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Abstract Mould level fluctuation (MLF) is one of the main
reasons for surface defects in continuously cast slabs. In
these study first, large scale mould level fluctuations has
been categorized in three different cases based on actual
plant data. Moreover, theoretical formulation has been inves-
tigated to better understand the underlying physics of flow.
Next, exploratory data analysis is used for preliminary inves-
tigation into the phenomenon based on actual plant data.
Finally, different classification algorithms were used to clas-
sify non-mould level fluctuation cases from MLF cases for
two different scenarios- onewhere all mould level fluctuation
cases are considered and in another where only a particular
case of mould level fluctuation is considered. Classification
algorithm such as recursive partitioning, random forest etc.
has been used to identify different casting parameters affect-
ing the phenomenon of mould level fluctuation. 70% of the
dataset used as training dataset and rest 30% as the testing
dataset. Prediction accuracy of these different classification
algorithms alongwith an ensemblemodel has been compared
on a completely unseen test set. Ladle change operation and
superheat temperature has been identified as process parame-
ters influencing the phenomenon of large scale mould level
fluctuations.

Keywords Continuous casting · Mould level fluctuation ·
Classification algorithm · Data mining · Random Forest

B Preetam Debasish Saha Roy
preetamdsr@gmail.com

1 Automation Division, Tata Steel, Jamshedpur 831005, India

Introduction

Continuous casting is the process by which molten metal is
solidified into semi-finished slab, billet or blooms for subse-
quent rolling in thefinishingmill. Previous to the introduction
of the continuous casting technology after solidification slabs
were stored in the yard and then taken to different location for
the subsequent hot rolling. In the continuous casting process
the whole process of casting, reheating and rolling process
becomes continuous, thus increasing productivity greatly. In
Tata Steel, Jamshedpur plant continuous casting technology
is used for thin slab casting currently. Slabs of width ranging
from 950–1700 mm and thickness of 57–72 mm are cast in
the current thin slab caster plant.

Moltenmetal is first brought from ladle furnace using ladle
and placed in the arm of the turret. Turret is used to alternate
between the two ladles, after all the molten metal in one is
drained to the tundish, next ladle is brought in its position.
Molten metal is poured from the ladle to the tundish using
a slide gate mechanism and shroud. Then from the tundish
molten metal transported to the mould using a stopper-rod
mechanism. Once the molten metal comes in contact with
the water-cooled copper plate, then molten metal solidifies
to form a thin shell around the mould. Drive rolls in the
lower part continuously withdraws the solidified shell from
the mould at a certain speed which is more or less equal to
the rate of incoming hot metal. This withdrawal speed of the
strand is known as the casting speed. Below the mould metal
shell passes through five more segments and finally through
the bending unit, before being cut into different slabs in the
shearingmachine. After exiting themould the solidified shell
supports the core liquid metal up to the metallurgical length,
where the whole slab is solidified (Fig. 1).

Mould powder is added to the top of the surface of the
mould to provide thermal and chemical insulation. These
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Fig. 1 Continuous casting process. 1 Ladle. 2 Stopper. 3 Tundish. 4
SEN. 5 Mould. 6 Roll support. 7 Turning zone. 8 SEN. 9 Bath level.
10 Meniscus. 11 Withdrawal unit. 12 Slab (Javurek 2008)

mould powder melts and floats on top of the free surface of
molten steel in the mould. At the same time the mould is also
oscillated continuously to facilitate striping of the solidified
metal shell from the mould wall and it also helps in uniform
distribution of the mould flux.

Initial solidification of themoltenmetal starts at themenis-
cus and the behaviour of the meniscus also effects the heat
transfer process down-stream, so the time dependent behav-
iour of the meniscus plays an important role in determining
the final quality of the product. Transient fluctuations of the
top free surface in the mould is known as mould level fluc-
tuation (MLF). Sudden fluctuations in the mould level can
be very detrimental as it interrupts the solidification process
and it can entrap the mould flux in the molten steel, leading
to surface defects in the final rolled product.

In literature, suddenfluctuations of themould level is asso-
ciated with the surface defects in the final product, but when
these fluctuations are very large, then mould flux entrapment
in the molten steel causes sudden change in width of the cast
slabs. These in turn can cause cobble in the mill, due to sud-
den increase in the thickness of the slab fed to the rolling
mill. In continuous casting operations as there is no interme-
diate point where these defective slabs can be diverted, so
it may cause cobble in the mill, causing interruption in the
entire production process. In thin slab caster (TSCR) facility
this problem was identified as one of the reasons of cobble in
mill. So, mould level fluctuations information captured from
Caster level-1 automation system was used to assign MLF
signal to a corresponding slab in caster level-2 system and
these information was sent to the mill level-2 system prior to

the slab being rolled. Upon receiving the MLF signal, mill
level-2 system increases the roll gap for smooth rolling oper-
ations, thus cobble can be avoided.

