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Abstract Many engineering problems can be categorized
into constrained optimization problems (COPs). The engi-
neering design optimization problem is very important in
engineering industries. Because of the complexities of math-
ematical models, it is difficult to find a perfect method to
solve all the COPs very well. ε constrained differential evo-
lution (εDE) algorithm is an effective method in dealing with
the COPs. However, εDE still cannot obtain more precise
solutions. The interaction between feasible and infeasible
individuals can be enhanced, and the feasible individuals can
lead the population finding optimum around it. Hence, in this
paper we propose a new algorithm based on ε feasible indi-
viduals driven local search called as ε constrained differential
evolution algorithmwith a novel local search operator (εDE-
LS). The effectiveness of the proposed εDE-LS algorithm
is tested. Furthermore, four real-world engineering design
problems and a case study have been studied. Experimental
results show that the proposed algorithm is a very effective
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Introduction

Differential evolution (DE) algorithm is one of the most effi-
cient evolutionary algorithms, which was firstly proposed by
Storn and Price (1997). During the past decade, numerous
competitiveDE-based algorithmswere presented to solve the
constrained optimization problems (COPs). Most optimiza-
tion problems in real worldwhich are subjected to constraints
can be categorized into COPs, such as scheduling (Artigues
and Lopez 2014; Naber and Kolisch 2014; Brajevic and Tuba
2013), engineering design optimization (Kanagaraj et al.
2014; Flager et al. 2014), optimal control of systems (Ellis
and Christofides 2014) and etc. As a significant portion of
engineering design optimization problems is under the cat-
egory of COP, this paper focuses on solving COPs using
evolutionary algorithm. A general COPs can be stated as fol-
lows:

min f (�x)

s.t. g j (�x) ≤ 0, j = 1, . . . , q
h j (�x) = 0, j = q + 1, . . . , m

(1)

where �x = (x1, . . . , xn) is generated within the rangeLi <

xi < Ui . Li andUi denote the lower and upper bound in each
dimension. g j (�x) denotes the j th inequality constraint and
h j (�x)denotes the ( j−q)th equality constraint. SolvingCOPs
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is difficult especially when the feasible region is small and
there are numerous constraint conditions. So the researches
based on COPs will never end.

Many methods have been proposed for COPs. Generally,
they can be divided into three main categories (Mezura-
Montes and Coello 2011), namely, the method based on
transforming the COPs into unconstrained optimization
problems, the method based on multi-objective techniques,
and the method based on adding extra rules or operator.

(1) The method based on transforming COPs into uncon-
strained optimization problems.
The representative of this kind of method is penalty
function method. Penalty function method is a simple
but effective method in dealing with COPs. Although
this method is simple to implement, it is difficult to
find a good balance between objective and penalty
functions. Since the penalty function method proposed,
many researchers have proposed several improved ver-
sions. Huang et al. (2007) proposed a co-evolutionary
DE algorithm, in which a special adaptive penalty
function was proposed to deal with the constraints.
Although dynamic penalty factor setting method (Puzzi
and Carpinteri 2008; Montemurro et al. 2013), adaptive
penalty function method (Tessema and Yen 2009) have
been proposed, it is still difficult to set the best penalty
function factor for all the objectives.

(2) The method based on multi-objective technique.
Wang and Cai (2012) introduced a multi-objective
technique with DE algorithm to solve COPs. An infea-
sible solution replacement mechanism based on multi-
objective approach is proposed. The infeasible solu-
tion replacement mechanism is a Pareto-dominance-like
method to compare the objective and constraints viola-
tions between the solutions. The method mainly focuses
on guiding the populationmoving towards to the promis-
ing and feasible region more efficiently. Gong and Cai
(2008) proposed a multi-objective technique based DE
forCOPs, inwhichmulti-objective technique based con-
straint handling technique was proposed. Though the
above methods are highly effective in solving COPs,
however, it is still difficult to design an effective frame-
work for using multi-objective techniques to tackle
COPs.

(3) The method by adding extra rules or operator.
Storn (1999) proposed a constraint adaptive method,
which firstly makes all the individuals as feasible ones
by relaxing the constraints then decreases the relax-
ation till reaching the original constraints. Deb’s rule
(Deb 2000) is an effective method in dealing with
COPs, but it may be over-penalization, since the infea-
sible solutions are always better than the feasible ones.

Domínguez-Isidro et al. (2013) proposed the memetic
DE algorithm, which implements the mathematical pro-
gramming method named Powell’s conjugate direction
as a local search operator. Although the method is
effective, the time-consuming of the mathematical pro-
gramming may be huge. Among these researches, εDE
method proposed by Takahama and Sakai (2006) is
a very effective one, in which ε constraint handling
technique is used to deal with the constraints. The exper-
imental results showed that the εDE not only could find
the feasible solutions rapidly, but also could achieve
excellent successful performance.

The εDE algorithm, as a promising representative of the
last category, is an effective method in dealing with COPs
and many researchers have made improvement on it. Taka-
hama and Sakai (2010a) proposed the improved εDE with
an archive and gradient-based mutation, In this method, a
local search based on the information of first-order deriva-
tive was proposed. However, it is usually difficult to calculate
the first-order derivative. Also, the calculation of first-order
derivative is time-cost. Based on this, Takahama and Sakai
(2013) proposed εDE with rough approximation using ker-
nel regression. However, this method still suffers from the
huge time-cost of the approximation process. Rather than
improving the constraint handling technique in εDE, another
direction to improve the performance of the εDE is to
improve the DE algorithm. Takahama and Sakai (2010b)
proposed an adaptive DE based εDE algorithm and then the
rank-basedDEbased εDE(TakahamaandSakai 2012).Com-
paring with the constraint handling technique in εDE, the
algorithm engine has a limited influence on the performance
of εDE. Hence the motivation of our research is focusing on
designing a novel mutation operator that drives the popula-
tion toward epsilon feasible region.

A variety of DE variants for COPs have been proposed in
past years. Mutation operator, as an important component of
DE algorithm, has great influence on the efficiency in solving
the COPs. The motivation of our method is mainly utilizing
the information of the feasible and the infeasible individu-
als, which focuses on guiding the infeasible individuals to
move along the directions of the feasible individuals. In this
way can we lead the infeasible individuals moving into the
feasible region and then find the optimum effectively. The
preliminary idea had been published in Yi et al. (2015). We
propose a novel mutation operator that is specially designed
for COPs, which serve as the local search engine for the
εDEalgorithm.Wang et al. (2013) proposed predatory search
strategy based on particle swarm optimization (PSO-PSS). In
the method, they use the Euclidean distance from each indi-
vidual to the best individual to define the neighborhood of
the search. When the search begins, it starts with the mini-
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mum distance neighborhood, if no better solution finds, then
search with the second to the minimum distance neighbor-
hood. Once the better solution found, the Euclidean distance
should be updated. The proposed algorithm differs from the
PSO-PSS algorithm from the following aspect: First, we do
not use the Euclidean distance based neighborhood. Instead,
the “DE/current-to-feasible/2”operator is proposed, which
randomly search the area around the current individual with
the multi-direction combined that pointed to the possible
less constraint violation area. Second, the proposed algo-
rithm does not need to updated the Euclidean distance once a
better solution is find. Instead, when all individuals are eval-
uated after one iteration ends, we can get the updated feasible
individual set without extra computation.

In order to evaluate the performance of the proposed
algorithm, 24 famous benchmark test functions collected
from the special session on the constrained real-parameter
optimization of the 2006 IEEE Congress on Evolutionary
Computation (IEEECEC2006). Four real-world engineering
design optimization problems and a case study on car side
impact design are adopted in this article and the comparisons
among proposed method and state-of-the-art algorithms are
also conducted. Experimental results show that the proposed
algorithm can achieve good solutions on these engineering
design problems.

This article is organized as follows. We firstly give a
general introduction of DE algorithm and εDE in “DE and
εDE algorithm” section. In “The proposed εDE-LS algo-
rithm” section, the proposed εDE-LS algorithm is introduced
in detail, which contains the framework. The experimental
results and the comparisons are presented in “Experimental
results” section. “Case study: car side impact design” sec-
tion presents a case study in engineering design optimization.
Finally, conclusions and future work are given in “Conclu-
sion and future work” section.

DE and εDE algorithm

DE algorithm

DE algorithm is an efficient but simple evolutionary algo-
rithm (EA), which can be divided into four phases, which
are the initialization, mutation, crossover and selection.
During the initialization phase, the NP (number of pop-
ulation) n-dimensional individuals xg

i = (xg
i,1, . . . , xg

i,n),
i = 1, . . . , NP are generated. g denotes the generation num-
ber. Then the mutation phase is adopted to generate the
mutation vectors. Several mutation operators have been pro-
posed in past years. TheDE/rand/1/exp is the commonly used
one, where exp denotes the exponential crossover operator.
The mutation vector can be calculated as follows:

v
g
i = xg

r1 + F ∗ (
xg

r2 − xg
r3

)
(2)

where F denotes the predefined scale parameter, r1, r2, and r3
are three mutually different generated indexes which should
be different from index i within the range [1, NP]. Then a
check will be made to ensure all the elements in the gener-
ated v

g
i are within the boundaries, which can be described as

follows:

v
g
i, j =

⎧
⎨

⎩

min
{

U j , 2 ∗ L j − v
g
i, j

}
, if v

g
i, j < L j

max
{

L j , 2 ∗ U j − v
g
i, j

}
, if v

g
i, j > U j

(3)

where L j and U j denote the lower and upper bound in j th
dimension.

