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Abstract During the machining process of thin-walled
parts, machine tool wear andwork-piece deformation always
co-exist, which make the recognition of machining condi-
tions very difficult. Existingmachining conditionmonitoring
approaches usually consider only one single condition, i.e.,
either tool wear or work-piece deformation. In order to close
this gap, a machining condition recognition approach based
on multi-sensor fusion and support vector machine (SVM) is
proposed. A dynamometer sensor and an acceleration sensor
are used to collect cutting force signals and vibration signals
respectively. Wavelet decomposition is utilized as a signal
processing method for the extraction of signal characteris-
tics including means and variances of a certain degree of the
decomposed signals. SVM is used as a condition recognition
method by using the means and variances of signals as well
as cutting parameters as the input vector. Information fusion
theory at the feature level is adopted to assist the machining
condition recognition. Experiments are designed to demon-
strate and validate the feasibility of the proposed approach.
A condition recognition accuracy of about 90% has been
achieved during the experiments.
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Introduction

Numerical control (NC) machining has made great contribu-
tions to the improvement of manufacturing efficiency due to
its automation characteristics. As the manufacturing require-
ment of high-valued and high-accuracy parts such as aircraft
structural parts and turbine blades, improved intelligence
of machine tools is needed. Advanced sensing ability of
machining conditions is one of the key aspects of intelligent
machining tool factors (Li et al. 1997).

Machining condition monitoring has been extensively
researched during the past couple of decades (Teti et al.
2010), where machining tool states, cutting tool conditions,
surface integrity, and chatter detection have been the focus
in the related research literature. Machining condition mon-
itoring of simple machining processes such as drilling or
simple parts has advanced to a relative mature level. How-
ever, there are still significant challenges for thin-walled parts
with complex machining conditions. During the machining
process of these parts, because of their thin-walled structures
which are defined as having a large span ratio of height to
thickness (Ratchev et al. 2005), the work-pieces are easy to
deform, and the deformation may influence the magnitude of
cutting force due to cutting depth or width variation. Mean-
while, the deformation has a critical impact on machining
accuracy. Tool wear detection is crucial to maximize the life-
time of a cutting tool and reducemachining cost, and it is also
very important for thin-walled structural part machining. The
cutting tools chosen to machine these parts always bring in
deflection under the influence of cutting force, which has an
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iterative impact on cutting force. In summary, work-piece
deformation, tool wear, and tool deflection co-exist in the
machining process of thin-walled parts, and these phenom-
ena always occur simultaneously, which impose challenges
for machining condition recognition.

Machining condition recognition is a multiple-factor and
nonlinear problem. The impacting factors include cutting
parameters such as spindle speed, feed-rate speed, cutting
depth, and cutting width. The combination of these factors
introduces different machining conditions, and the physi-
cal signal characteristics of normal or abnormal conditions
vary with cutting parameters. Another major challenge of
machining condition recognition of thin-walled parts is that
the physical signal characteristics of work-piece deformation
and tool wear have coupling effects, which can be under-
stood in two aspects: (1) these phenomena are impacted by
each other, e.g., tool wear may increase cutting force, and
the increasing cutting force may magnify work-piece defor-
mation; (2) physical signal characteristics may be the mutual
contribution of these phenomena. Therefore it is difficult to
clearly recognize machining conditions with multiple phe-
nomena.

To address these issues, this paper proposes a machin-
ing condition recognition approach based on multi-sensor
fusion and support vector machine (SVM), where tool wear
and work-piece deformation are distinguished by using the
proposed multi-sensor fusion method.

A dynamometer sensor and an acceleration sensor are
used to collect cutting force signals and vibration signals
respectively, and the two kinds of signals provide different
perspectives for the recognition of machining conditions.
Wavelet decomposition is utilized as the signal processing
method for the extraction of signal characteristics includ-
ing mean and variance in certain decomposition degree of
wavelet. The multi-signal processing can be deemed as the
decoupling of the multiple machining conditions. SVM is
used as a condition recognition method. Information fusion
theory at the feature level is adopted to facilitate the machin-
ing condition recognition.

In order to implement theproposed sensor fusion approach,
the selection of the input vector for SVM is researched in
depth, and the sensitive signal characteristics are selected by
sets of experiments. In contrast to existing machining condi-
tion recognition methods, cutting parameters are also taken
into account by the input vector of SVM. The classification
of the high dimension input vector is realized by the opti-
mization of the SVM algorithm.

The rest of the paper is organized as follows. Section “Lit-
erature review” reviews the related literature. Section “Pro-
posed sensor fusion and SVM based monitoring approach”
introduces the proposed multi-sensor fusion and SVM based
approach. Section “Implementation and validation of the pro-
posed approach” presents the detailed implementation and

validation of the proposed approach. Section “Discussion”
provides some discussions. Section “Conclusion and future
work” concludes the paper and envisions some future work.