Objective of this study is to identify casting parame-
ters affecting these large mould level fluctuations in the
thin slab caster, so to better understand the phenomenon. In
this study first exploratory data analysis was used to under-
stand and identify different casting parameters that influence
the phenomenon of mould level fluctuations. Also theoret-
ical formulations about the fluid flow in the mould was
investigated to understand the underlying physics of flow.
Next, different classification algorithms were used to iden-
tifymajor process parameters influencing the phenomenon of
mould level fluctuation in thin slab caster facility, Tata Steel,
Jamshedpur plant. Classification algorithms based on 70%of
the datawere tested on the completely unseen rest 30%of the
data to verify the predictive accuracy of the models. More-
over, predictive accuracy of these classification algorithms
were compared along with stacked model where results of
all the other classification algorithms were considered.

Literature review

Due to the detrimental effect of mould level fluctuations on
the final rolled product, extensive research work has been
carried out academically and industrially to understand the
phenomenon properly. Thomas (2001) in his review of dif-
ferent aspects of continuous casting process, also mentions
the importance of shape of the top surface in determining the
final quality of the steel. Understanding time variant shape
of the top surface gives us better insight about the mould
level fluctuation phenomenon. Lee et al. (2012) compared
the metal level fluctuations phenomenon in the continuous
casting process with the “butterfly effect”, as mould level
fluctuations coupled with heat transfer process can cause
oscillation marks, cracks, tears or even breakouts. They also
emphasis on the limitation of the numerical models due to
the inherent chaotic conditions inside the mould. Singh et al.
(2011) also in their integrated approach of modelling con-
tinuous casting process, emphasis on the importance of the
considering tundish and caster simultaneously, rather than the
popular ‘silo’ based approach. Sometimes simultaneous fluid
flow simulations (considering turbulence effects) and control
system analysis is used for better control of the mould fluid
level (Suzuki 2004), but control of themould levelwas highly
sensitive to the spatial arrangement of the sensors leading
to inaccurate control in some areas. Such studies involving
industrial applications underline the importance of this phe-
nomenon in determining the final product quality.

Other authors utilised different experimental studies to
understand the different defects generated by MLF. Shaver
(2002) explored the possibility of measuring meniscus steel
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velocity with inexpensive nail board method. In this study
FFT analysis alongwith velocitymeasurementswere utilized
for better understanding of the defects generated due to flux
entrapment. Thomas (2013) in his extensive cover of fluid
flow phenomenon in the mould points out that severity of
the defects in case of large scale fluctuations in mould level,
which is of interest of present study.

In different studies upstream and downstream events have
been explored extensively to correlate these events to the
MLF phenomenon. Liu et al. (2012) used transient CFD sim-
ulation model with multiphase flow of steel and gas bubble
in the sub-merged entry nozzle (SEN) and in the mould to
study the effect of stopper rod movement on the mould fluid
flow. Results suggest significant disturbances of the menis-
cus occur during the movement of the stopper rod, resulting
in flux entrapment and formation of sliver defects in the final
product. In an another investigation by Liu et al. (2013) large
metal level sloshing was observed when dithering frequency
matched with the mould frequency. In these studies com-
parison of the numerical results with the plant data suggest
some dissimilarities which may be attributed to the turbu-
lent flow of liquid metal in the mould. Sudden flushing of
the inclusion deposits also has been pointed out as pos-
sible reason for mould level fluctuations by Girase et al.
(2007), mainly due to Al2O3 inclusions. This nozzle clog-
ging phenomenon also discussed in detail by Rackers and
Thomas (1995). Apart from these upstream events, down-
stream events like slab bulging has been reported as one of
the reasons for mould level fluctuations in different stud-
ies. Matsumiya (2006) suggested the case of unsteady slab
bulging, in which liquid metal is pushed up and down as
the bulged slab passes through different rollers in the down-
stream process. Furtmueller et al. (2005) suggested reduction
of the roll gaps and reduction of casting speed as possible
measures to tackle the problem of bulging. They also men-
tion the case of severe mould level fluctuations (Mould level
hunting) in a plant setting where casting has to be stopped.
While these studies provide great insight into particular phe-
nomenon, they do not encompass all the other factors that
may give rise to non-linear behaviour.

Others have explored complexflowphysics and heat trans-
fermechanism inside themould usingCFD and experimental
studies. Liu et al. (2011) studied the effect of stopper rod
movement on the transient flow phenomenon in the mould
and formation of sliver defects using 3D computational fluid
dynamic model. They also suggested mathematical model
for mould level using SEN flow rate, cast speed and other
casting parameters. Results of their simulations required a
less diffusive turbulence model to capture small scale tran-
sience. Hajari andMeratian (2010) studied fluid flow features
in a funnel shaped mould with tetra-furcated nozzle. Their
experimental investigation suggestedwhile gas injection aids
in increasing casting speed, it also increases the surface tur-

bulence. Although their study considers a thin slab casters
but the study is limited by the special nozzle design, which
can significantly affect flow physics inside the mould. Zhang
et al. (2007) suggested asymmetrical flow patterns during
transient events such as change in casting speed, change in
gas flow rate and ladle change as possible reasons for metal
level fluctuations. Effect of higher casting speed and SEN
submergence depth has also been investigated in their study.
Their study also suggests metal slag inclusion increases by
two fold during ladle change and it increases ten times during
the start and end of a sequence.