The exponential crossover operator makes the trail vector
contains a consecutive sequence of the component taken from
the mutation vector. The exponential crossover operator can
be given as follow:

ug
i, j =

{
v

g
i, j , i f j ∈{

k, 〈 k + 1〉 n , . . . ,
〈
k + L − 1〉n

}

xg
i, j , otherwise

, j =1, . . . , n

(4)

where L , k ∈ [1, n] are both random indexes. 〈 j〉 is j if
j < n and j = j − n if j > n.
During the selection phase, a better individual between the

trail vector ug
i and target vector xg

i will be chosen according
to their objective function value:

xg+1
i =

{
ug

i , i f f
(
ug

i

)
< f

(
xg

i

)

xg
i , else

(5)

εDE algorithm

In the εDE algorithm, the constraint violation �(xg
i ) is

defined as the sum of all constraints:

�
(
xg

i

) =
q∑

j=1

max
{
0, g j

(
xg

i

)} +
m∑

j=q+1

h j
(
xg

i

)
(6)

After generating the new target vector through the DE algo-
rithm. The ε level comparison is used in εDE algorithm to
help deciding which individual is better. The comparison can
be given as follows:

( f1,�1) <ε ( f2,�2) ⇔
⎧
⎨

⎩

f1 < f2, i f �1,�2 ≤ ε

f1 < f2, i f �1 = �2

�1 < �2, otherwise

(7)

where f1 and f2 are the objective fitness functions values,
and the ε level is dynamically decreased along the generation
number increases until it reaches to zero. We can see that for
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comparison between individuals whose constraint violation
is small than ε, we treat them as generalized feasible indi-
viduals by just comparing their objective fitness functions
values and we can note them by ε-feasible individuals for
short. The value of the ε is set as formula given below:

ε(g) =
⎧
⎨

⎩

�(xθ ) , g = 0
ε(0) ∗ (1 − g/Tc)

cp , 0 < g < Tc

0, g ≥ Tc

(8)

where xθ is the top θ th individual in the initialization pop-
ulation and often set θ = 0.2 ∗ N in the article. Tc is a
predefined generation number. cp is the control parameter in
ε level comparison and is set as 5 in the article.

From the experimental results obtained by Takahama and
Sakai (2006), we can concluded the mechanism in εDE algo-
rithm that expanding the feasible region at first and then
narrowing the region into the original one along the evolu-
tionaryprocess is highly effective.The core of themechanism
lets the less constraint-violated individuals guide the evolu-
tionary directions. However, the feasible ones are important
to achieve the optimum and hence we can take advantage of
the guidance of feasible individuals and make improvement
on it.

The proposed εDE-LS algorithm

Usually, in the COPs, the surrounding region of feasible
individuals could have higher chance to be feasible. So
the feasible individuals can guide the infeasible ones mov-
ing towards to the feasible region. “DE/rand/1” mutation
operator is the most commonly used operator, in which
three vectors are mutually different from each other. So the
“DE/rand/1” operator shows no bias to any search direc-
tions because the direction is randomly chosen. “DE/rand/2”
operator adds more perturbation than “DE/rand/1” by adding
one more difference vector. “DE/current-to-rand/1”operator
starts from the current individual, it can avoid individual
not being selected as starting point. “DE/current-to-rand/1”
can ensure each individual can serve as the starting point
in an iteration. “DE/current-to-rand/2” operator adds one
more difference vector, which may search more region than
“DE/current-to-rand/1” operator by adding more perturba-
tion. While for operators like “DE/best/1” and “DE/best/2”
start their search direction at the best individual every time
may lead to the early convergence or may not be effective in
solving multimodal problems.

DE/rand/1

v
g
i = xg

r1 + F ∗ (
xg

r2 − xg
r3

)

DE/rand/2

v
g
i = xg

r1 + F ∗ (
xg

r2 − xg
r3

) + F ∗ (
xg

r4 − xg
r5

)

DE/current-to-rand/1

v
g
i = xg

i + F ∗ (
xg

r2 − xg
r3

)

DE/current-to-rand/2

v
g
i = xg

i + F ∗ (
xg

r2 − xg
r3

) + F∗ (
xg

r4 − xg
r5

)

DE/best/1

v
g
i = xg

best + F ∗ (
xg

r2 − xg
r3

)

DE/best/2

v
g
i = xg

best + F ∗ (
xg

r2 − xg
r3

) + F∗ (
xg

r4 − xg
r5

)

So based on the above analysis on the mutation operators,
“DE/current-to-rand/2” operator is served as the prototype of
the proposed mutation operator. As researches shown (Gong
and Cai 2013; Zhou et al. 2013) that the terminal point of the
difference vector with better value can help the DE algorithm
gain better results. Motivated by these researches and the
interaction between the feasible and infeasible individuals,
we set the terminal point of the difference vector as feasible
ones in the local search. So we design a novel local search
operator “DE/current-to-feasible/2” to improve the perfor-
mance of εDE algorithm. The “DE/current-to-feasible/2” is
a transformation version of “DE/current-to-rand/2” mutation
operator. It can be presented as follow:

v
g
i = xg

i + a ∗
(

xg
f eas_r1

− xg
i

)
+ b ∗

(
xg

f eas_r2
− xg

i

)
(9)

where f eas_r1 and f eas_r2 are two random indexes chosen
from the feasible individual set Q. So the number of feasi-
ble individuals must be more than 2. One point should be
noted is that the feasible individual here we mention actually
is ε-feasible individual, which is considered as generalized
feasible ones in εDE algorithm. The reason that we set ε-
feasible as feasible ones is for some complex problems it is
difficult to find real feasible ones for the whole evolution-
ary process, Another reason is that in εDE algorithm the
ε-feasible individuals are less constraint violated individu-
als and by using the proposed mutation operator it can help
guide the individuals moving towards to the feasible region.
a and b are two random generated numbers within the range
[0, 1], in these way can we have more perturbation on the
search direction. If any dimension in v

g
i exceeds the bound-

ary, then randomly choose a feasible individual and make the
specific dimension in v

g
i be equal to the related dimension in
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Fig. 1 The
“DE/current-to-feasible/2”
mutation operator

Fig. 2 The pesudocode of
εDE-LS algorithm

chosen feasible individual. The mutation operator can also
be described in the Fig. 1.

So in the proposed εDE-LS, DE algorithm is used to gen-
erate offspring and ε constrained method is used to choose
better individual to survive into next generation, and the pro-
posed “DE/current-to-feasible/2” plays as the local search
engine to search the area along to the feasible individual
direction. For those infeasible solutions, if the number of

feasible individuals is <2, the local search phase is skipped.
If the number of feasible individuals is more than 2, then
for each infeasible individual, local search operator is used.
Then the ε level comparison is adopted to choose a better
one between the individual and offspring generated by local
search operator. The framework of the proposed εDE-LS
algorithm can be given as follows (Fig. 2):
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Table 1 Parameter settings of εDE-LS algorithm

Popsize 100

MaxFES 5 × 105

θ 0.2

Tc 0.2∗MaxFES/popsize

cp 5

F [0.5, 1.0]

CR [0.9, 1.0]

Experimental results

Parameter settings

The 24 famous benchmark test functions collected fromCEC
2006 (Liang et al. 2006) are adopted in evaluating the perfor-
mance of the proposed algorithm. The detailed information
about the benchmark can be referred to Liang et al. (2006).
The parameter settings of the proposed algorithm are shown
in Table 1.

Performance of εDE-LS algorithm

Twenty-five independent runs are conducted for the test
benchmark functions with 5 × 103, 5 × 104, 5 × 105 FES,
respectively. The torlerance value δ for the equality con-
straints is set as 0.0001. The best, median, worst, mean and
standard deviation of the error value ( f (�x) − f (�x∗)), where
f (�x∗) is the best objective fitness function value for each
benchmark test function that ever known. c is the number
of the violated constraints at the median solution: the three
numbers refers to the constraints bigger than 1, between 0.01
and 1.0 and between 0.0001and 0.01, respectively. v is mean
value of the violations of all the constraints at the median
solution. The number in parentheses after best, median and
worst solutions is the number of violated constraints.

As shown in Tables 2, 3, 4 and 5, within 5× 104 FES, the
functions G02, G03, G04, G09, G10, G12, G19, and G24 can
obtain feasible solutionin at least one run. In spite of the test
functions G20, G21, and G22, the proposed algorithm can
obtatin feasible solution for other twenty-one test benchmark
functions in each run within 5 × 105 FES. Compared with
the best known solution, the proposed algorithm can obtain
equal to or better than the best known solution for at least one
run for functions G01, G03, G04, G05, G06, G07, G09, G10,
G11, G12, G13, G15, and G17. In conclusion, the proposed
algorithm can effectively solve the test functions (except for
G20–G21) within 5 × 105 FES.

In Table 7, we present the number of FES needed in each
run for each test benchmark functionwhen satisfying the suc-
cess condition: f (�x) − f (�x∗) ≤ 1.0E−04 and �x is feasible

solution. The best, median, worst, mean and SD denote the
least, median, most, mean and standard deviation FES when
meets the success condition during the 25 independent runs.
The feasible rate is the ratio between the feasible solutions
and 25 achieved solutions within 5 × 105 FES. The success
rate is the ratio between the number of success runs and 25
runs within 5 × 105 FES. The success performance is the
mean number of FES for successful runs multiplied by the
total runs and divided by the number of successful runs.

From Table 6, we can conclude that 19 out of 24 test
benchmark functions can achieve 100% success rate within
5 × 105 FES. εDE-LS algorithm achieves 100% feasible
solutions for 21 out of 24 test benchmark functions. In terms
of success performance, εDE-LS algorithmobtained the least
FES in test benchmark function G01, G04, G07, G14, G15,
andG18comparingwith other six state-of-the-art algorithms.
As success performance indicate that the proposed εDE-LS
requires <1×104 FES for four test benchmark functions,
<5×104 FES for 14 test benchmark functions, <5.0×105

FES for 21 test benchmark functions to obtain the require
accuracy.

To make a vivid description, we give the convergence
curve for test benchmark function G01–G24. The conver-
gence curve of f (�x) − f (x∗) in Figs. 3, 4, 5, 6 and 7. It is
particularly to note that the points with f (x) − f (x∗) ≤ 0
are not plotted in Figs. 3, 4, 5, 6 and 7.

We can see from Figs. 3, 4, 5, 6 and 7 that the proposed
algorithm can meet the satisfying condition within 5 × 105

FES for the majority of the test fuctions. The majority of the
fucntions can converge to its optimum within 3 × 105 FES.
Especially for functions G01, G03, G04, G05, G06, G09,
G11, G12, G13 G15, and G17, the algorithm can obtain a
better solution than the best known solution within 3 × 105

FES.
In terms of the limitation of the proposed algorithm, we

can see from the above tables and figures that it fails to
solve the G20, G21, and G22. These three functions are
all linear functions with relatively small feasible region and
lots of equality constraints. The optimums are achieved on
the boundary of the feasible region also indicate that these
function are consist of strong constraints and are difficult to
solve.The feasible solution is usually difficult to find. The
proposed algorithm is not efficient enough for these three
algorithms, which mainly due to the fact that it should utilize
the feasible solutions to guide the searching process (Fig. 8).

