
J Intell Manuf (2018) 29:1715–1737
https://doi.org/10.1007/s10845-016-1210-5

Multi-objective optimization of machining and micro-machining
processes using non-dominated sorting teaching–learning-based
optimization algorithm

R. Venkata Rao1 · Dhiraj P. Rai1 · J. Balic2

Received: 25 August 2015 / Accepted: 16 March 2016 / Published online: 21 March 2016
© Springer Science+Business Media New York 2016

Abstract Selection of optimum machining parameters is
vital to themachining processes in order to ensure the quality
of the product, reduce themachining cost, increasing the pro-
ductivity and conserve resources for sustainability. Hence,
in this work a posteriori multi-objective optimization algo-
rithm named as Non-dominated Sorting Teaching–Learning-
Based Optimization (NSTLBO) is applied to solve the
multi-objective optimization problems of three machining
processes namely, turning, wire-electric-discharge machin-
ing and laser cutting process and two micro-machining
processes namely, focused ion beammicro-milling andmicro
wire-electric-discharge machining. The NSTLBO algorithm
is incorporated with non-dominated sorting approach and
crowding distance computation mechanism to maintain a
diverse set of solutions in order to provide a Pareto-optimal
set of solutions in a single simulation run. The results
of the NSTLBO algorithm are compared with the results
obtained using GA, NSGA-II, PSO, iterative search method
and MOTLBO and are found to be competitive. The Pareto-
optimal set of solutions for each optimization problem is
obtained and reported. These Pareto-optimal set of solutions
will help the decision maker in volatile scenarios and are
useful for real production systems.
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Introduction

Manufacturing is a process of converting raw material into
finish goods for the satisfaction of human needs. Manufac-
turing sector is mostly the largest contributor in the gross
domestic product of a nation that is an indicator of the
performance of an economy and a quantum of a nation’s
prosperity. However, manufacturing of goods and products
on a large scale has a negative impact on the ecology of our
planet. Directly, in the form of disposal of solid, liquid or
gaseous wastes generated as by-products of manufacturing
processes. Indirectly, in the form of consumption of energy
on a massive scale required to run these processes. How-
ever, in the recent times, stringent government norms and
public awareness has made it obligatory for manufacturing
industries to reduce their environmental footprint. This has
steered the manufacturing industries towards implementing
sustainable processes i.e. manufacturing products through
economically sound processes while conserving energy and
natural resources.

The fundamental challenge faced by the manufacturing
industry today is to achieve economic goals by increasing
the production rate, improving the quality of the product and
lowering the production cost and simultaneously reducing
its environmental impact through energy conservation, effi-
cientmaterial utilization and reduction in industrial waste. To
achieve these goals it is important to utilize themachine tools
to its fullest capabilities to achieve the best performance.

The performance of any machining process is signifi-
cantly influenced by its process parameters. Thus, select-
ing optimum combination of these process parameters is
essential for the success of the machining process. Determi-
nation of optimum combination process parameters of any
machining process requires comprehensive knowledge of the
process, empirical equations to develop realistic constraints,
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specification of machine tool capabilities, development of
practical optimization criteria, and knowledge of mathe-
matical and numerical optimization techniques. A human
process planner selects proper machining process parame-
ters using his own experience or machining tables. In most
of the cases, the selected parameters are conservative and far
from optimum. Selecting optimum combination of process
parameters through experimentation is costly, time con-
suming and tedious. These factors have maneuvered the
researchers towards applying numerical and heuristics based
optimization techniques for process parameter optimization
of machining processes.

In order to determine the optimum combination of process
parameters, researchers have applied traditional optimiza-
tion algorithms such as geometric programming, nonlinear
programming, sequential programming, goal programming,
dynamic programming, etc. (Mukherjee and Ray 2006). It
is observed that some advanced optimization algorithms
have also been applied by researchers for optimization of
machining processes (Chandrasekaran et al. 2010; Yusup
et al. 2012; Rao and Kalyankar 2014). Teimouri et al.
(2014) applied imperialist competitive algorithm for multi-
response optimization of ultrasonic machining process.
Mellal and Williams (2014) applied cuckoo optimization
algorithm and hoopoe heuristic for the optimization of
modern machining process. Yusup et al. (2014) applied
artificial bee colony (ABC) algorithm for optimization of
optimal machining control parameters of abrasive water jet
machining process. Zainal et al. (2014) applied glowworm
swarm optimization for optimization of cutting parame-
ters of end milling process. Mohanty et al. (2014) applied
multi-objective particle swarm optimization (MOPSO) algo-
rithm for multi-objective optimization of electric discharge
machining process.

Depending on the nature of the phenomenon simulated by
the algorithms, these population-based heuristic algorithms
can be classified into two principal groups: Evolutionary
Algorithms (EA) and swarm intelligence based algorithms.
However, all evolutionary and swarm intelligence based
optimization algorithms require common control parame-
ters like population size, number of generations, elite size,
etc. for their working. Besides the common control parame-
ters, different algorithms require their ownalgorithm-specific
parameters. For example, genetic algorithm (GA) uses muta-
tion rate and crossover rate; particle swarm optimization
(PSO) algorithm uses inertia weight, social cognitive para-
meters, maximum velocity; ABC algorithm uses number of
bees (scout, onlooker and employed) and limit; However,
the improper tuning of algorithm-specific parameters either
increases the computational effort or yields to local optimal
solution. In addition to the tuning of algorithm-specific para-
meters, common control parameters also need to be tuned
which further enhances the effort.

Considering this fact, Rao et al. (2011) have introduced
the teaching–learning-based optimization (TLBO) algorithm
that does not require any algorithm-specific parameters.
It requires only common control parameters like popu-
lation size and number of generations for its working.
The TLBO algorithm possesses excellent exploration and
exploitation capabilities, it is less complex and has also
proved its effectiveness in solving single-objective andmulti-
objective optimization problems. The TLBO algorithm has
been widely applied by optimization researchers in vari-
ous fields of engineering in order to solve continuous and
discrete optimization problems in mechanical engineering,
electrical engineering, civil engineering, computer science,
etc. (Rao 2015, 2016a, b). Jaya algorithm is also a powerful
algorithm-specific parameter-less algorithm but its multi-
objective version is not yet developed (Rao 2016a, b).

Li et al. (2014) proposed a multi-objective TLBO algo-
rithm for balancing of two sided assembly line with multiple
constraints. Yu et al. (2014) proposed an improved TLBO
algorithmwith feedback phase,mutation crossover operation
and chaotic perturbation mechanism to solve the numeri-
cal and engineering optimization problems. Kumar et al.
(2015) applied TLBO algorithm for parametric appraisal
and optimization of turning of CFRP composites using
a single point cutting tool. Chen et al. (2015) applied
TLBO algorithm with variable population scheme to arti-
ficial neural networks and global optimization. Zou et al.
(2014) proposed a multi-objective version of the teaching–
learning-based optimization (MOTLBO) algorithm. In order
to handle multiple objectives simultaneously a sorting and
ranking mechanism based on the non-dominance concept
and crowding distance was adopted. A current archive and
an external archive of solutions were maintained. The cen-
troid of the non-dominated solutions in the current archive
was selected as mean of the learners. Rao and Patel (2014)
applied an improved version of TLBO algorithm for solv-
ing multi-objective optimization problem using a weighted
sum approach. The concept of number of teachers, adaptive
teaching factor and learning through tutorial were proposed
to improve the performance of the TLBO algorithm. Simi-
lar work was reported by Patel and Savsani (2014) with the
addition of Friedman’s statistical test. Medina et al. (2014)
proposed a multi-objective variant of TLBO algorithm using
decomposition based approach. In the proposed algorithm
the solution was updated in three phases. In addition to
the teacher phase and learner phase a modified phase was
proposed with crossover and polynomial mutation which
requires tuning of crossover parameters and mutation dis-
tribution index for its working. Yu et al. (2015) proposed
a self-adaptive multi-objective TLBO (SA-MTLBO) algo-
rithm. The learners were allowed to select the mode of
learning self adaptively based on their levels of knowledge in
the classroom. Simulated binary cross-over and polynomial
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mutation strategies were used to improve the learners which
require tuning of cross-over parameters and mutation prob-
ability. Sultana and Roy (2014) proposed a multi-objective
version of TLBO algorithm by introducing the quasi oppo-
sitional based learning concept into the TLBO algorithm.
However, this algorithm requires specifying the jump rate for
opposite population jumping which is an algorithm-specific
parameter that requires tuning by the user.

Researchers have already proposed various multi-
objective versions of the TLBO algorithm. However, unlike
previously proposed multi-objective versions of TLBO algo-
rithm, “non-dominated sorting teaching learning based opti-
mization” (NSTLBO) algorithm proposed in this work does
not involve any algorithm specific parameters, requires only
two phases, does not use solution archives, is simple to apply
and requires less computational effort.

In the NSTLBO algorithm the non-dominance concept
andmechanism of crowding distance computation (Deb et al.
2002) is adopted to handle multiple objectives simultane-
ously. However, unlike Zou et al. (2014), in order to maintain
the simplicity of the algorithm neither the current archive
nor external archive is used. The teacher is selected based
on the rank and crowding distance from the current popu-
lation. Further, unlike Zou et al. (2014), the mean of each
decision variable in the current population is used to update
the solutions in the teacher phase.

Most of the machining processes involve more than one
machining process performance characteristic. This gives
rise to the need to formulate and solve multi-objective opti-
mization problems. There are basically two approaches to
solve a multi-objective optimization problem and these are:
a priori approach and a posteriori approach. In a priori
approach, multi-objective optimization problem is trans-
formed into a single objective optimization problem by
assigning an appropriate weight to each objective. This
ultimately leads to a unique optimum solution. However,
the solution obtained by this process depends largely on
the weights assigned to various objective functions. This
approachdoes not provide a dense spread of thePareto points.
Furthermore, in order to assign weights to each objective the
process planner is required to precisely know the order of
importance of each objective in advance which may be diffi-
cult when the scenario is volatile. This drawback of a priori
approach is eliminated in a posteriori approach, wherein it is
not required to assign the weights to the objective functions
prior to the simulation run. A posteriori approach does not
lead to a unique optimum solution at the end of one simula-
tion run but provides a dense spread of Pareto points (Pareto
optimal solutions). The process planner can then select one
solution from the set of Pareto optimal solutions based on the
requirement or order of importance of objectives. The major
advantage of a posteriori approach over a priori approach is
that, a posteriori approach provides multiple tradeoff solu-

tions for a multi-objective optimization problem in a single
simulation run. On the other hand, as a priori approach pro-
vides only a single solution at the end of one simulation
run, in order to achieve multiple tradeoff solutions using a
priori approach the algorithm has to be run multiple times
with different combination of weights. Thus, a posteriori
approach is very suitable for solving multi-objective opti-
mization problems in machining processes wherein taking
into account volatility in the market and frequent change in
customer desires is of paramount importance and determin-
ing the weights to be assigned to the objectives in advance is
difficult.

The aim of this work is to further explore the potential
of TLBO algorithm in solving multi-objective optimization
problems as a posteriori approach. Therefore, in this work,
multi-objective posteriori version of TLBO algorithm named
as NSTLBO is applied to solve the optimization problems of
selected machining and micro-machining processes.