Effect of different transient operations has been explored
in detail by some studies and the ladle change operation has
been related to fluid flow in mould in some of these studies.
Kumar et al. (2007) developed an mould level fluctuation
index in an operational plant and the plant data suggests
deviation of the index from the optimum values during ladle
change and width change due to asymmetry in the flow. Gur-
soy (2014) investigates effect of different flow controllers on
the mould fluid flow including during ladle change. Their
study can be extended to consider effect of the transient fluid
flow and unsteady turbulent flow. Kant et al. (2013) investi-
gated the effect of dam position on intermixing in a six strand
billet caster during ladle change over. Results of the numer-
ical and experimental study suggests position of the dam in
the tundish plays crucial role in determining the liquid metal
flow from tundish to the mould.

In recent times different data mining techniques and arti-
ficial intelligence methods are being used to tackle the most
complicated problems in the steel industry. Tang et al. (2005)
propose a neural network method for hybrid flow shop
scheduling problem with dynamic job arrival consideration.
The neural network model consisted of three sub-network,
each corresponding to three different stages of steel making,
i.e. Steel making, refining and casting. Wang and Wu (2003)
investigate a mixed integer programming model for the case
of multi-period, multi-product, multi-resource production
scheduling problem. Nastasi et al. (2016) compared three
different genetic algorithms as applied to the multi-objective
storage strategy of an automated warehouse in steel industry.
They implement widely accepted statistical tests to estab-
lish the superior performance of the three genetic algorithms
over the previously used heuristic procedure. Ordieres-Meré
et al. (2008) discuss the performance of different linear
and non-linear learning algorithms for mechanical property
prediction of galvanized steel coils. Also, the effect of knowl-
edge based segmentation of the steel grades on the predictive
performance of this methods are also discussed. Sharafi and
Esmaeily (2010) used decision trees, neural networks, associ-
ation rules to predict pit and blister defects in low carbon steel
grades. de Beer and Craig (2008) used decision tree, fuzzy
logic, statistical regression to investigate an industrial online
model for width prediction. Colla et al. (2011) used deci-
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sion tree and rectangular basis function networks to predict
under pickling defects and suggest optimal speed or speed
range for the process line. While their study focuses on the
under pickling defects, incorporating over pickling defects in
the same model may alter the performance of the algorithms
considerably.

Theoretical formulation

Liu et al. (2011) modelled SEN inlet flow rate into the mould
based onmeasuredmould level and casting speed. According
to their mass-balance model,

QE (i) = h(i + 1) − h(i − 1)

2�t
×

(
W × T − πd2SEN

4

)

+ Vcast (i) ×W × T

where QE is the molten metal flow rate through the SEN,
h is the metal level in the mould, W is the width, T is the
thickness of the mould and Vcast is the casting speed, also
the index i denotes the particular time step.

Now, this equation can be modified as,

QE (i) = h(i + 1)−h(i)

�t
× (Am − ASEN )+Vcast (i) × Am

where Am = W × T is the mould cross sectional area and

ASEN = πd2SEN
4 is the area of the SEN nozzle. Now if we

write this equation in a slightly different way then we will
get,

h(i + 1) = h(i) + [QE (i) − Vcast (i) × Am]

(Am − ASEN )
�t

In this equation we further assume that the cross-sectional
area of the mould is much greater than the SEN cross-
sectional area, so

h(i + 1) = h(i) +
[
QE (i)

Am
− Vcast (i)

]
�t

From this formulation we can estimate metal level in the
mould and can get a better insight about the metal level
variation. According to the previous equation from one time
step to the next metal level in the mould increases by an
amount equal to QE (i)/Am − Vcast (i) × �t . So, this gives
us the intuition that metal flow rate through the SEN, cross-
sectional area of themould and cast speed are three important
parameters influencing the mould level fluctuation problem.
The current practice in implementation doesn’t differentiate
between the rise or fall of the mould level, so we should con-
sider the modulus of the term represented within parenthesis.

Current methodology

Inclusions during the casting processes can be classified into
two groups—indigenous and exogenous. Indigenous inci-
sions are by products of large scale steel making process,
which cannot be avoided. Exogenous inclusions are intro-
duced during molten metal transition from ladle furnace to
the caster and during the casting process itself. These exoge-
nous inclusions are more detrimental to the final quality of
product. While most of the research focuses on the surface
defects due to mould level fluctuations, large scale fluctua-
tions cause another problem. Due to material inclusion cast
slab thickness varies along the length of the slab, which may
cause cobble in the mill if roll gap is low. So, mould level
fluctuation information needs to be transferred to the mill
level-2 system prior to the slab being rolled. After getting
the information from the level-1 PLCs, in caster level-2 sys-
tem this signal of mould level fluctuation was assigned to the
particular slab and this information is sent to the mill level-2
system, so that mill cobble can be avoided.

Mould level is measured using a radioactive source. This
mould level data is recorded every 0.001 s. Whenever the
value of mould level fluctuates more than 10% of its value in
the previous time step, it is recognized as a large scale mould
level fluctuation, soMLF signal is generated. Supposemould
level is denoted by h and i denotes the time-step index, then
whenever h(i + 1) − h(i) > 0.1h(i), then MLF signal is
generated.

