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Abstract This paper investigates the feasibility of using
inexpensive, general-purpose automated methods for recog-
nition of worker activity inmanufacturing processes. A novel
aspect of this study is that it is based on live data collected
fromanoperationalmanufacturing cellwithout any guided or
scripted work. Activity in a single-worker cell was recorded
using the Microsoft Kinect, a commodity-priced sensor that
records depth data and includes built-in functions for the
detection of human skeletal positions, including the posi-
tions of all major joints. Joint position data for two workers
on different shifts was used as input to a collection of learning
algorithms with the goal of classifying the activities of each
worker at each moment in time. Results show that unsuper-
vised and semisupervised algorithms, such as unsupervised
hidden Markov models, show little loss of accuracy com-
pared to supervised methods trained with ground truth data.
This conclusion is important because it implies that auto-
mated activity recognition can be accomplished without the
use of ground truth labels, which can only be obtained by
time-consuming manual review of videos. The results of this
study suggest that intelligent manufacturing can now include
detailed process-control measures of human workers with
systems that are affordable enough to be installed perma-
nently for continuous data collection.
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Introduction

The idea of using technology to aid in the understanding
of worker activities has been of interest since the earliest
days of scientific research on manufacturing. Taylor and oth-
ers used photography to help manufacturers measure and
improve efficiency of manual production processes (Tay-
lor 1913; Gilbreth and Gilbreth 1916). While it made use
of the best technology of the time, Taylor’s work scaled
poorly because it relied on a cumbersome observational
apparatus and painstaking manual review of photographs.
The century following Taylor saw widespread adoption of
automation in manufacturing. Even today, though, humans
retain a significant role in manufacturing processes, han-
dling 20% of the work by some estimates (Knight 2012;
IFR International Federation of Robotics 2013). Moreover,
current trends in workforce demographics, such as the loss of
experienced workers to retirement (Grice et al. 2011) and the
leaning out of workforces (Deitz and Orr 2006), have given
rise to increased interest in methods for improving manual
processes. Yet even today, it is rare to have any detailed or
directmeasures of humanactivity in parts assembly andmany
other important processes. Current studies of manual work
often involve only security cameras, checklists, and (often
unreliable) work logs.

Recent developments in low cost sensing and in machine
learningmay open newmethods for measuring and interpret-
ing human activity on the factory floor. In the past decade,
the gaming, entertainment, hobby, and mobile phone indus-
tries have spurred remarkable developments in small, cheap,
lightweight sensors and computational devices to exploit
them. Most notable among the new sensors is the Microsoft
Kinect, a commodity-priced device that records depth data
and includes built-in functions for the detection of human
skeletal positions, including the positions of all major joints.
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The field of machine learning has also seen major advances
in the past decade that include the development of new
supervised and unsupervised learning methods and novel
applications of these methods to problems in human activity
recognition.

If it could be achieved, automated assessment of worker
activity would offer a number of important benefits. For the
purposes of quality control investigations alone, it would be
valuable to have detailed logs of exactly what tasks each
worker executed throughout the day, and when they were
completed. Further, in addition to output measures, an activ-
ity recognition system can easily provide process measures
formanual processes. Processmeasurements are essential for
rapid and precise diagnosis of quality failures; the alternative
is forensic investigation of paper trails, unreliable memories,
and video recordings. Even with a video system in place, it is
nearly impossible to quickly find and access recordings based
on a critical parameter, such as task name or part number as
these are usually indexed by only a time stamp. A forensic
process often requires enormous effort and can still fail to
provide a clear path for permanently fixing the root cause.

This paper investigates the feasibility of using inexpen-
sive, general-purpose automated methods for recognition of
worker activity in manual manufacturing processes. A novel
aspect of this study is that it is based on live data collected
fromanoperationalmanufacturing cellwithout any guided or
scripted work. The Kinect device was used to record activity
in a single-worker manufacturing cell. Observations covered
two shifts, each with a different worker. Joint position data
was used to define input features to a collection of learning
algorithms with the goal of classifying the activities of each
worker at each moment in time. All the learning algorithms
were general purpose in the sense that they did not use fea-
tures specific to the manufacturing process, but rather relied
only on worker joint positions and derivative angular and
velocity features.

In the experiments performed, the accuracy of super-
vised learning algorithms in classifying worker activity was
approximately 67%. The quality of this result cannot be
judged absolutely, as the accuracy that is necessary to support
process re-engineering andmanagement functions is specific
to individual cases. Nonetheless, it appears that the accuracy
is reasonable for many situations. More accurate sensors are
emerging on a regular basis, which should further improve
results. In the experiments, unsupervised and semisupervised
algorithms, such as unsupervised hidden Markov models,
show little loss of accuracy compared to supervised methods
trained with ground truth data. This conclusion is important
because it implies that automated activity recognition can be
accomplished without the use of ground truth labels, which
can only be obtained by time-consuming manual review of
videos. The results of this study suggest that intelligentmanu-
facturing can now include detailed process-control measures

of human workers with systems that are affordable enough
to be installed permanently for continuous data collection.

The intellectual merits of this work include the following:

1. a methodology for collecting and analyzing Microsoft
Kinect data for the purposes of activity recognition
(“Methodology” section),

2. a description of the requirements for an activity recog-
nition system which is intended to be used in a live
manufacturing cell (“Background research” section),

3. definitions for five key attributes in order to categorize
activity recognition research and application (“Back-
ground research” section), and

4. a comparison of the accuracy for multiple algorithms and
data-features, which are generalized, i.e. not tuned to this
application (“Results” section).

This work is unique as compared to the majority of past
activity recognition studies in that it includes these five
attributes:

1. real world data,
2. continuous data which includes transitions between

activities,
3. unscripted actions,
4. unsupervised or semisupervised data, and
5. a Kinect depth camera.