In addition, a number of teachers concept is proposed
in order utilize the expertise of multiple teachers simulta-
neously in training of learners in the teacher phase which
was not discussed by the previous researchers. It is wor-
thy to note that, in the NSTLBO algorithm, the number of
teachers is not an algorithm-specific parameter as it is not
required to be specified by the user, as in the case of Patel
and Savsani (2014). The number of teachers depends upon
the number of mutually conflicting objectives involved in
the optimization problem. Therefore, unlike the previously
proposed multi-objective versions of TLBO algorithm, the
NSTLBOalgorithmdoes not require tuningof any algorithm-
specific parameters. Also, unlike Medina et al. (2014), in
the NSTLBO algorithm the solution is updated in only two
phases (i.e. teacher phase and learner phase).

In the NSTLBO algorithm, the teacher phase and learner
phase maintain the vital balance between the exploration
and exploitation capabilities and the teacher selection based
on non-dominance rank of the solutions and crowding dis-
tance computation mechanism ensures the selection process
towards better solutions with diversity among the solutions,
in order to obtain a Pareto optimal set of solutions in a sin-
gle simulation run. The TLBO and NSTLBO algorithms are
described in detail in “Teaching learning based optimization
algorithm” and “Non-dominated sorting teaching–learning-
based optimization algorithm” sections, respectively.

In summary, there is a need to apply optimization algo-
rithms that are free from algorithm-specific parameters for
optimization of machining processes in order to reduce the
burden of tuning the algorithm-specific parameters from the
user. Further, there is also a need for optimization algo-
rithms that can providemultiple trade-off solutions in a single
simulation run for multi-objective optimization problems.
Among several a posteriori optimization algorithms available
in the literature the non-dominated sorting genetic algo-
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rithm (NSGA-II) is most widely used by the researchers for
machining process optimization (Rao and Kalyankar 2014).
However,NSGA-II also requires tuningof algorithm-specific
parameters. Therefore, in this work the NSTLBO algorithm
which is a multi-objective version of TLBO algorithm and
which is an algorithm-specific parameter-less algorithm is
applied to solve themulti-objective optimization problems of
machining processes such as turning, wire-electric-discharge
machining (WEDM) and micro-machining processes such
as focused ion beam (FIB) micro-milling process, micro
wire-electric-discharge machining process (micro-WEDM)
and laser cutting. Pareto-fronts for each of the considered
machining processes is obtained and the same are compared
with the solutions obtained by other algorithms such as GA,
NSGA-II, PSO and iterative search method and MOTLBO
which were applied by previous researchers. Unlike previ-
ously proposed posteriori versions of TLBO algorithm, the
NSTLBO algorithm requires only two phases for its work-
ing, does not involve any algorithm specific parameters and
is simple to apply with less computational effort. The per-
formance of the proposed NSTLBO is also compared with
MOTLBO proposed by Zou et al. (2014). Just to identify the
advantages of the proposed method.

A computer program for NSTLBO algorithm is developed
in MATLAB r2009a. A computer system with a 2.93 GHz
processor and 4 GB random access memory is used for exe-
cution of the program.

Teaching learning based optimization algorithm

The TLBO algorithm emulates the teaching learning process
of a classroom. In each generation, the best solution is con-
sidered as the teacher, and other solutions are considered as
learners. The learners mostly accept the instructions from the
teacher, but also learn from each other. In the TLBO algo-
rithm, an academic subject is analogous to an independent
variable or candidate solution feature. The TLBO algorithm
consists of two important phases i.e. the teacher phase and the
learner phase. In the teacher phase, each independent vari-
able s in each candidate solution x is modified according to
Eqs. (1) and (2).

x ′
i (s) ← xi (s) + r(xt (s) − T f x̄(s)) (1)

where x̄(s) = 1

N

N∑

i=1

xi (s) (2)

for i ∈ [1, N ] and independent variable s ∈ [1, n], where
N is the population size, n is the total number of indepen-
dent variables, xt is the best individual in the population (i.e.
the teacher), r is the random number taken from a uniform
distribution on [0, 1], and T f is the teaching factor and is ran-

domly set equal to either 1 or 2 with equal probability. The
new solution obtained after the teacher phase x ′

i replaces the
previous solution xi if it is better than xi .

As soon as the teacher phase ends the learner phase com-
mences. The learner phase mimics the act of knowledge
sharing among two randomly selected learners. The learner
phase entails updating each learner based on another ran-
domly selected learner as follows:

x ′′
i (s) ←

{
x ′

i (s) + r(x ′
i (s) − x ′

k(s)) if x ′
i is better than x ′

k
x ′

i (s) + r(x ′
k(s) − x ′

i (s)) otherwise

(3)

For i ∈ [1, N ] and independent variable s ∈ [1, n], where
k is the random integer in [1, N ] such that k �= i , and r is a
random number taken from a uniform distribution on [0, 1].
Again, the new candidate solution obtained after the learner
phase x ′′

i replaces the previous solution x ′
i if it is better than

the previous solution x ′
i . Figure 1 gives the flowchart for the

TLBO algorithm. More details about the TLBO algorithm
can be obtained from https://sites.google.com/site/tlborao/
tlbo-code/.

Non-dominated sorting teaching–learning-based
optimization algorithm

The NSTLBO algorithm is an extension of the TLBO algo-
rithm. It is a posteriori approach for solving multi-objective
optimization problems and maintains a diverse set of solu-
tions. NSTLBO algorithm consists of teacher phase and
learner phase similar to the TLBO algorithm. However, in
order to handlemultiple objectives, effectively and efficiently
the NSTLBO algorithm is incorporated with non-dominated
sorting approach and crowding distance computation mech-
anism proposed by Deb et al. (2002).

In the NSTLBO algorithm, the teacher phase and learner
phase ensure good exploration and exploitation of the search
space while non-dominated sorting approach makes certain
that the selection process is always towards the good solu-
tions and the population is pushed towards the Pareto-front in
each generation. The crowding distance assignment mecha-
nism ensures the selection of teacher from a sparse region of
the search space with a view to avert premature convergence
of the algorithm at local optima.

In the NSTLBO algorithm, the learners are updated
according to the teacher phase and the learner phase of the
TLBO algorithm. However, in case of single-objective opti-
mization it is easy to decide which solution is better than the
other based on the objective function value. But in the pres-
ence of multiple conflicting objectives determining the best
solution from a set of solutions is difficult. In the NSTLBO
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Fig. 1 Flow chart for the TLBO algorithm
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algorithm, the task of finding the best solution is accom-
plished by comparing the rank assigned to the solutions based
on the non-dominance concept and the crowding distance
value.

In the beginning, an initial population is randomly gen-
erated with NP number of solutions (learners). This initial
population is then sorted and ranked based on the non-
dominance concept. The learnerwith the highest rank (rank =
1) is selected as the teacher of the class. In case, there exists
more than one learner with the same rank then the learner
with the highest value of crowding distance is selected as the
teacher of the class. This ensures that the teacher is selected
from the sparse region of the search space. Once the teacher
is selected, learners are updated based on the teacher phase
of the TLBO algorithm i.e. according to Eqs. (1) and (2).

After the teacher phase, the set of updated learners (new
learners) is concatenated to the initial population to obtain
a set of 2NP solutions (learners). These learners are again
sorted and ranked based on the non-dominance concept and
the crowding distance value for each learner is computed.
Based on the new ranking and crowding distance value NP
number of best learners are selected. These learners are fur-
ther updated according to the learner phase of the TLBO
algorithm i.e. according to Eq. (3).

The superiority among the learners is determined based
on the non-dominance rank and the crowding distance value
of the learners. A learner with a higher rank is regarded as
superior to the other learner. If both the learners hold the
same rank, then the learner with higher crowding distance
value is seen as superior to the other.

After the end of the learner phase, the new learners are
combined with the old learners and again sorted and ranked.
Based on the new ranking and crowding distance value NP
number of best learners are selected, and these learners are
directly updated based on the teacher phase in the next iter-
ation.
Non-dominated sorting of the population

In this approach the population is sorted into several ranks
(fronts) based on the dominance concept as follows: a solu-
tion xi is said to dominate other solution x j if and only if
solution xi is no worse than solution x j with respect to all
the objectives and the solution xi is strictly better than solu-
tion x j in at least one objective. If any of the two conditions
are violated, then solution xi does not dominate solution x j .

Among a set of solutions P , the non-dominated solutions
are those that are not dominated by any solution in the set
P . All such non-dominated solutions which are identified
in the first sorting run are assigned rank one (first front)
and are deleted from the set P . The remaining solutions in
set P are again sorted and the procedure is repeated until
all the solutions in the set P are sorted and ranked. In the
case of constrained multi-objective optimization problems

constrained-dominance concept (Deb et al. 2002) may be
used in the proposed approach.
Crowding distance computation

The crowding distance is assigned to each solution in the
population with an aim to estimate the density of solutions
surrounding a particular solution i . Thus, average distance of
two solutions on either side of solution i is measured along
each of the M objectives. This quantity is called as the crowd-
ing distance (C Di ). The following steps may be followed to
compute the C Di for each solution i in the front F .

Step 1: Determine the number of solutions in front F as l =
|F |. For each solution i in the set assign C Di = 0.

Step 2: For each objective function m = 1, 2, . . ., M , sort
the set in the worst order of fm .

Step 3: For m = 1, 2, . . ., M , assign largest crowding dis-
tance to boundary solutions in the sorted list (C D1 =
C Dl = ∞), and for all the other solutions in the
sorted list j = 2 to (l-1), assign crowding distance as
follows:

C D j = C D j + f j+1
m − f j−1

m

fmax
m − fmin

m

(4)

Where, j is a solution in the sorted list, fm is the
objective function value of mth objective, fmax

m and
fmin
m are the population-maximum and population-
minimum values of the mth objective function.

Crowding-comparison operator
Crowding-comparison operator is used to identify the

superior solution among two solutions under comparison,
based on the two important attributes possessed by every
individual i in the population i.e. non-domination rank
(Ranki ) and crowding distance (C Di ). Thus, the crowded-
comparison operator (≺n) is defined as follows:

i ≺n j if (Ranki < Rank j ) or ((Ranki

= Rank j ) and (C Di > C D j ))

That is, between two solutions (i and j) with differing non-
domination ranks, the solution with lower or better rank is
preferred. Otherwise, if both solutions belong to the same
front (Ranki = Rank j ), then the solution located in the
lesser crowded region (C Di > C D j ) is preferred.
Number of teachers concept

In the TLBO algorithm, the learner with best objective
function value is selected as the teacher of the class. The onus
of improving the mean result of the class is on the teacher.
However, in the case of multi-objective optimization prob-
lems with mutually conflicting objectives, if a solution is
good with respect to one objective, it may be equally bad
with respect to the other objective and vice versa. Similarly,
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a solution which is best with respect to one objective, may
be worst with respect to the other objective. Thus, in the case
of multi-objective optimization problems with mutually con-
flicting objectives there may exists not a single but multiple
learners which may be suitable to be selected as the teacher
of the class, and number of such suitable learners will depend
upon the number of objectives considered.

Thus, in this work, in order to take advantage of the
expertise of multiple teachers simultaneously, a number of
teachers concept is proposed. Instead of assigning a single
teacher to the entire class, a teacher is assigned to each learner
individually depending on the proximity of the learner to a
particular teacher. This is achieved by calculating the nor-
malized Euclidean distance between the learners and the
teachers. Such an approach is adopted with a perspective
of enhancing the exploitation capability of the algorithm (as
a learner would be trained by the closest teacher) at the same
time improve the diversity among the learners (as the class
is been influenced by multiple teachers at the same time).
Here, it is worthy to note that the number of teachers is not a
parameter to the NSTLBO algorithm. In fact, the number of
teachers in the NSTLBO is decided automatically based on
the number of objectives considered in the optimization prob-
lem. The normalized Euclidean distance between a teacher
and a learner is calculated according to Eq. (5).