In Fig. 2, two cases have been compared, onewheremould
level fluctuation signal was generated and where no signal
was generated. To quantify mould level fluctuation a variable
MLF was created, where

MLF = h(i + 1) − h(i)

h(i)
× 100

Here h(i) denotes the value of the mould level captured in
caster level-2 from caster level-1. In this communication data
is captured every 2 s.

As we can see in Fig. 2a theMLF value never crosses the
critical limit of 10% in the time window considered, so no
MLF signal was generated, but in the second case when the
value of MLF signal exceeds the threshold limit of 10% a
MLF signal was generated.

Next, all the MLF slab data were collected from the mill
level-2 system for last three months of 2014. Preliminary
data analysis suggested relation betweenMMS (mould mon-
itoring system/breakout prediction system) alarm and MLF
slabs, as most of the MMS alarm cases were followed by a
sudden change in mould level value. This is an expected
result, because when a MMS alarm is generated, casting
speed is automatically slowed down to a speed below 1m/s
to prevent imminent breakout.
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Fig. 2 Visualization of mould level fluctuation and MLF signal a case
where no MLF signal was generated, b case where MLF signal was
generated

Fig. 3 Mould level fluctuation due to slow down after MMS alarm

Also these intuition can be visualised using above men-
tioned mathematical formulation. When a MMS alarm is
generated, casting speed is slowed down drastically, as we
can see in the Fig. 3 the casting speed has been reduced to
below 1 m/s from a value greater than 5 m/s. Due to this sud-
den decrease in the casting speed the term controlling metal
level also changes drastically. During slowdown although
casting speed is slowed down, the inlet steel flow rate is not
controlled simultaneously, so it takes times for the mould
level controlmechanism to regain control over themetal level
in the mould. So, almost all the cases of MMS alarm were
followed by an MLF signal.

Another case in connection with mould level fluctuation
needs to be considered is the lead heat case. Fromour analysis
we can exclude lead heat cases safely, as lead heat slabs are
not rolled for prime customers and also at the starting of a
sequence roll gap is kept larger in the rolling mills. So our
problem of sending theMLF signal and increasing roll gap is
taken care of by default. Other than this two cases, all other
cases of large scale mould level fluctuations are of particular
interest for this study. Remaining MLF cases are denoted as
true MLF cases in rest of this study. This true MLF cases are
of our prime interest, as the cause of this large scale mould
level fluctuations is not properly understood.

MLF signal characteristic

Next mould level values from the level-1 system were
analysed using signal analysis software IBA Analyser. In
level-1 mould level data is sampled at a frequency of 0.001s.
While observing these data, interesting featureswere noticed.
Particular type of MLF corresponded to a certain pattern of
variation in mould level data. These patterns explained in
Fig. 4. Let’s look at the three cases individually,

(a) In Fig. 4a a particular MLF case which was due to slow
down is shown. After a MMS alarm casting speed is
slowed down drastically (generally from above 5 m/s
to less than 1 m/s), but the inlet metal flow rate is not
adjusted, so a sudden fluctuation inmetal level is noticed.
In this case it takes time for the mould level controller to
gain stable control over the mould level. So, after a big
fluctuation some small fluctuations are noticed, before
the mould level becomes more or less stable. Also, in
this case due to slowdown while the outflow from the
mould is reduced but inflow is not reduced at the same
manner, so in general a sudden rise in the mould level is
observed.

(b) In Fig. 4b a particular MLF case which was a lead heat
(first heat of the sequence) case is shown.During the start-
ing of a sequence dummy bar is inserted in the mould to
support the liquid metal initially and it is slowly with-
drawn. During lead heat, due to initial turbulence of the
fluid flow in themould lot of large scale fluctuations were
noticed.

(c) In Fig. 4c a particular MLF case which is denoted as true
MLF case (up till now in this study) is shown. In this
particular cases of MLF only single large scale fluctua-
tions are noticed. Most of the true MLF cases analysed
show similar trend, indicating a particular reason for all
the cases. In all the cases a sudden drop in mould level
was observed, followed by a sudden jump in metal level.
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Fig. 4 Characteristic of mould level values for three different cases—a MLF signal after MMS alarm case, b Lead heat MLF case and c True
MLF case

Exploratory data analysis

In order to investigate the cause of large scale mould level
fluctuations for the true MLF cases, exploratory data analy-
sis was used. This mould level fluctuation can be caused
by different events such as nozzle clogging (Girase et al.
2007), unsteady bulging (Furtmueller et al. 2005) etc. Rea-
sons for deviation of mould level from the set-point values
can be divided in two categories mainly, (a) mechanical
transience from downstream and (b) fluid flow effects from
upstream. Mechanical transience includes slab shear cut,
unsteady bulging, oscillation effects etc. and flow related
fluctuations include nozzle clogging, nozzle submergence,
flow turbulence etc. Data for the month of January, 2015
was collected from data warehousing system IPQS for the
exploratory analysis. During data collection it was noticed
almost all the true MLF cases were in penultimate slab
of the heat, only in one cases it was the last slab of the
heat . Further exploration of the data suggested strong
linkage of the true MLF cases with the ladle change oper-
ation. So for the exploratory analysis focus was given to
upstream parameters that may affect the mould level fluc-
tuation.

