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Abstract Supply chain decision makers are constantly try-
ing to improve the customer demand fulfillment process and
reduce the associated costs via decision making models and
techniques. As two of the most important parameters in a
supply chain, supply and demand quantities are subject to
uncertainty in many real-world situations. In addition, in
recent decades, there is a trend to think of the impacts of
supply chain design and strategies on society and environ-
ment. Especially, transportation of goods not only imposes
costs to businesses but also has socioeconomic influences. In
this paper, a fuzzy nonlinear programming model for supply
chain design and planning under supply/demand uncertainty
and traffic congestion is proposed and a hybridmeta-heuristic
algorithm, based on electromagnetism-like algorithm and
simulated annealing concepts, is designed to solve themodel.
The merit of this paper is presenting a realistic model of cur-
rent issues in supply chain design and an efficient solution
method to the problem. These are significant findings of this
research which can be interesting to both researchers and
practitioners. Several numerical examples are provided to
justify the model and the proposed solution approach.
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Introduction

The hunger for new products and services provides business
opportunities which are seized by investors seeking more
profit. Decision makers face the general and major ques-
tion of how to satisfy customers’ demands while maximizing
the total profit; or alternatively minimizing the total cost. In
order tomeet the demand for products, several business units,
including manufacturers and suppliers, transporters, ware-
houses, retailers, and customers, are, directly or indirectly,
engaged in supply chain activities (Chopra and Meindel
2007). The elements, that constitute a supply chain, operate
efficiently if only if the whole supply chain is well-structured
(Davarzani and Rezapour 2009). In order to satisfy their cus-
tomers’ demands, the industries are forced to restructure their
supply chain considering the business environment changes
(Dullaert et al. 2007). The introduction of SupplyChainMan-
agement (SCM)byOliver andWebber (1982),was a response
to the competitive environment of the late 70’s caused by the
quality revolution (Erenguc et al. 2006). The supply chain
design and planning, as one of the most critical problems
in the context of SCM, has attracted both researchers and
practitioners (Simchi-Levi et al. 2003).

In reality, supply chains have to deal with inexact, incom-
plete and estimated data come from the complex, fluctuating
and dynamic business environment. One of the major factors
that affects the effectiveness of supply chains is the uncer-
tainty which propagates up and down in supply chains (Jung
et al. 2004) and influences their performance (Bhatnagar and
Sohal 2005). Therefore, failing to properly incorporate uncer-
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tainty in decision making leads to results that are not optimal
compromising the competency of the whole supply chain.
More specifically, the demand volumes and supply capac-
ities are subject to uncertainty due to economic instability
andmarket fluctuations besides other endogenous and exoge-
nous factors. The importance of uncertainty has inspired
many researchers to investigate stochastic models in sup-
ply chain problems (Georgiadis et al. 2011; Mizgier et al.
2012; Yang et al. 2011). However, under certain conditions
(e.g., in case of as the technologic innovations and changes
in preferences of consumers) the assumption of precise para-
meters of probability distributions is questionable (Yang and
Liu 2013). On the other hand, in most real-world cases of
SCM problems, where model parameters are often imprecise
because of incomplete information and/or unavailable data,
fuzzy programming techniques are more applicable (Paksoy
et al. 2012). Specifically, fuzzy concepts have been success-
fully applied in supply chain design and planning problem
(Fazel et al. 2012; Jouzdani et al. 2013a, b; Jung and Jeong
2012; Wei et al. 2012). In other words, the ease of use and
applicability of the triangular fuzzy numbers (Lee et al. 2012)
in addition to the concepts of superiority and inferiority for
such numbers (van Hop 2007), were our inspirations for uti-
lizing fuzzy linear programming techniques for modeling
the uncertainty. The theorem, proved by van Hop (2007),
provides a suitable tool for comparing two fuzzy triangular
numbers. More specifically, by using this theorem, two sides
of a constraint in an optimization model can be regarded as
triangular fuzzy numbers and compared through superiority
and inferiority concepts. Onemay refer to a review on supply
chain uncertainty by Simangunsong et al. (2012) for further
reading in this regard.

In recent decades, as the social and environmental aspects
of business activities gain prominence, supply chain decision
makers have to consider these concerns into account. In order
to enlighten the importance of the subject, one may refer to
the many researchers that have quantified the environmental
influence of transportation in terms of CO2 emission (Harris
et al. 2011; Le and Lee 2013; Nieuwenhuis et al. 2012; Zhang
et al. 2014). Specifically, as one of the most obvious and tan-
gible socio-economic effects of supply chain activities, traffic
congestion affects any business involved in road transporta-
tion from bio-fuel industry (Bai et al. 2011), dairy supply
chains (Jouzdani et al. 2013a, b), to urban freight distribu-
tion networks (Figliozzi 2011) and even influences the way
competitive supply chains behave (Konur and Geunes 2011).
Since a many products in different industries are transported
by using road transportation system, the impact of conges-
tion on the business units is bold and is worth investigation.
Especially, the problem calls for more attention when the
product are transported with a high frequency or in case of
food products which need to be specially treated (Agustina
et al. 2014). More specifically, for deteriorating items, such

as dairy and fresh food products, the products should be
transported via refrigerated vehicle and on usually on a daily
basis. Therefore, traffic congestion significantly affects both
the transportation system and the businesses. In addition, the
concurrent consideration of uncertainty and traffic conges-
tion is of importance due to interrelationship of these two
phenomena. For further investigation in this regard, one may
refer to a recent study by Jouzdani et al. (2013a, b).

The supply chain design and planning problem has its
roots in facility location problem and the former inherits its
NP-Hardness from the latter (Nemhauser andWolsey 1988).
Therefore, conventional methods fail to provide a solution to
the problem in a reasonable amount of time. This calls for
development ofmeta-heuristicswhich can tackle the problem
more effectively. Several researchers have utilized conven-
tional or heuristic methods in the context of supply chains
(see Table 1); however, the research on meta-heuristics for
the supply chain design and planning is scarce. The recent
interest of researchers in the subject has led to developing
meta-heuristics that can deal with difficulties of the problem
(Kadadevaramath et al. 2012; Soleimani et al. 2013; Subra-
manian et al. 2013; Venkatesan and Kumanan 2012; Wang
and Watada 2012). The Electromagnetism-like Algorithm
(EMA), as a relatively new population-based optimization
algorithm introduced by Birbil and Fang (2003), has shown
to provide satisfying results in many optimization problems.
Especially, EMA has been shown to be effective and efficient
in tackling nonlinear programming models (Kusiak et al.
2013; Zeng et al. 2015). In addition, it has demonstrated
superior outcomes in comparison to other population-based
methods (Chang et al. 2009; Debels et al. 2006; Jamili et al.
2011; Jolai et al. 2012; Naji-Azimi et al. 2010). In order to
further improve its performance, EMA can easily been com-
bined with other methods (the applications of the EMA and
its hybrids are discussed in more detail in “Computational
experiments” section). EMA is developed for solving con-
tinuous problems with bounded; however, it has also shown
flexibility for solving discrete problems. The flexibility of
EMA in this regard in one hand and the fact that the problem
is modeled as a mixed-integer zero-one optimization model,
was a reason for using EMA. In addition, in the context
of transportation planning in supply chains, the amounts of
products are bounded between a lower and an upper bound.
This makes EMA an eligible candidate for tackling the prob-
lem investigated in this paper. On the other hand, EMA and
Simulated Annealing (SA) have been already shown to yield
satisfying results (Jamili et al. 2011; Jouzdani et al. 2012;
Naderi et al. 2010). Specifically, EMA, as a population-based
algorithm, has satisfying exploration capability and SA, as
an algorithm designed for finding near-optimal solutions
to combinatorial optimization problems, provides exploita-
tion of the search space. Furthermore, the research on the
application of EMA in supply chain design and planning
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is still scarce; therefore, current research is an attempt for
providing new insights in the integration of newly devel-
oped population-based algorithm and supply chain design
and planning. For further reading about the applications of
population-based algorithms in supply chain design andplan-
ningwith an emphasis on green logistics the reader is referred
to a recent review by Zhang et al. (2015). These inspired us
to augment the EMAwith SA to tackle the problem of supply
chain design and planning under demand and supply uncer-
tainties and congestion. The local search procedure in EMA
is replaced by SA to increase the exploration capability of the
algorithm. In addition, a “snap” mechanism is proposed to
deal with the binary decision variables in the supply design
and planning problem. The main contributions of our work
can be summarized as follows.