Ei,t =
√√√√

n∑

s=1

(
xt (s) − xi (s)

xmax(s) − xmin(s)

)2

(5)

Where n is the number of solution features or dimensions;
N is the population size; i ∈ [1 : N ] Nt is the number
of teachers; t ∈ [1 : Nt ]; Ei,t is the normalized Euclidean
distance between a teacher (t) and a learner (i); xmax(s) and
xmin(s) are the upper and lower bounds of solution feature
(s).
Among all the teachers the teacher which is closest to a
learner is assigned as the teacher to that learner, according to
Eq. (6)

teacheri = min(Ei,t ) (6)

Figure 2 shows the flowchart for the NSTLBO algorithm.

Example 1 Optimization of turning process

The optimization problem formulated in this work is based
on the empirical models developed by Palanikumar et al.
(2009) for machining of glass fiber reinforced plastic using
polycrystalline diamond cutting tool using an all geared lathe
machine. The objective functions and process parameters
considered in this work are same as those considered by
Palanikumar et al. (2009). The objectives are: minimization

of tool flank wear ‘Vb’ (mm), minimization of surface rough-
ness ‘Ra’ (µm) and maximization of material removal rate
‘MRR’ (mm3/min). The process parameters considered in
this work are: cutting speed ‘v’ (m/min), feed ‘ f ’ (mm/rev)
and depth of cut ‘d’ (mm).
Objective functions

The objective functions are expressed by Eqs. (7), (8) and
(9)

minimize Vb = 0.09981 + 0.00069 v + 1.41111 f

−0.17944 d+0.000001 v2−3.11111 f 2

+0.00222 d2 − 0.00267 v f

+0.00007 v d + 0.96667 f d (7)

minimize Ra = 1.9065 − 0.0103 v + 11.1889 f

+0.3283 d + 0.000001 v2 − 7.1111 f 2

+0.0022 d2 + 0.0340 v f

−0.0015 v d − 4.433 f d (8)

maximizeM R R = 1000 v f d (9)

Parameter bounds
The bounds on process parameters are expressed by

Eqs. (10) to (12).

50 ≤ v ≤ 150 (10)

0.1 ≤ f ≤ 0.20 (11)

0.5 ≤ d ≤ 1.5 (12)

The multi-objective optimization problem was solved
by Palanikumar et al. (2009) using non-dominated sorting
genetic algorithm-II (NSGA-II) considering a population
size of 100number of generations equal to 100 (i.e. number of
function evaluations equal to 10,000). The algorithm-specific
parameters used byNSGA-II are: crossover probability equal
to 0.9, distribution index equal to 20 andmutation probability
equal to 0.25 (Palanikumar et al. 2009).

Now, the same problem is solved using NSTLBO and
MOTLBO (Zou et al. 2014) algorithms in order to see
whether any improvement in the results can be achieved.
For the purpose of fair comparison of results, the maximum
number of function evaluations for NSTLBO and MOTLBO
algorithms are maintained as 10,000. For this purpose a pop-
ulation size equal to 50 andmaximum number of generations
equal to 100 is considered by the NSTLBO and MOTLBO.
The non-dominated set of solutions (Pareto-optimal solu-
tions) obtained using NSTLBO algorithm is reported in
Table 1. The non-dominated solutions obtained by NSGA-
II (Palanikumar et al. 2009) are shown in Fig. 3 along with
the non-dominated solutions obtained using NSTLBO and
MOTLBO algorithms.

In order to compare the non-dominated set of solu-
tions obtained using NSTLBO, MOTLBO and NSGA-II
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Teacher 
Phase

Learner 
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Select two solutions randomly ix′  and kx′

Non-dominated sorting, crowding distance 
computation and selection 
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Combine new solutions with the solution 
obtained after teacher phase 

Non-dominated sorting, crowding distance 
computation and selection 

Report non-dominated 
set 

Is the termination criteria 
satisfied?

Initialize no. of students (population), no. of subjects 
(independent variables), termination criterion 

Calculate the mean of each independent 
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Non-dominated sorting and crowding distance 
computation 

Modify solution based on best solution 
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Select best solution based on non-dominance rank and 
crowding distance assignment (i.e. xt) 

Combine modified solutions with the initial solutions 

Is solution ix′ better 
than solution kx′ ?

Yes No 

Yes No 

Fig. 2 Flowchart for the NSTLBO algorithm
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Table 1 The non-dominated set
of solutions for turning process
obtained using NSTLBO

S. no. v (m/min) f (mm/rev) d (mm) Vb (mm) Ra (µm) MRR (mm3/min)

1 54.2795 0.1 1.4994 0.1223 2.2931 8138.9121

2 58.3274 0.1 1.5 0.1248 2.2564 8749.1042

3 62.4693 0.1 1.5 0.1275 2.219 9370.3944

4 71.9101 0.1 1.4924 0.1343 2.1356 10,732.096

5 75.3031 0.1004 1.4986 0.1369 2.1057 11,325.274

6 79.2396 0.1004 1.5 0.1396 2.0703 11,933.641

7 83.2911 0.1005 1.4991 0.1426 2.0346 12,545.298

8 88.5514 0.1003 1.4933 0.1464 1.9879 13,265.659

9 92.4951 0.1003 1.4992 0.1487 1.951 13,906.875

10 102.2128 0.1 1.5 0.1551 1.8619 15,331.917

11 109.2442 0.1 1.4713 0.1622 1.8069 16,072.785

12 112.5882 0.1 1.5 0.1628 1.7692 16,888.234

13 117.1517 0.1 1.4928 0.1667 1.7306 17,488.753

14 121.8446 0.1 1.4921 0.1704 1.689 18,180.313

15 125.5378 0.1 1.5 0.1727 1.6538 18,830.675

16 130.8624 0.1 1.5 0.1769 1.6065 19,629.367

17 134.3337 0.1 1.4946 0.18 1.5773 20,077.852

18 136.3089 0.1 1.5 0.1812 1.5581 20,446.334

19 150 0.1 1.5 0.1924 1.4371 22,509.985

20 150 0.1029 1.5 0.1976 1.4601 23,141.492

21 150 0.1055 1.5 0.2024 1.482 23,745.633

22 150 0.108 1.4994 0.2069 1.5022 24,289.652

23 150 0.1098 1.4977 0.2102 1.5173 24,662.139

24 150 0.1136 1.5 0.2168 1.5472 25,559.907

25 148.4627 0.1176 1.5 0.2226 1.5921 26,196.464

26 150 0.1203 1.5 0.2284 1.6009 27,075.545

27 150 0.1241 1.5 0.2349 1.6308 27,926.109

28 150 0.1242 1.5 0.2349 1.6311 27,934.667

29 150 0.1296 1.489 0.2444 1.6787 28,943.341

30 150 0.1329 1.4992 0.2495 1.6998 29,888.757

31 150 0.1368 1.5 0.2558 1.7295 30,779.681

32 150 0.1395 1.5 0.2602 1.7506 31,397.552

33 150 0.1431 1.5 0.2658 1.7777 32,197.449

34 148.4572 0.1497 1.4984 0.2749 1.8392 33,292.613

35 150 0.1496 1.5 0.2758 1.8265 33,651.974

36 150 0.1545 1.4838 0.2835 1.873 34,392.181

37 149.5388 0.1604 1.4985 0.2917 1.9109 35,936.839

38 149.8541 0.1625 1.4976 0.2951 1.9252 36,474.722

39 148.1898 0.1666 1.5 0.2999 1.9647 37,042.167

40 149.8148 0.169 1.5 0.3042 1.9709 37,970.197

41 150 0.172 1.5 0.3086 1.9916 38,702.384

42 149.8909 0.175 1.494 0.3126 2.0174 39,179.928

43 149.9526 0.1797 1.4978 0.319 2.0483 40,360.413

44 150 0.1841 1.5 0.3249 2.0774 41,420.598

45 150 0.1858 1.5 0.3272 2.0895 41,806.908

46 149.1499 0.1888 1.4995 0.3305 2.1153 42,215.482

47 149.4195 0.1928 1.4998 0.3358 2.1412 43,195.272

48 150 0.1955 1.5 0.3396 2.1569 43,996.501
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Table 1 continued
S. no. v (m/min) f (mm/rev) d (mm) Vb (mm) Ra (µm) MRR (mm3/min)

49 150 0.197 1.5 0.3413 2.1665 44,313.77

50 150 0.2 1.4997 0.3451 2.1876 44,989.703

Fig. 3 Comparison of non-dominated solutions obtained using
NSTLBO, MOTLBO and NSGA-II (Palanikumar et al. 2009) for turn-
ing process

Table 2 Best, mean and worst values of hypervolume obtained using
NSTLBO and MOTLBO (example 1)

Algorithm Best Mean Worst SD

NSTLBO 9308.5 9258.39 9201.3 20.786

MOTLBO 9294.3 9273.03 9202.5 26.397

(Palanikumar et al. 2009), the hypervolume (HV) perfor-
mance indicator proposed by Zitzler and Thiele (1999) is
adopted in this work. Hypervolume is a metric that calcu-
lates the volume (or area in the case of bi-objective problems)
of the objective space covered by the members of a Pareto-
optimal set. Thus a higher value of hypervolume indicates
better performance of a particular algorithm. In this work
the method suggested in Deb (2001) is used to calculate the
hypervolume. The NSTLBO and MOTLBO algorithms are
run 30 times independently and the best, mean and worst val-
ues of hypervolume are reported in Table 2. It is observed that
the hypervolumeof the Pareto-front obtained usingNSTLBO
algorithm andMOTLBO algorithm (i.e. HVNSTLBO = 9308.5
and HVMOTLBO = 9294.3) is slightly higher than the hyper-
volume of the Pareto-front obtained using NSGA-II (i.e.
HVNSGA−II = 9190.1). This is mainly because, although
the Pareto-fronts obtained using NSTLBO, MOTLBO and
NSGA-II seem to overlap each other, the solutions obtained
by NSTLBO and MOTLBO algorithms are uniformly dis-
tributed along the Pareto-front. On the other hand, clustering
is observed in the Pareto-optimal solutions obtained using
NSGA-II.

In order to justify the results provided by the NSTLBO
algorithm for turning process three solutions from Table 1
are considered i.e. solution no. 1, which gives highest pri-
ority to minimization of flank wear ‘Vb’, solution no. 19,
which gives highest priority to minimization of average sur-
face roughness ‘Ra’ and solution no. 50 which gives highest
priority to maximization of material removal rate ‘MRR’.

Vb increases as the cutting velocity and feed rate increase
and reduces with the increase in depth of cut, therefore, a
minimum value of cutting velocity and feed rate and a max-
imum value of depth of cut is desirable to minimize Vb.
Accordingly, the NSTLBO algorithm has selected the val-
ues of cutting velocity and feed rate close to their respective
lower bound, whereas, the value of depth of cut is selected
to its upper bound (i.e. v =54.2795m/min, f =0.1mm/rev,
d =1.4994mm) (refer solution 1 inTable 1). Ra reduces as the
cutting velocity increases and increases with increase in feed
rate. Ra decreases as the interaction between feed rate and
depth of cut increases, therefore, a maximum value of cutting
velocity, minimum value of feed rate and a maximum value
of depth of cut are desirable to minimize Ra. Accordingly,
the NSTLBO algorithm has selected the values of cutting
velocity to its lower bound, whereas, the values of feed rate
and depth of cut is selected to their respective upper bound
(i.e. v =150 m/min, f =0.1 mm/rev, d = 1.5 mm) (refer
solution 19 in Table 1).