The remainder of the paper is organized as follows: “Back-
ground research” section gives background information on
the research, “Methodology” section presents our method-
ology, “Models” section describes the models used in this
study, “Model estimation” section outlines the training of
the models, “Results” section provides the results of the dif-
ferent models, “Discussion” section gives a discussion of the
results, and “Conclusion” section provides a summary and
our conclusions.

Background research

Toenableworker-centric process control, training, ergonomic
feedback, etc., some critical requirements are:

1. low-cost and robust sensors,
2. generalized algorithms that require minimal supervision

(for feature creation, model parameters, and ground truth
generation),

3. algorithms that are robust to a variety of sensing condi-
tions and human variability, and

4. algorithms which provide outputs that are accurate, valu-
able to an end-user, and interpretable.
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These four requirements touch on several areas of research,
and present conflicting goals that require careful balance. In
particular, the mathematical models employed often trade
supervision for accuracy or interpretability (Cohen et al.
2002; Nigam et al. 2000).

To begin, we define five attributes of activity recognition
research. The first is how data are collected. Most publicly
available data sets are collected in a laboratory environ-
ment or a staged setting, as opposed to the real world.
Laboratory data generally consist of predefined actions that
are repeated several times by several subjects. Data are
often manually segmented, meaning that only one action
is classified at a time, and there are no transitions between
actions. In addition, laboratory data lack random or unknown
actions that are often present in data collected from real-
life activities and continuous recordings. This leads to our
second and third attributes: continuous data versus seg-
mented data and scripted actions versus unscripted actions.
The fourth attribute is the type of algorithm—specifically,
supervised algorithms versus unsupervised and semisuper-
vised algorithms. Supervised algorithms use the labeled
activity when training the model, while unsupervised algo-
rithms do not use labels. Semisupervised algorithms use
a combination of supervised and unsupervised data (with
an emphasis on minimizing the proportion of supervised
data). The final attribute is the type of sensor. We distin-
guish between a depth camera and all other types of sensors,
which include, but are not limited to, body-worn, video, and
microphones.

Our work also fills a gap in the literature concerning 3-
D depth cameras, and specifically, the Microsoft Kinect. A
significant proportion of the research to date has combined
depth cameras and activity recognition to focus on super-
vised algorithms that use data collected in a laboratory or
other staged setting (Chen et al. 2015; Wang et al. 2012;
Packer et al. 2012; Oreifej and Liu 2013; Yang and Tian
2012; Xia et al. 2012). [Zhang and Parker (2011) use an
unsupervised learning algorithm with Kinect data, but create
their own segmented, scripted, laboratory data set.] On the
other hand, some studies have used unsupervised or semisu-
pervised algorithms and real-world data with other types of
sensors (Krause et al. 2003; Wang et al. 2009; Stikic et al.
2008;Niebles et al. 2008;Mahdaviani andChoudhury 2008).

Table 1 lists the attributes of several studies, including
those cited in the previous paragraph, with a column of indi-
cators for each attribute. The methodology we propose is the
only study that contains all five attributes.

Some papers or attributes in Table 1 are not perfectly seg-
mented. For instance, credit is given to Stikic et al. (2008)
for using real-world data; the authors collected data on a
couple who lived in an instrumented home environment for
10weeks. They were not given instructions as to what types
of activities to perform, only to continue to live as normal
a daily life as possible. While we classify this as real-world
data, it was not collected in a real-world setting, due to the
intrusiveness of on-body sensors. Niebles et al. (2008) used
video segments of figure skaters. While the activities were
not scripted, the authors did preselect video segments for

Table 1 Attribute table for
existing work in activity
recognition

References Real data Continuous
data

Unscripted Unsupervised/
semisupervised

Kinect

Chen et al. (2015) x x

Zhang and Parker (2011) x x

Sung et al. (2011) x

Yang and Tian (2012) x

Xia et al. (2012) x

Wang et al. (2012) x

Oreifej and Liu (2013) x

Huikari et al. (2010) x

Koskimaki et al. (2009) x

Krause et al. (2003) x x x x

Niebles et al. (2008) x x x

Stiefmeier et al. (2006)

Ward et al. (2006) x

Stikic et al. (2008) x x x x

Wang et al. (2009) x x x x

Mahdaviani and Choudhury (2008) x x x x

Our proposed methodology x x x x x

“x” indicates that the research includes the attribute
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analysis. We labeled this work as having unscripted data, but
this distinction is not always so clear.

We believe that the data we present in this paper are
unique, because the data set collection was unscripted, col-
lected in a real-world setting, with a depth camera, from
continuous motion, and includes several (continuous) transi-
tions between tasks. Semisupervised training algorithms are
then employed for task recognition.

Sensors

Sensors are required to gather useful observations of work-
ers. These observations exist to provide information about
worker activity, such as the number of times a task has been
executed and the duration of individual tasks. Thesemeasures
can be particularly meaningful when they are collected in the
context of other knowledge already available—for instance,
in amanufacturing setting, data on factory output volume and
quality are already collected and give contextual meaning to
the task measurements. Fortunately, a variety of new sen-
sor types are now being sold as commodities. For example,
Microsoft created the Kinect for the Xbox gaming system,
which offers highly effective tracking of human joints (Shot-
ton et al. 2011) and distance measurements for a fraction of
the cost of earlier time-of-flight and laser-ranging systems.
This sensor is robust for indoor settings, even those in which
traditional computer vision systems become compromised
due to something as trivial as a change in lighting or cloth-
ing.