a) Modeling The proposed model is inspired by lack of
study regarding the supply chains design and planning
considering the following features concurrently.

• Multiple products
• Demand and supply uncertainty
• Congestion costs
• Multiple transportation modes
• Time value of money

b) Solution approach The proposed solution approach is
a hybrid meta-heuristic algorithm, designed for Mixed
Integer Non-Linear Problems. The Improved Electrom-
agnetism-like Algorithm (IEMA) is the result of aug-
menting EMA with SA. In case of supply chain design
and planning, promising results are obtained indicating
the capability of IEMA.

The exposition of the paper is as follows. In the next section,
a review of most recent and most related works in the liter-
ature is presented. “Superiority and inferiority concepts for
fuzzy numbers” section presents an overview of fuzzy lin-
ear programming approach. “The proposed model” section,
the mathematical model of the problem and related concepts
of optimization under uncertainty are provided. “The solu-
tion approach” section introduces the proposed algorithm.
Results of numerical examples are provided in “Computa-
tional experiments” section and finally, “Conclusions and
future works” section concludes the paper.

Literature review

Supply chains optimization has been a point of attraction
for both researchers and practitioners. Wang et al. (2011)
optimized multiple objectives considering environmental
concerns. Their model captured the trade-off between the
total cost of the supply chain and its environmental influ-
ence and was solved by ILOG CPLEX 9.0. Following a

stochastic programming approach, Chen and Fan (2012) pro-
posed a model for bio-ethanol supply chain planning under
demand and supply uncertainties considering truck capac-
ities, travel time dependent and distance dependent costs
and solved their proposed model by using a decomposi-
tion algorithm (DA). In a work by Pishvaee et al. (2011),
a robust optimization model was proposed to handle the
data uncertainty in a closed-loop supply chain network
design problem. They solved their model by using ILOG
CPLEX10.1 optimization software. A detailedmathematical
model was studied by Georgiadis et al. (2011) for sup-
ply networks design problem considering multiple products,
shared production resources, warehouses, distribution cen-
ters and customer zones. They modeled the time-varying
uncertainty in demand following a scenario-based approach
and solved the model by using ILOG CPLEX 11.2.0 solver
incorporated in GAMS 22.9. Mirzapour Al-e-hashem et al.
(2011) considered a multi-supplier, multi-manufacturer and
multi-customer supply chain addressing a multi-site, multi-
period and multi-product aggregate production planning
(APP) problem under uncertainty and utilized LINGO 8.0
to solve their proposed model. Dal-Mas et al. (2011) pre-
sented a dynamic, spatially explicit and multi-echelon mixed
integer linear program modeling framework for assess-
ing economic performances and risk on investment of the
biomass-based ethanol supply chains . They used CPLEX
solver of GAMS to solve their MILP model. Total cost of
facility location, inventory holding, transportation and short-
age are considered by Döyen et al. (2012) in a humanitarian
relief logistics network problem for which a Lagrangian
Relaxation (LR) heuristic was used. Liao et al. (2011a, b)
proposed an integratedmodel considering stochastic demand
following a multi-objective approach and developed a multi-
objective evolutionary algorithm (MOEA) as a solution
method for their model. In a research by Bai et al. (2011),
a model for bio-fuel refinery location and supply chain
planning considering the impact of traffic congestion was
presented and solved by applying linear programming relax-
ation (LPR) and Lagrangian relaxation bounding (LRB)
procedures. A model for stochastic supply chain network
design under uncertainty was presented as a two-stage sto-
chastic program and solved by applying sample average
approximation in a work by Bidhandi and Yusuff (2011).
Le and Lee (2013) considered location, inventory, produc-
tion, distribution costs and transportation mode selections
along with environmental impacts of supply chain planning
and proposed a model for which LINGO 11 was utilized
for finding optimal solution(s). Sadjady and Davoudpour
(2012) investigated a two-echelon multi-commodity supply
chain network design consideringmode selection, lead-times
and inventory costs and solved their proposed model by
using a Lagrangian-based heuristic solution algorithm for
real-sized problems. Wang and Watada (2012) proposed a
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Value-at-Risk-based fuzzy random facility location model
considering uncertain demands and costs and presented a
particle swarm optimization (PSO) solution method. Bashiri
et al. (2012) proposed a production–distribution strategic and
tactical planning model for a multiple-echelon and multiple-
commodity supply chain operating in a certain environment
and solved their model by using CPLEXMIP solver. Alman-
soori and Shah (2012) investigated the design and operation
of a stochastic hydrogen supply chain network following
a scenario-based approach and considering the uncertainty
caused by long-term variation in hydrogen demand. Their
models were formulated as Mixed Integer Linear Programs
(MILP) and were solved by using GAMS (CPLEX v9.0).
Strategic planning problem of integrated bio-ethanol–sugar
supply chains under uncertainty was addressed by Kostin
et al. (2012) and formulated as a multi-scenario mixed-
integer linear programming. They applied sample average
approximation to approximate the solution of the stochastic
problem that entails the calculation of two models solved
iteratively.

In a recent work, Jouzdani et al. (2013a, b) proposed a
dynamic dairy facility location and supply chain planning
under traffic congestion and demand uncertainty and pro-
vided a case study of Tehran, Iran. Soleimani et al. (2013)
colleagues proposed a model for multi-echelon multi-period
multi-product closed-loop supply chain design and planning
problem and utilized GA to solve their model. Ramezani
et al. (2013) proposed a robust design for a closed-loop sup-
ply chain network considering the uncertainty in demand and
the rate of return. They utilized a Scenario Relaxation Algo-
rithm (SRA) to solve their proposed model. Supply chain
network design with service level in presence of disruptions
and demand uncertainty is addressed by Baghalian et al.
(2013). A hybrid Memetic Algorithm (MA) is designed by
Yang and Liu (2013) to obtain the fuzzy solution in mean-
risk SCND problem. To clearly illustrate the characteristics
of our research, an overview of model features and solu-
tion approaches in recent literature is presented in Table 1
in which the last row presents the various features captured
by the proposed model and its solution algorithm. In this
research, an effort is made to incorporate major practical
aspectswhich have not been considered simultaneously in the
existing literature. For ease in presentation and convenience
in explaining the numerical examples, multiple planning
periods and various types of flows in supply networks are
not included; however these may be taken into account by
following a similar logic.