Literature review

Machining condition monitoring plays a critical role in high
quality machining, and it is extensively investigated in the
last decades. Several comprehensive literature review papers
have been published previously. Liang et al. (2004) reviewed
the machining process monitoring approaches and control
methods, where the complicated machining conditions are
deemed as key difficulty. The monitoring of machining oper-
ations is extensively reviewed in the aspects of sensors, signal
processing methods, decision making algorithms, and mon-
itoring scopes (Teti et al. 2010). Abellan-Nebot and Romero
Subirón (2010) presented a generic view of machining mon-
itoring systems based on artificial intelligence (AI) process
models, where the reviewofAI techniques used inmachining
monitoring is focused, as well as the most frequently used
signal characteristics and the extraction methods are intro-
duced. Tool condition monitoring is also widely reviewed.
Rehorn et al. (2005) presented a review of the state-of-the-
art in sensors and signal processing methodologies used
for tool condition monitoring (TCM) systems in industrial
machining applications, where conventional cutting opera-
tions including drilling, turning, endmilling, and facemilling
are focused. In terms of signal processing, wavelet analysis
is an effective approach for cutting tool condition moni-
toring. Zhu et al. (2009) reviewed the state-of-the-art of
wavelet-based analysis for tool condition monitoring, and
the superiorities of wavelet analysis to Fourier methods are
discussed for TCM.

Recently, advanced monitoring methods including tool
wear, machining deformation, machining quality, and rough-
ness that have been developed are:

1. Tool wear monitoring. Nouri et al. (2015) described a
method to monitor end milling tool wear in real-time
by tracking force model coefficients during the cutting
process, where the coefficients are shown to be indepen-
dent from the cutting conditions and correlated with the
wear state of the cutting tool. Castejón et al. (2007) pro-
posed a computer vision and statistical learning system
to estimate the wear level in cutting inserts in order to
identify the time for its replacement, where “M” level
is defined for tool replacement based on cluster analy-
sis. Ghani et al. (2011) developed an online tool wear
measurement and monitoring system for turning, where
a two-channel strain gauge is used to collect cutting
force signals, which is effective to detect the progres-
sion of flank wear width during machining. Shi et al.
(2007) developed an online tool wear monitoring system
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for broaching process, where short-time Fourier trans-
form (STFT) and statistical process control are adopted
to extract the features of tool malfunctions and construct
the thresholds ofmalfunction-free zones. Liu et al. (2010)
presented an approach for on-line monitoring of boring
tools, where back-propagation neural networks (BPNs)
and adaptive neuro-fuzzy inference systems (ANFIS)
were used for on-line classification and measurement
of tool wear. Tamizharasan et al. (2012) presented a
flank wear monitoring method for turning by using audi-
ble acoustic emission signals, and a simulated annealing
algorithm is adopted to analyze the collected signals.

2. Machiningdeformationmonitoring.Möhring et al. (2010)
developed a process monitoring method by integrating a
sensing fixture and an adaptive sensory milling spindle,
the process andwork-piece behavior such as deformation
can be observed from both sides of the process. Yosh-
ioka et al. (2014) presented a direct monitoring method
by using evanescent light which can detect the distance
between a diamond tool edge and the work-piece sur-
face, and the work-piece deformation can be monitored
according to the distance variation. Li et al. (2015) devel-
oped an integrated feature-based dynamic control system
for on-line machining, inspection and monitoring, where
work-piece deformation is detected by using vibration
signals.

3. Machining quality monitoring. Yu et al. (2008) devel-
oped a hybrid learning-based model for on-line intel-
ligent monitoring and diagnosis of the manufacturing
processes, where the integration of a knowledge-based
artificial neural network and a genetic algorithm (GA)-
based rule is constructed to recognize faulty quality
categories of the products being produced. Wuest et al.
(2014) reported a system by applying a combination
of Cluster Analysis and Supervised Machine Learning
on product state data along the manufacturing program,
which is able to cope with the fast increasing complexity
and high-dimensionality of modern manufacturing pro-
grams and generate applicable results with reasonable
effort. Jiang et al. (2014) developed a real-time quality
monitoring and predictingmodel based on error propaga-
tion networks forMMPs, where themapping relationship
amongmachining errors of quality attributes is described.

4. Roughness monitoring. Quintana et al. (2011) developed
a surface roughness monitoring method based on an arti-
ficial neural network approach for vertical high speed
milling operations, where geometrical cutting factors,
dynamic factors, part geometries, lubricants, materials
and machine tools are taken into account as impacting
factors to analyze the surface roughness. Brecher et al.
(2011) developed an application based on the information
contained in the numerical control (NC) kernel for sur-
face roughness monitoring of the part in process, where

artificial neural networks are used for surface roughness
average parameter (Ra) predictions. Gadelmawla (2011)
reported a surface roughness estimationmethod based on
a vision system, where the texture features of the grey-
level co-occurrencematrix are utilized to estimate surface
roughness of specimens machined by turning operations.