Comparison with other state-of-the-art algorithms

In order to further verify the effectiveness of the proposed
algorithm, several state-of-the-art algorithms are chosen to
make a fair comparison on CEC2006 with 5 × 105 FES
for each test function. ε constrained differential evolution
(εDE) proposed by Takahama and Sakai (2006), combin-
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Table 2 Function error values achieved when FES = 5 × 103, FES = 5 × 104 and FES = 5 × 105 for function G01-G06

FES Prob.

G01 G02 G03 G04 G05 G06

5 × 103

Best −8.4954E+00(5) 4.4970E−01(0) 9.3252E−01(1) 4.5096E+01(0) −1.7554E+03(3) −1.0109E+03(1)

Median −6.3354E+01(7) 4.7380E−01(0) −3.4992E+00(1) 1.1660E+02(0) −3.2212E+03(3) −1.0111E+03(1)

Worst −7.5423E+01(7) 4.8010E−01(0) −4.5255E+01(1) 1.6139E+02(0) −3.9841E+03(3) −1.0111E+03(1)

c 7, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 3, 0, 0 1, 0, 0

v 3.8813E+01 0.0000E+01 1.0812E+00 0.0000E+00 2.8533E+02 1.0973E+01

Mean −5.7660E+01 4.5360E−01 −1.0552E+01 1.1474E+02 −3.1787E+03 −1.0111E+03

SD 1.7380E+01 3.1400E−02 1.0323E+01 3.0230E+01 4.6543E+02 7.3659E−02

5 × 104

Best 4.6881E+00(1) 1.0004E−01(0) 2.1606E−02(0) 1.7000E−07(0) −1.1370E+02(3) −1.0112E+03(1)

Median 6.8690E−01(3) 1.3425E−01(0) −1.1981E−01(1) 5.4650E−07(0) −1.3442E+02(3) −1.0112E+03(1)

Worst −4.6530E−01(3) 1.6272E−01(0) −1.0062E−02(1) −1.4082E−01(1) −1.8415E+02(3) −1.0112E+03(1)

c 3, 0, 0 0, 0, 0 0, 1, 0 0, 0, 0 3, 0, 0 1, 0, 0

v 3.2125E+00 0.0000E+00 3.7135E−02 0.0000E+00 1.1530E+01 1.1000E+01

Mean 1.6174E+00 1.3473E−01 1.1744E−02 −5.6322E−03 −1.4474E+02 −1.0112E+03

SD 2.0103E+00 2.0086E−02 1.9339E−01 2.8164E−02 3.2062E+01 6.9619E−13

5 × 105

Best 0.0000E+00(0) 2.5228E−09(0) −2.6645E−15(0) −3.6380E−12(0) −1.8190E−12(0) −1.6371E−11(0)

Median 0.0000E+00(0) 7.4951E−09(0) −2.4425E−15(0) −3.6380E−12(0) −1.8190E−12(0) −1.6371E−11(0)

Worst 0.0000E+00(0) 4.1143E−08(0) −2.4425E−15(0) −3.6380E−12(0) −1.8190E−12(0) −1.6371E−11(0)

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean 0.0000E+00 9.9339E−09 −2.5313E−15 −3.6380E−12 −1,8190E−12 −1.6371E−11(0)

SD 0.0000E+00 8.2351E−09 1.1102E−16 0.0000E+00 0.0000E+00 0.0000E+00

ing multi-objective optimization with differential evolution
(CMODE) proposed by Wang and Cai (2012), improved
(μ + λ)-constrained differential evolution (ICDE) proposed
by Jia et al. (2013), improved electromagnetism-like mech-
anism algorithm (ICEM) proposed by Zhang et al. (2013),
and multi-objective optimization based reverse strategy with
differential evolution algorithm (MRS-DE) proposed byGao
et al. (2015) are selected. Due to the fact that none of these
mentioned algorithms can achieve feasible solution for G20,
so the results ofG20 is not included in the followingTable 10.
The comparison results are presented in Tables 7, 8, 9 and
10, in which the boldface indicates the best results among
these algorithms. All the results are adopted from the origi-
nal article mentioned above.

Only comparing with εDE algorithm, we can find that
the εDE-LS obtains eleven better solutions in terms of best,
median, worst, mean solution over the 25 independent runs
for functions G02–G09, G13–G16, and G24. Three simi-
lar solutions for three functions G01, G11, and G12, which
are already the global optimum reported by Liang et al.
(2006). For functions G07, G18, G21–G23, less competi-

tive are obtained by εDE-LS and the reason may mainly
be the relatively the proposed local search are less effec-
tive than gradient-basedmutation using gradientmatrixwhen
facing with small feasible region. Partly better solutions are
achieved for functions G10, G14, G17, and G19. We can
conclude that the proposed local search is effective for the
majority of the functions.

Comparingwith all the selected state-of-the-art algorithm,
we can conclude from Tables 7, 8, 9 and 10 that the εDE-LS
can achieve the best results for functions G01, G02, G04–
G06, G08, G11, G12, G14–G16 in terms of best, median,
worst, mean solution over the 25 independent runs. For func-
tion G17, the εDE-LS can achieve the best results in terms of
best and median solutions. From the comparison with other
state-of-the-art algorithms, εDE-LS can achieve promising
results on the majority of the test functions.

Then the ranking is given on 23 problems based on mean
results obtained by each algorithm. The average ranking is
given in Fig. 9 for each algorithm. The p value computed
by the Friedman test for mean results is 0.126, which indi-
cates there are no significant differences for the compared
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Table 3 Function error values achieved when FES = 5 × 103, FES = 5 × 104 and FES = 5 × 105 for function G07–G12

FES Prob.

G07 G08 G09 G10 G11 G12

5 × 103

Best 1.3011E+01(2) −1.1027E+02(1) 3.7169E+01(1) −3.9862E+03(1) −7.4017E−02(1) 1.5167E−06(0)

Median −1.6283E+01(3) −1.1034E+02(1) −6.4335E+00(1) −4.1915E+03(1) −1.4962E−01(1) 5.7376E−05(0)

Worst −1.0375E+01(4) −1.9970E+02(1) −2.5051E+02(1) −4.8075E+03(2) −2.0839E−01(1) 6.1171E−03(0)

c 3, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 0, 1, 0 0, 0, 0

v 4.6087E+01 4.1174E+00 3.2629E+02 3.0866E+00 1.6724E−01 0.0000E+00

Mean −1.2813E+00 −1.3448E+02 −1.0075E+02 −4.2920E+03 −1.5820E−01 3.4397E−04

SD 1.4805E+01 6.1299E+01 8.2330E+01 2.9604E+02 2.9831E−02 1.2081E−03

5 × 104

Best −6.9784E+00(2) 1.0254E−02(1) 4.0482E+00(0) 1.0924E+03(0) −1.1910E−03(1) 0.0000E+00(0)

Median −1.3593E+01(2) −4.7397E−01(1) −1.3085E+01(1) −4.9486E+03(1) −5.6889E−03(1) 0.0000E+00(0)

Worst −2.3401E+01(3) −1.2561E+01(1) −1.9139E+01(1) −4.9492E+03(2) −8.4350E−03(1) 0.0000E+00(0)

c 2, 0, 0 0, 1, 0 1, 0, 0 1, 0, 0 0, 0, 1 0, 0, 0

v 1.1729E+01 3.4910E−01 1.4804E+01 1.2087E+00 6.5396E−03 0.0000E+00

Mean −1.3664E+01 −8.7003E−01 4.6065E−01 −3.8487E+03 −5.5739E−03 0.0000E+00

SD 6.4618E+00 2.4413E+00 1.6714E+01 2.3647E+03 2.1063E−03 0.0000E+00

5 × 105

Best −3.5527E−14(0) 2.7756E−17(0) −2.2737E−13(0) −6.3665E−12(0) 0.0000E+00(0) 0.0000E+00(0)

Median 5.4001E−13(0) 2.7756E−17(0) −2.2737E−13(0) −3.6380E−12(0) 0.0000E+00(0) 0.0000E+00(0)

Worst 2.0570E−12(0) 2.7756E−17(0) −1.1369E−13(0) 1.2619E−07(0) 0.0000E+00(0) 0.0000E+00(0)

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean 6.6152E−13 2.7756E−17(0) −1.7735E−13 9.8452E−09 0.0000E+00 0.0000E+00

SD 5.5955E−12 0.0000E+00 5.7596E−14 2.7051E−08 0.0000E+00 0.0000E+00

algorithms in all functions. We can conclude that the εDE-
LS algorithm obtains the lowest ranking, which indicates the
proposed algorithm has the best overall performance.

In addition, considering the importance of multiple prob-
lem statistical analysis introduced byDerrac et al. (2011), we
present the results of the Wilcoxon signed ranks test results
in Table 11, in which the p value is recorded. “*” means that
the proposed method shows an improvement over the com-
pared algorithms with upper diagonal of level significance
at α = 0.1, and lower diagonal level of α = 0.05. It can be
concluded from Table 11 that the proposed algorithm shows
an improvement over CMODE, with a level of significance
α = 0.05, over ICEM, with α = 0.1.

Comparison of εDE-LS and other state-of-the-art
algorithms on engineering optimization problems

To further verify the effectiveness of the εDE-LS, four real-
world engineering optimization problems are selected which
are the three bar truss design problem, pressure vessel design
problem, speed reducer design problem and tension spring

design problem. Except that the pressure vessel design prob-
lem is a hybrid continuous variable and discrete variable
problem, the rest problems are continuous variable problems.
For the three bar truss problem, the swarm algorithm intro-
duced by Ray and Saini (2001), the method presented by
Tsai (2005), cuckoo search algorithm presented by Gandomi
et al. (2013) are selected for the comparison. For the last
three engineering optimization problems, PSO-DE (Liu et al.
2010), ABC (Karaboga and Basturk 2007), CMODE (Wang
and Cai 2012), and DELC (Wang and Li 2010) are chosen
for the comparison. The selected compared algorithms in the
last three engineering optimization problems have not been
used in solving the three bar truss design problem, and hence
we choose other three state-of-the-art algorithm instead. The
comparison results of these four engineering optimization
problems are presented in Tables 11, 12, 13 and 14.