Ground truth

Minimally supervised algorithms are essential. Previous
studies, such as Chen et al. (2015),Wang et al. (2012), Packer
et al. (2012), Oreifej and Liu (2013), Yang and Tian (2012),
Xia et al. (2012), have focused on data collected in a con-
trolled experimental setting to create person-agnostic, static
models using supervised data. The strictly controlled “lab set-
ting” allows precise control of variables, but limits the types
of data that can be collected. In addition, the performance
of study participants is often affected by the act of being
observed and by being in an unfamiliar setting. In contrast,
participants who are in their normal work environment often
remain focused on their primary job if observers and sensors
are minimally intrusive. While these models (trained from
a controlled setting) have been shown to be effective, their
use requires significant up-front training, and it is currently
unknown if they may require further training to cope with
varying sensing environments and worker tasks which occur
in real-world settings. To avoid these limitations, this study
focuses on models that provide useful information, but are
trained in an unsupervised or semisupervised manner using
real-world data. Ideally, our models will prove to be effective

despite noisy sensor conditions, potential interference from
uncontrolled light sources, and any spurious detections.

Ground truth is time consuming—i.e. expensive—to
obtain for collections of significant size. Coding in this study
required 2× to 5× real time. For ongoing, continuous data
collection, coding could take days or even months to code
just a few hours of real-time. Further, incorrectly labeling
the ground truth can result in models that perform poorly
when supervised training is implemented. Ground truth is
often labeled using video or other added sensors to annotate
a collected data set. In some settings, such as hospitals or pri-
vate homes, video might not be desired or even allowed due
to privacy laws or other restrictions. In Stikic et al. (2008), the
authors demonstrate the feasibility of semisupervised learn-
ing on an activity recognition data set to resolve the conflict
between supervised and unsupervised methods.

Data collection requirement

Another of our major requirements is that the data set be
collected in its natural setting rather than in a lab environ-
ment. While the latter can allow for very precise control
of experimental variables, it misses both the variance that
occurs naturally in human tasks and the subtle changes in
performance or behavior that occur when workers are being
actively or passively critiqued by their observers. In the man-
ufacturing literature on activity recognition (Chen et al. 2015;
Huikari et al. 2010; Koskimaki et al. 2009; Stiefmeier et al.
2006; Ward et al. 2006), data were collected in a simulated
environment and not at an in-production facility. Also, these
studies used on-body sensors—and, in some cases, other sen-
sors such as microphones—to collect data on the worker.
(Microphones would not be feasible in a production facil-
ity with several operational cells, due to interference from
machinery.)

State-of-the-art methods

Several state-of-the-art research papers on activity recogni-
tion using a Kinect tested their algorithm and customized
features on data sets collected byMicrosoft Research (MSR)
(Wang et al. 2012; Oreifej and Liu 2013; Yang and Tian
2012; Xia et al. 2012). However, these data sets are com-
posed of a specific set of subjects performing predefined and
limited actions repeatedly. They are also segmented, with
only one task being performed per sequence of data; in con-
trast, in a real-world setting, data are collected continuously,
with several tasks taking place in succession. Therefore, these
advanced algorithms have unknown performance character-
istics in real-world settings, andwill require large amounts of
supervised data to be created for each new task encountered
in the field.
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The authors of these studies (Wang et al. 2012; Oreifej
and Liu 2013; Yang and Tian 2012; Xia et al. 2012) each
designed and implemented a different set of custom fea-
tures that require significant preprocessing, and no feature
selection is performed. Each justifies the use of a given cus-
tom feature by demonstrating better performance than that
documented in an earlier study based on the MSR data set.
Furthermore, there is no accepted best feature in the area
of activity recognition. This illustrates the need for feature
selection in addition to traditional model training.

Huikari et al. (2010) compare feature selection and
instance selection on data collected on a simulated indus-
trial assembly line. For feature selection, they used principal
components analysis (PCA) and sequential forward selection
(SFS). For instance selection, data were randomly reduced
and then tested. PCA is an unsupervised method, yet per-
forms worse than SFS, which requires supervised data.
Instance selection performs better than PCA but worse than
SFS. To preserve the correct proportions of activities in the
training set, supervised data are required for instance selec-
tion. In either case, however, these algorithms must be used
and, possibly, tuned in addition to the hidden Markov model
(HMM).

Methodology

Our methodology includes the following steps:

1. Collect data using a Microsoft Kinect.
2. Remove some clearly erroneous measurements from the

data set.
3. Label the entire data set for the purposes of evaluating

the classification algorithms.
4. Calculate a set of derived features.
5. Apply classification algorithms which fit stated require-

ments.

(a) Select the size of the initialization set Nstart and
remove it from the training data.

(b) Calculate initial parameters from initialization set.
(c) If applicable, select hyperparameters for prior distri-

butions.
(d) Perform unsupervised learning with selected classi-

fication algorithm using training set.
(e) If applicable, reduce the feature set and construct

reduced models.

6. Map tasks to classifier outputs.
7. Calculate performance metrics for each classifier.

(a) Predict tasks for the test set.
(b) Calculate all accuracy measures.

Data collection

Here the data collection process is summarized. For more
details concerning data collection, see Rude et al. (2015).

The Microsoft Kinect uses a structured infrared light field
to calculate depth data (Freedman et al. 2010) and provides
human skeletal tracking (10 points for upper-body mode and
20 points for full body) (Shotton et al. 2011) up to 30 times
per second over a living-room-sized area. This type of sensor
allows for nonintrusive data collection, because it does not
require any modification to the environment or people and
the infrared light method is robust in most indoor environ-
ments. Because the Kinect has been designed as a human
computer interface, its skeletal tracking is of sufficient qual-
ity to support tracking and gesture recognition. Examples of
depth data and skeletal tracking from the actual data collec-
tion are shown in Figs. 1 and 2.

Data collection consisted of the Kinect joint tracking and
a security camera video recording that was solely used for
manually coding ground truth for worker tasks. The sensor
suite was installed during a routine production stoppage and
supervised by plant safety officers.