Themulti-sensor fusionmethodhas been extensively adopted
in the literature to obtain a robust monitoring result (Zhang
et al. 2013). Denkena et al. (2008) developed an algorithm
for optimal multi-sensor configuration, and the sensor fusion
concept was also introduced. Niu and Yang (2010) pro-
posed a condition monitoring and prognostics system in
condition-based maintenance architecture based on data-
fusion strategy. The neural network is used for feature-level
fusion and the prediction is performed using multi-nonlinear
regression models. Aliustaoglu et al. (2009) presented a
sensor fusion method for cutting tool condition monitor-
ing, where statistical parameters derived from thrust force,
machine sound and vibration signals were used as inputs to
fuzzy process, and then to assess the machining condition.
Paul and Varadarajan (2012) presented an attempt to fuse
cutting force, cutting temperature and displacement of tool
vibration, along with cutting velocity, feed and depth of cut,
to predict tool wear during turning, where a regressionmodel
and an artificial neural networkmodelwere developed to fuse
the cutting force, cutting temperature and displacement of
tool vibration signals to predict tool flank wear.

The literature review shows that the existing research
efforts only focus on mono-condition monitoring, or non-
relative multi-condition monitoring. Significant efforts are
still required to bridge the gap of multi-condition monitor-
ing with coupling effects, especially for the NC machining
of thin-walled parts, where cutting tool wear and work-
piece deformation always occur simultaneously. This paper
addresses these issues.

Proposed sensor fusion and SVM based
monitoring approach

In this paper, tool wear andwork-piece deformation are taken
into account as abnormal machining conditions for recog-
nition. Techniques including information fusion, wavelet
decomposition, and SVM are adopted to recognize these
abnormal machining conditions. Information fusion and
wavelet decomposition are the basis for the implementa-
tion of SVM. The fundamental of the proposed approach
is described in the following sub-sections.

Information fusion at feature level

Information fusion can improve the reliability and robustness
of a decision system (Snidaro et al. 2015). There are three
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different fusion levels according to the representation of data:
data level, feature level, and decision level. For the recogni-
tion of tool wear and work-piece deformation, information
fusion is achieved at the feature level. Signal characteris-
tics of different sensors are extracted respectively, i.e., a
dynamometer sensor and an acceleration sensor, and then the
signal characteristics of different sensors are combined into
one characteristic vector, which is used as the input vector of
the SVM.

In order to recognize the multiple machining condi-
tions, the selection of sensitive signal characteristics is very
important. In this paper, the means and variances of the
approximation and detail of the discrete wavelet transforma-
tion (DWT) of both cutting force and vibration signals are
selected as sensitive characteristics by sets of experiments. A
critical point that should be considered is that the monitoring
signals change with different cutting parameters, so it is also
very important to take the cutting parameters into account in
the input vector for machining condition recognition, while
it has been ignored by existing research efforts.

Signal processing based on wavelet decomposition

DWTis adopted as the signal processingmethod in this paper.
The DWT has a good solution simultaneously in both fre-
quency and time domains so that it can extract information in
the time domain at different frequency bands (Li et al. 1999).
Wavelet decomposition was successfully used for chatter
detection by cutting force signals (Tangjitsitcharoen et al.
2015). In comparison with continuous wavelet transforma-
tion (CWT), theDWThas the advantageofwithout redundant
information (Peng and Chu 2004; Zhu et al. 2009). TheDWT
is derived from the CWT which is defined as follows:

W f (a, b) = 〈 f, ψa,b〉 = |a|−1/2
∫

R

f (t)ψ

(
t − b

a

)
dt (1)

where a is defined as the scaling parameter and b the position
parameter.

According to the definition of the CWT, let:
b = k

2 j , a = 1
2 j ; j, k ∈ Z , and then,

ψa,b (t) = ψ 1
2 j

, k
2 j

(t) = 2 j/2ψ
(
2 j t − k

)
(2)

The DWT is defined as follows:

DWT f

(
1

2 j
,
k

2 j

)
= 〈

f, ψ j,k
〉

(3)

Wavelet and scaling functions at different scales are gen-
erated from a single scaling function φ (t) with two-scale
difference equations (Mallat 1999):

φ (t) = √
2

∞∑
k=−∞

h (k) φ (2t − k) (4)

ψ (t) = √
2

∞∑
k=−∞

g (k) φ (2t − k) (5)

where g (k) = (−1)1−k h (1 − k) , k ∈ Z . (6)

The h(k) and g(k) are viewed as filter coefficients of low-pass
and high-pass filters, and l is the filter length.φ (t) and ψ(t)
are scaling and wavelet functions at scale j=1, respectively.