All the compared results of other state-of-the-art algo-
rithms are adopted from the articlementioned above.Twenty-
five independent runs are conducted for each problems, the
best, median, worst, mean and standard deviation are given
in the following tables. Since the FES is an important index
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Table 4 Function error values achieved when FES = 5 × 103, FES = 5 × 104 and FES = 5 × 105 for function G13–G18

FES Prob.

G13 G14 G15 G16 G17 G18

5 × 103

Best −3.0383E−02(3) −5.2549E+02(3) −4.3953E+01(2) −7.1436E−01(3) −8.8346E+03(4) −1.1531E+01(8)

Median −5.5071E−02(3) −6.6528E+02(3) −5.2918E+01(2) −7.7771E−01(3) −8.8438E+03(4) −6.9048E+01(8)

Worst −5.2842E−02(3) −6.4095E+02(3) −7.2555E+01(2) −7.8084E−01(3) −8.8474E+03(4) −7.2455E+01(7)

c 2, 1, 0 3, 0, 0 2, 0, 0 3, 0, 0 4, 0, 0 8, 0, 0

v 1.8481E+00 1.7825E+01 3.3432E+01 4.8600E+01 1.3759E+02 6.8620E+01

Mean 1.9749E−01 −6.4085E+02 −5.4146E+01 −7.7483E−01 −8.8401E+03 −6.2684E+01

SD 3.8811E−01 4.2435E+01 7.4146E+00 1.3269E−02 1.3240E+01 1.6131E+01

5 × 104

Best −7.9068E−03(2) −1.1729E+01(3) −3.7849E−01(2) −1.5633E−01(1) −2.1443E+02(4) 9.0719E−01(3)

Median −9.4001E−03(2) −2.2262E+01(2) −1.7991E+00(2) −7.9326E−01(3) 1.10361E+03(4) −7.0958E−01(6)

Worst −1.2545E−02(2) −2.3858E+01(3) −2.7148E+00(2) −7.9326E−01(3) −8.8535E+03(4) −2.5365E+00(6)

c 0, 1, 1 1, 1, 0 2, 0, 0 3, 0, 0 4, 0, 0 3, 3, 0

v 1.5494E−01 1.0581E+00 1.1288E+00 4.9070E+01 1.2492E+01 1.6841E+00

Mean −9.2826E−03 −2.1148E+01 −1.7909E+00 −6.9875E−01 −2.6533E+03 2.7006E−02

SD 2.5490E−03 3.8670E+00 5.2461E−01 2.1440E−01 3.8235E+03 1.0000E+00

5 × 105

Best −2.2204E−16(0) 1.4211E−14(0) −1.1369E−13(0) 3.7748E−15(0) −1.8190E−12(0) 1.7130E−11(0)

Median −2.2204E−16(0) 1.4211E−14(0) −1.1369E−13(0) 3.7748E−15(0) −1.8190E−12(0) 1.8764E−10(0)

Worst −1.9429E−16(0) 2.1316E−14(0) −1.1369E−13(0) 3.7748E−15(0) 7.4058E+01(0) 7.7298E−10(0)

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean −2.1982E−16 1.6485E−14 −1.1369E−13 3.7748E−15 1.1849E+01 1.9762E−10

SD 7.6852E−18 3.3829E−15 0.0000E+00 0.0000E+00 2.7710E+01 1.8283E−10

for each compared algorithm, the total FES of each prob-
lem for each algorithm is also given in the Tables as below.
Due to the small number of FES, the population size for the
engineering optimization is set as 40.

Three bar truss design problem

Three bar truss design problem is firstly introduced by Now-
cki (1973). Its objective is to optimize the volume of a
statistically loaded three bar truss. The three bar truss is sub-
jected to vertical and horizontal forces. The volume of the
three bar truss is subjected to stress constraints. The math-
ematical model and figure of the problem can be given as
follows:

Minimize

f (�x) =
(
2
√
2A1 + A2

)
× l

Subject to

g1 (�x) =
√
2A1 + A2√

2A2
1 + 2A1A2

P − σ ≤ 0

g2 (�x) = A2√
2A2

1 + 2A1A2
P − σ ≤ 0

g3 (�x) = 1

A1 + √
2A2

P − σ ≤ 0

where

0 ≤ A1 ≤ 1, 0 ≤ A2 ≤ 1, l = 100 cm,

P = 2KN/cm2, and σ = 2KN/cm2

The best result obtained by εDE-LS is (0.7886751350512
61, 0.408248289172833)with objective function value 263.8
958433764684.The constraints violation are (0,−1.4641016
16605413, 0.535898383394587). The constraint violation is
equal to or smaller than zero means the solution do not vio-
late the constraint, which is the same for the following three
problems. In Table 11, the comparison results are presented.
The best results are in boldface.

Pressure vessel design problem

The problem is to design a cylindrical vessel with hemispher-
ical heads as we present in Fig. 10. The problem is firstly
proposed by Kannan and Kramer (1994). The objective is to
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Table 5 Function error values achieved when FES = 5 × 103, FES = 5 × 104 and FES = 5 × 105 for function G19–G24

FES Prob.

G19 G20 G21 G22 G23 G24

5 × 103

Best 2.4288E+02(0) 4.3957E+00(19) −1.9372E+02(6) −2.2173E+02(20) −2.2354E+03(4) 1.9502E−04(0)

Median 4.5531E+02(0) 5.6806E+00(19) −1.9371E+02(6) −2.2835E+02(20) −2.7287E+03(4) 9.9761E−04(0)

Worst 6.0366E+02(0) 5.8927E+00(19) −1.9372E+02(6) −2.3590E+02(20) −2.9216E+03(4) 4.0004E−03(0)

c 0, 0, 0 2, 17, 0 6, 0, 0 20, 0, 0 4, 0, 0 0, 0, 0

v 0.0000E+00 5.5923E+00 1.5010E+02 3.3733E+08 5.1464E+01 0.0000E+00

Mean 4.4309E+02 5.3656E+00 −1.9371E+02 −2.3023E+02 −2.6621E+03 1.4072E−03

SD 8.9504E+01 6.8153E−01 3.3636E−02 9.2511E+00 2.0269E+02 1.0186E−03

5 × 104

Best 3.8756E+00(0) 2.7461E−03(19) −1.9372E+02(6) −2.3643E+02(20) −1.7076E+03(5) 3.2863E−14(0)

Median 6.1062E+00(0) 2.7582E−03(19) −1.9372E+02(6) −2.3643E+02(20) −1.7143E+03(5) 3.2863E−14(0)

Worst 8.5809E+00(0) 3.4253E−03(19) −1.9372E+02(6) −2.3643E+02(20) −1.7289E+03(5) 3.2863E−14(0)

c 0, 0, 0 1, 13, 5 4, 2, 0 19, 1, 0 3, 2, 0 0, 0, 0

v 0.0000E+00 1.9401E−01 8.9673E+00 1.4405E+07 1.6286E+00 0.0000E+00

Mean 6.3342E+00 2.9203E−03 −1.9372E+02 −2.3643E+02 −1.7121E+03 3.2863E−14

SD 1.2517E+00 4.6739E−04 2.9008E−14 0.0000E+00 1.0262E+01 0.0000E+00

5 × 105

Best 1.9510E−07(0) 2.0237E−01(14) −1.9372E+02(6) −2.3643E+02(20) 4.2501E−07(0) 3.2863E−14(0)

Median 4.0445E−07(0) 2.0098E−01(16) −1.9372E+02(6) −2.3643E+02(20) 7.7408E−06(0) 3.2863E−14(0)

Worst 1.1072E−06(0) 1.9777E−01(16) −1.9372E+02(6) −2.3643E+02(20) 5.8830E−03(0) 3.2863E−14(0)

c 0, 0, 0 0, 1, 11 3, 3, 0 19, 1, 0 0, 0, 0 0, 0, 0

v 0.0000E+00 1.0169E−02 7.5953E+00 1.4839E+02 0.0000E+00 0.0000E+00

Mean 4.4233E−07 2.01411E−01 −1.9372E+02 −2.3643E+02 3.9960E−04 3.2863E−14

SD 2.1203E−07 1.3191E−03 2.9008E−14 0.0000E+00 1.2591E−03 0.0000E+00

minimize the total cost, which includes the cost of material,
forming and welding. Four variables are needed to be opti-
mized, that is Ts (x1, Thickness of the shell), Th (x2, thickness
of the head), R (x3, inner radius), and L (x4, length of the
cylindrical section of the vessel, not including the head). It is
worth mentioning that Tsand Th should be the integer multi-
ples of 0.0625 in. The mathematical model of this problem
can be given as follows:

Minimize

f (�x) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1661x21 x4

+ 19.84x21 x3

Subject to

g1 (�x) = −x1 + 0.0193x3 ≤ 0

g2 (�x) = −x2 + 0.00954x3 ≤ 0

g3 (�x) = −πx23 x4 − 4

3
πx33 + 1,296,000 ≤ 0

g4 (x) = x4 − 240 ≤ 0

1 ∗ 0.0625 ≤ x1 ≤ 99 ∗ 0.0625, 1 ∗ 0.0625 ≤ x2

≤ 99 ∗ 0.0625, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

The best feasible solution obtained by εDE-LS is (0.8125,
0.4375, 42.09844455958549, 176.636598424394). The con-
straint violation are (0,−0.035880829015544, 0,−63.36340
4157560581) with objective function value 6059.71433504
8436. Table 12 presents the results obtained by εDE-LS and
other state-of-the-art algorithms. The best results are in bold-
face.