Fig. 1 Depth data mapped to colors and tracked joints (inset), as pro-
vided by the Kinect sensor during the paint task

Fig. 2 Depth data mapped to colors and tracked joints (inset), as pro-
vided by the Kinect sensor during the dry task
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Fig. 3 Factory floor for the “in-cycle” area including a red triangle
marker for the Kinect’s position, very near the large circle which is
the drying rack. The blue line is the location of the short conveyor for
printing serial numbers immediately prior to boxing

Worker tasks

In brief, the factory floor job analyzed is referred to as the
“in-cycle” work and is usually executed by a single worker in
the area shownon the floorplan in Fig. 3. The primary job is to
paint parts (interior and exterior), apply a serial number, and
box the finished parts. A flow chart for this work sequence
is displayed in Fig. 4. While this is treated as a one-person
job, other workers often help with the serial numbering or
box assembly to allow the in-cycle worker to maintain good
work flow. Additional workers are also required to maintain
other machinery and provide the prepped “raw” parts to the

in-cycle worker. The subtasks of parts painting will now be
described in detail so that sensor placement and data will
be in the appropriate context. The four primary tasks of in-
cycle work will be referred to by their ground truth coding
labels of fetch, paint, dry, and load. Subtasks labeled as load-
serial and box are grouped with the primary task of load,
while walking between stations or any other tasks are labeled
unknown. For additional details regarding the worker tasks,
see Rude et al. (2015).

To capture normal variability in theworkplace, no attempts
were made to modify work flow, tasks, or machinery, or
to interact with the workers. While many different activ-
ities were observed, some were not strictly related to the
work being documented or “normal” operations. For exam-
ple, brief interruptions for worker-to-worker coordination or
certain one-time machine-maintenance tasks were consid-
ered to be outside the scope of the primary job and were not
included in the task analysis. Instead, these activities were
lumped into a single task named unknown. Because of the
Kinects temporal fidelity, movement between stations was
sampled repeatedly and also labeled unknown.

Under nominal conditions, a worker is seen executing the
following sequence: fetch four parts, paint two, dry two,
paint two, dry two, and load four. This cycle can be com-
pleted in as little as 30 s and, given the Kinect sampling rate,
would result in approximately 900 samples of each of the 10
joints as the worker moves from station to station around the
manufacturing cell.

Data description

Data from a single full workday were used, resulting in
approximately 7 h of recording due to worker break times

Fig. 4 A flowchart outlining the primary in-cycle tasks and some additional execution details
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(0800 and 1400). For the day of this recording, one worker
covers the first half of the day and a second worker begins
around noon. The task sequences are generally the same for
bothworkers, but there are changes throughout the day due to
the state of the automated paint line. For example, the morn-
ing worker tends to load the line at a location closer to the
drying rack and the afternoon worker loads the line closer to
the boxing station. Other random events and variations, such
as maintenance of clogged paint nozzles after 1300, occur
throughout the collection. The 1200–1300 time frame was
selected as a representative sample of the work, as it captured
a transitional time before the second worker had established
a rigid work flow. Overall, the manual tracking and coding of
the workers observed approximately 3200 work tasks being
executed (this ignores walk and other unknown events) and
around 350 fully nominal work cycles, as described in the
tasks section.

Remove erroneous measurements

A false skeleton detection occurred repeatedly in the sen-
sor’s field of view at an impossible location, possibly due to
reflections off awiremesh basket. For example, the shoulder-
center point corresponding to these detections had an average
location of (−1.41,−0.12, 3.36). Given the Kinect sensor
location, this would place the “person” somewhere beneath
the main parts conveyor or possibly under the floor despite
the fact that the surface of the basket was only about 1.25 m
away, see Fig. 5. In early model runs, this spurious detection
was always placed in its own hidden state and was therefore
removed before processing, rather than being listed as a valid
detection of an invalid data point.

This data setwasused after removing thewell-documented
spurious skeleton detections and rotating the points (around
the x-axis) to remove the Kinect’s rotation relative to the
floor. In total, approximately 500,000 samples were recorded
across the seven work hours.

Label data to establish ground truth

A set of security cameras also recorded the in-cycle work
area, which provided a method for creating ground truth with
time resolution similar to that of the Kinect. Ground truth
was coded by researchers watching the video at 1/2 to 1/5
normal speed and selecting task labels as the in-cycle worker
moved from task to task. These labels were selected based
on documentation of observed tasks such as the flowchart
shown in Fig. 4.

Derived features

In addition to the raw joint positions, several features were
derived for use in the model. These each attempt to more

Fig. 5 Depth data mapped to colors and tracked joints (inset), as pro-
vided by the Kinect during erroneous detection

directly encode information about joint positions relative to
the body, rather than the dimensions of the recorded scene.
For example, joint angles or the distance between the hands.
Features like this could provide the HMM with complicated
or nonlinear information due to the kinematics of the human
body. For a full definition of each of the 22 derived variables,
see Rude et al. (2015). This results in 52 features to be used
in the full models.

When derived features are added to collected joint posi-
tions, the size of the data set can grow rapidly due to their
sampling rate. The large data and prediction processing times
are dealt with in two ways. First, the skeletal tracking feature
offered by the Kinect is used instead of the raw depth data.
This decreases the amount of data collected significantly.
Second, preference is given to classification algorithms that
perform feature selection. Feature selection reduces cal-
culation time, improves model accuracy, and can improve
the ability to interpret the model due to simplified models.
Further, feature selection is an important part of miningman-
ufacturing data (Rokach and Maimon 2006).