Scaling and wavelet coefficients at different scales and
translations are expressed as follows:

c j,k =
∑
l

hl−2kc j+1,l (7)

d j,k =
∑
l

gl−2kc j+1,l (8)

where c j,k, d j,k are scaling and wavelet coefficients derived
from the projection of the signal on to the space of scaling
φ j,k (t) and wavelet functions ψ j,k (t), respectively.

c j,k and d j,k are very important properties of the wavelet,
and their means and variances are used as signal character-
istics for monitoring in this paper.

SVM based machining condition recognition

SVM is a computational learning method based on the sta-
tistical learning theory and can serve as an expert system
(Widodo and Yang 2007). The SVM can solve the learn-
ing problem with a small number of samples, and it has high
accuracy and good generalization for a small number of sam-
ples.

The category of SVM is realized by a discriminant plane,
which is called a hyper plane. Suppose pattern set X =
{xi , i = 1, . . . , N } is linearly separable, and the discrimi-
nant plane is represented as follows:

d(x) = wT x + b = 0 (9)

where w and b represents the parameters of the discrim-
inant, and w is a vector with the same dimensions as x .
The distance between the hyper plane and the samples is
minimized by using an optimization method. In this paper,
LagrangianAlgorithm is adopted as the optimizationmethod.
Finally, the optimal category function can be obtained (Zhu
et al. 2009) as follows:

d(x) = sgn
[
(wT · x) + b∗]

= sgn

[
N∑
i=1

α∗
i yi (xi · x) + b∗

]
(10)
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Fig. 1 Experiment environment

where α∗
i is the optimal solution of the Lagrange multiplier

corresponding to the samples which are chosen as support
vectors, b∗ is the optimal solution of b corresponding to the
samples which are chosen as support vectors, yi is the value
of the category which the support vector xi belongs to, yi is
set with 1 in this situation, otherwise it is set with−1. (xi ·x)
is the kernel function, and Gaussian function is used as the
kernel function. N is the number of the samples chosen for
the supporting vector.

By using the category function, a pattern can be recog-
nized for a binary classification.

In this paper, the issue addressed is a multi-classification
problem, somulti-class SVMs are used. Themethod adopted
formultiple classifications is a one-against-allmethod,which
means that k SVM models are constructed, where k is the
number of classifications. Each classification is recognized
against all the other categories by a SVM model.

Since the high dimension of the characteristic vector
imposes significant difficulty for the machining condition
recognition by SVM, some strategies such as normalization
are adopted.

Implementation and validation of the proposed
approach

This section describes the detailed implementation of the pro-
posed approach. Experiments to obtain the supporting data
for SVM are designed. In this paper, the machining process
of milling is focused and the experiments are designed with
one of the typical milling, i.e., flank milling. The signals
are collected during the machining experiments and then the
signals are analyzed using wavelet decomposition to get sig-
nal characteristics. The discriminants of different machining
conditions are obtained by training the SVM using the signal
characteristics. Finally, the proposed approach is validated
by an additional set of experiments.

Implementation of the proposed approach

Some experiments are designed to obtain supporting data to
analyze the characteristics of differentmachining conditions.
The experiment environment is shown in Fig. 1. The category
1050 of Aluminum alloy is used as the experiment material,
and the cutting tools are cemented carbide endmilling cutters.
The cutting forces are collected by a KislerTM dynamome-
ter, and the vibration is monitored by an acceleration sensor.
Two cutting tools are selected: one is a new cutting tool,
and another one is worn. A part with two kinds of typical
sidewalls is designed to carry out the experiments for dif-
ferent machining conditions. The thickness of the first one
is 5mm, which will not deform during machining process.
The thickness of the second one is 2mm, which is easy to
deform during machining process. Four kinds of machin-
ing conditions are defined: normal (N), cutting tool wear
without work-piece deformation (W), work-piece deforma-
tion without cutting tool wear (D), and cutting tool wear
withwork-piece deformation (W&D). In the experiments, the
cutting tool wear value is 0.10mm, and thework-piece defor-
mation value is 0.12mm measured by displacement sensor.
These values are selected according to experiments, while
the machining conditions can be reflected by the monitoring
signals. Each machining condition experiment is conducted
over 8 times with different cutting parameters, i.e., spindle
speed (s), feedrate speed (f), cutting depth (ap) and cutting
width (ae). The design of different cutting parameters is use-
ful for the validation of the proposed approach. The cutting
parameters of the experiment samples are shown in Table 1.
Please note that, in the “No.” column of Table 1, for the first
digital, 1 stands for the machining condition “N”, 2 stands
for the machining condition “W”, 3 stands for the machin-
ing condition “D”, and 4 stands for the machining condition
“W&D”. The representations are used from Tables 1, 2, 3, 4,
5 and 6.