Fig. 5 Comparison of standard deviation of the casting speed for the
cases of no MLF and true MLF

For the exploratory data analysis part 41 parameters were
considered like argon flow, ladle weight, casting speed, C%
in tundish, superheat temperature, tundish weight etc. Out of
the 41 process parameters lot of the variables wereminimum,
maximum and standard deviation of the same parameter dur-
ing casting of a particular slab. Now probability density plot
of these variables were plotted for both cases where no MLF
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Fig. 6 Comparison of first ladle weight for no MLF and true MLF
cases

Fig. 7 Comparison of last ladleweight for noMLF and trueMLF cases

signal was generated and where true MLF signal was gen-
erated. For this part of analysis the other two cases of MLF
were removed from the dataset as part of pre-processing to
solely focus on the true MLF cases.

Out of all the variables in some of the variables apprecia-
ble difference was noticed between true MLF and non-MLF
cases. Although the data set is highly imbalanced in favour
of Non-MLF cases. Some of these are explained in the fol-
lowing section.

In Fig. 5 standard deviation of the casting speed has been
compared for the cases where noMLF signal were generated
and true MLF were generated. For non-MLF cases standard
deviation of the casting speed is much smaller when com-
pared against true MLF cases. So, it gives us the intuition
that in case of true MLF there seems to be larger variation in
casting speed for a particular slab.

Next, in Figs. 6 and 7 ladle weight has been compared for
both the cases where non-MLF were generated and where
true MLF signal was generated. In particular two variables
were chosen from the IPQS- the first ladle weight, which
corresponds to the ladleweight at the start of the casting of the
particular slab and the last ladle weight, which corresponds
to the ladle weight at the end of the casting of a particular

Fig. 8 Comparison of standard deviation of the tundish weight for no
MLF and true MLF cases

slab. From this again we can corroborate the claim that all
the true MLF cases are generated during ladle change.

In Fig. 8, standard deviation of the tundish weight has
been compared for both the cases where no MLF signal was
generated andwhere trueMLFsignalwas generated. Figure 8
suggests a larger variation in tundish weight for true MLF
cases when compared against the non MLF cases. This is
also in accordance with our finding that trueMLF cases were
generated only during ladle change. During ladle change,
there is no incoming metal flow into the tundish, so tundish
weight decreases sharply and this change is also reflected in
the Fig. 8.

To conclude our results from the exploratory data analysis
we can say that all the trueMLF cases were generated during
ladle change. This finding is also in accordance with litera-
ture where Zhang et al. (2007) also found increase in metal
slag inclusion during ladle change. Also, Kumar et al. 2007
reported deviation of the mould level fluctuation index from
optimum value during ladle change for operational plant.
So, these reported cases of mould level fluctuation or slag
entrapment defects during ladle change operation gives us
confidence in our finding. Other than this, for trueMLF cases
the variation of casting speed was found to be more when
compared against non-MLF cases.

Classification approach

In this section we tackle the problem of large scale mould
level fluctuations using different classification algorithms,
commonly used in data mining. For this section of the study
and the plots generated in the preceding section open-source
statistical computing software R (R Core Team 2014) has
been used.

For this part of the analysis first data were collected from
the IPQS for the month of January, 2015. In total 41 vari-
ables were considered. Due to the transient nature of the
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continuous casting process, for some of the attributes vari-
ance with time is very important. So, to capture this inherent
temporal nature of the phenomenon minimum, maximum,
average and standard deviation over the period of casting of
one slab was considered for some of these variables. These
kind of variables included ladle shroud argon pressure, ladle
weight, casting speed, mould level, mass flow rate through
SEN (submerged entry nozzle), tundish weight, argon flow
rate, superheat temperature etc. Apart from these variables
two binary categorical variables like thickness change in
progress and width change in progress were also considered.
Other variables included C% in the steel, slab thickness and
width. As a part of data cleaning process NA (not available)
values were removed from the data set. As the standard devi-
ation of the ladle shroud argon flow rate contained almost
half of its values as NA, so it was removed from the dataset.
After data cleaning our data set contained 9437 observations
(each observation is a slab only) and total 40 predictor vari-
ables. For this initial part of the study no distinctionwasmade
between the different types of MLF.

Out of three different types of MLF cases, MLF after
MMS alarm cases and lead heat MLF cases are unavoidable
due to dependence on other systems and current operational
practices respectively. The true MLF cases are of primary
interest for this analysis, as assignable causes for these type
of cases are not fully understood. So to gain insight about the
true MLF cases from the earlier mentioned dataset other two
cases ofMLFwere excluded. Now the data set contains 9381
observations and 40 predictors consisting of only no MLF
and true MLF cases. Now this data set becomes even more
highly imbalanced, as there were only 12 trueMLF cases out
of this 9381 observations. Number of positive cases is less
than 1%. So, for this part of this analysis, synthetic minority
oversampling technique (SMOTE) algorithm (Torgo 2010)
was used on the data set to make it more balanced. The
SMOTE algorithm was set up for five time over-sampling
of the true MLF cases and for each over-sampling five near-
est data points were utilized. Also, for each over-sampling
case five NoMLF cases were randomly selected to complete
the dataset. After the applying SMOTE algorithm, in data set
20% of the cases were true MLF cases.