Superiority and inferiority concepts for fuzzy
numbers

In this section, a brief review of related concepts in fuzzy
numbers theory, i.e. superiority and inferiority, is presented.

These concepts are utilized for modeling the uncertainty in
different parameters of the problem. Our main inspirations
for applying the fuzzy linear programming used triangular
fuzzy numbers are their ease of use and applicability for
modeling the uncertainty.

Different phenomena may be compared based on their
various attributes. Object O1 is considered to be superior
(inferior) to O2 regarding an attribute A if the most (least)
preferable value of that attribute for O1 is superior (inferior)
to the highest (lowest) value for that of O2. Considering that,
van Hop (2007) proposed two comparison measures of supe-
riority and inferiority for fuzzy numbers. In what follows,
these concepts are discussed for triangular fuzzy numbers.

Suppose that Ũ = { ũ = (u, r, s)| r, s ≥ 0} is a set of trian-
gular fuzzy numbers. u, r and s are the center, the right spread
and the left spread of a fuzzy triangular number ũ, respec-
tively. Then the membership degree of x can be expressed
through:

μũ (x)=

⎧
⎪⎪⎨

⎪⎪⎩

max
(
0, 1 − u−x

r

)
, i f x ≤ u, r > 0

1, i f r =0, and/or s=0
max

(
0, 1 − u−x

l

)
, i f x > u, l > 0

0, otherwise

(1)

Triangular fuzzy numbers are well-studied and capable of
quantifying various types of information. In addition, a crisp
real number u ∈ � can be represented as a triangular fuzzy
number with zero spreads as u = (u, 0, 0).

Theorem 1 (van Hop 2007) Consider two fuzzy triangular
numbers, P̃ = (u, a, b) and Q̃ = (v, c, d). If P̃ ≤ Q̃, then
the superiority of Q̃ over P̃ is

S
(
Q̃, P̃

)
= v − u + d − b

2
(2)

and the inferiority of P̃ to Q̃ is

I
(
P̃, Q̃

)
= v − u + a − c

2
(3)

The above theorem provides a valuable tool for comparing
two fuzzy triangular numbers. More specifically, by means
of this theorem, two sides of a constraint in an optimiza-
tion model can be regarded as triangular fuzzy numbers and
compared through superiority and inferiority concepts. In
this paper, demand for products and supplied amounts are
assumed to be subject to uncertainty and are considered as
triangular fuzzy numbers. Here, the above theorem can be
applied for comparing the “incoming annual flow of a prod-
uct to a demand node” with the “triangular fuzzy annual
demand for that product in that demand node” and comparing
the “outgoing annual flow of product a from a supply node”
with the “triangular fuzzy annual supply for that product in
that supply node”. In order to shed light on the connection
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Table 1 An overview of model features and solution approaches in the recent related literature

References MP Uncertainty DY CN MM Network Flow Solution approach

DU SU FF RF CL

Xu et al. (2009) � � � GA

Liu et al. (2010) � � LR

Rentizelas and Tatsiopoulos (2010) � � � GA+SQP

Salema et al. (2010) � � � � CPLEX

Pishvaee and Torabi (2010) � � � LINGO

Le and Lee (2011) � � � � LINGO

Bidhandi and Yusuff (2011) � � SAA

Bai et al. (2011) � � � LPR+LRB

Liao et al. (2011a, b) � MOEA

Döyen et al. (2011) � � LR

Dal-Mas et al. (2011) � � CPLEX

Mirzapour Al-e-hashema et al. (2011) � � � LINGO

Georgiadis et al. (2011) � � � � CPLEX

Pishvaee et al. (2011) � � CPLEX

Chen and Fan (2011) � � � � DA

Wang et al. (2011) � � CPLEX

Kostin et al. (2012) � � � � SAA

Almansoori and Shah (2012) � � � � CPLEX

Bashiri et al. (2012) � � � CPLEX

Wang and Watada (2012) � � PSO

Sadjady and Davoudpour (2012) � � � LR

Baghalian et al. (2013) � � � LINGO

Cardoso et al. (2013) � � � � CPLEX

Jouzdani et al. (2013a, b) � � � � LINGO

Ramezani et al. (2013) � � � SRA

Soleimani et al. (2013) � � � GA

Yang and Liu (2013) � � � MA

Mousavi et al. (2014) � � � Modified PSO

Soleimani and Kannan (2014) � � LINGO

Boukherroub et al. (2015) � � � GA

Brandenburg (2015) � � � GA+PSO

Our Proposed Model � � � � � � EMA+SA (IEMA)

MP multiple products, DU demand uncertainty, SU supply uncertainly, DY dynamic model (Multiple Periods), CN congestion, MM multiple
transportation modes, FF forward network flow, RF reverse network flow, CL closed loop network

between these concepts and their application in supply chain
planning, a small numerical example is provided in what fol-
lows.

Suppose that the demand for a product in some demand
point and the amount of that product actually transported
to that point can be represented by triangular fuzzy num-
bers as P̃ = (100, 3, 10) and Q̃ = (105, 0, 0), respectively.
It should be noted that the transported amount of product
is actually a crisp number (equals 105) represented as a
triangular fuzzy number. Then, the inferiority of P̃ to Q̃
represents the amount by which the fuzzy demand is less

that (inferior to) the transported amount of product and is
equal to 8 according to Eq. (3). Similarly, assume that the
supply capacity for a product in some supply node and the
amount of that product transported from that node can be
represented as triangular fuzzy numbers as P̃ ′ = (993, 0, 0)
and Q̃′ = (1000, 14, 18), respectively. Therefore, the supe-
riority of Q̃′ over P̃ ′ represents the amount by which the
supply capacity is more than (superior over) the trans-
ported product amount and is equal to 25 according to Eq.
(2).
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The proposed model

In this section, supply chain design and planning under
supply and demand uncertainties and traffic congestion is
formulated as a non-linear mixed-integer programming. This
section includes the assumptions of this research followed by
a description of notions used in mathematical formulation of
the problem and the mathematical model. In addition, some
auxiliary variables are defined in order to facilitate the rep-
resentation of the model.

Assumptions

The wise use of realistic and simplifying assumptions is the
key to successful modeling of a real-world problem. Having
this fact in mind, in this research, the problem is investigated
under the following assumptions.

(1) The total number of candidate supply nodes, poten-
tial warehouse locations, demand points, transportation
modes and product types are known and fixed.

(2) All the parameters are certain except the fuzzy annual
supply and fuzzy annual demandas described in “Nomen-
clature” section.

(3) No inventory shortage is allowed in the warehouses;
however, there might be surplus quantities of products
for which there is a penalty cost.

(4) The periods of the planning horizon is assumed to be
infinite; i.e. the supply chain is to be designed to operate
theoretically forever and practically for a long period of
time.

(5) The parameters are assumed to remain unchanged or
have ignorable changes from a period to another; i.e.
the supply chain is designed to operate in a stable envi-
ronment.

(6) The products are produced and shipped in continuous
quantities.