Tension compression spring design problem

Theproblem is firstly proposed byArora (1989) aswepresent
in Fig. 11. The objective is to optimize the weight of the
tension compression spring. There are three variables that are
needed to be optimized: the wire diameter d(x1), the mean
coil diameter D(x2), and the number of active coils N (x3).
The constraints include theminimumdeflection, shear stress,
surge frequency, constraint, outside diameter and bounds on
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Table 6 The success performance, feasible rate and success rate of the εDE-LS algorithm

Prob. Best Median Worst Mean SD Feasible rate (%) Success rate (%) Success performance

G01 119,800 123,300 126,000 123,236 1684 100 100 123,236

G02 244,100 266,900 295,100 267,272 10,609 100 100 267,272

G03 97,000 102,800 110,600 102,924 3129 100 100 102,924

G04 35,100 37,900 93,200 39,764 11,207 100 100 39,764

G05 100,900 101,900 106,100 102,084 1048 100 100 102,084

G06 102,500 105,800 111,300 106,064 2009 100 100 106,064

G07 201,200 218,700 225,900 217,580 6073 100 100 217,580

G08 56,200 95,100 101,000 92,196 11,189 100 100 92,196

G09 104,900 109,600 112,100 109,228 1862 100 100 109,228

G10 245,300 287,800 426,500 311,892 60,015 100 100 311,892

G11 39,400 73,600 81,800 70,692 10,413 100 100 70,692

G12 1700 4900 6400 4648 1453 100 100 4648

G13 82,600 84,400 87,100 84,632 1418 100 100 84,632

G14 165,000 174,500 182,100 174,044 4784 100 100 174,044

G15 86,700 90,100 92,000 89,984 1310 100 100 89,984

G16 98,100 111,800 121,000 111,116 5985 100 100 111,116

G17 190,300 300,300 406,700 279,085 58,503 100 80 348,856

G18 202,600 227,100 255,200 229,152 11,953 100 100 229,152

G19 315,300 343,800 365,500 342,780 12,863 100 100 34,2780

G20 NA NA NA NA NA 0 0 NA

G21 NA NA NA NA NA 0 0 NA

G22 NA NA NA NA NA 0 0 NA

G23 383,500 455,100 491,300 448,100 28,923 100 84 533,452

G24 6100 7300 8100 7320 454 100 100 7320

Fig. 3 Convergence curve of
f (�x) − f (x∗) for G01–G04

variables. The mathematical model of the problem can be
summarized as follows (Fig. 12):

Minimize f (�x) = (x3 + 2) x2x21

Subject to

g1 (�x) = 1 − x32 x3
71785x41

≤ 0

g2 (�x) = 4x22 − x1x2
12566

(
x2x31 − x41

) + 1

5108x21
− 1 ≤ 0
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Fig. 4 Convergence curve of
f (�x) − f (x∗) for G05–G08

Fig. 5 Convergence curve of
f (�x) − f (x∗) for G09–G12

Fig. 6 Convergence curve of
f (�x) − f (x∗) for G13–G16
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Fig. 7 Convergence curve of
f (�x) − f (x∗) for G17–G20

Fig. 8 Convergence curve of
f (�x) − f (x∗) for G21–G24

g3 (�x) = 1 − 140.45x1
x22 x3

≤ 0

g4 (�x) = x2 + x1
1.5

− 1 ≤ 0

0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

The best result obtained by εDE-LS is (0.0516890604939
98, 0.356717725635278, 11.288966582014742) with objec-
tive function value 0.012665232788320. The constraints vio-
lation are (−0.000000000000036, −0.000000000000011,
−4.053785602361403, −0.727728809247150). Table 13
presents the results obtained by εDE-LS and other state-of-
the-art algorithms. The best results are in boldface.

Speed reducer design problem

The problem is to minimize the weight of the speed reducer
(Rao 1996). The constraints include the bending stress of the
gear teeth, surface stress, and transverse deflections of the
shafts. The variables that are need to be optimized are the
face width b(x1), module of teeth m(x2), number of teeth in
the pinion z(x3), length of the first shaft between bearings
l1(x4), length of the second shaft between bearings l2(x5),
the diameter of the first shaft d1(x6) and second shaft d2(x7).
The mathematical model of the problem can be given as
follows:
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Table 7 The comparison with other state-of-the-art algorithms on function G01–G06

Prob. Algo. Best Median Worst Mean SD

G01 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

ICDE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

ICEM 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

MRS-DE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

εDE-LS 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

G02 εDE 4.0394E−09 3.0933E−08 7.3163E−08 3.0333E−08 1.7523E−08

CMODE 4.1726E−09 1.1372E−08 1.1836E−07 2.0387E−08 2.4195E−08

ICDE 1.28E−08 1.39E−07 7.43E−07 2.28E−07 2.06E−07

ICEM 2.2823E−06 5.4463E−06 1.1014E−02 1.3617E−03 2.6951E−03

MRS-DE 2.3571E−07 2.5776E−02 1.4238E−01 4.3026E−02 4.0583E−02

εDE-LS 2.5228E−09 7.4951E−09 4.1143E−08 9.9339E−09 8.2351E−09

G03 εDE −4.4409E−16 −4.4409E−16 −4.4409E−16 −4.4409E−16 2.9682E−31

CMODE 2.3964E−10 1.1073E−09 2.5794E−09 1.1665E−09 5.2903E−10

ICDE −1.00E−11 −1.00E−11 −1.00E−11 −1.00E−11 1.63E−16

ICEM 3.2984E−11 3.3199E−08 1.3832E−06 1.3609E−07 2.7619E−07

MRS-DE 6.4531E−12 4.3339E−07 7.3502E−06 1.0822E−06 1.7011E−06

εDE-LS −2.6645E−15 −2.4425E−15 −2.4425E−15 −2.5513E−15 1.1102E−16

G04 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE 7.6398E−11 7.6398E−11 7.6398E−11 7.6398E−11 2.6382E−26

ICDE 7.64E−11 7.64E−11 7.64E−11 7.64E−11 2.64E−26

ICEM 7.2760E−11 7.2760E−11 7.6398E−11 7.2905E−11 7.1290E−13

MRS-DE −3.6380E−12 −3.6380E12 −3.6380E−12 −3.6380E−12 0.0000E+00

εDE-LS −3.6380E−12 −3.6380E12 −3.6380E−12 −3.6380E−12 0.0000E+00

G05 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE −1.8190E−12 −1.8190E−12 −1.8190E−12 −1.8190E−12 1.2366E−27

ICDE −1.82E−12 −1.82E−12 −1.82E−12 −1.82E−12 1.24E−27

ICEM −1.8190E−12 −1.8190E−12 −9.0950E−013 −1.7462E−12 2.4674E−13

MRS-DE −1.8190E−12 −1.8190E−12 −1.8190E−12 −1.8190E−12 0.0000E+00

εDE-LS −1.8190E−12 −1.8190E−12 −1.8190E−12 −1.8190E−12 0.0000E+00

G06 εDE 1.1823E−11 1.1823E−11 1.1823E−11 1.1823E−11 0.0000E+00

CMODE 3.3651E−11 3.3651E−11 3.3651E−11 3.3651E−11 1.3191E−26

ICDE 3.37E−11 3.37E−11 3.37E−11 3.37E−11 3.37E−11

ICEM 3.3651E−11 3.3651E−11 3.3651E−11 3.3651E−11 0.0000E+00

MRS-DE −1.6371E−11 −1.6371E−11 −1.6371E−11 −1.6371E−11 0.0000E+00

εDE-LS −1.6371E−11 −1.6371E−11 −1.6371E−11 −1.6371E−11 0.0000E+00

f (�x) = 0.7854x1x22

(
3.3333x23 + 14.9334x3 − 43.0934

)

− 1.508x1
(

x26 + x27

)
+ 7.4777

(
x36 + x37

)

g1(x) = 27

x1x22 x3
− 1 ≤ 0

g2(x) = 397.5

x1x22 x23
− 1 ≤ 0

g3(x) = 1.93x34
x2x3x46

− 1 ≤ 0

g4(x) = 1.93x35
x2x3x47

− 1 ≤ 0

g5(x) =

((
745x4
x2x3

)2
+16.9 × 106

)1/2

110.0x36
− 1 ≤ 0
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Table 8 Comparison with other state-of-the-art algorithms for function G07–G12

Prob. Alg. Best Median Worst Mean SD

G07 εDE −1.8474E−13 −1.8474E−13 −1.7764E−13 −1.8360E−13 2.1831E−15

CMODE 7.9783E−11 7.9783E−11 7.9783E−11 7.9783E−11 7.6527E−15

ICDE 7.98E−11 7.98E−11 7.98E−11 7.98E−11 5.26E−15

ICEM 7.9762E−11 7.9769E−11 7.9787E−11 7.9770E−11 6.0526E−15

MRS-DE −2.3093E−13 1.3156E−08 1.0777E−06 1.0526E−07 2.4441E−07

εDE-LS −3.5527E−14 5.4001E−13 2.0570E12 6.6152E−13 5.5955E−12

G08 εDE 4.1633E−17 4.1633E−17 4.1633E−17 4.1633E−17 1.2326E−32

CMODE 8.1964E−11 8.1964E−11 8.1964E−11 8.1964E−11 6.3596E−18

ICDE 8.20E−11 8.20E−11 8.20E−11 8.20E−11 2.78E−18

ICEM 8.1964E−11 8.1964E−11 8.1964E−11 8.1964E−11 3.8774E−26

MRS-DE 2.7756E−17 2.7756E−17 2.7756E−17 2.7756E−17 0.0000E+00

εDE-LS 2.7756E−17 2.7756E−17 2.7756E−17 2.7756E−17 0.0000E+00

G09 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE −9.8225E−11 −9.8225E−11 −9.8225E−11 −9.8225E−11 4.9554E−14