Classification algorithms

An HMM (Rabiner 1989) is expected to be effective in our
continuous-motion setting, due to the sequential yet repeti-
tive nature of factory work. In general, an HMM is a widely
used probabilistic model which consists of an unobserved
sequence of states X and a sequence of observable emis-
sions Y . The distribution of the emissions is conditional on
the state, and the emissions are considered independent given
the state. A graphicalmodel of anHMM is shown in Fig. 6. In
our implementation, hidden states correspond to individual
tasks and emissions correspond to the data collected. This
differs from most work in activity recognition (Stiefmeier
et al. 2006; Ward et al. 2006; Xia et al. 2012) and manufac-
turing (Xu and Ge 2004) using HMMs, in which a separate
HMM is trained for each class, which then requires super-
vised data. HMMs can be easily trained using unsupervised
learning methods, a requirement for this study.
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x1

y1

. . . xt−1 xt

yt−1 yt

. . .

Fig. 6 Graphical model for HMM. Squares are hidden variables and
circles are observed variables

Rokach et al. (2008) point out two drawbacks to using
HMMs in their problem. First, the structure of the model is
very important to the quality of the classifier, and there are
many possible model structures. As previously stated, a task
label is assigned to each of the hidden states and the col-
lected Kinect data to the emissions of these hidden states.
This allows for easy interpretation of the model and a single
HMM to model the entire activity recognition problem. This
relatively simple interpretation of the HMMwill remove the
second drawback stated in Rokach et al. (2008): “themodel’s
meaning is unclear”. In future work, the values of the esti-
mated model parameters and the selected features can be
used to help plant managers improve quality and diagnose
problems.

We propose testing four types of HMMs. A supervised
HMM is used as a baseline and a standard unsupervised
HMM using all features is trained and tested. Two HMMs
that perform feature selection are also tested. More informa-
tion on theHMMs is given in “Models” section. In addition to
HMMs, we propose two widely implemented unsupervised
classification algorithms: unsupervisednaiveBayes classifier
and K-means classifier. Both of these algorithms treat each
data-point independently whereas HMMs take into account
their ordering.

Mapping model outputs

One of two major challenges when using HMMs to model
task recognition data is mapping the states of the HMM to
specific task. If supervised training data is available, one
option is to map states based on majority rule. The states
of the training set are predicted using the trained HMM,
and the state with the greatest number of correctly classified
tasks is assigned. Thismethodhowever defeats the purpose of
implementing unsupervised learning because the supervised
training data is available. A small portion of the training data
could be reserved and labeled for this purpose, but there are
further issues with this method. Namely, it relies upon the
accuracy of the trained model for mapping. Another option
given supervised training data is to test the accuracy of every
possible state combination. This has similar advantages and
disadvantages as the previous mapping method but the num-

ber of possible state assignments to test grows rapidly as the
number of states increases.

The secondmajor challenge when implementing unsuper-
vised learning with HMMs is choosing the initial parameters
for the model. One option is to randomly select all initial
values. However, the unsupervised learning algorithm for
HMMs is sensitive to the initial values, and poor starting
values can lead to poor parameter estimates. Generally, if
random starting values are used, multiple runs of the algo-
rithm with different random initial parameters are required
in order to properly characterize model accuracy.

To combat both of these challenges an initialization set is
used.A small portion (approximately 1%)of the trainingdata
is reserved and assumed to be supervised. Initial parameter
values are calculated from the initialization set. Themapping
in the initialization set is used to map states to tasks in the
learned model. For example, if state 1 in the initialization set
represents task 1 (e.g. fetch), then state 1 will also represent
task 1 for the trained HMM. This is a reasonable assumption
as the initial values should be relatively close to the estimated
parameters.

Models

Model parameters for a standard HMM are the initial state
distribution, the state transition probabilities, and the distrib-
ution for the emissions. Assuming I tasks and T time steps,
the initial state distribution is denoted as πi = P(x1 = i) and
the transition probabilities as ai j = P(xt = j |xt−1 = i). It is
also assumed that the emission distribution is Gaussian with
mean μ and standard deviation σ . When the state sequence
is known, these parameters can be calculated directly from
the data. When X is unknown, model parameters must be
estimated using an algorithm. The most common estimation
algorithm is the expectation maximization (EM) algorithm,
often referred to as Baum–Welch when applied to HMMs.
The number of hidden states must be known a priori when
performing EM. The joint probability of X and Y is:

p(X, Y ) = πx1 fx1(y1)
T∏

t=2

axt−1,xt fxt (yt ), (1)

where fxt is the state-conditional Gaussian distribution.
When numerous features are collected, it is likely that

some will not be useful for activity recognition. Noisy fea-
tures, for instance, can confuse activity recognition models
and degrade accuracy.A softer requirement for our case study
is some form of feature selection. One possible approach
is to learn an HMM for every possible subset of features,
and select the model with the highest predictive accuracy
on a withheld subset of data. This would require supervised
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data to train the model, and quickly becomes impractical
as the number of feature subsets grows as a factorial of the
number of features. The feature saliency HMM (FSHMM)
(Adams 2015) simultaneously estimates model parameters
and selects features. The maximum a posteriori (MAP) for-
mulation of the FSHMM is used for this study. Zhu et al.
(2012) use a similar formulation as in Adams (2015), but
employ a variational Bayesian (VB) estimation algorithm.
The VB algorithm can be used when the number of states
is unknown, but significantly increases the complexity of
the model and the estimation process and can decrease the
model’s accuracy. We will use both the FSHMM and the VB
HMM here for comparison.

The FSHMM recasts the feature selection process as a
parameter estimation problem by adding feature saliencies
to the model. The feature saliencies ρl can be interpreted as
the probability that the lth feature is relevant and helps dis-
tinguish between states. Let ylt denote the observation of the
lth component at time t . The likelihood of the emissions is
expanded to a mixture of state-dependent Gaussian distrib-
utions and state-independent Gaussian distributions. A third
binary random variable Z is added to the model. If zl = 1
the lth feature is relevant; otherwise, the feature is irrelevant.
The joint probability of X , Y , and Z is:

p(X, Y, Z) = πx1 p(y1, Z |x1 = i)
T∏

t=2

axt−1,xt p(yt , Z |xt = i), (2)

p(yt , Z |xt = i) =
L∏

l=1

[ρlr(ylt |μil , σil)]zl

[(1 − ρl)q(ylt |εl , τl)]1−zl , (3)

where ε is the state-independent mean and τ is the state inde-
pendent standard deviation.