Nomenclature

Indices and sets

i index for candidate supply points (i ∈ I )
j index for candidate warehouse locations ( j ∈ J )
k index for demand nodes (k ∈ K )
m index for transportation modes (m ∈ M)
p index for products (p ∈ P)

Parameters

FCS
i Fixed cost of opening a supplier facility at

candidate location i

FCW
j Fixed cost of opening a warehouse at candi-

date location j
MC APm Capacity of transportation mode m
CONCOm Traffic congestion coefficient of transporta-

tion mode m
S̃ p
i Triangular fuzzy annual supply for product

p in supply node i

C P
(
S̃ p
i

)
The center point of triangular fuzzy annual

supply for product p in supply node i

LS
(
S̃ p
i

)
The left spread of triangular fuzzy annual

supply for product p in supply node i

RS
(
S̃ p
i

)
The right spread of triangular fuzzy supply

annual for product p in supply node i
WC AP p

j The capacity available for product p inware-
house node j

C p
j The annual inventory holding cost for prod-

uct p at warehouse node j
C p,surp

j The annual cost associated with surplus
quantities of product p in warehouse node
j

D̃ p
k Triangular fuzzy annual demand for product

p in demand node k

CP
(
D̃ p
k

)
The center point of triangular fuzzy annual

demand for product p in demand node k

LS
(
D̃ p
k

)
Left spread of triangular fuzzy annual dem-

and for product p in demand node k

RS
(
D̃ p
k

)
Right spread of triangular fuzzy annual

demand for product p in demand node k
C infD
k,p Penalty cost for �

p,infD
k

C
supS
i,p Penalty cost for �

p,supS
i

TC APi, j Annual traffic capacity of the link from node
i to node j

BFi, j Basic annual flow of the link from node i to
node j

FFT Ti, j Free flow travel time of the link from node i
to node j

Cm
i, j Annual transportation cost for a vehicle of

mode m on the link from node i to node j
I R The interest rate
MVT Monetary value of time
β Congestion constant

Auxiliary variables

�
p,infD
k The inferiority of the fuzzy annual demand

for product p in demandnode k to the amount
of product pactually transported to demand
node k

�
p,supS
i The superiority of the fuzzy annual supply

for product p in supply node i to the amount
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of product pactually transported from node
i

F p,outS
i Outgoing annual flow of product p from sup-

ply node i
F p,inW
j Incoming annual flow of product p to ware-

house node j
F p,outW
j Outgoing annual flow of product pfrom

warehouse node j
F p,inD
k Incomingannual flowofproduct p to demand

node k
Fi, j Total annual trafficflowon the link fromnode

i to node j
Zm
i, j The total annual number of vehicles of mode

m transporting goods on the link from node
i to node j

T FC Total fixed facility location cost
TCC Total annual traffic congestion cost
T TC Total annual transportation cost
TUC Total annual uncertainty cost
T IC Total annual inventory-related cost

Decision variables

Y S
i 1 if a supplier is opened in potential supply

node i , 0 otherwise
YW
j 1 if awarehouse is opened in candidate ware-

house location i , 0 otherwise
X1m,p

i, j The amount of product p annually trans-
ported by transportation mode m on the link
from supply node i to warehouse node j

X2m,p
j,k The amount of product p annually trans-

ported by transportation mode m on the link
from warehouse node j to demand node k

Mathematical model

The mathematical model of the problem can be expressed
by using the above notations. The objective of the proposed
model is to minimize the cost function consisted of five parts
and presented by the following equations.

T FC =
∑

i∈I
FCS

i Y
S
i +

∑

j∈J

FCW
j YW

j (4)

TCC = MVT ×
[
FFT Ti, j

(
1 + 0.15

(
Fi, j/TC APi, j

)β
)

+FFT Tj,k

(
1 + 0.15

(
Fj,k/TC APj,k

)β
)]

(5)

T TC =
∑

i∈I

∑

j∈J

∑

m∈M
Cm
i, j Z

m
i, j (6)

TUC =
∑

k∈K

∑

p∈P

C infD
k,p �

infD
k,p +

∑

i∈I

∑

p∈P

C
supS
i,p �

supS
i,p (7)

T IC =
∑

j∈J

∑

p∈P

C p
j F

p,inW
j

+C
p,surpp
j

(
F p,inW
j − F p,outW

j

)
(8)

Equation (4) calculates the total fixed facility cost consisted
of supplier and warehouse opening costs. Traffic congestion
cost is calculated through the link performance function pro-
vided by US Bureau of Public Roads and presented in Eq.
(5) in which the total flow from a supply node to a warehouse
and the total flow from a warehouse to a customer node pair
of nodes are obtained from the following Equations, respec-
tively.

Fi, j = BFi, j +
∑

m∈M
CONCOmZm

i, j ∀i ∈ I,∀ j ∈ J (9)

Fj,k = BFj,k +
∑

m∈M
CONCOmZm

j,k ∀ j ∈ J,∀k ∈ K

(10)

where

Zm
i, j =

⎢
⎢
⎢
⎢
⎣

∑

p∈P
X1m,p

i, j

MC APm

⎥
⎥
⎥
⎥
⎦ + 1 ∀i ∈ I,∀ j ∈ J (11)

Zm
j,k =

⎢
⎢
⎢
⎢
⎣

∑

p∈P
X2m,p

j,k

MC APm

⎥
⎥
⎥
⎥
⎦ + 1 ∀ j ∈ J,∀k ∈ K (12)

calculate the number of vehicles transporting products from
a supply node i to warehouse node j and the total number of
vehicles travelling from warehouse node j to demand node
k, respectively. In the above equations, �x	 represents the
largest integer equal or smaller than x ∈ R. Equation (6)
calculates the transportation cost. The cost associated with
the uncertainty is obtained by Eq. (7) in which

�
p,infD
k = F p,inD

k − CP
(
D̃ p
k

)
+ LS

(
D̃ p
k

)
and (13)

�
p,supS
i = CP

(
S̃ p
i

)
− F p,outS

i + RS
(
S̃ p
i

)
(14)

are calculated by using the superiority and inferiority con-
cepts for fuzzy triangular numbers (van Hop 2007). In Eqs.
(13) and (14) we have

F p,inD
k =

⎛

⎝
∑

j∈J

YW
j

∑

m∈M
X2m,p

j,k

⎞

⎠ and (15)

F p,outS
i = Y S

i

⎛

⎝
∑

j∈J

YW
j

∑

m∈M
X1m,p

i, j

⎞

⎠ (16)
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Due to uncertainty, there might be surplus quantities of prod-
ucts in warehouses. Since no shortage is allowed, only the
cost (penalty) associated with the surplus amounts of prod-
ucts are taken into account. Hence, the Eq. (8) presents the
inventory-related cost where

F p,inW
j = YW

j

(
∑

i∈I
Y S
i

∑

m∈M
X1m,p

i, j

)

and (17)

F p,outW
j = YW

j

(
∑

k∈k

∑

m∈M
X2m,p

j,k

)

(18)

Based on what discussed above, the objective function and
the constraints can be written as follows.

min obj = T FC + 1

I R
(TCC + T TC + TUC + T IC)

(19)

subject to

F p,inW
j ≤ WCAP p

j , ∀ j ∈ J,∀p ∈ P (20)

F p,outW
j ≤ F p,inW

j , ∀ j ∈ J,∀p ∈ P (21)

X1m,p
i, j ≤ Y S

i × L , ∀i ∈ I,∀ j ∈ J,∀m ∈ M,∀p ∈ P

(22)

X2m,p
j,k ≤ YW

j × L , ∀ j ∈ J,∀k ∈ K ,∀m ∈ M,∀p ∈ P

(23)

�
p,infD
k ≥ 0, ∀p ∈ P,∀k ∈ K (24)

�
p,supS
i ≥ 0, ∀p ∈ P,∀i ∈ I (25)

Y S
i ∈ {0, 1} , ∀i ∈ I (26)

YW
j ∈ {0, 1} , ∀ j ∈ J (27)

X1m,p
i, j ≥ 0, ∀i ∈ I,∀ j ∈ J,∀m ∈ M,∀p ∈ P (28)

X2m,p
i, j ≥ 0, ∀i ∈ I,∀ j ∈ J,∀m ∈ M,∀p ∈ P (29)

It should be noted that fixed costs are one-time payments
while other variable costs are incurred in each period of the
planning horizon. In the proposed model, we assume that
the variable costs variations for future periods are negligible.
Therefore, these costs are modeled as uniform series pay-
ments and are converted to their present values by using the
uniform series present worth factor expressed as

(P/A; I R; n) = (1 + I R)n − 1

I R (1 + I R)n
(30)

where n is the number of periods (White et al. 1983). When
the payments are expected to continue for an unlimited num-
ber of periods, the above equation changes to the following
one assuming n → ∞.