The collected cutting force signals and vibration signals
are analyzed by fast Fourier transformation to get the sen-
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Table 1 The cutting parameters of the experiment samples

Example No. s (r/min) f (mm/min) ap (mm) ae (mm) Example No. s (r/min) f (mm/min) ap (mm) ae (mm)

1-1 6000 4000 4 2 3-1 6500 4500 3 1

1-2 9000 6000 4 2 3-2 9000 6000 4 1.5

1-3 6000 4500 3 1.5 3-3 6000 4500 3 1

1-4 6500 4500 3 1.5 3-4 6000 4000 4 1.5

1-5 8000 6000 4 2 3-5 8000 6500 3 1

1-6 6500 4000 4 2 3-6 6500 4000 4 1.5

1-7 10,000 6500 3 1.5 3-7 8000 5000 5 1

1-8 8000 5500 4 2 3-8 9000 4000 5 1

2-1 9000 6000 4 2 4-1 6000 4500 3 1

2-2 6500 4500 3 1.5 4-2 6000 4000 4 1.5

2-3 6000 4500 3 1.5 4-3 8000 6500 3 1

2-4 8000 6500 3 1.5 4-4 8000 6000 4 1.5

2-5 7000 6000 4 2 4-5 9000 6500 3 1

2-6 6500 4000 4 2 4-6 9000 6000 4 1.5

2-7 10,000 6000 3 1.5 4-7 7000 5000 4 1.5

2-8 6000 4000 4 2 4-8 8000 5000 5 1

Table 2 Statistical analysis
result of wavelet decomposition
of cutting force

No. am f av f dm f dv f No. am f av f dm f dv f

1-1 63.556 2817.5 94.137 2655.1 3-1 37.908 806.904 73.606 1626.9

1-2 77.572 2846.1 79.158 3936.8 3-2 62.458 1837.6 62.920 2595.0

1-3 45.995 1546.8 84.017 2169.9 3-3 36.433 903.426 48.395 745.8

1-4 43.524 1125.5 104.307 3189.6 3-4 62.762 1866.9 57.641 2024.9

1-5 79.585 3086.2 107.357 5512.7 3-5 44.830 978.612 68.020 2153.5

1-6 64.200 2465.6 129.641 4981.6 3-6 50.585 1501.1 93.43 2603.9

1-7 37.294 690.9 50.422 1091.6 3-7 52.721 1356.4 71.338 2436.6

1-8 71.621 2495.1 87.407 3751.1 3-8 39.881 764.959 35.772 823.4

2-1 105.914 8288.5 217.840 14194 4-1 68.730 4704.1 59.442 1636.6

2-2 94.623 7998.8 102.944 4129.3 4-2 109.663 12183 85.816 2612.1

2-3 94.594 9628.5 108.987 4720.6 4-3 118.991 5225.9 91.114 3836.5

2-4 156.047 9058.9 141.22 9568.3 4-4 175.281 1137.1 125.204 7853.6

2-5 135.222 15,176 279.699 28,598 4-5 51.049 1941.5 118.362 4476.9

2-6 112.062 1147.5 97.534 3992.7 4-6 89.428 5877.5 180.279 9980.4

2-7 67.926 2457.0 179.725 9801.9 4-7 113.638 1055.0 214.072 16926

2-8 114.227 1361.6 95.904 3224.1 4-8 120.331 6409.2 83.751 3529.4

sitive frequencies of the machining conditions, and then the
sensitive frequencies are selected as object frequencies for
wavelet decomposition, i.e., the original signals are decom-
posed into a certain degree to take insight of the details of the
specified frequencies. The cutting force signals and vibration
signals are analyzed separately and the characteristic para-
meters are extracted.

Firstly, the characteristics of the cutting force of normal
machining conditions are analyzed. A period of cutting force
signals of different machining conditions is taken for demon-
stration, as shown in Fig. 2 (only two sets of experiments of

each machining condition is shown, due to the page limit),
where 1-1-Fx and 1-2-Fx are cutting force signals of nor-
mal machining conditions, 2-1-Fx and 2-2-Fx are cutting
force signals of machining conditions of tool wear, 3-1-Fx
and 3-2-Fx are cutting force signals of machining conditions
of work-piece deformation, and 4-1-Fx and 4-2-Fx are cut-
ting force signals of machining conditions of tool wear with
work-piece deformation. In the machining process of side-
wall, the cutting force is focused on Fx direction, so only
the cutting force of Fx direction is taken for analysis. The
selected period of cutting force is taken for Fourier transfor-
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Table 3 Statistical analysis
results of wavelet
decomposition of vibration