As a part of the preliminary analysis, the dataset was
explored to find patterns in the data that may explain anom-
alous cases of true MLF. First hierarchical clustering of the
dataset was performed with Euclidean distance measures. In
Fig. 9a, results of this clustering has been visualized as a
dendrogram (Galili 2015) against the class labels. True MLF
cases are represented as black against the greyNoMLFcases.
Results suggest that the No MLF and true MLF cases are
distributed over the entire range and true MLF cases are not
impacted by a particular subfamily. Similarly, classicalmulti-
dimensional scaling was performed on the dataset to reveal
underlying patterns in data structure.Multi-dimensional scal-

ing tries to preserve the between-object distances as well as
possible. As a pre-processing stage, all the attributes (except
two variables) of the data set was scaled to a mean value of
zero and standard deviation of 1. Two variables, i.e. thickness
change in progress and width change in progress were con-
sidered as binary categorical variables and no scaling was
performed. Figure 9b visualizes the results of this multi-
dimensional scaling in two dimensions. Although, some of
the true MLF cases are clustered together, but the rest of the
cases are not easily separable from the no MLF cases.

Along the same line Self-organizing mapping (SOM)
(Wehrens and Buydens 2007) was also explored to identify
hidden features in the data. Unlikemulti-dimensional scaling
which focuses on distance between data points, SOM focuses
on preserving the topology in lower dimensions. So, objects
that are close in two dimensional SOM projection are very
similar in multi-dimensional space as well. Results of SOM
are visualized in Fig. 10, where the left hand image shows
the count of data points in each node, right side image maps
these data points based on their class labels. Again, no clear
pattern emerges to distinguish true MLF cases from no MLF
cases.

In this section the training methodology for different clas-
sification algorithms are discussed that were utilized in this
study. Thewhole dataset was divided in two different groups-
training data and testing data. Training data contained 70%
of the total data, while testing data contained the rest. This
training data was used to train our dataset to different learn-
ing algorithms and results were validated using the test
dataset.

(a) rpart

First the rpart model is utilized with minimum bucket size
of zero and zero value for the complexity parameter. The
minimum bucket size denotes the minimum number of cases
in the leaf nodes and complexity parameter is representative
of the improvement of the accuracy of model at each split
at the cost of complexity. Also, tenfold cross-validation was
implemented on the training data set to train the rpart algo-
rithm. By implementing zero complexity parameter and zero
minimum bucket size complex tree is formed, which highly
prone to over-fitting the training data and thus performing
poorly in any unseen data. So, tree pruning is required for
the model to generalize well over whole data set. In Fig. 11,
cross-validation relative error on the training data set is plot-
ted against the tree size. As, the tree grows error decreases
initially, but after certain extent due to over-fitting the model
performs poorly on the validation set and thus error increases.
So, for tree pruning complexity parameter corresponding
to the lowest error rate was utilized for final model build-
ing.
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Fig. 9 a Hierarchical Clustering of the data with class labels, b classical MDS projection of the data set in two dimensions

Fig. 10 Self-organizing Map (SOM) projection

Fig. 11 Error rate for different tree sizes for rpart method

(b) Random Forest

Next, the Random Forest model is implemented to learn
the data set. At first, the algorithm is trained with 1000 trees.
Random forest algorithm uses bootstrap sampling (sampling

with replacement) of the data set and only a subset of the
attributes are used formodel building. For classificationprob-
lems square root of the total number of predictor variables
is the suggested value. So, the ‘mtry’ parameter was set at
6 (total number of predictors=40) in accordance with the
author’s (Chen et al. 2004) suggestion. In the random forest
algorithm 2/3rd of the data is used as training data for each
tree and rest 1/3rd data is used to estimate the out-of-bag
(OOB) error rate. In Fig. 12, OOB error is plotted against
the number of trees. From the Fig. 12 we can see that the
initially the OOB error rate is high and unstable but with
increasing number of trees, this OOB error decreases and
stabilizes closer to zero. So, for training of the final model
500 trees were used for the random forest learning.

(c) Gradient boosting method

Finally the gradient boosting using ‘gbm’ method was
implemented to learn the dataset. Before going further dif-
ferent tuning parameters of the model needs to be discussed.
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Fig. 12 Error rate for different tree sizes for Random Forest

Fig. 13 Accuracy for different set of tuning parameters for ‘gbm’

Minimum number of observation denote the lower limit of
the observations in the terminal node of any tree. Shrinkage
is representative of the learning rate of the algorithm. Lower
value signifies a model that learns slowly, while a higher
shrinkage value may result in poor performance. Number of
trees correspond to number of gradient boosting iterations.
Higher number of trees fit the training data well, but too
high value may lead to over-fitting. And, lastly interaction
depth denotes the maximum number of splits on a tree. To
tune these parameters a set of total 140 combinations were
selected. Results of these runs are visualized in the Fig. 13.
Based on these results optimal set of tuning parameters were
chosen for final model building stage.