(P/A; I R;∞) = 1

I R
(31)

Let us define the error of approximating the expression in
Eq. (30) by the one presented in Eq. (31) as follows.

δ = (P/A; I R;∞) − (P/A; I R; n) (32)

Now, by definition of limit, it can be easily proved that if n
is large enough, then δ is arbitrarily small. Specifically, the
following condition is sufficient for δ being smaller than any
arbitrary positive real number ε.

n >
− ln (ε × I R)

ln (1 + I R)
(33)

More specifically, if the interest rate is large enough, then the
conditions holds for small values of ε and n. For example,
assuming n = 20 and I R = 0.25 we have δ = 0.0461; and
for n = 50, δ decreases to 0.0001. As another example, for
n = 50 and I R = 0.15 we have δ = 0.0102 and when n =
100 and I R = 0.09 δ decreases to 0.0057. Therefore, by
theoretically assuming unlimited number of periods and uti-
lizing the approximation of Eqs. (30) by (31), without loss of
generality, the complexity of themodel is drastically reduced;
because an index/set of time periods is not needed. Therefore,
the assumption regarding the number of periods is justifiable.

The solution approach

It is proved that exact methods, like gradient-based approac-
hes or the B&B algorithm, are inefficient in solving most
real-world problems. The emergence of meta-heuristic algo-
rithms can be regarded as a response to the demand for fast
and flexible optimization methods. Meta-heuristics may be
categorized into two major groups: meta-heuristics basically
designed to solve continuous problems and methods devel-
oped to deal with discrete ones. From another perspective,
meta-heuristic methods may be classified to population-
based and single-solution-based approaches. Inwhat follows,
a population-based algorithm, known as Electromagnetism-
like Algorithm (EMA), is described to provide a bed for
introduction of IEMA which is used as a solution approach
for mixed integer problems. Our interest in EMA is for three
reasons: (1) its ability of sufficient exploring the continuous
search space in comparison tomany other algorithms (such as
Genetic Algorithms, Simulated Annealing, etc.) (Birbil and
Fang 2003; Demirhan et al. 1999), (2) the ease of augment-
ing the algorithm by the “snap” procedure used to handle
discrete variables, (3) the ease of improvement by replacing
the local search procedure by SA algorithm and (4) ease of
implementation.

The electromagnetism-like algorithm

One of population-based meta-heuristics, originally devel-
oped for solving continuous optimization problems, is the
Electromagnetism-like algorithm introduced by Birbil and
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Fang (2003). The main idea of EMA is based on electromag-
netism theory. In the original version of EMA, each particle
is placed randomly in the solution space and then moved
according to their charges and the forces they exert to each
other. The charges are proportional to the objective function
value for each particle. Algorithm 1 presents the general pro-
cedure of the original EMA.

ALGORITHM 1. EMA( popSize , maxIter , LSIter ,delta )
popSize : number of solution points
maxIter : maximum number of the algorithm iterations
LSIter : maximum number of local search steps
delta : local search parameter [ ]0,1delta∈

1: Initialize()
2: 1i ←
3: while i maxIter< do
4: Local(LSIter ,delta )
5: CalculateForces()
6: Move()
7: 1i i← +
8: end while

Algorithm 1. General procedure of the original EMA procedure 

EMA is originally designed to solve continuous opti-
mization problems with bounded variables; however, it has
been successfully applied to many discrete problems such as
project scheduling (Debels et al. 2006), machine scheduling
(Chang et al. 2009), periodic job-shop scheduling (Jamili
et al. 2011), set covering (Naji-Azimi et al. 2010), cell
formation (Jolai et al. 2012), flow-shop scheduling (Davoud-
pour and Hadji Molana 2008; Naderi et al. 2010), assembly
sequences planning (Jabbarzadeh et al. 2012) and travelling
salesman problem (Javadian et al. 2008; Wu et al. 2006).

The proposed improved electromagnetism-like
algorithm (IEMA)

From another perspective, EMA has been successfully com-
bined with other methods (Chang et al. 2009; Debels et al.
2006). Especially, EMA has shown satisfactory results when
combined with SA and applied to discrete problems (Naderi
et al. 2010) and continuous search spaces (Jouzdani et al.
2012). Kirkpatrick et al. (1983) introduced SA as a general-
purpose meta-heuristic method capable of evading the local
minima by allowing jumps to higher energy states. The anal-
ogy between SA and the process of annealing used by a
craftsman in forging a sword from an alloy is the use of
temperature to find the desired result. In SA, the temperature
is a parameter used to create the balance between intensifi-
cation and diversification of the search process. SA is proved
to be an effective and efficient algorithm for solving opti-
mization problems (Jouzdani et al. 2013a, b). However, it is
known to be parameter-sensitive; i.e. the selection of tem-
perature parameter greatly affects the performance of the

algorithmand therefore, parameter tuning for SA is of signifi-
cant importance. Solution representation is another key factor
in SA as well as any other meta-heuristic. Solutions should
be suitably encoded to create a homomorphism between the
solution space and the set of corresponding representations.
In addition, a neighbor to each solution in each step is the
one checked in the next step of the algorithm and the neigh-
borhood structure determines the way in which the algorithm
acts in this regards. Therefore neighborhood structure may
greatly influence the quality of the solution and the time spent
on obtaining it.

In this research, a hybridization of EMA and SA is
designed and applied to supply chain design and planning
problem, formulated as a mixed integer non-linear model.
More specifically, EMA is augmented by replacing the sim-
ple local search procedure by SA. Furthermore, a greedy
heuristic is utilized to generate the initial population of solu-
tions. In the proposed method, EMA is modified to deal with
discrete variables as well as the continuous ones. The most
obvious extension of EMA updates the discrete variables
together with continuous ones. However, this approach may
fail to find a satisfying solution because considering equal
evolution pace for discrete and continuous variables results
in the fact that the algorithm is unable to evolve adequately
in continuous search space (Yiqing et al. 2007). Therefore,
a probabilistic approach is applied to keep an appropriate
balance in update rates for discrete and continuous variables.

Figure 1 depicts IEMA flowchart in which force calcula-
tion and moving particles are pretty much the same as the
original EMA. In what follows, IEMA and its related con-
cepts are described in detail.