Volume of material removed per unit time in turning
process is the product of cutting speed, feed rate and depth
of cut. Therefore, in order to achieve a maximum value of
MRR the NSTLBO has selected the upper bound values of
cutting speed, feed rate and depth of cut (i.e. v =150m/min,
f =0.2mm/rev, d =1.4997mm) (refer solution 50 inTable 1).
The intermediate solutions provided by the NSTLBO algo-
rithm are also important and consistent with the experimental
observations of Palanikumar et al. (2009). Depth of cut is
beneficial for the three responses; namely tool flank wear,
surface roughness and material removal rate therefore, it is
maintained close to the upper bound for all the solutions. Cut-
ting velocity and feed rate are non-beneficial for tool flank
wear but beneficial for material removal rate, therefore, cut-
ting velocity and feed rate increases gradually from lower
bound value to upper bound value as tool flank wear and
material removal rate increase from minimum to maximum
value.

NSGA-II required 10,000 function evaluations to obtain
the non-dominated set of solutions (Palanikumar et al. 2009).
Only for the purpose of fair comparison of results the
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maximum number of function evaluations for NSTLBO
and MOTLBO algorithms is maintained as 10,000. How-
ever, NSTLBO and MOTLBO algorithms could obtain the
non-dominated set of solutions within in 1000 function eval-
uations. This is mainly because NSGA-II requires tuning of
algorithm-specific parameters for its working. Improper tun-
ing of these algorithm specific parameters may result in a
low convergence rate or stagnation of the algorithm at the
local optima. On the other hand, theNSTLBOandMOTLBO
algorithms do not require tuning of any algorithm-specific
parameters for its working. The computational time required
by NSTLBO and MOTLBO algorithms for 10,000 function
evaluations 6.07 and 24.931s, respectively. However, the
computational time required by NSGA-II for 10,000 func-
tion evaluations is not given in Palanikumar et al. (2009).

Example 2 Optimization of wire-electric-discharge machin-
ing process

The optimization problem formulated in this work is based
on themathematicalmodels for cutting speed ‘CS’ (mm/min)
and surface roughness ‘SR’ (µm) developed by Garg et al.
(2012) using real experimental data. An Electronica 4 axis
Sprintcut-734 CNC Wire Cut machine was used for experi-
mentation using deionized water as dielectric fluid. Titanium
alloy (Ti 6-2-4-2) was used as work material. The process
parameters such as pulse on time ‘Ton’ (µs), pulse off time
‘Toff ’ (µs), peak current ‘IP’ (A), spark set voltage ‘SV’ (V),
wire feed ‘WF’ (m/min) and wire tension ‘WT’ (g) were
considered. The objective functions and process parameters
considered in this work are same as those considered byGarg
et al. (2012).
Objective functions

The objective functions are expressed by Eqs. (13) and
(14).

maximize C S = −24.85563 + 0.29637 × Ton + 0.12237

×Toff + (6.53472E − 4) × I P

+0.1454 × SV + 0.060880 × W T

+(1.52323E − 3) × T 2
off

−(3.15625E − 3) × Ton × Toff

−(1.66667E − 3) × Ton × SV

+(7.84375E − 4) × Toff × SV

−(1.30312E − 3) × SV × W T (13)

minimize S R = 2.28046 + (0.014514 × Ton)

−0.01175 × Toff − (7.54444E − 3) × I P

−(4.466E − 3) × SV − 0.19140

×W F − 0.8279 × W T

+(7.35417E − 3) × Ton × W T

+(1.08333E − 3) × I P × W F (14)

Parameter bounds
The bounds on process parameters are expressed by

Eqs. (15) to (20).

112 ≤ Ton ≤ 118 (15)

48 ≤ Toff ≤ 56 (16)

140 ≤ I P ≤ 200 (17)

35 ≤ SV ≤ 55 (18)

6 ≤ W F ≤ 10 (19)

4 ≤ W T ≤ 8 (20)

Garg et al. (2012) solved the multi-objective optimization
problem ofWEDMusing NSGA-II considering a population
size equal to 100 and maximum number of generations equal
to 1000 (i.e. maximum number of function evaluations equal
to 100,000), the crossover probability and mutation proba-
bility were selected as 0.9 and 0.116, respectively. Now the
same problem is solved using the NSTLBO and MOTLBO
(Zou et al. 2014) algorithm to see whether any improvement
in the results can be achieved. Therefore, for the purpose of
fair comparison of results the maximum number of func-
tion evaluations considered by NSTLBO and MOTLBO
algorithms is maintained as 100,000. For this purpose, a
population size of 50 and maximum number of generations
equal to 1000 are chosen for the NSTLBO and MOTLBO
algorithms. The non-dominated set of solutions obtained
using NSTLBO algorithm is reported in Table 3. Figure 4
shows the non-dominated solutions obtained using NSGA-II
(Garg et al. 2012), NSTLBO and MOTLBO algorithms. The
Pareto-fronts obtained usingNSTLBO algorithm,MOTLBO
algorithm andNSGA-II are compared based on the hypervol-
ume performance indicator. The best, mean and worst values
of hypervolume of Pareto-fronts obtained using NSTLBO
and MOTLBO algorithms over 30 independent runs are
reported in Table 4. It is observed that, although the Pareto-
fronts obtained using NSTLBO, MOTLBO and NSGA-II
seem to overlap each other the best value of hypervolume
obtained using NSTLBO and MOTLBO (i.e. HVNSTLBO =
0.6599, HVMOTLBO = 0.6599) are slightly higher than the
hypervolume obtained using NSGA-II (i.e. HVNSGA−II =
0.6373). This is mainly because the Pareto-optimal solutions
obtained using NSTLBO and MOTLBO algorithms are well
distributed along the Pareto-front as compared to the Pareto-
optimal solutions obtained using NSGA-II (Fig. 4).

Further, only for the purpose of fair comparison of results
obtained using NSTLBO and MOTLBO algorithms with the
results obtained byNSGA-II (Garg et al. 2012) themaximum
number of function evaluations for NSTLBO are maintained
are 100,000. However, the NSTLBO and MOTLBO could
obtain the non-dominated set of solutions within 4000 func-
tion evaluations forWEDMprocess. The computational time
required by NSTLBO and MOTLBO algorithms to per-
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Table 3 The non-dominated set
of solutions for WEDM
obtained using NSTLBO
algorithm

S. no. Ton (µs) Toff (µs) IP (A) SV (V) WF (m/min) WT (g) CS (mm/min) SR (µm)

1 112 56 140.0084 55 10 8 0.3227 1.515

2 112 55.7456 140 55 10 8 0.3272 1.518

3 112 54.1329 140.0662 55 10 8 0.3605 1.5371

4 112 53.1498 140 55 10 8 0.3847 1.5485

5 112 52.3656 140 55 10 8 0.406 1.5577

6 112 52.5899 140 53.8734 10 8 0.4115 1.5601

7 112 51.2675 140 55 10 8 0.4391 1.5706

8 112 54.1704 140 45.2386 10 8 0.4495 1.5801

9 112 50.3989 140 54.802 10 8 0.4703 1.5817

10 112 49.7906 140.0138 53.3606 10 8 0.5101 1.5953

11 112 48 140 55 10 8 0.5593 1.609

12 112 49.4588 140.0129 48.3331 10 8 0.5876 1.6217

13 112 48.6735 140.0537 49.6516 10 8 0.6042 1.6251

14 112 48 140 49.6813 10 8 0.634 1.6327

15 112 48 140 48.0341 10 8 0.6571 1.6401

16 112.0003 48 140 45.8241 10 8 0.6882 1.65

17 112.0051 48.1251 140.0646 41.8557 10 8 0.7378 1.6668

18 112 48 140.0031 39.9919 10 8 0.7701 1.676

19 112 48 140 38.3046 10 8 0.7937 1.6835

20 112.0425 48 140.0926 36.8229 10 8 0.8182 1.6936

21 112 48 140.0029 35 10 8 0.8401 1.6983

22 112.083 48 140.2117 35 10 8 0.8475 1.7051

23 112.6033 48 140 35 10 8 0.8924 1.7425

24 112.7933 48 140 35 10 8 0.9088 1.7565

25 113.1242 48 140 35 10 8 0.9374 1.7807

26 113.8887 48 140 35 10 4.5849 0.9514 1.8038

27 113.5755 48.0004 140 35.0075 10 7.4396 0.9678 1.8097

28 115.0893 48 140 35 10 4 1.0464 1.8509

29 115.2332 48 140 35 10 4 1.0589 1.8573

30 115.6821 48 140 35 10 4 1.0977 1.877

31 116.0263 48 140 35 10 4 1.1275 1.8921

32 116.3251 48 140 35 10 4 1.1533 1.9052

33 116.4661 48.0039 140.0295 35.0206 9.9857 4.2675 1.169 1.9196

34 116.8284 48 140 35 10 4 1.1969 1.9273

35 117.4169 48 140 35 10 4 1.2478 1.9532

36 117.5523 48 140.0048 35.0009 9.9969 4.0652 1.2605 1.9617

37 117.7382 48 140 35 10 4 1.2756 1.9673

38 118 48 140.0288 35 9.9924 4.309 1.303 1.9915

39 118 48 140.0343 35 9.9935 4.7765 1.3102 2.0102

40 118 48 142.806 35 9.9348 4.8035 1.3124 2.0225

41 118 48 140.0287 35.0079 9.9959 5.5565 1.3219 2.0411

42 118 48 147.1012 35 9.9345 5.4216 1.3246 2.061

43 118 48 200 35 6 4 1.3375 2.0751

44 118 48 140.0363 35.0059 9.9953 6.9113 1.3426 2.0952

45 118 48 200 35 6 5.0274 1.3532 2.1161

46 118 48 200 35 6 5.9286 1.3669 2.152

47 118 48 200 35 6 6.3818 1.3739 2.1701
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Table 3 continued
S. no. Ton (µs) Toff (µs) IP (A) SV (V) WF (m/min) WT (g) CS (mm/min) SR (µm)

48 118 48 200 35 6 6.5716 1.3768 2.1777

49 118 48 200 35 6 7.5579 1.3918 2.217

50 118 48 200 35 6 7.9005 1.3971 2.2307

Fig. 4 The Pareto fronts obtained using NSTLBO, MOTLBO and
NSGA-II (Garg et al. 2012) for WEDM

Table 4 Best, mean and worst values of hypervolume obtained using
NSTLBO and MOTLBO (example 2)

Algorithm Best Mean Worst SD

NSTLBO 0.6599 0.6535 0.6478 0.0355

MOTLBO 0.6599 0.6309 0.6107 0.0128

form 100,000 function evaluations are 63.06 and 255.47 s,
respectively. However, the computational time required by
NSGA-II to perform 100,000 function evaluations is not
given in Garg et al. (2012).