ICDE −9.82E−11 −9.81E−11 −9.81E−11 −9.82E−11 5.76E−14

ICEM −9.8225E−11 −9.8225E−11 −9.8225E−11 −9.8225E−11 4.4556E−13

MRS-DE −2.2737E−13 −2.2737E−13 −1.1368E−13 −2.1373E−13 −7.7487E−12

εDE-LS −2.2737E−13 −2.2737E−13 −1.1369E−13 −1.7735E−13 5.7596E−14

G10 εDE −1.8190E−12 −9.0949E−13 −9.0949E−13 −1.2005E−12 4.2426E−13

CMODE 6.2755E−11 6.2755E−11 6.3664E−11 6.2827E−11 2.5183E−13

ICDE 6.18E−11 6.28E−11 6.28E−11 6.27E−11 2.64E−26

ICEM 6.1846E− 11 6.2755E− 11 6.2755E− 11 6.2391E− 11 7.1290E−13

MRS-DE −8.1855E−12 −7.2760E−12 −3.6380E−12 −7.3487E−12 8.6760E−13

εDE-LS −6.3665E−12 −3.6380E−12 1.2691E−07 9.8452E−09 2.7015E−08

G11 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

ICDE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

ICEM 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

MRS-DE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

εDE-LS 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

G12 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

ICDE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

ICEM 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

MRS-DE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

εDE-LS 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

g6(x) =
((

745x4
x2x3

)
+ 157.5 × 106

)1/2

85.0x37
− 1 ≤ 0

g7(x) = x2x3
40

− 1 ≤ 0

g8(x) = 5x2
x1

− 1 ≤ 0

g9(x) = x1
12x2

− 1 ≤ 0

g10(x) = 1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) = 1.1x7 + 1.9

x5
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

5.0 ≤ x7 ≤ 5.5
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Table 9 Comparison with other state-of-the-art algorithms for function G13–G18

Prob. Alg. Best Median Worst Mean SD

G13 εDE −9.7145E−17 −9.7145E−17 −9.7145E−17 −9.7145E−17 0.0000E+00

CMODE 4.1897E−11 4.1897E−11 4.1897E−11 4.1897E−11 1.0385E−17

ICDE 4.19E−11 4.19E−11 4.19E−11 4.19E−11 1.13E−17

ICEM 4.1898E−11 3.8486E−01 5.3327E−02 3.9090E−01 6.4960E−01

MRS-DE −2.4286E−16 −2.2220E−16 −2.2220E−16 −2.2371E−16 −2.2371E−16

εDE-LS −2.2204E−16 −2.2204E−16 −1.9429E−16 −2.1982E−16 7.6825E−18

G14 εDE 1.4211E−14 2.1316E−14 2.1316E−14 2.1032E−14 1.3924E−15

CMODE 8.5123E−12 8.5194E−12 8.5194E−12 8.5159E−12 3.6230E−15

ICDE 8.51E−12 8.51E−12 8.52E−12 8.51E−12 2.36E−15

ICEM 8.5052E−12 8.5123E−12 8.5194E−12 8.5123E−12 2.0097E−15

MRS-DE 2.2365E−09 1.2820E−03 2.1782E−01 1.4900E−02 4.4172E−02

εDE-LS 1.4211E−14 1.4211E−14 2.1316E−14 1.6485E−14 3.3829E−15

G15 εDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CMODE 6.0822E−11 6.0822E−11 6.0822E−11 6.0822E−11 0.0000E+00

ICDE 6.52E−11 6.52E−11 6.52E−11 6.52E−11 1.32E−26

ICEM 6.5214E−11 6.5214E−11 6.5214E−11 6.5214E−11 0.0000E+00

MRS-DE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

εDE-LS −1.1369E−13 −1.1369E−13 −1.1369E−13 −1.1369E−13 0.000E+00

G16 εDE 4.4409E−15 4.4409E−15 4.4409E−15 4.4409E−15 1.5777E−30

CMODE 6.5213E−11 6.5213E−11 6.5213E−11 6.5213E−11 2.6382E−26

ICDE 6.52E−11 6.52E−11 6.52E−11 6.52E−11 1.32E−26

ICEM 6.5214E−11 6.5214E−11 6.5214E−11 6.5214E−11 0.0000E+00

MRS-DE 3.7748E−15 3.7748E−15 5.5511E−15 4.0590E−15 6.4652E−16

εDE-LS 3.7748E−15 3.7748E−15 3.7748E−15 3.7748E−15 0.0000E+00

G17 εDE* 1.8190E−12 1.8190E−12 1.8190E−12 1.8190E−12 1.2177E−17

CMODE* 1.8189E−12 1.8189E−12 1.8189E−12 1.8189E−12 1.2366E−27

ICDE* −1.82E−11 −1.82E−11 −1.46E−11 −1.78E−11 9.51E−13

ICEM −0.0058 7.4052E+01 8.4353E+01 6.5588E+01 2.4306E+01

MRS-DE −0.0058 −0.0058 7.4052E+01 2.3693E+01 3.5259E+01

εDE-LS −0.0058 −0.0058 7.4000E+01 1.1269E+01 2.7710E+01

εDE-LS* −1.8190E−12 −1.8190E−12 7.4058E+01 1.1849E+01 2.7710E+01

G18 εDE 3.3307E−16 3.3307E−16 4.4409E−16 3.3751E−16 2.1756E−17

CMODE 1.5561E−11 1.5561E−11 1.5561E−11 1.5561E−11 6.5053E−17

ICDE 1.56E−11 1.56E−11 1.56E−11 1.56E−11 6.60E−27

ICEM 1.5561E−11 1.5561E−11 1.9104E−01 2.2925E−02 6.2082E−02

MRS-DE 1.1102E−16 2.2204E−16 2.2204E−16 2.0428E−16 4.1541E−17

εDE-LS 1.7130E−11 1.8764E−10 7.7298E−10 1.9762E−10 1.8283E−10

The best result obtained by εDE-LS is (3.5000000018349
46, 0.700000000010531, 17.000000006024688, 7.30000000
3292110, 7.715319945129747, 3.350214666835395, 5.2866
54468646312) with objective function value 2994.47107124
0866. The constraints violation are (−1.000000000000000,
−1.000000000000000, −0.499172248051728, −0.904643
903608071, −0.000000000660707, −0.000000002074479,
−0.702499999890092, −0.000000000509226, −0.5833
33333121156, −0.051325753817815, −0.0000000038389

60). Table 13 presents the results obtained by εDE-LS and
other state-of-the-art algorithms. The best results are in bold-
face.

Discussion on the four engineering optimization problems

From the experimental results of the previous sections, we
can conclude that the proposed algorithm can achieve the
best results on three bar truss design problem, pressure ves-
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Table 10 Comparison with other state-of-the-art algorithms for function G19, G21–G24

Prob. Alg. Best Median Worst Mean SD

G19 εDE 5.2162E−08 5.2162E−08 5.9840E−05 5.3860E−06 1.2568E−05

CMODE 1.1027E−10 2.1582E−10 5.4446E−10 2.4644E−10 1.0723E−10

ICDE 4.63E−11 4.63E−11 4.63E−11 4.63E−11 5.05E−15

ICEM 4.6313E−11 4.6313E−11 4.6313E−11 4.6313E−11 3.2920E−14

MRS-DE 2.8358E−07 1.0543E−04 3.9297E−01 2.4252E−02 8.4407E−02

εDE-LS 1.9510E−07 4.0445E−07 1.1072E−06 4.4233E−07 2.210E−07

G21 εDE −2.8422E−14 −2.8422E−14 1.4211E−13 −2.1600E−14 3.3417E−14

CMODE −3.1237E−10 −2.39436E−10 1.3097E+02 2.6195E+01 5.3471E+01

ICDE −3.05E−10 −2.58E−10 −1.68E−10 −2.53E−10 2.80E−11

ICEM −3.4743E−10 −3.4731E−10 −2.8948E−10 −3.3427E−10 1.2013E−11

MRS-DE 3.7748E−15 3.7745E−15 5.5511E−15 4.0590E−15 6.4652E−16

εDE-LS – – – – –

G22 εDE 1.9518E+00 1.2332E+01 6.8922E+01 1.8369E+01 1.5690E+01

CMODE – – – – –

ICDE 2.81E+00 2.04E+01 6.05E+01 2.29E+01 1.32E+01

ICEM – – – – –

MRS-DE – – – – –

εDE-LS – – – – –

G23 εDE 0.0000E+00 0.0000E+00 5.6843E−14 2.2737E−15 1.1139E−14

CMODE 1.8758E−12 1.5859E−11 2.8063E−10 4.4772E−11 7.3264E−11

ICDE −1.71E−13 5.68E−14 1.08E−12 1.02E−13 2.92E−13

ICEM −2.8422E−13 5.6843E−14 1.7224E−11 7.2532E−13 3.3719E−12

MRS-DE −5.6843E−13 −1.1369E−13 3.0001E+02 4.9018E+01 1.1190E+02

εDE-LS 4.2501E−07 7.7408E−06 5.8830E−03 3.9960E−04 1.2591R-03

G24 εDE 5.7732E−14 5.7732E−14 5.7732E−14 5.7732E−14 2.5244E−29

CMODE 4.6735E−12 4.6735E−12 4.6735E−12 4.6735E−12 82445E−28

ICDE 4.67E−12 4.67E−12 4.67E−12 4.67E−12 0.0000E+00

ICEM 4.6736E−12 4.6736E−12 4.6736E−12 4.6736E−12 0.0000E+00

MRS-DE 3.2862E−14 3.2862E−14 3.2862E−14 3.2862E−14 0.0000E+00

εDE-LS 3.2863E−14 3.2863E−14 3.2863E−14 3.2863E−14 0.0000E+00

Fig. 9 Average ranking of six
algorithms
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Table 11 Wilcoxon signed ranks test results

p value

εDE-LS versus εDE 0.881

εDE-LS versus CMODE 0.040∗

εDE-LS versus ICDE 0.176

εDE-LS versus ICEM 0.061∗

εDE-LS versus MRS-DE 0.359

sel design problem, and tension compression spring design
problem in terms of best, mean, worst and standard devia-
tion with the relatively small FES. In the last speed reducer
design problem the εDE-LS algorithm show less competi-
tive than CMODE and DELC algorithms. The reason is that
speed reducer design problem consists of eleven constraints,

Fig. 10 Three bar truss design

which may be difficult for εDE-LS algorithm to find feasi-
ble solutions in relatively small FES. Based on the above
analysis and experimental results, we can see that the εDE-

Table 12 Comparison with
other state-of-the-art algorithms
on three bar truss design
problem

Three bar truss Ray and Saini Tsai Gandomi et al. εDE-LS

Solutions

Best 264.3 263.68 263.9716 263.895843376468

Mean – – – 263.895843376468

Worst – – – 263.895843376468

SD – – – 2.3206E−14

FES – – 15,000 15,000

Best solutions

A1 0.795 0.788 0.78867 0.788675135051261

A2 0.395 0.408 0.40902 0.408248289172833

g1 −0.00169 0.00082a −0.00029 0

g2 −0.26124 −0.2674 −0.26853 −1.464101616605413

g3 −0.74045 −0.73178 −0.73176 −0.535898383394587

a Constraint is violated

Table 13 Comparison with
other state-of-the-art algorithms
on pressure vessel design
problem

PSO-DE ABC CMODE DELC εDE-LS

Pressure vessel design

Best 6059.7143 6059.7147 6059.714335 6059.7143 6059.7143

Mean 6059.7143 6245.3081 6059.714335 6059.7143 6059.7143

Worst 6059.7143 – 6059.714335 6059.7143 6059.7143

SD 1.0E−10 2.1E+02 3.62E−10 2.1E−11 3.4030E−13

FES 42,100 30,000 30,000 30,000 20,000

Table 14 Comparison with
other state-of-the-art algorithms
on tension compression spring
design problem

PSO-DE ABC CMODE DELC εDE-LS

Tension compression spring design

Best 0.012665 0.012665 0.012665233 0.012665233 0.012665233

Mean 0.012665 0.012709 0.012667168 0.012665267 0.012665233

Worst 0.012665 – 0.012676809 0.012665575 0.012665233

SD 1.2E−08 1.3E−02 3.09E−06 1.3E−07 5.0075E−14

FES 24,950 30,000 24,000 20,000 20,000
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Fig. 11 Schematic of pressure vessel

Fig. 12 Schematic of tension compression spring

Fig. 13 Schematic of the speed reducer

LS algorithm could be competitive in solving COPs with a
small number of constraints within a few FES.