Solution representation

Each solution is encoded into a structure consisted of two
matrices: a |I | × |J | × |M | × |P| matrix called X1 and a
|J | × |K | × |M | × |P| matrix denoted by X2. In the con-
text of the proposed EMA-based algorithm, in each particle,
X1 and X2 represent X1m,p

i, j and X2m,p
j,k , respectively. The

information about the binary decision variables, Y S
i and YW

j ,
are incorporated into the particle by applying the “snap”
procedure, described in “Handling discrete and continuous
variables” section, on X1 and X2. Therefore, each particle
represents a set of all decision variables, i.e., a solution to the
problem. For example, X1 (3, 2, 1, 4) = 14.32 means that
14.32 units of product 4 is transported by means of a vehicle
of mode 1 from supply location 3 to warehouse node 2.

Particle handling

Similar to the original EMA, in the proposed algorithm, the
particle charges are calculated based on the corresponding
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Start

Generate the initial population (POP) of popSize
individuals using greedy heuristic

Snap each individual to its appropriate 
discrete neighbor (if applicable)

Determine the initial (T0) and 
final (Tf) temperatures

Initialize the counter (i), the best know 
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i < maxIter?

Calculate forces
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Perform an equilibrium phase with SAIter
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discrete neighbor (if applicable)
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End

Yes

No

Fig. 1 The flowchart of IEMA

objective function value for each particle through the fol-
lowing Equation assuming the population is composed of m
particles.

qi = e
−n

f (xi ) − f (xbest )
∑m

k=1 f (xk) − f (xbest ) ∀i ∈ {1, 2, . . . ,m}
(34)

In the above Equation, f (x) represents the objective func-
tion value for solution x and n is the dimension of the solution
space. The forces that particles exert are calculated accord-
ing to the force calculation formula in the original EMA as
follows.

Fi j = qiq j

r2i j
∀i, j ∈ {1, 2, . . . ,m} (35)

In the above Equation, Fi j is the force particle i and particle j
exerts on each other, ri j is the distance between the particles
and qi and q j are the charges of particle i and particle j ,
respectively.

The particles are moved according to the total force,
exerted on each particle, calculated in Equation

Fi =

⎧
⎪⎨

⎪⎩

∑m
j=1
j �=i

(
x j − xi

)
Fi j , i f qi < q j

∑m
j=1
j �=i

(
xi − x j

)
Fi j , i f qi ≥ q j

∀i∈ {1, 2, . . . ,m}

(36)

The movement of the particles are based on the total force,
calculated in the above Equation, and through the follow-
ing Equation where λ is used for randomizing the particle
movement and ‖Fi‖ is the norm of the force vector.

xi ← xi + λ
Fi

‖Fi‖ ∀i ∈ {1, 2, . . . ,m} (37)

In each iteration of the algorithm, the movement of the par-
ticles may result in infeasible solutions. In such cases, the
solutions are neglected and the movement for that particle
is canceled in that specific iteration of the algorithm. One
may argue that this may lead to slow movement of the parti-
cles; however, it should be noted that the cost of repairing a
particle that represents an infeasible solution is very high in
the proposed model due to supply/warehouse capacity and
warehouse balance constraints. In addition, the lack is com-
pensated by the SA search and the movement of the particles
in the next iterations.

Greedy heuristic for initial population generation

In order to improve the performance of the algorithm, each
individual in the initial population is generated by using
a two-phase greedy heuristic. In each phase, one layer of
the supply chain is considered and the demands are back-
propagated to the upper layers. Algorithm 2 depicts the
greedy procedure for generating the initial population. In
Algorithm 2,U (a, b) represents the uniform distribution on
the interval [a, b]. By using this procedure, the obtained indi-
vidual solutions are expected to have smaller fixed facility
location costs. One may think of considering other greedy
approaches as well, e.g. assigning the most economic trans-
portation mode and/or link and/or product. However, acting
too greedy in generating the initial population does not allow
the adequate exploration of the search space and may lead
the algorithm to local optima.
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ALGORITHM 2. GENPOP( popSize , I , J ,K , M ,P )
popSize : population size
count : counter

1: Set all elements of 1X , 2X and the counter to zero
2: while count popSize≤ do
3: // Phase 1
4: select j J∈ , k K∈ , m M∈ and p P∈ , randomly
5: while the demands for all parts in all demand point are not satisfied do
6: if all products at warehouse j J∈ are assigned to demand points then
7: select another warehouse j J∈ randomly
8: end if
9: if demands for all products at demand point k K∈ are satisfied  then
10: select another demand point k K∈ randomly
11: end if
12: generate random number as ( )( )~ ,p p

k jr U CP D WCAP

13: ( ) ( )22 , , , , , ,X j k m p X j k m p r← +
14: Select m M∈ and p P∈ , randomly
15: end while
16: // Phase 2
17: select i I∈ , j J∈ , m M∈ and p P∈ , randomly
18: while the assigned amounts of all parts in all warehouses are not fulfilled do
19: if supply node i I∈ cannot supply any more products of any type  then
20: select another supply node i I∈ randomly
21: end if
22: if demands for all products at warehouse point j J∈ are fulfilled  then
23: select another warehouse j J∈ randomly
24: end if
25: generate random number as ( )( )~ ,p p

j ir U WCAP CP S

26: ( ) ( )11 , , , , , ,X i j m p X i j m p r← +
27: Select m M∈ and p P∈ , randomly
28: end while
29: 1count count← +
30: if the calculated  1X and 2X correspond to a feasible solution then
31: Add the individual to the population
32: end if
33: end while

Algorithm 2. Initial population generation algorithm 

Handling discrete and continuous variables

The individual in the population are probabilistically “snap-
ped” to their near discrete counterparts. More specifically, in
each individual if the total amount of all products shipped
from a supply node is too small, then there is a high prob-
ability that the node is not selected as a supplier. Similarly,
in each individual if the total amount of all products shipped
from a warehouse node is too small, then there is a high
probability that the node is not selected as a warehouse.
Mathematically,

∀i ∈ I,

∑

j∈J

∑

m∈M
∑

p∈P
X1 (i, j,m, p)

∑

i ′∈I
∑

j∈J

∑

m∈M
∑

p∈P
X1 (i ′, j,m, p)

≤ U (0, 1) ⇒ X1 (i, j,m, p) = 0,∀ j,m, p (38)

and similarly,

∀ j ∈ J,

∑

k∈K
∑

m∈M
∑

p∈P
X2 ( j, k,m, p)

∑

j ′∈I
∑

k∈K
∑

m∈M
∑

p∈P
X2 ( j ′, k,m, p)

≤ U (0, 1) ⇒ X2 ( j, k,m, p) = 0,∀k,m, p (39)
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This operationmay create solutions with lower fixed facil-
ity location costs. In addition, the “snapping” to discrete
variables provides an opportunity for exploration of discrete
search space; however, it may generate infeasible solutions.
In such case, the snapping is not applied to the solution;
i.e., resulted individual is rejected and the original individual
remains as before.

Determining the initial and final temperature and the
schedule

In SA, The temperature and its schedule have significant
impact on the performance of the algorithm and the quality
of solution. In this research, the initial and final temperatures
are calculated by

T0 = � fmin + (� fmin/� fmax) (� fmax − � fmin) (40)

T f = (� fmin/� fmax)� fmin (41)

where � fmax and � fmin are the maximum and minimum
difference between the objective function values observed
during a pre-processing procedure, respectively. In the pre-
processing phase, feasible individuals are randomly gener-
ated and their objective values are obtained to determine the
initial and final temperature; i.e. this phase is a random search
in the solution space not to find the optimal solution but to
find an upper and a lower bound for � f .