In order to justify the solutions provided by the NSTLBO
algorithm two extreme solutions from Table 3 are taken into
consideration i.e. solution no. 1, which gives amaximum pri-
ority to minimization of surface roughness ‘SR’ and solution
no. 50, which gives a maximum priority to maximization of
cutting speed ‘CS’. From the main effect of process parame-
ters of WEDM on SR (Garg et al. 2012) it is observed that
SR increases with the increase in pulse on time and peak cur-
rent but reduces with the increases in pulse off time, spark
gap set voltage and wire feed. Therefore, to achieve a mini-
mum value of SR the NSTLBO algorithm has selected lower
bound values of pulse on time (Ton = 112 µs) and peak cur-
rent (IP = 140 A) and upper bound values of pulse off time
(Toff = 56 µs), spark gap set voltage (SV = 55V) and wire
feed (WF=10m/min) (refer solution no. 1 in Table 3).

From the main effect of process parameters of WEDM on
CS (Garg et al. 2012) it is observed thatCS increases with the
increase in pulse on time and peak current but reduces with
the increases in pulse off time and spark gap set voltage. The
effect of wire tension on CS is insignificant. Therefore, to
achieve a maximum value of CS the NSTLBO algorithm has
selected upper bound values of pulse on time (Ton = 118 µs)
and peak current (IP = 200 A) and a lower bound value of
pulse off time (Toff = 48 µs) and spark gap set voltage (SV
= 35 V) (refer solution no. 50 in Table 3). Similarly, the inter-
mediate solutions provided by the NSTLBO algorithm (i.e.
solution no. 2 to solution no. 49 in Table 3) are also impor-
tant and are consistent with the experimental observations of
Garg et al. (2012).

Example 3 Optimization of focused ion beammicro-milling
process

The optimization problem formulated in this work is based
on the empirical models for material removal rate ‘MRR’
(µm3/sec) and surface roughness ‘Ra’ (nm) in focused ion
beam (FIB) micro-milling of cemented carbide developed
by Bhavsar et al. (2015) based on real experimental data.
A Quanta 3D FEG machine was used for experimentation.
The process parameters such as extraction voltage ‘x1’ (kV),
angle of inclination, ‘x2’ (degree), beam current ‘x3’ (nA),
dwell time ‘x4’ (µs) overlap ‘x5’ (%) were considered. The
objective functions, process parameters and their bounds
considered in this problem are same as those considered by
Bhavsar et al. (2015).
Objective functions

The objective functions are expressed by Eqs. (21) and
(22).

maximize M R R = 0.0514 − 0.00506x1 − 0.0269x3

−0.000032x22 − 0.00009x25
−0.000103x1x2

+0.0036x1x3 + 0.000228x1x5

+0.000625x2x3 + 0.0001x2x5

+0.000514x3x5 (21)

minimize Ra = 245 + 3.61x2 − 5.38x2 − 0.304x21
+0.0428x22 + 0.0735x25 + 0.863x1x3

+0.144x1x5 − 0.17x2x3 − 0.139x2x5

+1.5x3x4 (22)
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Parameter bounds
The bounds on the process parameters are expressed by

Eqs. (23) to (27).

15 ≤ x1 ≤ 30 (23)

10 ≤ x2 ≤ 70 (24)

0.03 ≤ x3 ≤ 3.5 (25)

1 ≤ x4 ≤ 10 (26)

30 ≤ x5 ≤ 75 (27)

Bhavsar et al. (2015) solved the multi-objective optimiza-
tion problem of FIB micro-milling NSGA-II considering a
population size of 60 and a maximum number of generations
equal to 1000 (i.e. maximum number of function evaluations
equal to 60,000). The values algorithm-specific parameters
required by NSGA-II are as follows: Pareto fraction equal to

0.7, cross-over probability equal to 0.9 (Bhavsar et al. 2015).
The value of the mutation probability required by NSGA-II
was not reported by Bhavsar et al. (2015). Now the same
problem is solved using NSTLBO and MOTLBO (Zou et al.
2014) algorithms in order to see whether any improvement in
the results can be achieved. For the purpose of fair compari-
son of results, the maximum number of function evaluations
considered by NSTLBO is maintained as 60,000. For this
purpose a population size of 50 and maximum number of
generations equal to 600 is considered for the NSTLBO and
MOTLBO algorithms.

The non-dominated set of solutions for FIBmicro-milling
process obtained by NSTLBO is reported in Table 5 and
the Pareto-fronts obtained using NSTLBO, MOTLBO and
NSGA-II are shown in Fig. 5. Table 6 gives the best,
mean and worst values of hypervolume of the Pareto-

Table 5 The non-dominated set
of solutions for FIB
micro-milling process obtained
using NSTLBO

S. no. x1 (kV) x2 (◦) x3 (nA) x4 (µs) x5 (%) MRR (µm3/sec) Ra (nm)

1 30 70 3.5 1 75 0.6302 92.2225

2 29.9996 70 3.4319 1 75 0.619 91.1702

3 30 70 3.3503 1 75 0.6057 89.9041

4 29.9833 70 3.3079 1 75 0.5985 89.3231

5 29.9908 70 3.1017 1 75 0.5649 86.0961

6 29.9947 70 3.0608 1 75 0.5583 85.4443

7 29.9986 70 3.0096 1 75 0.55 84.633

8 30 70 2.9277 1 75 0.5366 83.3571

9 29.9927 70 2.903 1 75 0.5325 83.0111

10 29.981 70 2.7613 1 75 0.5092 80.8762

11 29.9965 70 2.6704 1 75 0.4945 79.3892

12 29.9853 70 2.4893 1 75 0.4648 76.6445

13 29.974 70 2.3304 1 75 0.4387 74.2458

14 30 70 2.2896 1 75 0.4324 73.4736

15 29.9942 70 2.2138 1 75 0.4199 72.3304

16 29.9915 70 2.134 1 75 0.4068 71.1111

17 29.9944 70 2.0987 1 75 0.4011 70.548

18 29.9982 70 2.0105 1 75 0.3867 69.1607

19 29.9958 70 1.8975 1 75 0.3683 67.4248

20 29.9837 70 1.8087 1 75 0.3536 66.1203

21 29.9897 70 1.7772 1 75 0.3485 65.5972

22 29.9848 70 1.6681 1 75 0.3307 63.9378

23 30 70 1.5511 1 75 0.3117 62.0343

24 29.9955 70 1.4243 1 75 0.2909 60.0972

25 29.9972 70 1.3343 1 75 0.2762 58.693

26 29.9958 70 1.1532 1 75 0.2466 55.8972

27 29.9951 70 1.088 1 75 0.236 54.8923

28 29.9992 70 1.0091 1 75 0.2231 53.6433

29 29.9939 70 0.9527 1 75 0.2139 52.8057

30 30 10 1.7945 1.0783 30 0.2041 50.7416

31 30 10 1.6457 1.189 30 0.1888 47.1747
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Table 5 continued
S. no. x1 (kV ) x2 (◦) x3 (nA) x4 (µs) x5 (%) MRR (µm3/sec) Ra (nm)

32 30 10 1.6002 1.1248 30 0.1841 45.8376

33 30 10 1.5339 1.0705 30 0.1773 43.9982

34 30 10 1.47 1.1532 30 0.1642 40.646

35 30 10 1.3299 1.0384 30 0.1564 38.6717

36 30 10 1.2213 1.1013 30 0.1452 35.9904

37 30 10 1.1563 1.0046 30 0.1385 34.1442

38 30 10 1.0782 1 30 0.1305 32.13

39 30 10 1.0134 1.0599 30 0.1238 30.5557

40 30 10 0.919 1.0118 30 0.1141 28.0552

41 30 10 0.7803 1.009 30 0.0999 24.4857

42 30 10 0.7539 1.0126 30 0.0972 23.8108

43 30 10 0.6523 1.0393 30 0.0867 21.2268

44 30 10 0.571 1.1141 30 0.0784 19.1976

45 30 10 0.511 1.0697 30 0.0722 17.6112

46 30 10 0.4663 1.1138 30 0.0676 16.4895

47 30 10 0.3187 1 30 0.0524 12.6165

48 30 10 0.1957 1.1934 30 0.0398 9.5149

49 30 10 0.1179 1.008 30 0.0318 7.4608

50 30 10 0.03 1.0375 30 0.0228 5.2024

Fig. 5 Pareto fronts obtained using NSTLBO, MOTLBO and NSGA-
II for FIB micro-milling process (Bhavsar et al. 2015)

front obtained using NSTLBO and MOTLBO algorithms.
It is observed from Fig. 5 that the Pareto-front obtained
using NSTLBO and MOTLBO algorithms are superior to
the Pareto-front obtained using NSGA-II. This observa-
tion is also well supported by the values of hypervolume
for NSTLBO, MOTLBO and NSGA-II algorithms (i.e.
HVNSTLBO =55.633,HVMOTLBO =54.999 andHVNSGA−II =
28.6241). The NSTLBO andMOTLBO algorithms achieved
a higher value of hypervolume as compared to NSGA-II.

Further, even though the maximum number of function
evaluations chosen for NSTLBO, MOTLBO and NSGA-II

Table 6 Best, mean and worst values of hypervolume obtained using
NSTLBO and MOTLBO (example 3)

Algorithm Best Mean Worst SD

NSTLBO 55.633 55.263 54.9378 0.1749

MOTLBO 54.999 54.302 54.3795 1.133

is 60,000, the NSGA-II required 7740 function evaluations
to obtain the non-dominated set of solutions. On the other
hand, NSTLBO and MOTLBO algorithms could obtain the
non-dominated set of solutions within 2000 function eval-
uations for FIB micro-milling process. Thus, the NSTLBO
and MOTLBO algorithms have shown a higher convergence
rate as compared to NSGA-II. This is mainly because of
the fact that NSGA-II requires tuning of algorithm-specific
parameters and proper tuning of these algorithm-specific
parameters is important to avert chances of entrapment
in the local optima or a low convergence rate. On the
other hand, NSTLBO and MOTLBO algorithms require
only common control parameters and do not require any
algorithm-specific parameters for its working. The NSTLBO
and MOTLBO algorithms required 41.45 and 148.84 s,
respectively, to perform 60,000 function evaluations. How-
ever, the computational time required byNSGA-II to perform
60,000 function evaluations was not given in Bhavsar et al.
(2015).

From Table 5 it is observed that, the minimum value of Ra

observed in the Pareto-front obtained by NSGA-II is 13.97
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Table 7 Coded values of
process parameters and their
bounds (Kuriachen et al. 2015)

Factor Parameter Level 1 (−1) Level 2 (0) Level 3 (1)

A Gap voltage (V) 100 125 150

B Capacitance (µF) 0.01 0.1 0.4

C Feed rate (µm/s) 3 6 9

D Wire tension (gm) (5%) 4.125 (10%) 8.25 (15%) 12.375

nm and the maximum value of MRR is 0.5314 µm3/s. The
minimum value of Ra observed in the Pareto-front obtained
by NSTLBO is 5.2024 nm which is 62.76% better than the
minimum value of Ra obtained using NSGA-II and the max-
imum value of MRR obtained by NSTLBO is 0.6302µm3/s
which is 15.67% higher than the maximum value of MRR
obtained by NSGA-II.