No. amv avv dmv dvv No. amv avv dmv dvv

1-1 86.889 3883 157.527 11403 3-1 64.464 2090.9 177.866 11502

1-2 102.855 4769.3 181.600 19772 3-2 95.400 4301.5 210.752 26284

1-3 83.322 3219.8 168.169 15075 3-3 62.337 1875.5 133.617 10403

1-4 75.744 2793.7 205.773 16166 3-4 90.567 4228.5 188.588 21231

1-5 62.551 1814.4 486.695 82345 3-5 61.002 1883.9 505.653 80125

1-6 91.195 4599.4 222.933 18774 3-6 81.598 3323.1 205.303 14711

1-7 89.190 3390.2 90.382 4083.3 3-7 51.484 1566.7 567.948 98114

1-8 72.414 2297.6 507.210 84538 3-8 86.013 2956.7 187.071 19228

2-1 120.510 6341.6 283.958 40449 4-1 72.066 2350.5 287.074 28041

2-2 166.173 9786.4 117.100 8571.9 4-2 121.913 9153 449.282 105270

2-3 76.111 2488.5 344.607 40743 4-3 110.097 8045.8 960.767 293930

2-4 76.318 2807.6 867.782 238170 4-4 178.196 15877 1202.7 463390

2-5 241.838 15512 157.721 12338 4-5 101.217 4324.4 237.132 30540

2-6 212.492 12008 91.040 4202.2 4-6 163.812 13125 335.311 73756

2-7 169.397 9692.9 186.787 18578 4-7 191.107 9521.5 168.582 16873

2-8 90.188 3664.9 275.563 33580 4-8 69.575 2530.3 735.408 175160

Table 4 The cutting parameters of the eight validation examples

Example No. s (r/min) f (mm/min) ap (mm) ae (mm) Example No. s (r/min) f (mm/min) ap (mm) ae (mm)

1-1 9000 6500 3 1.5 3-1 9000 6500 3 1

1-2 8000 6500 3 1.5 3-2 8000 6000 4 1.5

2-1 9000 6500 3 1.5 4-1 7500 4000 3 1

2-2 8000 6000 4 2 4-2 6500 4500 3 1

Table 5 Statistical analysis results of wavelet decomposition of cutting force of the validation examples

Machining condition am f av f dm f dv f Machining condition am f av f dm f dv f

1-1 52.299 1219.8 55.988 2055.5 3-1 37.165 655.4 41.725 1104.4

1-2 52.374 1342.5 79.299 2976.2 3-2 64.159 1986.4 92.826 4069

2-1 76.990 4402.2 182.596 10,391 4-1 66.308 3200.4 249.873 28524

2-2 189.892 13,586 144.497 10,509 4-2 74.384 4328.8 65.711 1731.6

Table 6 Statistical analysis results of wavelet decomposition of vibration of the validation examples

Machining condition amv avv dmv dvv Machining condition amv avv dmv dvv

1-1 89.955 3049.7 191.310 22184 3-1 75.228 2373.2 180.904 19,142

1-2 53.587 1316.5 495.650 80312 3-2 51.893 1358 657.159 133,750

2-1 83.280 3638.1 200.6 21497 4-1 241.605 30,351 1222.8 471,150

2-2 104.048 4916.1 721.004 176,190 4-2 121.669 5782.9 62.121 2415.1

mation analysis, as shown in Fig. 3. The results show that the
obviously changing frequencies of different machining con-
ditions are focusing on about 500 and 1000Hz. Therefore,
500 and 1000Hz can be used as sensitive frequency. The sam-
pling frequency of the collected cutting force is 7000Hz. 500
and 1000Hz are in the range of 1/8 of 7000Hz, so the third

degree wavelet decomposition is adopted to reveal the details
of the specialized frequency band.

The signals are decomposed into approximation compo-
nent and detail component, which represent low frequency
and high frequency respectively. In this paper, both approxi-
mation and detail component are chosen as analysis objects,
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Fig. 2 Collected cutting force of different machining conditions

Fig. 3 Fourier transformation of cutting force signals
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Fig. 4 Approximation component of cutting force signal wavelet decomposition of normal machining condition

Fig. 5 Detail component of cutting force signal wavelet decomposition of normal machining condition

where approximation component can reflect the information
of 500HZ, and detail component can reflect the informa-
tion of 1000Hz. Db5 is used as the mother wavelet. After
decomposition, the approximation and detail component of
the fifth degree is reconstructed, as shown in Figs. 4 and 5
(only the wavelet decomposition of normal machining con-
dition is shown). The means (am f ) and variances (av f ) of
each approximation component and the means (dm f ) and
variances (dv f ) of each detail component are calculated by
the tool package of MatlabTM, as shown in Table 2. The sta-
tistical results are evaluated based on the absolute values of
collected signals.