In order to gradually move from diversification toward
intensification, the temperature must decrease according to a
schedule. The temperature follows a schedule expressed by

Ti = (
T f /T0

)i/max I ter
T0 (42)

where Ti is the temperature in iteration i and max I ter is the
total number of iterations for the algorithm. According to the
schedule, the temperature is initially set to T0 and to T f in
the final iteration.

Computational experiments

To demonstrate the performance of IEMA in solving sup-
ply chain design and planning problems formulated as the
proposed model, several instances with different sizes are
solved and the results are presented. The problems in the lit-
erature differ from those of ours regarding the assumption
and parameters; therefore, using the same exact data set and
problem sizes are not logical even if possible. In order to
conduct the experiments, 12 test problems in 3 different size
classes are randomly generated; more specifically, P1 to P5
are small-sized, P6 to P9 are medium-sized and P10 to P12
are large-sized problems (see Table 2). The problem sizes are
represented as |I | × |J | × |K | × |M | × |P| where |I |, |J |,

Table 2 Problems and their sizes

Problem Size

P1 4 × 5 × 4 × 3 × 2

P2 4 × 5 × 5 × 2 × 2

P3 4 × 4 × 5 × 5 × 5

P4 3 × 5 × 5 × 2 × 3

P5 5 × 5 × 5 × 4 × 4

P6 7 × 8 × 8 × 3 × 5

P7 10 × 9 × 9 × 4 × 4

P8 9 × 9 × 11 × 6 × 6

P9 9 × 9 × 9 × 9 × 9

P10 15 × 20 × 10 × 10 × 15

P11 20 × 20 × 20 × 15 × 20

P12 25 × 25 × 25 × 25 × 25

|K |, |M |, |P| are the number of elements in the sets I , J ,
K , M , P , respectively. Although the data for each problem
instance is generated randomly, in order to maintain logic
and usability of the resulted problem instances, some rules
are considered in creating the data. Specifically, the vehi-
cle capacities are generated as a fraction of the demand in
demand nodes. Assuming that the transporting vehicles have
congestion effects more than an ordinary passenger car, the
traffic congestion coefficients of the vehicles are randomly
selected from the set {1, 2, . . . , 5}. In order to the problems
to be feasible, for each product, the summation of the cen-
ter points of the triangular fuzzy numbers representing the
annual supply in supply nodes are considered larger than
the summation of capacities of warehouses which in turn
is assumed to be greater than the summation of the cen-
ter points of the triangular fuzzy numbers representing the
annual demand in demand nodes. In other words, we take
into account the following Equation.

∑

i

S̃ p
i >

∑

j

WC AP p
j >

∑

k

D̃ p
k ∀p ∈ P (43)

The spreads of the triangular fuzzy numbers are considered
equal to a number less or equal than 10% of the center point
of the fuzzy number. The basic traffic flows are set to a value
smaller than the capacity of the links; however, in order to
consider the effect of traffic congestion, the differences are
not large. The interest rate is set to a random number in
the interval [0.03, 0.30] and other parameters are randomly
generated.

The performance of IEMA is compared to that of origi-
nal EMA and Global Solver of LINGO 8.0 based on several
runs for each problem. The algorithms are coded by using
MATLAB 2011a and run on a PC equipped with an Intel®
AtomTM CPUN455@1.66 GHz and 2.00 GB of RAMRun-
ning Windows 7 Starter operating system.
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Table 3 Tuned parameters for the problem categories

Problem Category popSize max I ter SAI ter SAdelta

Small 3 43 2 0.1

Medium 6 86 3 0.2

Large 11 105 5 0.26

Parameter tuning

In order to obtain a satisfying result in a reasonable time, para-
meters of the algorithms should be tuned. EMAhas four para-
meters of popSize,max I ter , LSI terand delta as described
inAlgorithm1. Similarly, in our experiments IEMAuses four
parameters to perform the search for optimal solutions: (a)
population size (popSize), (b) maximum number of algo-
rithm iterations (max I ter) which is used as the stopping
criterion of the algorithm, (c)maximumnumber of SA search
steps (SAI ter) and (d) SA search parameter (SAdelta). It
should be noted that the initial and final temperatures in
IEMA are problem specific and do not need tuning. There-
fore, to optimize the performance of the algorithms regarding
solution quality and run time, response optimization exper-
iments are conducted using a factorial design. For each set
of problems the problem with the largest possible solution
space is used to tune the parameters of each algorithm. The
two performance measures are given the same weights in the
Response Optimizer of Minitab® 16.1.0 software and the
experimental data are analyzed to obtain the optimal parame-
ter values used to perform the numerical experiments. The
following Table presents the final combination of parameter
settings for each problem category (Table 3).

Numerical results

Each algorithm is tested several times on each problem and
the results are collected. It is known that if the sample number
is reasonably large, there is no need to make assumptions
about the form of the underlying distribution to obtain valid
test results (Montgomery and Runger 2010); therefore, each
algorithm is run 40 times considering each run as a sample. In
addition, EMA is also equippedwith the “snap” subroutine to
deal with discrete variables. IEMA is compared to EMA and
LINGO Global Solver regarding run time and the quality of
the objective function. Table 4 summarizes the outcomes of
experiments obtained from applying each method on small-
sized problems. In this Table, the right end column is the
gap between the value obtained by IEMA and the best value
found either by EMA or by LINGO. The gap is calculated
using the equation

Gap = cBest − cI EMA

c∗ × 100 (44)

where cI EMA is the value found by IEMA, cBest is the best
value obtained either by EMAor by LINGOand c∗ is the best
result obtained by either three of the methods. Therefore, a
positive gap indicates that IEMA performance is superior to
those of other two methods and a negative gap shows that
IEMA is inferior regarding that criterion in the correspond-
ing problem. The gaps for the averages in each test problem
for each performance criterion is accompanied by the corre-
sponding p value resulted from the paired t test

{
H0 : PI EMA ≡ PBest

H1 : PI EMA ≥ PBest
(45)

where Px is the performance of the algorithm x expressed as
eithermean of the objective function value or the run time, H0

assumes that the performance of IEMA is statistically equal
to that of the best of other two algorithms and H1 states that
IEMA is superior. In the right end column of Table 4, the p
values resulted from the paired t tests are also provided when
applicable.

According to the results from Table 4, there is no sig-
nificant difference between the performances of IEMA and
other algorithms in small-sized problems. The experiments
with larger problems, sheds light on the merit of the pro-
posed algorithm because as the search space grows larger,
the exploration mechanism of IEMA leads to its superiority
over other methods. The claims are supported by the experi-
ments with medium- and large-sized problems for which the
results are provided in Tables 5 and 6, respectively.