For the first case, all three types of MLF were not consid-
ered separately. No categorization were performed based on
the type of MLF case. The first method to be applied is the
decision tree method using ‘rpart’ package (Therneau et al.
2014) in R. After training the model, it was used to predict
the results of testing data set to judge the predictive accuracy
of the model. In Fig. 14, result of this model has been visual-
ized using a decision tree. This decision tree suggests three

most important variables in classifying Non-MLF and MLF
cases are minimum casting speed, minimummould level and
first ladle weight. This findings are in agreement with our
previous findings. As no distinction was done between dif-
ferent MLF cases, and as most of MLF signals were due to
slowdown, minimum casting speed of less than 1 results in
MLF signal generation in 94% of the cases. Other important
variables are minimum mould level and first ladle weight.
Decrease of metal level in the mould below a certain point
also indicative of MLF signal. Lastly, the first ladle weight
splits the remaining cases. This is actually in accordancewith
our earlier findings about trueMLF cases, that happen during
the ladle change operation. First ladle weight below a certain
value indicative of the fact that at the start of casting for that
slab ladle weight was already low, and a ladle change was
impending.

Next two other learning algorithms—random forest (Liaw
and Wiener 2002) and gradient boosting method (Ridgeway
2015) was used to train the model and after model building
these models were validated on the unseen testing dataset.
Comparison of different models is summarized in Table 1.
Before delving further a brief description of the different
performance metrics would be required. Accuracy is the
proportion of the total cases that have been correctly classi-
fied, here both the positive and negative cases are considered
simultaneously. While Sensitivity (also known as Recall) is
the proportion of the positive cases (MLF cases in this case)
that has been correctly identified by the model, Specificity
denotes the proportion of the negative cases (no MLF cases)
that has been correctly categorized by the classification algo-
rithm. Positive predictive value (also known as Precision)
is the ratio of the total number of true positive to the total
number of predicted positive cases and similarly negative
predictive value is the ratio of the true negative to the total
number of predicted negative cases. Finally. for unbalanced
class classification problem F1 score is one of the important
evaluation metric. F1 score is representative of the improve-
ment of the model compared to the baseline case. F1 score
can be defined as,

F1 = 2× (Precision× Recall)

(Precision+ Recall)

For highly unbalanced classes baseline case is considered
where all the cases are predicted to belong to the majority
class in the training data. So, for the baseline case F1 score
will be zero as true positive cases are zero in this case. This
suggests a higher F1 score signifies improvement over the
baseline case.

As we can see for all the three methods accuracy achieved
on the dataset is quite high, but this gives a false impres-
sion about the actual accuracy of the models, due to highly
imbalanced nature of the dataset. Rather than the accuracy,
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Fig. 14 Classification tree of non-MLF cases and MLF cases based on January, 2015 data

Table 1 Comparison of different models on the testing data set for Non-MLF and MLF case classification

Model Sensitivity Specificity Pos Pred value Neg Pred value F1 Score Accuracy

Rpart 0.80 0.998932 0.842105 0.998577 0.61 0.9975

Random Forest 0.80 0.999288 0.888889 0.998578 0.84 0.9979

Gradient boosting method 0.80 0.999288 0.888889 0.998578 0.84 0.9979

Combined model 0.80 0.999288 0.888889 0.998578 0.84 0.9979

sensitivity and positive predictive values give us better pic-
ture about the accuracy of themodels. Sensitivity is defined as
the probability that the model will predict MLF given that it
is an actualMLF case and positive predictive value is defined
as the probability of actual MLF occurring when model has
predicted MLF. According to the table, all three algorithms
perform same in terms of sensitivity, while random forest and
gradient boosting algorithms give us the best performance in
terms of positive predictive value and accuracy.

Next, predictions from three of these models were used to
build a combined predictive model. For the model stacking
part results of the three different methods were used to pre-
dict MLF cases using generalized linear regression method.
Results of the combined model improves on the results of
rpart method, but it gives same accuracy as the random for-
est and gradient boosting algorithms. So, it suggests that for
this particular problem random forest and gradient boost-
ing algorithms performs the best, although there is scope for
improvement.

For the next scenario, only trueMLF cases are considered.
Other two types ofMLFcaseswere removed from thedataset.
Next, this new dataset is divided in training and testing set.
70% of the data was used as training set and rest was used
as test data to validate the models.

The first method to be applied is the decision tree method
using ‘rpart’ package. In Fig. 15, result of thismodel has been
visualized using a decision tree. This decision tree suggests
three most important variables in classifying Non-MLF and
true MLF cases are standard deviation of the ladle weight,
average slab superheat temperature and standard deviation
of the mould level. Standard deviation of the ladle weight
below a certain value separates 75% of the data as Non-MLF
caseswith 98% accuracy. Other important variables are aver-
age slab superheat temperature and standard deviation of the
mould level. At the second level minimum superheat tem-
perature below a certain limit separates 15% of the total data
set with 97% accuracy, suggesting strong relation between
superheat temperature and true MLF cases. Lastly, standard
deviation of the mould level splits the remaining cases.