The vibration signals of the same time interval with the
analyzed cutting force are taken for analysis, as shown in
Fig. 6. The sample frequency of vibration signal collection
is 8000Hz, which is determined according to spindle speeds.
Fourier transformation of each signal is made, as shown in
Fig. 7, and the results show that the sensitive frequencies
are about 700 and 1400Hz. Therefore, the second degree of
wavelet decomposition is made for detail signal information
and the characteristics of the signals during sensitive frequen-
cies can be reflected, as shown in Figs. 8 and 9. Then themean
(amv) and variance (avv) of approximation component, and
the mean (dmv) and variance (dvv) of detail component are
calculated, as shown in Table 3.

After the signal characteristics are extracted, the charac-
teristic vectors for training SVM are constructed. Cutting
parameters and signal characteristics are fused in each char-
acteristic vector, and the characteristic vector (cv) can be
represented as the following:

cv = [s, f, ap, ae, am f , av f , dm f ,

dv f , amv, avv, dmv, dvv] (11)

Four SVMs are trained for recognition of differentmachining
conditions separately, i.e., the recognition of each machin-
ing condition is realized by one SVM. When training for the
SVMof a certain machining condition, the pattern identifica-
tion of the samples belonging to this machining condition is
valued as 1, and that of other machining conditions is valued
as −1, represented as the following:

iSVM : {(cvkj , y)}, if k = i, y = 1; else, y = −1. (12)

where i represents the i th machining condition, cvkj repre-
sents the characteristic vector of j th sample of kth machin-
ing condition, and y represents the mode identification in
SVM.

Each of the SVM is trained by the collected 32 sets of
samples, and a normalization processing for the collected
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Fig. 6 Collected vibration signals of different machining conditions

Fig. 7 Fourier transformation of vibration signals of different machining conditions
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Fig. 8 Approximation component of vibration signal wavelet decomposition of normal machining condition

Fig. 9 Detail component of vibration signal wavelet decomposition of normal machining condition

data is adopted to avoid distortion of the output results, shown
as the following:

yk = xk

xkmax + xkmin

(13)

where xk represents the kth input parameter, xkmin represents
theminimum value of the kth input parameters in the training
samples, xkmax represents the maximum value of the kth input
parameters in the training samples, yk represents the input
parameter after unitary processing.

The parameters of different machining conditions after
SVM training are obtained as follows:

The SVM parameters for normal machining condition
recognition:

wn = [2.7762 −2.1007 −4.8891 7.1290

−6.9081 0.6532 −3.1505 0.6641

−5.5108 −2.0428 −1.4040 0.7116]
bn = −1.6542e−005

The SVM parameters for machining condition recognition
of tool wear:

ww = [13.4550 −14.6294 −13.6909 5.0673

12.7057 5.0898 −8.7085 17.7519

−8.6135 −3.7003 −6.9470 −0.2225]
bw = 4.3374e−005

The SVM parameters for machining condition recognition
of work-piece deformation:

wd = [−2.7752 2.0728 10.5083 −3.1976

−14.3583 −14.2170 3.3499 −10.7498

3.1643 1.6440 9.3021 −7.6431]
bd = 6.2592e−005

The SVM parameters for machining condition recognition
of tool wear and work-piece deformation:

wwd = [1.5562 0.1168 0.3284 −16.6536

12.9555 5.9749 3.8829 −0.1110

−14.1352 25.4057 −19.1879 10.1213]
bwd = −7.5243e−007
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Take the value of w and b into the formula (10), and
then the discriminants of different machining conditions are
obtained.

Validation of the proposed approach

In order to validate the feasibility of the proposed approach,
additional experiments are executed. The machining exper-
iments with different cutting parameters are performed for
SVM training. Each of the four machining conditions, i.e.,
normal, tool wear, work-piece deflection, and tool wear with
work-piece deflection, is designed by two sets of experi-
ments, tool wear is realized by a pre-wear cutting tool, and
thework-piecedeflection is realizedbydesigning thin-walled
work-piece. Besides, the work-piece deflection is monitored
by a displacement sensor during machining. The signal char-
acteristics are extracted for analysis, and the analysis results
are compared with real machining conditions. The exper-
iments are designed with different cutting parameters, as
shown in Table 4.

The wavelet decomposition of cutting force signals and
vibration signals is made similar to that of the experi-
mentsmentioned in section “Implementation of the proposed
approach”, a statistical analysis is conducted, as shown in
Tables 5 and 6. Characteristic vectors are constructed accord-
ing to the cutting parameters and the statistical analysis
results based on the wavelet decomposition of the monitor-
ing cutting force and vibration signals during the machining
process. Taking the characteristic vectors into the obtained
discriminants one by one, until every characteristic vector
is calculated as the value 1 by a certain discriminant, which
means the vector belongs to the machining condition that the
discriminant represents. The machining condition recogni-
tion results are shown in Table 7.