Four HMMs are compared, starting with the training of
a HMM on supervised data to establish a baseline for per-
formance. A standard HMM (using EM), an FSHMM, and a
VB HMM are all trained on unsupervised data. In addition,
two nontemporal models are trained and tested on unsuper-
vised data—naive Bayes and K-means. The ground truth has
been established by examining video evidence after the fact,
and therefore can provide precise measurement of model
accuracy. However, in a final system design the ground truth
would rarely, if ever, be available.

The goal of this case study is to compare algorithms that
can be easily implemented onminimally supervised data col-
lected in an in-production manufacturing cell. A second goal
is to show that unsupervised algorithms can be used in place
of a supervised algorithmwith reasonable losses in accuracy.
Perhaps more importantly, the results will show the general
applicability and usefulness of this system design in a real-

world setting, as it provides tracking at a level of abstraction
useful to plant managers while meeting our four stated goals.

Model estimation

Six task-recognition models are compared: supervised
HMM,unsupervisedHMM(Rabiner 1989), FSHMM(Adams
2015), VB HMM (Zhu et al. 2012), unsupervised naive
Bayes (Murphy 2012), and unsupervised K-means (Murphy
2012). The supervised HMM is trained by counting transi-
tions and calculating state dependentmeans and variances for
a Gaussian distribution. The unsupervised HMM, FSHMM,
naive Bayes model, and K-means models are trained using
EM. The VB HMM is trained using a variational Bayesian
algorithm. The class-conditional distribution for the naive
Bayes model is also assumed to be Gaussian.

An hour’s worth of data—85,765 observations—are used
to train each of the models. Data were collected in the middle
of the workday, from 1200 to 1300 hours. This hour was cho-
sen for the training set because it contains all relevant tasks
and is an accurate representation of a typical work cycle. The
models are tested on 12 half-hour data sets collected through-
out the rest of the workday. The number of observations for
each test set is shown in Table 3, column 2.

While the methods investigated here are technically semi-
supervised, due to the use of a supervised subset of data
for initialization of the training algorithms, the algorithms
can be implemented in an unsupervised fashion by randomly
choosing initial model parameters. We used the semisuper-
vised approach in the experiments for ease of labeling model
outputs and to ensure good and comparable starting points
across models.

Initial values for the model parameters are needed when
performing unsupervised learning. For a fair comparison of
the models and consistency in matching the hidden states
across models, initial estimates are calculated using the first
1000 observations of the training set rather than a random
initialization. The first 1000 observations are chosen for the
initialization set so that each of the five tasks are represented
at least once. These observations in the initialization set are
assumed to be supervised. The initial values for the features
saliencies in FSHMM and VB HMM are 0.5, which sets the
probability of a feature being relevant equal the probability
that a feature is irrelevant.

The FSHMM hyperparameters are α = 2, β = 1, m =
μini t , s = 0.25, ζ = 2, η = 1, b = εini t , c = 0.25, ν =
2, ψ = 0.5, k = 20,000. α is chosen so that every transition
is possible in the learned parameters. k is roughly 1/4 the
number of observations in the training set and as shown in
Adams (2015) a good choice for larger data sets. The means
of the priors on μ and ε are the initial values of μ and ε

because this is a logical estimate given the supervised initial-
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ization set. Other choices for hyperparameters could include
random values between the minimum and maximum of each
feature. The rest of the hyperparameters for FSHMM are
chosen to minimize their effect on the estimated parame-
ters. The hyperparameters for VB HMM are the same as
in Zhu et al. (2012), where the goal is to minimize their
effect on the learned parameters. The choice of hyperpara-
meters in Bayesian analysis is not an exact science and can
greatly effect the estimation. Nearly any set of hyperparame-
ters could be justified and different applications could call
for different choices.

For the FSHMM and the VB HMM, features with an esti-
mated saliency less than 0.9 are removed from the model.
The comparison models, excluding the VB HMM, cannot
perform feature selection without the aid of another algo-
rithm. Reduced models are built for the comparison by using
the feature subset selected by the FSHMM and VB HMM.
This will show that the FSHMM selects relevant features and
that the FSHMMformulation is suitable for feature selection.

Results

Descriptive results

One simple and descriptive measurement that can be made
from the raw data is to estimate the distance traveled by the
worker(s) throughout the day. Because of the accuracy and
fast update rate of the Kinect, distance traveled can be cal-
culated every 1/30th of a second. Whether using the head or
shoulder-center point, the result will be an overestimate of
total distancewalked due to upper-bodymovements insignif-
icant to actual walking and some rounding errors. For this
data set, the distance traveled was calculated to be around
8000m—not unreasonable, since thework spacewas roughly
3 m by 3 m and at least 3200 tasks were recorded over 7 h.

Distance traveled per task, shown in Table 2 for each task,
is expected to be useful to a plant manager, safety officer, or
process engineer. While this is a relatively simple measure
to calculate using tracking data, it provides the richest infor-
mation when task labels are available. Table 2 also shows the
number of times each task was observed being executed by

Table 2 Occurrence counts and distance traveled, in meters, per task
obtained from the ground truth

Task Travel (m) Count

Fetch 740.18 1195

Paint 1937.37 515

Dry 1299.93 513

Load 792.00 1130

Unknown 3222.98 2701

Total 7992.45 6054

the workers. While this data set is limited to a single factory,
our algorithms could be required to identify hundreds or thou-
sands of individual tasks in the midst of continuous motion.

