuracy of two cases.

The feature extraction algorithm can be conducted quite
efficiently. Take bearing case I for example, it takes about
0.01 s to extract the SSWFs on a workstation with dual-core
2.70GHz Athlon processors and 8GB of memory. This can
meet the requirement of real-time diagnosis. Besides, SSWF
is more robust to disturbance and has higher recognition rate,
which makes it quite competitive in modern machinery diag-
nosis.

In practical diagnosis of complex modern machines, more
advanced classifiers can be utilized for classification instead
of the nearest neighbor classifier, which is intended to high-
light the advantages of SSWF. Classifiers such as neural
network (Zhang et al. 2013; Wang and Cui 2013) and sup-
port vectormachine (Missoum et al. 2014) aremore powerful
than the nearest neighbor classifier in most cases, which can
help improve the recognition accuracy.

Conclusions

A novel supervised feature (SSWF) was proposed in this
paper for bearing fault diagnosis using WPT and sparse cod-
ing. SSWF is calculated from the sparse coefficients using a
specifically designed structured dictionary, which integrates
signal characteristics and class information. For a certain
sample, only the atoms related with the corresponding class
in the dictionary can be activated. Accordingly, SSWF can
reflect the internal relationship between the sample signal and

different classes in the structured dictionary and highlights
a certain health state. The clear and regular distribution of
SSWF illustrates its effectiveness in bearing fault diagnosis.
Moreover, the bearing experiments of SSWF in identify-
ing different fault types further proves its superiority, which
shows higher recognition rate than the other traditional fea-
tures, including WPT subband energy, Kurtosis and Rényi
entropy. All these advantages make SSWF attractive and
competitive for the detection of bearing fault in modern
industry.
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