Next, two other learning algorithms – random forest and
gradient boosting method (Ridgeway 2015) was used to train
the model and after model building these models were val-
idated using the testing dataset. Comparison of different
models is summarized in Table 2. According to Table 2, gra-
dient boosting algorithm gives best accuracy. Again, model
stacking was done using these three methods and true MLF
cases were predicted using generalized linear modelling.
Results show that model blending improves the result com-
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Fig. 15 Classification tree of non-MLF cases and true MLF cases based on January, 2015 data

Table 2 Comparison of different models on the testing data set for Non-MLF and true MLF case classification

Model Sensitivity Specificity Pos Pred value Neg Pred value F1 Score Accuracy

Rpart 0.7143 1.0000 1.0000 0.9375 0.83 0.9459

Random Forest 0.9048 1.0000 1.0000 0.9783 0.95 0.982

Gradient boosting method 0.9524 1.0000 1.0000 0.9890 0.98 0.991

Combined model 0.9524 1.0000 1.0000 0.9890 0.98 0.991

Table 3 Results of hypothesis testing of superheat temperatures between MLF cases and true MLF cases

Variable t-value p-value Lower limit Upper limit

Average slab superheat temperature 8.289 3.789e−06 9.901647 17.024695

Minimum slab superheat temperature 6.5106 3.857e−05 6.786213 13.684915

pared to rpart method and the random forest algorithm, but
fails to predict better than gradient boosting methods.

Based on the classification approach above, there seems to
be strong linkage between superheat temperature and large
scale mould level fluctuations during ladle change opera-
tion. To validate our intuition we conduct hypothesis test
on average superheat temperature and minimum superheat
temperature for two cases of non-MLF and true MLF. We
assume a null hypothesis that for both the cases this two
variables are not significantly different. Results from statis-
tical test are summarized in Table 3. These results suggest
there is significant difference in the values of average and
minimum slab superheat temperature for non-MLF and true
MLF cases.

In Fig. 16, difference in average superheat temperature
has been visualized for both the cases of non MLF cases and
true MLF cases. Shift of the mean to lower temperatures is
quite evident for the true MLF cases from the Fig. 16. Also,

Fig. 16 Comparison of average slab superheat temperature for noMLF
and true MLF cases

the results of t-test substantiate the claim that there is sig-
nificant difference in superheat temperature values for non
MLF and true MLF cases. So, along with ladle change oper-

123



J Intell Manuf (2019) 30:241–254 253

ation superheat temperature is one of the important process
parameters influencing large scale mould level fluctuations.
When Singh et al. (2012) numerically investigated the per-
formance of different tundish furniture based on residence
time parameters, they found that even small change in tundish
temperature significantly affects the fluid flow in the tundish.
In particular, non-isothermal consideration of the flow sug-
gested buoyant effect can shift the centre of the circulatory
flow in the tundish. This fluid flow feature in the tundish can
significantly affect the flow of liquid metal in the mould as
metal flow rate from tundish to mould is one of the important
initial conditions to this phenomenon.

Conclusion

In this study large scale mould level fluctuation in the thin
slab caster at Tata Steel, Jamshedpur plant has been analysed
using exploratory data analysis for knowledge discovery pur-
pose about the phenomenon and predictive accuracy of the
different classification algorithm in predicting mould level
fluctuation phenomenon is also compared.

1. Large scalemould level fluctuations in thin slab caster can
be classified in three distinct classes of—(a) mould level
fluctuations due to slowdown, (b) lead heat mould level
fluctuations and (c) mould level fluctuations during ladle
change operations. MLF during ladle change operations
are of prime importance for this study, as other two cases
are not avoidable due to operational practices.

2. Exploratory data analysis suggests variation of casting
speed, ladleweight (first and last) and variation of tundish
weight as most influencing parameters in case of true
MLF.

3. Classification of MLF (considering all three different
cases) and non-MLF cases using different classification
algorithms also substantiate our findings from the prelim-
inary exploratory work. This part of the study suggests
minimum casting speed, minimum mould level and first
ladle weight as three most important variables in classi-
fyingNon-MLF andMLF cases. Comparison of different
learning algorithms suggest random forest and gradient
boosting as the ones with highest accuracy.

4. Next, classification of true MLF and non-MLF cases
using different classification algorithms also confirms
our claim from the preliminary exploratory study. In
this case, ladle weight, average slab superheat temper-
ature and standard deviation of the mould level are three
most important variables in classifying Non-MLF and
true MLF cases. Model comparison of different learn-
ing algorithms suggest gradient boosting as the one with
highest accuracy.

5. Hypothesis test also suggest significant differencebetween
average and minimum superheat temperature for non
MLF cases and true MLF cases.

6. During ladle change operation tundish height decreases
quickly as there is no incoming source of hotmetal. At the
same time low superheat results in decrease in fluidity of
the molten metal in the mould. Both of which ultimately
result in lower molten metal flow rate into the mould.
That’s why with higher casting speeds liquid level in the
mould drops suddenly, before the mould level controller
increases stopper rod opening to compensate for drop in
liquid level in the mould. This phenomenon is charac-
terised by typical signature of true MLF cases, where a
sudden drop in metal level is noticed during ladle change
operations.
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