The results provided by the NSTLBO algorithm for FIB
micro-milling process are well justified by experimental
observations of Bhavsar et al. (2015). In Table 5, solu-
tion no. 1 corresponds to the maximum value of MRR (i.e.
0.6302 µm3/sec). It is observed from the main effect plots
of FIB process parameters (Bhavsar et al. 2015) that the
values of extraction voltage, angle of incidence and beam
current at their respective upper bounds and dwell at its
lower bound are responsible for highest value of MRR.
Accordingly, in order to achieve a maximum value of MRR
the NSTLBO algorithm has selected the upper bound val-
ues of extraction voltage, angle of incidence, beam current
and overlap and a lower bound value of dwell time (i.e.
x1 =30kV, x2 = 70◦, x3 = 3.5nA, x4 = 1 µs and x5 =
75%).

Solution no. 50 inTable 5 corresponds to aminimumvalue
of Ra provided by NSTLBO algorithm (i.e. Ra =5.2024nm).
MRR and Ra are mutually conflicting responses as MRR
increases Ra also increases. An increase in beam current
increases the positive ions impinging the parent material
thus increasing the MRR, a high value of angle of incidence
also causes the MRR to increase which also increases Ra.
Therefore, to achieve a lower value of Ra, a lower value
of beam current and angle of incidence is desirable. Fur-
ther, a lower value of dwell time results in less value of Ra,
whereas, extraction voltage has no significant effect on Ra.
Accordingly, NSTLBO algorithm has provided a minimum
value of Ra by selecting the appropriate bound values of
the process parameters of FIB micro-milling process (i.e.
x1 =30kV, x2 = 10◦, x3 = 0.03 nA, x4 = 1.0375 µs and
x5 = 30%).

The non-dominated set of solutions provided byNSTLBO
algorithm for the FIB micro-milling of cemented carbide
gives flexibility to the process planner by allowing him to
choose a solution from the non-dominated set reported in
Table 5 which may satisfy his requirement of either high
MRR or low Ra in order to comply with the customer speci-
fication.

Example 4 Optimization of micro wire-electric-discharge
machining process

The optimization problem formulated in this work is based
on the empiricalmodels developed byKuriachen et al. (2015)
for material removal rate ‘MRR’ (mm3/min) and surface
roughness ‘SR’ (µm) for micro-WEDM of a titanium alloy
(Ti–6Al–4V) using the real experimental data. The exper-
iments were carried out in a micro-WEDM system using
DT-110, multi-process micro-machining center. The process
parameters such as gap voltage (V), capacitance (µF), feed
rate (µm/s) and wire tension (gm) were considered. The
objective functions, process parameters and the process para-
meter bounds considered in this problem are same as those
considered by Kuriachen et al. (2015).
Objective functions

Theobjective functions in termsof codedvalues of process
parameters are expressed by Eqs. (28) and (29). The bounds
and coded values of process parameters as considered by
Kuriachen et al. (2015) are reported in Table 7.

maximize
√
MRR = 0.14 + 0.006812 A + 0.024 B

+0.014C − 0.007979 AB

+0.00385 BC − 0.039 B2 (28)

minimize S R = 1.13 − 0.11 A + 0.080 B

−0.17C − 0.16 BC + 0.60 A2

+0.28C2 (29)

Kuriachen et al. (2015) applied PSO algorithm to solve
the multi-objective optimization problem by formulating a
combined objective function using fuzzy logic. The unique
solution obtained by PSO (Kuriachen et al. 2015) is reported
in Table 8. Like all heuristic optimization algorithms,
PSO also requires tuning of common control parameters.
Besides common control parameters, PSO requires tuning of
algorithm-specific parameters. However, the common con-
trol parameters and the algorithm-specific parameter used
for PSO were not reported by Kuriachen et al. (2015). Now
the NSTLBO and MOTLBO algorithms are applied to solve
the multi-objective optimization problem of micro-WEDM
in order to see whether any improvement in the results can
be achieved and to obtain the Pareto-optimal set of solutions.

A population size of 50 and a maximum number of gen-
erations equal to 20 (i.e. maximum number of function
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Table 8 Optimal solution
obtained by PSO for
micro-WEDM process
(Kuriachen et al. 2015)

Gap voltage (V) Capacitance (µF) Feed rate (µm/s) MRR (mm3/min) SR (µm)

113 0.26 9 0.02676 (0.0230*) 1.2796 (1.3386*)

*Corrected values

evaluations equal to 2000) are considered for the NSTLBO
and MOTLBO algorithms. The non-dominated set of solu-
tions obtained using NSTLBO algorithm are reported in
Table 9. Figure 6 shows the Pareto-front for micro-WEDM
obtained using NSTLBO and MOTLBO algorithms. It is
observed that the unique solution obtained by PSO (Kuri-
achen et al. 2015) lies in the objective space which is
dominated by the Pareto-front obtained by NSTLBO and

MOTLBO algorithms. The NSTLBO and MOTLBO algo-
rithms are run 30 times independently, and the best, mean
and worst values of hypervolume thus obtained are reported
in Table 10. The best value of hypervolume obtained by
NSTLBO algorithm (i.e. HVNSTLBO = 0.1594) is marginally
higher than the best value obtained by MOTLBO algorithm
(i.e. HVMOTLBO = 0.1594). The NSTLBO and MOTLBO
algorithms required 1.876 and 5.19 s, respectively, to perform

Table 9 The non-dominated set
of solutions for micro-WEDM
obtained using NSTLBO

S. no. Gap voltage (V) Capacitance (µF) Feed rate (µm/s) MRR (mm3/min) SR (µm)

1 127.5362 0.01 6.6043 0.0157 1.0799

2 127.5512 0.01 6.683 0.0158 1.0801

3 127.1506 0.0149 6.809 0.0163 1.082

4 126.3742 0.0275 6.3936 0.0166 1.0869

5 127.5622 0.0417 6.51 0.0177 1.0883

6 127.5709 0.0616 6.8391 0.0192 1.0904

7 126.7396 0.0651 6.9987 0.0195 1.0918

8 126.6504 0.0755 7.0133 0.0201 1.0933

9 127.4166 0.0873 7.0936 0.0208 1.0949

10 126.8775 0.1041 7.0221 0.0212 1.0967

11 127.2741 0.1133 7.1204 0.0217 1.0977

12 128.5621 0.1179 7.2287 0.0221 1.1001

13 127.7182 0.1491 7.3145 0.0227 1.101

14 127.5904 0.1558 7.4536 0.0229 1.102

15 127.7345 0.1661 7.6185 0.0232 1.1042

16 127.4851 0.1869 7.989 0.0237 1.1111

17 128.4227 0.1793 8.1458 0.024 1.1192

18 128.2071 0.1816 8.3251 0.0243 1.1267

19 128.7842 0.1806 8.4176 0.0245 1.1332

20 128.2862 0.1793 8.564 0.0247 1.1413

21 127.5773 0.1886 8.7611 0.0249 1.1513

22 128.578 0.1772 8.8675 0.0252 1.165

23 129.8908 0.1917 9 0.0254 1.1756

24 129.0233 0.1614 9 0.0255 1.1839

25 131.8662 0.1649 9 0.0256 1.1997

26 133.3393 0.1657 8.9985 0.0257 1.2143

27 133.9554 0.162 9 0.0257 1.2234

28 134.9952 0.1681 8.9986 0.0258 1.2352

29 136.2422 0.1684 9 0.0259 1.2552

30 137.6607 0.1633 8.9934 0.0259 1.2829

31 138.8097 0.1631 8.9836 0.026 1.3062

32 138.9056 0.1656 8.9857 0.026 1.3075

33 139.6854 0.1653 9 0.0261 1.3269

34 140.5523 0.1629 8.9907 0.0261 1.3484
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Table 9 continued
S. no. Gap voltage (V) Capacitance (µF) feed rate (µm/s) MRR (mm3/min) SR (µm)

35 141.4885 0.1632 9 0.0262 1.3738

36 142.2547 0.1617 9 0.0262 1.3958

37 142.7115 0.1539 9 0.0262 1.4122

38 143.1763 0.1565 9 0.0263 1.4251

39 143.4845 0.1563 9 0.0263 1.4347

40 144.8025 0.1588 9 0.0264 1.4764

41 145.2812 0.1522 9 0.0264 1.4953

42 145.4714 0.1557 9 0.0264 1.5005

43 146.1907 0.1539 9 0.0264 1.5268

44 146.8804 0.1618 9 0.0265 1.5492

45 147.0261 0.156 9 0.0265 1.557

46 147.5998 0.1534 9 0.0265 1.58

47 148.4937 0.1529 9 0.0266 1.6159

48 148.9593 0.1513 9 0.0266 1.6357

49 149.4353 0.1545 9 0.0266 1.6544

50 150 0.1522 9 0.0267 1.6796

Fig. 6 Pareto-front for micro-WEDM process obtained using
NSTLBO, MOTLBO and unique solution obtained using PSO (Kuri-
achen et al. 2015)

Table 10 Best, mean and worst values of hypervolume obtained using
NSTLBO and MOTLBO (example 4)

Algorithm Best Mean Worst SD

NSTLBO 0.1594 0.1553 0.1530 0.00244

MOTLBO 0.1594 0.1555 0.1535 0.00255

2000 function evaluations. However, the computational time
required by PSO was not given in Kuriachen et al. (2015).

The values of MRR and SR obtained by substituting the
values of optimum process parameter combination obtained
by PSO (Kuriachen et al. 2015) are 0.0230 mm3/min and
1.3386 µm, respectively. Now, for a value of MRR higher

than that provided by PSO, the corresponding value of SR
provided byNSTLBO algorithm is 1.1042µm (refer Table 9,
solution no. 15), which is 17.51% less than the value of SR
provided by PSO. On the other hand, for a value of SR lower
than that provided by PSO, the corresponding value of MRR
provided by NSTLBO algorithm is 0.0261 mm3/min (refer
Table 9, solution no. 33), which is 13.91% higher than the
value of MRR obtained by PSO.

In order to justify the solutions provided by the NSTLBO
algorithm two extreme solutions from Table 9 are taken into
consideration i.e. solution no. 1, which gives highest prior-
ity to minimization of surface roughness ‘SR’ and solution
no. 50, which gives a maximum priority to maximization of
material removal rate ‘MRR’. The solutions provided by the
NSTLBO algorithm for micro-WEDM process are consis-
tent with the experimental observations of the Somashekhar
et al. (2010) andKuriachen et al. (2015) which are as follows.

Increase in capacitance causes large energy dissipation
forming large craters on the work-piece surface which
increase the ‘SR’. Increase in feed rate causes SR to decrease
until an intermediate is reached value beyond which it
increases. SR reduces with increases in gap voltage until
an intermediate is reached value beyond which it increases.
Therefore, to achieve minimum SR the NSTLBO algorithm
has selected a lowest value of capacitance (0.01µF); interme-
diate value of feed rate (6.6043µm/s); and intermediate value
of gap voltage (127.5362V) (refer solution 1 in Table 9).

As capacitance increases high energy is dissipated which
increases the erosion of the work material increasing the
MRR, however, further increase in capacitance causes the
MRR to decrease due accumulation of debris causing
unwanted sparking. Therefore, to achieve maximum MRR
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an intermediate value of capacitance is desirable. As feed
rate increases the spark energy involved in material erosion
is more which causes increase in MRR. At low gap volt-
age energy per spark is low, lowering the inter-electrode
gap which reduces the MRR due to trapping of debris caus-
ing unwanted sparking. Accordingly, to achieve a maximum
MRR the NSTLBO algorithm has selected the values of
gap voltage (150V) and feed rate (9 µm/s) at their respec-
tive upper bounds and an intermediate value of capacitance
(0.1522µF) (refer solution 50 inTable 9). Similarly, the inter-
mediate solutions provided by the NSTLBO algorithm (i.e.
solution no. 2 to solution no. 49 in Table 9) are also impor-
tant and are consistent with the experimental observations of
Somashekhar et al. (2010) and Kuriachen et al. (2015).