Model accuracy results

Each model has its own fitting and prediction steps, as
described or referenced above. All models were given the
same input data, the 1200–1300 hours, for unsupervised
training (supervised only for Sup. HMM). For the sake of
completeness, this hour of data is also scored for point-
prediction accuracy, indicated by bold rows, but not included
in the average accuracy score for each algorithm.

For the HMMmodels, the estimated task sequence is cal-
culated using the Viterbi algorithm. The expectations for
approximate distributions are used for point estimates for VB
HMMmodel parameters. The task with the highest probabil-
ity is assigned for the naive Bayes model, and the task with
the minimum distance from the task mean is predicted for
the K-means algorithm.

The fraction of correctly classified tasks, compared to the
ground truth, will be referred to as point-prediction accuracy
or simply accuracy. The accuracy for each half-hour test set,
as well as total accuracy over all test sets, is shown in Table
3 for each model.

During feature selection, 36 of the possible 52 features
are removed by the FSHMM, while only 25 of the features
are removed by the VB HMM. The features included in the
reduced FSHMM are Head X, Head Y, Head Z, Shoulder
Center X, Shoulder Center Z, Shoulder Left X, Shoulder Left
Y, Shoulder Left Z, Elbow Left X, Elbow Left Z, Wrist Left
X, Hand Left X, Shoulder Right X, and Elbow Right X—all
from the raw features—as well as Dist and Left Hand Size
from the derived features. The VB reduced model includes
the features previously listed, excluding Left Hand Size, plus
Shoulder Center Y, Elbow Left Y, Wrist Left Z, Hand Left
Z, Shoulder Right Z, Elbow Right Y, Elbow Right Z, Wrist
Right X, Wrist Right Z, Hand Right X, Hand Right Z, and
Right Elbow Over Shoulder. Only the predictions from the
reduced model are given for FSHMM and VB HMM.

Multiple measures of worker activity can be calculated
from the model output, which could be valuable for a plant
manager. In this data set, tasks are performed for time periods
much longer than the sampling rate of the Kinect, which
results in many observations for each task. To support these
measures, a model that does not oscillate between different
predictions unnecessarily is preferred. For instance, if fetch
is being performed for 50 time steps, a model that predicts
the first 25 steps as fetch and the second 25 as paint would be
preferable to a model that alternates between fetch and paint
multiple times in the same period. One way to assess this is
by calculating the number of individual tasks—that is, how
many times any task is performed continuously.

123



J Intell Manuf (2018) 29:1203–1217 1213

Table 3 Point prediction
accuracy for test sets for each
half hour and average accuracy
for all test data

Test set
(time)

Observations Sup. HMM Unsup. HMM FSHMM VB HMM Naive Bayes K-means

0700 34131 0.5381 0.5444 0.5461 0.5429 0.5516 0.5384

0730 42441 0.5073 0.5325 0.5262 0.5199 0.5042 0.5105

0830 40349 0.6676 0.6962 0.6920 0.6892 0.6971 0.6752

0900 41156 0.6897 0.6821 0.6875 0.6781 0.6770 0.6726

0930 37465 0.6376 0.6090 0.6218 0.6124 0.6807 0.6287

1000 40032 0.6588 0.6792 0.6879 0.6761 0.6594 0.6650

1030 42128 0.6034 0.6244 0.6494 0.6461 0.6044 0.6471

1200 42603 0.7739 0.8011 0.7947 0.7930 0.7641 0.7682

1230 44162 0.6795 0.6476 0.6430 0.6425 0.6750 0.6542

1300 35421 0.6083 0.3942 0.4603 0.4402 0.3575 0.4434

1330 42397 0.8016 0.7681 0.7483 0.7411 0.7160 0.7238

1430 44006 0.7993 0.7888 0.7560 0.7644 0.7337 0.7437

1500 40928 0.7873 0.7913 0.7968 0.7884 0.7935 0.7829

1530 14930 0.7635 0.7022 0.7036 0.7003 0.7842 0.7243

Average 455384 0.6703 0.6539 0.6583 0.6520 0.6436 0.6465

Bold rows indicate training accuracy and are not included in the average

Table 4 Total number of
individual tasks per model and
in the ground truth

Test set (time) Truth Sup. HMM Unsup. HMM FSHMM VB Naive Bayes K-means

Total 4930 6873 6438 5440 5557 6463 6349

Table 5 Average time in
seconds per task for the ground
truth and each model

Task Truth Sup. HMM Unsup. HMM FSHMM VB Naive Bayes K-means

Fetch 2.59 2.20 2.70 2.36 2.22 1.44 1.58

Paint 6.54 4.69 5.09 6.25 5.85 4.41 5.69

Dry 1.70 2.40 1.84 2.22 2.30 2.85 2.84

Load 2.61 2.78 4.58 4.45 4.35 3.46 2.36

Unknown 2.42 0.97 0.99 1.15 1.10 1.15 0.79

RMSE NA 1.11 1.27 1.04 1.07 1.38 1.07

Root mean square error (RMSE) is calculated between each model and the ground truth

In terms of the HMM, this means treating all hidden state
“self-transitions” as a single execution of that particular state.
Other models may not contain a concept of state transition,
but each datum produced by the Kinect must be classified by
themodel, which produces a similar stream of task labels that
must be simplified by looking at contiguous blocks of task
labels. In the above example, this means that the contiguous
block of 25 estimated fetch tasks is counted as a single fetch,
and its elapsed time can be measured by looking at the time
stamps of the first and last datum.

Table 4 contains the sum of individual tasks over all test
half hours for the ground truth and each model. Another
example measure is the average time workers spend in each
task, which is shown in Table 5. The table shows the statis-
tics for the ground truth and the estimated task sequences
for each model on the test set. The root mean squared error
(RMSE) is calculated between each model and the ground
truth. FSHMM produces the lowest RMSE for this measure.