The reason that εDE-LS is effective is that the information
of the feasible individuals, namely ε -feasible individuals, is
useful for guide the population search the region along the
direction of the feasible region. The proposed local search,
namely “DE/current-to-feasible/2”, though simple it is, also
effective in finding more precisely solutions for these engi-
neering optimization problems.

Case study: car side impact design

The car side impact design is proposed by Gu et al. (2001). It
is extracted from real-world problems and belongs to hybrid
continuous variable and discrete variable problem. As we
can see from the FEM model of the problem from Fig. 13,
the car is exposed to a side-impact on the foundation of the
European Enhanced Vehicle-Safty Committee (EEVC) pro-
cedures. The objective is to minimize the total weight. The
decision variables are thickness of the B-Pillar inner, B-Pillar

reinforcement, floor side inner, cross members, door beam,
door beltline reinforcement, and roof rail (x1–x7), materi-
als of B-Pillar inner and floor side inner (x8 and x9) and
barrier height, and hitting position (x10 and x11). The con-
straints include load in abdomen (g1), dummy upper chest
(g2), dummy middle chest (g3), dummy lower chest (g4),
upper rib deflection (g5), middle rib deflection (g6), lower
rib deflection (g7), pubic force (g8), velocity of V-Pillar at
middle point (g9), and velocity of front door at V-Pillar (g10).
The mathematical model of the problem can be formulated
as follows:

Min f (X)=W eight =1.98+4.90x1+6.67x2 + 6.98x3

+ 4.01x4 + 1.78x5 + 2.73x7

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = Fa = 1.16 − 0.3717x2x4 − 0.00931x2x10
− 0.484x3x9 + 0.01343x6x10 ≤ 1

g2 = VCu = 0.261 − 0.0159x1x2 − 0.188x1x8
−0.019x2x7 + 0.0144x3x5
+0.0008757x5x10 + 0.080405x6x9
+ 0.00139x8x11 + 0.00001575x10x11 ≤ 0.32

g3 = VCm = 0.214 + 0.00817x5 − 0.131x1x8
−0.0704x1x9 + 0.03099x2x6 − 0.018x2x7
+0.0208x3x8 + 0.121x3x9 − 0.00364x5x6
+0.0007715x5x10 − 0.0005354x6x10
+ 0.00121x8x11 ≤ 0.32

g4 = VCl = 0.074 − 0.061x2 − 0.163x3x8
+0.001232x3x10 − 0.166x7x9 + 0.227x22
≤ 0.32

g5 = 
ur = 28.98 + 3.818x3
−4.2x1x2 + 0.0207x5x10 + 6.63x6x9
−7.7x7x8 + 0.32x9x10 ≤ 32

g6 = 
mr = 33.86 + 2.95x3 + 0.1792x10
−5.057x1x2 − 11.0x2x8 − 0.0215x5x10
− 9.98x7x8 + 22.0x8x9 ≤ 32

g7 = 
lr = 46.36 − 9.9x2 − 12.9x1x8
+0.1107x3x10 ≤ 32

g8 = Fp = 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10
+ 0.009325x6x10 + 0.000191x211 ≤ 4

g9 = VMBP = 10.58 − 0.674x1x2 − 1.95x2x8
+ 0.02054x3x10 − 0.0198x4x10
+0.028x6x10 ≤ 9.9

g10 = VFD = 16.45 − 0.489x3x7 − 0.843x5x6
+ 0.0432x9x10 − 0.0556x9x11 − 0.000786x211
≤ 15.7

0.5 ≤ x1−x7 ≤ 1.5; x8, x9 ∈ (0.192, 0.345);
−30 ≤ x10, x11 ≤ 30;

In this case, the εDE-LS is compared with PSO, DE, GA,
firefly algorithm (FA), and cuckoo search algorithm (CS) by
Gandomi et al. (2011, 2013). The simulations are conducted
with 20,000 FES for all the algorithms. Since the number of
independent runs are not reported by Gandomi et al. (2011,
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Table 15 Comparison with
other state-of-the-art algorithms
on speed reducer design
problem

PSO-DE ABC CMODE DELC εDE-LS

Speed reducer design

Best 2996.348 2997.058 2994.4710661 2994.471066 2994.471071

Mean 2996.348 2997.058 2994.4710661 2994.471066 2994.471098

Worst 2996.348 – 2994.4710661 2994.471066 2994.471137

SD 6.4E−06 0.0E+00 1.54E−12 1.90E−12 1.70E−05

FES 54,350 30,000 21,000 30,000 21,000

Table 16 Statistical results of
the car side impact design by
different algorithms

Method PSO DE GA FA CS εDE-LS

Best 22.84474 22.84298 22.85653 22.84298 22.84294 22.84297

x1 0.50000 0.50000 0.50005 0.50000 0.50000 0.50000

x2 1.11670 1.11670 1.28017 1.36000 1.11643 1.11637

x3 0.50000 0.50000 0.50001 0.50000 0.50000 0.50000

x4 1.30208 1.30208 1.30302 1.20200 1.30208 1.30218

x5 0.50000 0.50000 0.50001 0.50000 0.50000 0.50000

x6 1.50000 1.50000 1.50000 1.50000 1.50000 1.50000

x7 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000

x8 0.34500 0.34500 0.34499 0.34500 0.34500 0.34500

x9 0.19200 0.19200 0.19200 0.19200 0.19200 0.19200

x10 −19.54935 −19.54935 10.3119 8.87307 −19.54935 −19.55985

x11 −0.00431 −0.00431 0.00167 −18.99808 −0.00431 −0.00046

Mean 22.89429 23.22828 23.51585 22.89376 22.85858 22.84297

Worst 23.21354 24.12606 26.240578 24.06623 23.25998 22.84297

SD 0.15017 0.34451 0.66555 0.16667 0.07612 5.60176E−07

Fig. 14 The FEM model of the car side impact design

2013), 30 independent runs are conducted for εDE-LS. The
experimental results are shown inTable 14 and thebest results
are in boldface (Tables 15, 16; Fig. 14).

The statistical results are shown that the proposed εDE-
LS algorithm can achieve the best results in terms of mean,
worst and SD indexes. Although the proposed algorithm can-
not obtain the best results, the little gap between the best and
the worst results indicates that it has the best robustness. It
can be concluded that the εDE-LS is competitive and robust

compared with PSO, DE GA, FA, and CS algorithm in solv-
ing this case.

Conclusion and future work

This article proposed the εDE-LS algorithm, inwhich a novel
local search operator designed for engineering design opti-
mization is introduced. The interaction between feasible and
infeasible individuals is enhanced by applying the proposed
mutation operator. By utilizing the novel mutation opera-
tor as the local search engine, we can guide the population
moving towards to the feasible region more effective. The
effectiveness of the proposed εDE-LS algorithm is demon-
strated by 24 famous benchmark functions collected from
IEEE CEC2006 special session on constrained real parame-
ter optimization. The experimental results have suggested
that εDE-LS algorithm is highly competitive in terms of
accuracy and convergent speed. The performance of εDE-LS
algorithm is encouraging and competitive as shown in the
comparative studies with other state-of-the-art algorithms.
As the effectiveness and efficiency of the proposed algorithm
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demonstrated above, we further conducted the experiments
on engineering design optimization problems. The perfor-
mance on four real-world engineering design problems and
the case study have demonstrated the usefulness of the pro-
posed algorithm in solving engineering design optimization
problems.

As a part of the future direction, the performance of εDE-
LS may be further improved by discovering a more efficient
mutation operator. For another future direction, εDE-LS now
only consider the feasible individuals in the mutation opera-
tor, we could consider how the infeasible individuals affect
the searching process in the future. The future applications
can be extended to dealwithmulti-objective constrained opti-
mization (Mavrotas and Florios 2013), complex engineering
optimization problems (Rao and Pawar 2010; Moradi and
Abedini 2012; Han et al. 2015) and etc.

Acknowledgements The authors would like to thank the editor and
anonymous referees whose comments helped a lot in improving this
paper. The authors would also like to thank Dr. Senbong Gee and Prof.
Kaychen Tan for their constructive and insightful suggestions. This
research work is supported by the Natural Science Foundation of China
(NSFC) under Grant Nos. 51435009, 51421062 and 61232008.

References

Arora, J. S. (1989). Introduction to optimum design. New York:
McGraw-Hill.

Artigues, C., & Lopez, P. (2014). Energetic reasoning for energy-
constrained scheduling with a continuous resource. Journal of
Scheduling. doi:10.1007/s10951-014-0404-y.

Brajevic, I., & Tuba, M. (2013). An upgraded artificial bee colony
(ABC) algorithm for constrained optimization problems. Journal
of Intelligent Manufacturing, 24(4), 729–740.

Deb, K. (2000). An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and Engi-
neering, 186(2–4), 311–338.