The NSTLBO and MOTLBO algorithms have provided
multiple tradeoff solutions (Pareto-optimal solutions) for the
multi-objective optimization problem in a single simulation
run as compared to the single solution provided by PSO
(Kuriachen et al. 2015). All the solutions in the Pareto-
optimal set are equally good as each solution corresponds
to a different order of importance of objectives. The Pareto-
optimal set of solutions will serve as a ready reference to the
process planner and allow him to choose a suitable solution
based on his preferred order of importance of objectives.

Example 5 Optimization of laser cutting process

The optimization problem formulated in thiswork is based on
the analysis given by Pandey and Dubey (2012). The process
parameters considered in this work are same as those consid-
ered by Pandey and Dubey (2012) and they are as follows:
gas pressure ‘x1’ (kg/cm2), pulse width ‘x2’ (ms), pulse fre-
quency ‘x3’ (Hz) and cutting speed ‘x4’ (mm/min) while
minimization of surface roughness ‘Ra’ (µm) and kerf taper
‘Kt’ (degrees) are considered as objectives.
Objective functions

The objective functions are expressed by Eqs. (30) and
(31)

minimize Ra = −33.4550 + 7.2650x1 + 12.1910x2

+1.8114x3 − 0.2813x22 − 0.0371x23
−0.7193x1x2 + 0.0108x3x4 + 0.0752x1x2

(30)

minimize Kt = −8.567 − 2.528x1 + 0.2093x21
+2.1318x22 − 0.0371x23 − 0.7193x1x2

+0.0108x3x4 + 0.0752x1x3 (31)

Parameter bounds
The bounds on the process parameters are expressed by

Eqs. (32)–(35).

5 ≤ x1 ≤ 9 (32)

1.4 ≤ x2 ≤ 2.2 (33)

6 ≤ x3 ≤ 14 (34)

15 ≤ x4 ≤ 25 (35)

Pandey and Dubey (2012) applied GA to solve the multi-
objective optimization problem of laser cutting process,
considering a population size of 200 and maximum num-
ber of generations equal to 800 (i.e. maximum number of
function evaluations equal to 160,000). The crossover prob-
ability and mutation probability for GA were chosen as 0.8
and 0.07, respectively. Now the same problem is solved
using NSTLBO and MOTLBO algorithms (Zou et al. 2014)
in order to see whether any improvement in results can be
achieved. For fair comparison of results, the maximum num-
ber of function evaluations for NSTLBO and MOTLBO
algorithms are maintained as 160,000. For this purpose, a
population size of 50 and maximum number of generations
equal to 3200 is used by the NSTLBO and MOTLBO algo-
rithms. The non-dominated set of solutions obtained using
NSTLBO algorithm is reported in Table 11. The Pareto-
front for laser cutting process obtained using NSTLBO and
MOTLBO algorithms are shown in Fig. 7. It is observed from
Fig. 7 that the Pareto-front obtained by GA lies in the objec-
tive space which is dominated by the Pareto-front obtained
using NSTLBO and MOTLBO algorithms. The best, mean
and worst values of the hypervolume of the Pareto-fronts
obtained by NSTLBO and MOTLBO algorithms over 30
independent runs are reported in Table 12.

Kovacevic et al. (2014) solved the same problem using an
iterative search method. However, the maximum number of
function evaluations required by the iterative search method
and the time taken by the iterative search method to obtain
the Pareto-optimal set of solutions is not known. Neverthe-
less, for the purpose of fair comparison, the performances
of NSTLBO, MOTLBO, GA and iterative search method on
laser cutting optimization problemare compared based on the
values of hypervolume achieved by the respective algorithms
(i.e. HVNSTLBO =15.370; HVMOTLBO = 14.970;HVGA =
13.5525; HViterativesearch = 14.4603, respectively).

It is observed that the hypervolumes achievedbyNSTLBO
and MOTLBO algorithms are higher than the hypervolume
achieved byGA. This indicates that the Pareto-front obtained
using NSTLBO andMOTLBO algorithms are superior to the
Pareto-front obtained using GA. The Pareto-fronts obtained
usingNSTLBO,MOTLBOand iterative searchmethod seem
to overlap each other. However, it is observed that hypervol-
ume achieved by NSTLBO and MOTLBO algorithms are
slightly higher than the hypervolume achieved by iterative
search method.

The non-dominated solutions provided byNSTLBO algo-
rithm are consistent with the experimental observations of
Pandey andDubey (2012) which are as follows. Kt decreases
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Table 11 The non-dominated
set of solutions for laser cutting
obtained using NSTLBO

S. no. x1(kg/cm2) x2 (ms) x3 (Hz) x4 (mm/min) Kt (degrees) Ra (µm)

1 5.9314 1.4 14 15 0.3822 11.9862

2 5.7594 1.4 14 15 0.3883 11.7289

3 5.66 1.4 14 15 0.3974 11.5726

4 5.4986 1.4 14 15 0.4211 11.3071

5 5.4202 1.4 14 15 0.4365 11.1728

6 5.3159 1.4 14 15 0.4611 10.9888

7 5.238 1.4 14 15 0.4824 10.8473

8 5.2174 1.4 14 15 0.4884 10.8093

9 5.1373 1.4 14 15 0.5136 10.6594

10 5.0609 1.4 14 15 0.5402 10.5131

11 5.0021 1.4 14 15 0.5623 10.3982

12 5 1.4 14 15.2536 0.6015 10.3519

13 5 1.4 14 15.7384 0.6748 10.2693

14 5 1.4 14 15.9463 0.7062 10.233

15 5 1.4 14 16.8022 0.8356 10.0789

16 5 1.4 13.9719 17.4378 0.945 9.9653

17 5 1.4 14 18.0268 1.0208 9.8443

18 5 1.4 14 18.4189 1.0801 9.7657

19 5 1.4 14 19.3091 1.2147 9.581

20 5.007 1.4 14 19.9533 1.3094 9.4557

21 6.2167 1.4 6 15.8956 1.3575 9.3488

22 6.6796 1.4 6 19.3757 1.4049 9.2091

23 6.7303 1.4 6 20.5891 1.4695 8.9938

24 6.4991 1.4 6 19.9038 1.4979 8.9006

25 6.8437 1.4 6 22.2959 1.5526 8.7007

26 6.0754 1.4 6 18.4919 1.5979 8.6704

27 6.8644 1.4 6 23.2366 1.6091 8.4843

28 6.7509 1.4 6 23.2582 1.6371 8.3704

29 7.1756 1.4 6 25 1.6782 8.2763

30 6.6517 1.4 6 24.1883 1.725 8.0272

31 6.7185 1.4 6 25 1.7585 7.8759

32 6.5882 1.4 6 25 1.7974 7.7403

33 6.5087 1.4 6 25 1.8247 7.6528

34 6.36 1.4 6 25 1.8827 7.4797

35 6.3273 1.4 6 25 1.8967 7.4399

36 6.1826 1.4 6 25 1.9641 7.2568

37 6.0535 1.4 6 25 2.0316 7.0834

38 5.9673 1.4 6 25 2.0806 6.9626

39 5.8994 1.4 6 25 2.1213 6.8644

40 5.8653 1.4 6 25 2.1425 6.814

41 5.7703 1.4 6 25 2.2041 6.6705

42 5.7402 1.4 6 25 2.2244 6.6239

43 5.6759 1.4 6 25 2.269 6.5229

44 5.5282 1.4 6 25 2.3782 6.2817

45 5.4728 1.4 6 25 2.4214 6.1881

46 5.2683 1.4 6 25 2.5923 5.8276

47 5.1706 1.4 6 25 2.6801 5.6471
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Table 11 continued
S. no. x1(kg/cm2) x2 (ms) x3 (Hz) x4 (mm/min) Kt (degrees) Ra (µm)

48 5.0765 1.4 6 25 2.7686 5.4681

49 5 1.4 6 25 2.8431 5.3189

50 5 1.4 6 25 2.8431 5.3189

Fig. 7 Pareto-fronts for laser cutting process obtained usingNSTLBO,
MOTLBO, GA (Pandey and Dubey 2012) and iterative search method
(Kovacevic et al. 2014)

Table 12 Best, mean and worst values of hypervolume obtained using
NSTLBO and MOTLBO (example 5)

Algorithm Best Mean Worst SD

NSTLBO 15.370 15.230 14.872 0.182

MOTLBO 14.9706 14.950 14.872 0.0366

with increase in assist gas pressure at lower values of pulse
width. However, at higher values of pulse width, Kt first
decreases and then increases by increasing assist gas pres-
sure. Accordingly, in Table 11, Kt increases with the increase
in assist gas pressure while pulse width is maintained at its
lower bound. Kt values increases at higher values of pulse
width by increasing gas pressure. Therefore, as pulse width
is non-beneficial for Kt it is maintained at is lower bound
for all the solutions. Surface roughness ‘Ra’ increases with
increase in cutting speed at upper as well as lower val-
ues of pulse frequency. Accordingly, in Table 11, surface
roughness increases a cutting speed increases from lower
bound value (i.e. x4 =15mm/min) to upper bound value
(i.e. x4 =25mm/min), while pulse frequency is maintained
at either upper bound (i.e. x3 =14Hz) value or lower bound
value (i.e. x3 =6Hz). This is mainly because, at higher cut-
ting speed, the heat available for the cutting is reduced due to
which the melted material gets removed completely from the
cutting front which gives smooth cut surface. At lower val-

ues of cutting speed, as pulse frequencies increases, the pulse
energy also increases which results moremelting ofmaterial.
The melted material may not be removed completely and the
remaining melted material may be re-solidified at the cutting
edges, which increases Ra of the cutting edges. However,
at higher cutting speed, the heat available for the cutting is
reduced due to which the melted material is removed com-
pletely from the cutting front which gives smooth cut surface.

For the purpose of fair comparison of results, the max-
imum number of function evaluations used by NSTLBO
and MOTLBO algorithms is maintained as 160,000 but
the NSTLBO and MOTLBO algorithms could obtain the
non-dominated set of solutions within 7000 function eval-
uations. The computational time required by NSTLBO and
MOTLBO algorithms to perform 160,000 function evalua-
tions are 102.94 and 406.292s, respectively. However, the
computational time required by GA (Pandey and Dubey
2012) and iterative search based algorithm (Kovacevic et al.
2014) are not available for comparison.

All the optimization problems formulated in this work
are based on the mathematical models developed by previ-
ous researchers based on experimentation. The confirmation
experiments for the developed mathematical models were
also conducted by the previous researchers for machin-
ing processes such as turning (Palanikumar et al. 2009),
WEDM (Garg et al. 2012), FIB micro-milling (Bhavsar
et al. 2015), micro-WEDM (Kuriachen et al. 2015) and laser
cutting (Pandey and Dubey 2012). In addition, the previ-
ous researchers had solved the optimization problems using
advanced optimization algorithms such as GA, NSGA-II,
PSO and iterative search method. Now the same mathemati-
cal models have been solved using NSTLBO and MOTLBO
algorithms and the results obtained using NSTLBO and
MOTLBO algorithms are comparedwith the results obtained
by the previous researchers. The previous researchers had
considered the process parameters in their continuous form.
Therefore, all the process parameters considered in this work
are in their continuous form only. [However, in actual prac-
tice, the values allowed by the machining process which are
closer to the suggested optimum values may be considered.]