It should be noted that due to large size of the problems,
LINGOGlobal Solver is unable to reach a satisfying solution
in reasonable amount of time. Hence, IEMA is only com-
pared to EMA on medium- and large-sized problems. Here,
the gaps between the obtained objective function values may
not clearly reflect the difference between the performances
of the IEMA and EM. Therefore, instead of using simple
gap for each problem instance i and for each algorithm a, a
slightly modified version of Marginal Improvement per CPU
(MICi,a) criterion (Osman 2004) is calculated by

MICi,a = RP Ii,a
C PUi,a

(46)

whereCPUi,a is the averageCPU for algorithm a in problem
instance i and RP Ii,a is the Relative Percent Improvement
for algorithm a in problem instance i obtained by

RP Ii,a = ciW − ci,aB
ciW − ciB

× 100, (47)

in which ci,aB is the best result for performance criterion c
obtained by algorithm a for problem instance i and ciB and
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Table 4 Numerical experiment
results for small-sized problems

Problem Criteria IEMA EMA LINGO Gap (%)

P1 Objective
function value

Min 13846.8 13846.8 13846.8 0.00

Max 13846.8 13846.8 13846.8 0.00

Average 13846.8 13846.8 13846.8 0.00 (PV = 1.000)

Time Min 45.76 44.63 804 −2.53

Max 51.27 53.35 804 4.04

Average 47.41 48.81 804 2.95 (PV = 0.131)

P2 Objective
function value

Min 4910.4 4910.4 4910.4 0.00

Max 4910.4 4910.4 4910.4 0.00

Average 4910.4 4910.4 4910.4 0.00 (PV = 1.000)

Time Min 63.15 59.22 1834 −6.62

Max 79.54 84.10 1834 2.54

Average 70.47 70.49 1834 0.01 (PV = 0.502)

P3 Objective
function value

Min 51727.7 51727.7 51727.7 0.00

Max 51727.7 51727.7 51727.7 0.00

Average 51727.7 51727.7 51727.7 0.00 (PV = 1.000)

Time Min 66.34 67.52 3089 1.77

Max 89.47 80.65 3089 −10.93

Average 74.68 71.74 3089 −4.10 (PV = 0.745)

P4 Objective
function value

Min 62713.9 62713.9 62713.9 0.00

Max 62713.9 62713.9 62713.9 0.00

Average 62713.9 62713.9 62713.9 0.00 (PV = 1.000)

Time Min 64.65 67.03 4923 3.68

Max 78.57 82.43 4923 4.91

Average 73.17 72.27 4923 −1.24 (PV = 0.669)

P5 Objective
function value

Min 72113.1 72113.1 72113.1 0.00

Max 72113.1 72113.1 72113.1 0.00

Average 72113.1 72113.1 72113.1 0.00 (PV = 1.000)

Time Min 64.15 70.53 8654 9.94

Max 97.54 86.97 8654 −12.15

Average 79.71 78.76 8654 −1.21 (PV = 0.613)

ciW are respectively the best and the worst values for c con-
sidering both algorithms for problem instance i .

To compare the overall performance of IEMA and
EMA, Average Marginal Improvement per CPU (AMIC)
is used. The AMIC for IEMA (AMICI EMA) and EMA
(AMICEMA) are compared through a paired t test. In
the paired t test,

(
MICi,I EMA, MICi,EMA

)
constitutes the

paired sample obtained from the 40 runs of the algorithms
on each problem instance i from medium-sized and large-
sized categories. Based on the t test results, the 95% lower
bound for the difference betweenAMIC of the two algorithm
(AMICI EMA − AMICEMA) is 0.0187. The outcomes of
the test, based on the numerical results based on medium-
sized and large-sized problems, show that the difference
between the performance of IEMA and EMA is significant
with a p value of 0.001 where AMICI EMA = 0.0906 and
AMICEMA = 0.0719.

For medium-sized and large-sized problems, according
to Tables 5 and 6, IEMA takes more time in compari-
son to EMA. In return, the proposed algorithm apparently
yields better solutions in terms of objective function value.
The results are obtained by the IEMA tuned for both time
and objective function value equally; however, different
outcomes may be observed if IEMA parameter settings
are changed. More specifically, IEMA may be tuned to
operate faster at the costs of worse objective function
values. Similarly, it can be set to produce better results tak-
ing more computational time. Generally, considering the
timeframe of the problem, run time is not an important
performance factor. Therefore, it can be concluded that
IEMA is preferable for solving the proposed model; how-
ever, in problems where time is prominent (e.g. real-time
applications), EMA may be superior to the proposed algo-
rithm.
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Table 5 Numerical experiment results for medium-sized problems

Problem Criteria IEMA EMA Problem Criteria IEMA EMA

P6 Objective
function value

Min 540695 542058 P8 Objective
function value

Min 234752 273958

Max 544198 545571 Max 294236 398413

Average 542141 543444 Average 251225 328965

Time Min 572.56 568.31 Time Min 781.3 498.9

Max 647.65 594.07 Max 1002.3 929.6

Average 617.05 572.09 Average 952.8 826.9

MIC 0.1620 0.1259 MIC 0.1049 0.0918

P7 Objective
function value

Min 140081 171107 P9 Objective
function value

Min 43903 57321

Max 175450 269345 Max 61966 88923

Average 165498 189023 Average 47896 64559

Time Min 656.3 582.2 Time Min 869.4 845.1

Max 768.4 656.1 Max 1054.6 937.4

Average 683.5 594.0 Average 933.0 886.4

MIC 0.1463 0.1279 MIC 0.1071 0.0791

Table 6 Numerical experiment
results for large-sized problems

Problem Criteria IEMA EMA

P10 Objective function value Min 40154 42833

Max 43337 45952

Average 42760 43873

Time Min 1856.7 1434.6

Max 2677.0 2332.4

Average 2435.9 1894.5

MIC 0.0410 0.0283

P11 Objective function value Min 987651 1251663

Max 1187604 1523987

Average 1011032 1434899

Time Min 2345.3 2043.7

Max 2839.5 2581.0

Average 2678.2 2344.1

MIC 0.0373 0.0216

P12 Objective function value Min 346766 362817

Max 390513 401823

Average 365472 382312

Time Min 2559.2 2307.1

Max 3036.4 2612.6

Average 2771.3 2439.9

MIC 0.0360 0.0290

Conclusions and future works

In this research, supply chain design and planning was
investigated under uncertainty and traffic congestion. The
uncertainty was modeled through fuzzy concepts and the
congestion was regarded as a non-linear function of the
flow in the network links. In addition, common costs associ-

ated with supply chain activities were taken into account. In
order to solve the problem, the Electromagnetism-like Algo-
rithm (EMA) was augmented by the Simulated Annealing
(SA) and the result was the proposed method called the
Improved Electromagnetism-like Algorithm (IEMA). The
outcomes of the numerical analysis of the algorithms showed
that there was no significant difference between IEMA and
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EMA for small-sized problems; however, both IEMA and
EMA outperform LINGO Global Solver on those test prob-
lems. The merit of the proposed algorithm over EMA was
shown through a set of numerical experiments with medium-
and large-sized problems. From the experimental results on
medium-sized and large-sized problems and according to the
AMIC criterion, it could be concluded that IEMA outper-
forms EMA indicating that the proposed algorithm was a
statistically significant improved version of EMA in terms
of optimal objective values (not the run times) in medium-
sized and large-sized instances of the proposed model.

Future research may be focused on dynamic networks and
the effects of considering several planning periods in which
the problem parameters may vary. In addition, the uncer-
tainty in parameters other than demand and supply leads to
a more realistic model of the problem. In this research, the
decision is made based on a single objective. Considering
multi-objective optimization methods for decision making
may be considered as an interesting and challenging study
regarding modeling and solution approaches. Finally, a sep-
arate research should be conducted to provide a parameter
sensitivity analysis investigating the impacts of parameter
changes on the optimal solution.
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