After using the discriminants obtained by SVM training,
each of the eight machining conditions is recognized. The
results show that only one of the machining conditions in
the eight cases is falsely recognized. It can be found that the
input vectors of the validation experiments are very differ-
ent from the training experiments, which indicates that the
SVM approach has a good generalization capability, and the
proposed approach is validated to be feasible. It is expected
that other milling processes with different cutting parame-
ters of the four kinds of machining conditions can also be
recognized.

Discussion

Complex machining conditions are recognized by taking
advantages of sensor fusion and SVM based pattern recog-
nition techniques. When the proposed approach is deployed
in real machining, the following issues should be taken into
account for better effectiveness:

1. The peak of cutting force in a specified period can be
extracted in addition to variance and means to assist
the recognition of cutting tool deflection and work-piece
deformation, as cutting tool deflection will also exist for
small diameter of cutting tools. A threshold of the peak
of cutting force can be preset according to theoretical
analyses or experiments.

2. In this paper, the time period for analysis is set as 0.5 s. In
real machining, it can be set according to the machining
accuracy requirement and machining speed. The higher
ofmachining accuracy and the faster ofmachining speed,
the shorter analysis time period should be set.

3. In the experiments of this research, the change of the
cutting tool path is relatively simple, so the machining
speed is relatively stable in themachining process. There-
fore, the machining speed in the characteristic vectors
can be set as nominal value. While in real machin-
ing, the machining speed is always changing with the
tool path. Thus for more reliable recognition results, the
machining speed should be obtained in real time from the
CNC controller. Besides, the cutting width is also always
changing with the tool path. The real cutting width can
be calculated off-line according to geometric relationship
between the machined part and the tool path. In terms of
spindle speed and cutting depth, they are relatively stable
in machining processes, so the value in the characteristic
vector can be set as nominal value.

4. In this paper, the machining feature chosen for experi-
ments is a pocket, and the cutting force is dominated in
Fx direction, so the cutting force of Fx direction is chosen
for analysis. In real machining, the direction of cutting
force should be chosen according to machining features
and machining operations. Similarly, vibration can also
be detected in multiple directions, which is expected to
achieve highly robust recognition results.

Basically, the approach adopted in this paper is a data driven
approach. Compared with physical modeling method, the

Table 7 Validation results
Test No. 1 2 3 4 5 6 7 8

Real machining condition N N W W D D W&D W&D

Recognized condition W N W W D D W&D W&D
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unexpected factors which are difficult to be modeled (Arra-
zola et al. 2013) can be avoided by taking advantage of
real time monitoring. In contrast to the existing methods
for machining condition monitoring, the advantage of the
proposed approach is that it can recognize multiple machin-
ing conditions simultaneously, which benefits from wavelet
decomposition of signal characteristics from multiple sen-
sors, and a good pattern recognition algorithm, i.e., SVM.

To the best of our knowledge, existing research only
focused on the machining condition recognition of the same
cutting parameters for a single machining condition. While
this paper focuses on multiple machining conditions recog-
nition, a single sensor cannot reflect the characteristics of the
multiple machining conditions. If cutting parameters are not
considered, the SVMmodel cannot reflect the characteristics
of machining conditions with different cutting parameters.

Conclusion and future work

This paper presents a complexmachining conditionmonitor-
ing approach based onmulti-sensor fusion and SVM, in order
to address the issues of pattern recognition ofmachining con-
ditions with coupling effects especially in the machining
process of thin-walled parts. The realization of the pro-
posed approach benefits from the following techniques: (1)
multiple sensors provide complementary information to the
analysis of coupling machining conditions; (2) information
fusion theory provides methodology for the fusion of signal
characteristics, and cutting parameters are used as impor-
tant information for machining condition recognition; (3)
Fourier transformation method makes it practicable to get
the sensitive frequencies of different machining conditions;
(4) wavelet decomposition method facilitates the insight of
detailed information of signals; (5) the pattern recognition
method SVM which is optimized by normalization method
helps to achieve a good generalized recognition result.

The main contribution of this paper is the recognition of
machining conditions with coupling effects, with the focus
on cutting tool wear and work-piece deformation. The target
application of this paper ismilling, but the proposed approach
can be applied to other machining processes. The discussion
in this paper provides someuseful suggestions for the deploy-
ment of the proposed approach in real machining processes.

The basic form of SVM is adopted in this paper, and a
much better result is expected if the penalty coefficient of
SVM is taken into account. On the other hand, since there
are many other kernel functions for SVM, the authors will
try more kernel functions to get a better recognition result.
Therefore, our future work will focus on the optimization
of the SVM algorithm. In this paper, cutting tool wear and
work-piece deformation are considered for machining con-
dition recognition, some other machining conditions such as

roughness will also be taken into account in our future work.
Besides, prognosis will also be investigated in our future
work for better machining condition detection. Furthermore,
we will investigate the proposed approach in more compli-
cated machining processes.
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