Derrac, J., Garcia, S., Molina, D., &Herrera, F. (2011). A practical tuto-
rial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 1(1), 3–18.

Domínguez-Isidro, S., Mezura-Montes, E., & Leguizamon, G. (2013).
Memetic differential evolution for constrained numerical opti-
mization problems. In IEEE congress on evolutionary computation
(CEC), pp. 2996–3003.

Ellis, M., & Christofides, P. D. (2014). Integrating dynamic economic
optimization and model predictive control for optimal operation
of nonlinear process systems. Control Engineering Practice, 22,
242–251.

Flager, F., Soremekun, G., Adya, A., Shea, K., Haymaker, J., & Fis-
cher, M. (2014). Fully constrained design: A general and scalable
method for discretemember sizingoptimizationof steel truss struc-
tures. Computers and Structures, 140(30), 55–65.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed vari-
able structural optimization usingfirefly algorithm.Computers and
Structures, 29(5), 464–483.

Gandomi, A., Yang, H. X., & Alavi, A. H. (2013). Cuckoo search algo-
rithm: A metaheuristic approach to solve structural optimization
problems. Engineering Computing, 29, 17–35.

Gao, L., Zhou, Y. Z., Li, X. Y., Pan, Q. K., & Yi, W. C. (2015).
Multi-objective optimization based reverse strategy with differ-
ential evolution algorithm for constrained optimization problems.
Expert Systems with Applications, 42(14), 5976–5987.

Gong, W., & Cai, Z. (2008). A multi-objective differential evolution
algorithm for constrained optimization. In Congress on evolution-
ary computation (CEC2008), Hong Kong, 1–6, June, pp. 181–188.

Gong, W. Y., & Cai, Z. H. (2013). Differential evolution with ranking-
based mutation operators. IEEE Transactions on Cybernetics,
46(6), 2066–2081.

Gu, L., Yang, R. J., Cho, C. H., Makowski, M., Faruque, M., & Li, Y.
(2001). Optimization and robustness for crashworthiness. Interna-
tional Journal of Vehicle Design, 26(4), 348–360.

Han, B., Zhang, W. J., Lu, X. W., & Lin, Y. Z. (2015). On-line supply
chain scheduling for single-machine and parallel-machine config-
urations with a single customer: Minimizing the makespan and
delivery cost. European Journal of Operational Research, 244(3),
704–714.

Huang, F. Z., Wang, L., & He, Q. (2007). An effective co-evolutionary
differential evolution for constrained optimization. Applied Math-
ematics and Computation, 286(1), 340–356.

Jia, G., Wang, Y., Cai, Z., & Jin, Y. (2013). An improved (μ + λ)-
constrained differential evolution for constrained optimization.
Information Sciences, 222, 302–322.

Kanagaraj, G., Ponnnabalam, S. G., Jawahar, N., & Nilakantan, J. M.
(2014). An effective hybrid cuckoo search and genetic algorithm
for constrained engineering design optimization. Engineering
Optimization, 46(10), 1331–1351.

Kannan, B. K., & Kramer, S. N. (1994). An augmented lagrange
multiplier based method for mixed integer discrete continuous
optimization and its applications to mechanical design. Journal
of Mechanical Design, 116(2), 318–320.

Karaboga, D., & Basturk, B. (2007). Artificial bee colony optimization
algorithm for solving constrained optimization problems. LNCS:
Advances in Soft Computing: Foundations of Fuzzy Logic and Soft
Computing, 4529, 789–798.

Liang, J. J., Runarsson, T. P.,Mezura-Montes, E., Clerc,M., Suganthan,
P. N., Coello Coello, C. A., et al. (2006). Problems definitions
and evaluation criteria for the CEC’ 2006 special session on
constrained real-parameter optimization. http://www.ntu.edu.sg/
home/EPNSugan/cec2006/technicalreport.pdf.

Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm
optimization with differential evolution algorithm for constrained
numerical and engineering optimization. Applied Soft Computing,
10(2), 629–640.

Mavrotas, G., & Florios, K. (2013). An improved version of the
augmented ε-constraint method (AUGMECON2) for finding the
exact Pareto set in multi-objective integer programming problems.
Applied Mathematics and Computation, 219(18), 9652–9669.

Mezura-Montes, E., & Coello, C. A. C. (2011). Constraint-handling
in nature-inspired numerical optimization: Past, presnt and future.
Swarm and Evolutionary Computation, 1, 173–194.

Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization
based on modified differential evolution algorithm. Information
Sciences, 194, 171–208.

Montemurro, M., Vincenti, A., & Vannucci, P. (2013). The automatic
dynamic penalizationmethod for handling constraintswith genetic
algorithms. Computer Methods in Applied Mechanics and Engi-
neering, 256, 70–87.

Moradi, M. H., & Abedini, M. (2012). A combination of genetic algo-
rithm and particle swarmoptimization for optimalDG location and
sizing in distribution systems. International Journal of Electrical
Power & Energy Systems, 34(1), 66–74.

Naber, A., & Kolisch, R. (2014). MIP models for resource-constrained
project scheduling with flexible resource profiles. European Jour-
nal of Operation Research, 239(2), 335–348.

123

http://dx.doi.org/10.1007/s10951-014-0404-y
http://www.ntu.edu.sg/home/EPNSugan/cec2006/technicalreport.pdf
http://www.ntu.edu.sg/home/EPNSugan/cec2006/technicalreport.pdf


1580 J Intell Manuf (2018) 29:1559–1580

Nowcki, H. (1973). Optimization in pre-contract ship design. In Y.
Fujida, K. Lind, & T. J. Williams (Eds.), Computer applications
in the automation of shipyard operation and ship design (Vol. 2,
pp. 327–328). New York: Elsevier.

Puzzi, S., & Carpinteri, A. (2008). A double-multiplicative dynamic
penalty approach for constraint evolutionary optimization. Struc-
ture Multidiscipline Optimization, 35(5), 431–445.

Ray, T., & Saini, P. (2001). Engineering design optimization using a
swarm with an intelligent information sharing among individuals.
Engineering Optimization, 33(6), 735–748.

Rao, S. S. (1996). Engineering optimization (3rd ed.). Hoboken: Wiley.
Rao, R. V., & Pawar, P. J. (2010). Parameter optimization of amulti-pass

milling process using non-traditional optimization algorithms.
Applied Soft Computing, 10(2), 445–456.

Storn, R., & Price, K. (1997). Differential evolution—A simple and
efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11(4), 341–359.

Storn,R. (1999). Systemdesign by constraint adaptation and differential
evolution. IEEE Transactions on Evolutionary Computation, 3(1),
22–34.

Takahama, T., & Sakai, S. (2006). Constrained optimization by the
ε-constrained differential evolution with gradient-based mutation
and feasible elites. In IEEE congress on evolutionary computation
(CEC2006), Vancouver, BC, Canada, 16–21 July, pp. 308–315.

Takahama, T., & Sakai, S. (2010a). Constrained optimization by the
ε constrained differential evolution with an archive and gradient-
based mutation. In IEEE congress on evolutionary computation
(CEC 2010), pp. 1–9.

Takahama, T., & Sakai, S. (2010b). Efficient constrained optimiza-
tion by the ε constrained adaptive differential evolution. In IEEE
congress on evolutionary computation (CEC 2010), pp. 1–8.

Takahama, T., & Sakai, S. (2012). Efficient constrained optimization
by the ε constrained rank-based differential evolution. In IEEE
congress on evolutionary computation (CEC 2012), pp. 1–8.

Takahama, T., & Sakai, S. (2013). Efficient constrained optimization
by the ε constrained differential evolution with rough approxima-
tion using kernel regression. In IEEE congress on evolutionary
computation (CEC 2013), pp. 1334–1341.

Tessema, B., & Yen, G. (2009). An adaptive penalty formulation for
constrained evolutionary optimization. IEEE Transactions on Sys-
tems, 39(3), 565–578.

Tsai, J. (2005). Global optimization of nonlinear fractional program-
ming problems in engineering design. Engineering Optimization,
37(4), 399–409.

Wang, J. W., Wang, H. F., Ip, W. H., Furuta, K., & Zhang, W. J.
(2013). Predatory search strategy based on swarm intelligence
for continuous optimization problems. Mathematical Problems in
Engineering. doi:10.1155/2013/749256.

Wang, L., & Li, L. (2010). An effective differential evolution with
level comparison for constrained engineeringdesign.Structure and
Multidisciplinary Optimization, 41, 947–963.

Wang, Y., & Cai, Z. X. (2012). Combiningmulti-objective optimization
with differential evolution to solve constrained optimization prob-
lems. IEEE Transactions on Evolutionary Computation, 16(1),
117–134.

Yi, W. C., Li, X. Y., Gao., L., & Zhou, Y. Z. (2015). ε constrained dif-
ferential evolution algorithmwith a novel local search operator for
constrained optimization problems. In Proceedings in adaptation,
learning and optimization, pp. 495–507.

Zhang, C., Li, X. Y., Gao, L., & Wu, Q. (2013). An improved
electromagnetism-like mechanism algorithm for constrained opti-
mization. Expert Systems with Applications, 40, 5621–5634.

Zhou, Y. Z., Li, X. Y., & Gao, L. (2013). A differential evolution algo-
rithm with intersect mutation operator. Applied Soft Computing,
13(1), 390–401.

Zou, D. X., Liu, H. K., Gao, L. Q., & Li, S. (2011). A novel modi-
fied differential evolution algorithm for constrained optimization
problems. Computers & Mathematics with Applications, 61(6),
1608–1623.

123

http://dx.doi.org/10.1155/2013/749256

	Engineering design optimization using an improved local search based epsilon differential evolution algorithm
	Abstract
	Introduction
	DE and εDE algorithm
	DE algorithm
	εDE algorithm

	The proposed εDE-LS algorithm
	Experimental results
	Parameter settings
	Performance of εDE-LS algorithm
	Comparison with other state-of-the-art algorithms
	Comparison of εDE-LS and other state-of-the-art algorithms on engineering optimization problems
	Three bar truss design problem
	Pressure vessel design problem
	Tension compression spring design problem
	Speed reducer design problem
	Discussion on the four engineering optimization problems


	Case study: car side impact design
	Conclusion and future work
	Acknowledgements
	References