The Pareto-optimal set of solutions provided by NSTLBO
algorithm contains a wide range of optimal values which will
enable the process planner to choose a particular solution
from the Pareto-set depending on his preference and imper-
ativeness of the objectives. Therefore, the results reported in
the present work are useful for real production systems.
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Conclusions

Multi-objective optimization aspects of three machining
processes namely turning,wire-electric-dischargemachining
and laser cutting and twomicro-machining processes namely
focused ion beam micro-milling and micro wire-electric-
dischargemachining are considered in thiswork.Aposteriori
multi-objective optimization algorithm based on teaching-
learning-based optimization named “Non-dominated Sort-
ing Teaching–Learning-Based Optimization” (NSTLBO)
algorithm and “Multi-objective Teaching–Learning-Based
Optimization” (MOTLBO) algorithm are applied to solve
the respective machining process optimization problems.
The same models were previously attempted by other
researchers using GA, NSGA-II, PSO and iterative search
method.

In the case of turning and wire-electric-discharge machin-
ing processes the results obtained using NSTLBO and
MOTLBO are competitive. The NSTLBO and MOTLBO
algorithms achieved the Pareto-optimal set of solutions in
a very less number of function evaluations as compared to
NSGA-II showing a higher convergence speed.

In the case of focused ion beam micro-milling the Pareto-
front obtained using NSTLBO and MOTLBO algorithms
are superior to the Pareto-front obtained using NSGA-II. In
the case of micro-wire electric discharge machining process,
the solutions in the Pareto-set obtained using NSTLBO and
MOTLBO algorithms are better than the unique solution pro-
vided by PSO.

In the case of laser cutting process, the NSTLBO and
MOTLBO algorithms obtained a superior Pareto-front as
compared GA within comparatively less number of func-
tion evaluations. The Pareto-front obtained using NSTLBO
and MOTLBO algorithms are not inferior to the Pareto-front
obtained using the recently proposed iterative search method
for laser cutting process.

The performance ofNSTLBOalgorithm is comparedwith
MOTLBO algorithm for all the case studies considered in
this work, based on hypervolume indicator and computa-
tional time. It is observed that the hypervolume achieved by
NSTLBO algorithm is higher than the hypervolume achieved
by MOTLBO algorithm for turning process, laser cutting
and FIB micro-milling process. The values of hypervolume
achieved byNSTLBO andMOTLBO algorithms are equal in
the case of WEDM and micro-WEDM processes. However,
the computational time required by MOTLBO algorithm is
comparatively higher than the computational time required
by NSTLBO algorithm for all the optimization case studies
considered in this work. This may be because of additional
computational effort required in maintaining the external
archive and the need to allocate memory locations dynami-
cally to store the best solution obtained after every generation
in MOTLBO.

In the present work, NSTLBO and MOTLBO algorithms
are applied to solve optimization problems of only selected
machining processes. However, NSTLBO and MOTLBO
algorithms may also be applied to solve optimization prob-
lems other traditional and modern machining processes. The
NSTLBO and MOTLBO algorithms may also be applied
to optimization problems of other manufacturing processes
such as casting, welding, forming, etc.

Acknowledgements The authors are thankful to the Department of
Science and Technology (DST), Ministry of Science and Technology,
of the Republic of India and the Slovenian Research Agency (ARRS),
Ministry of Education, Science and Sport of the Republic of Slovenia
for providing the financial support for the project entitled “Optimization
of Sustainable Advanced Manufacturing Processes”.

References

Abhishek, K., Kumar, R. V., Datta, S., & Mahapatra, S. S. (2015).
Parametric appraisal and optimization inmachining of CFRP com-
posites by using TLBO (teaching-learning based optimization
algorithm). Journal of Intelligent Manufacturing. doi:10.1007/
s10845-015-1050-8.

Bhavsar, S.N.,Aravindan, S.,&Rao, P.V. (2015). Investigatingmaterial
removal rate and surface roughness using multi-objective opti-
mization for focused ion beam (FIB) micro-milling of cemented
carbide. Precision Engineering, 40, 131–138.

Chandrasekaran, M., Muralidhar, M., Krishna, M. C., & Dixit, U.
S. (2010). Application of soft computing techniques in machin-
ing performance prediction and optimization: A literature review.
International Journal of Advanced Manufacturing Technology, 46,
445–464.

Chen, D., Lu, R., Zou, F., & Li, S. (2015). Teaching–learning-based
optimization with variable-population scheme and its application
for ANN and global optimization. Neurocomputing. doi:10.1016/
j.neucom.2015.08.068.

Deb, K. (2001). Multi-objective optimization using evolutionary algo-
rithms. London: Wiley.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation, 6, 182–197.

Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and
multi-objective optimization of process parameters of wire
electrical-discharge machining using non-dominated sorting
genetic algorithm-II. Proceedings of Institution of Mechanical
Engineers: Part B-Journal of Engineering Manufacture, 226(12),
1986–2001.

Kovacevic,M.,Madic,M., Radovanovic,M.,&Rancic,D. (2014). Soft-
ware prototype for solvingmulti-objectivemachining optimization
problems: Application in non-conventional machining processes.
Expert Systems with Applications, 41, 5657–5668.

Kuriachen, B., Somashekhar, K. P., & Mathew, J. (2015). Multire-
sponse optimization of micro-wire electrical discharge machining
process. International Journal of Advanced Manufacturing Tech-
nology, 76, 91–104.

Li, D., Zhang, C., Shao, X., & Lin, W. (2014). A multi-objective TLBO
algorithm for balancing two-sided assembly line with multiple
constraints. Journal of Intelligent Manufacturing. doi:10.1007/
s10845-014-0919-2.

Medina, M. A., Das, S., Coello, C. A. C., & Ramírez, J. M. (2014).
Decomposition-based modern metaheuristic algorithms for multi-

123

http://dx.doi.org/10.1007/s10845-015-1050-8
http://dx.doi.org/10.1007/s10845-015-1050-8
http://dx.doi.org/10.1016/j.neucom.2015.08.068
http://dx.doi.org/10.1016/j.neucom.2015.08.068
http://dx.doi.org/10.1007/s10845-014-0919-2
http://dx.doi.org/10.1007/s10845-014-0919-2


J Intell Manuf (2018) 29:1715–1737 1737

objective optimal power flow—A comparative study. Engineering
Applications of Artificial Intelligence, 32, 10–20.

Mellal, M. A., & Williams, E. J. (2014). Parameter optimization of
advanced machining processes using cuckoo optimization algo-
rithm and hoopoe heuristic. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-014-0925-4.

Mohanty, C. P., Mahapatra, S. S., & Singh, M. R. (2014). A particle
swarm approach for multi-objective optimization of electrical dis-
charge machining process. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-014-0942-3.

Mukherjee, I., & Ray, P. K. (2006). A review of optimization techniques
in metal cutting processes. Computers & Industrial Engineering,
50, 15–34.

Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R.
(2009). Multiple performance optimization in machining of GFRP
composites by a PCD tool using non-dominated sorting genetic
algorithm (NSGA-II). Metals and Materials International, 15(2),
249–258.

Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of
multiple quality characteristics in laser cutting of titanium alloy
sheet. Optics and Laser Technology, 44, 1858–1865.

Patel, V. K., & Savsani, V. J. (2014). A multi-objective improved
teaching-learning based. optimization algorithm (MO-ITLBO).
Information. doi:10.1016/j.ins.2014.05.049.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-
based optimization: A novel method for constrained mechanical
design optimization problems. Computer-Aided Design, 43, 303–
315.

Rao, R. V., &Kalyankar, V. D. (2014). Optimization ofmodernmachin-
ing processes using advanced optimization techniques: A review.
International Journal of Advanced Manufacturing Technology, 73,
1159–1188.

Rao, R. V., & Patel, V. (2014). A multi-objective improved teaching-
learning based optimization algorithm for unconstrained and con-
strained optimization problems. International Journal of Indus-
trial Engineering Computations, 5, 1–22.

Rao, R. V. (2015). Teaching–learning-based optimization (TLBO) algo-
rithm and its engineering applications. London: Springer.

Rao, R. V. (2016). Jaya: A simple and new optimization algorithm
for solving constrained and unconstrained optimization problems.
International Journal of Industrial Engineering Computations,
7(1), 19–34.

Rao, R. V. (2016). Review of applications of TLBO algorithm and a
tutorial for beginners to solve the unconstrained and constrained
optimization problems. Decision Science Letters, 5, 1–30.

Somashekhar, K. P., Ramachandran, N., & Mathew, J. (2010). Material
removal characteristics of microslot (kerf) geometry in µ-WEDM
on aluminium. International Journal of Advanced Manufacturing
Technology, 51, 611–626.

Sultana, S., & Roy, P. K. (2014). Multi-objective quasi-oppositional
teaching learning based optimization for optimal location of dis-
tributed generator in radial distribution systems. Electrical Power
and Energy Systems, 63, 534–535.

Teimouri, R., Baseri, H., &Moharami, R. (2014). Multi-responses opti-
mization of ultrasonic machining process. Journal of Intelligent
Manufacturing, 26, 745–753.

Yu, K., Wang, X., &Wang, Z. (2014). An improved teaching–learning-
based optimization algorithm for numerical and engineering opti-
mization problems. Journal of Intelligent Manufacturing. doi:10.
1007/s10845-014-0918-3.

Yu, K., Wang, X., & Wang, Z. (2015). Self-adaptive multi-objective
teaching–learning-based optimization and its application in ethyl-
ene cracking furnace operation optimization. Chemometrics and
Intelligent Laboratory Systems, 146, 198–210.

Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Evolutionary tech-
niques in optimizing machining parameters: Review and recent
applications. Expert Systems with Applications, 39, 9909–9927.

Yusup, N., Sarkheyli, A., Zain, A. M., Hashim, S. Z. M., & Ithnin,
N. (2014). Estimation of optimal machining control parameters
using artificial bee colony. Journal of Intelligent Manufacturing,
25, 1463–1472.

Zainal,N., Zain,A.M.,Radzi,N.H.M.,&Othman,M.R. (2014).Glow-
worm swarm optimization (GSO) for optimization of machining
parameters. Journal of Intelligent Manufacturing. doi:10.1007/
s10845-014-0914-7.

Zitzler, E., &Thiele, L. (1999).Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach. IEEE
Transactions on Evolutionary Computation, 3(4), 257–271.

Zou, F.,Wang,L.,Hei,X.,Chen,D.,&Wang,B. (2014).Multi-objective
optimization using teaching–learning-based optimization algo-
rithm. Engineering Applications of Artificial Intelligence, 26,
1291–1300.

123

http://dx.doi.org/10.1007/s10845-014-0925-4
http://dx.doi.org/10.1007/s10845-014-0942-3
http://dx.doi.org/10.1016/j.ins.2014.05.049
http://dx.doi.org/10.1007/s10845-014-0918-3
http://dx.doi.org/10.1007/s10845-014-0918-3
http://dx.doi.org/10.1007/s10845-014-0914-7
http://dx.doi.org/10.1007/s10845-014-0914-7

	Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching--learning-based optimization algorithm
	Abstract
	Introduction
	Teaching learning based optimization algorithm
	Non-dominated sorting teaching--learning-based optimization algorithm
	Conclusions
	Acknowledgements
	References