Table 6 shows the number of specific state-to-state transi-
tions occurring in the ground truth and each model’s output,
while ignoring the unknown state. This enhances represen-
tation of the transition probabilities that were estimated by
the Markov models and may offer a method for identifying
erroneous task ordering. Unknown is excluded from this cal-
culation, because it is essentially a null category that includes
walking between work stations and any unknown activity.
When workers are able to follow standard procedures, the
transitions with the highest occurrence rates will correspond
to the steps of the nominal sequence.

Discussion

The system constructed in this study—in particular, the
FSHMM–has been shown to meet the requirements outlined
in “Background research” section. A low-cost sensor, the
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Table 6 Number of transitions
between tasks excluding
unknown for ground truth and
predicted by each model

Transition Truth Sup. HMM Unsup. HMM FSHMM VB Naive Bayes K-means

Fetch–paint 421 677 653 516 595 959 583

Fetch–dry 0 0 0 6 15 32 53

Fetch–load 2 0 0 20 23 3 363

Paint–dry 906 936 926 924 913 910 935

Paint–load 5 9 17 2 0 0 0

Dry–load 364 383 450 454 468 115 204

Paint–fetch 4 239 187 121 195 558 227

Dry–fetch 98 140 97 57 53 349 271

Dry–paint 462 459 427 473 457 496 531

Load–fetch 319 287 369 365 386 84 500

Load–paint 29 49 48 55 53 11 46

Load–dry 21 51 52 58 54 22 21

RMSE NA 102.53 91.43 55.88 84.91 254.81 158.98

Root mean square error (RMSE) is calculated between each model and the ground truth

Kinect, provides data to a generalized model that can be run
with little or no supervised data, minimal parameter tuning,
and minimal (or no) custom data features. The sensing and
outputs are shown to be robust to a challenging real-world
data collection with continuous human activities that include
many uncategorized or unexplained actions. Finally, it was
shown that the system outputs are very similar in interpreta-
tion and accuracy to that of hand-labeled ground truth.

While the literature addresses many forms of activity
tracking (and associated models), it is extremely rare, as
discussed earlier, to find any that collect data from an oper-
ational manufacturing environment. In addition, the Kinect
is a relatively new device that originated in the entertain-
ment industry, and therefore has not yet undergone significant
crossover to intelligent manufacturing research. For limita-
tions of the Kinect system and the configuration used in this
study please see, Rude et al. (2015), and for accuracy details
of the Kinect depth sensing, see Choo et al. (2014), Landau
et al. (2015). This case study,while limited to a single factory,
shows the feasibility of low-cost worker tracking systems.
Furthermore, while we focused on generating accurate task
labeling, many other applications can be extended from this
level of tracking, including, among others, robot interactions
and ergonomic safety tracking.

Some of the primary productivity measures seen in the
manufacturing setting endeavor to match worker efforts to
cell- or line-level outputs, quantity, and/or quality. In some
cases, worker tracking can be as simple as time sheets to
relateman-hours to production, and in others it might include
computer terminals where workers enter notes on quality
or reasons for line stoppages. Our results demonstrate the
possibility of correlating highly detailed records of both
workermovements andmore abstract task labels. This iswhat
enables us to obtain measures such as number of tasks, num-

ber of nominal cycles, tasks per hour, distance per task, and
distance per hour. Any of these could be used in a one-time
study, but this system configuration should allow for con-
tinuous daily—or even near-real-time—studies of changes
to the production process. While this type of information is
clearly useful for process optimization, many other poten-
tial measurements with more exotic applications are outside
the scope of this study; for example, real-time ergonomic
feedback, time-integrated repetitive stress measures, exper-
tise modeling, and worker training.

The FSHMM gives the highest accuracy of the unsuper-
vised methods and outperforms all other models, including
the supervised HMM, in terms of the number of individual
tasks, average time per task, and number of transitions.While
the difference in accuracy between the FSHMMand the other
unsupervised models is not very high due to test size, the dif-
ference in the number of correctly classified observations is
significant.

The supervisedHMMproduces the highest accuracy of all
the models, but requires a significant amount of supervised
data. The supervised HMM produces estimated sequences
with the highest number of individual tasks (furthest from
the ground truth), which indicates a significant amount of
spurious switching between states.

The VB HMM is the other model that incorporates fea-
ture selection. It is the worst HMM in terms of accuracy, but
outperforms naive Bayes and K-means. For number of indi-
vidual tasks, the VB HMM is the second closest to ground
truth behind FSHMM.

The models that do not take into account transitions
between states, Naive Bayes and K-means, do not perform as
well as theHMMs in terms of accuracy or the other threemet-
rics. We conclude that transitions between tasks are a critical
component for predicting tasks in a manufacturing cell.
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In this study accuracy has been the primary point of com-
parison between supervised and unsupervised algorithms. As
discussed, our numerical results suggest that when using
unsupervised methods only a small accuracy penalty is
incurred. However, computation time is also an important
consideration. The training of supervised methods requires
only the calculation of frequency statistics; therefore, they
are generally more time efficient than other methods. Train-
ing of the unsupervised methods rely on iterative procedures
such as EM, and thus their computation times are depen-
dent upon the stopping criteria, number of observations, and
number of features provided, as well as the per-iteration
computational complexity. Our empirical results suggest that
the unsupervised methods require computation time to train
which is practically feasible (hours or minutes of computa-
tion for an hour’s worth of data). Importantly, once trained,
both supervised and unsupervised models can be used in a
computationally efficient way to support activity prediction
in real-time operations.

To facilitate reproduction of results or testing of other
algorithms, data files are available online1 including the raw
joint tracking information, derived features, and ground truth
as first published in Rude et al. (2015). Data from a sec-
ond Kinect, which was located at the worktable and rotated
approximately 130◦ in the xz-plane, are also available for the
same time periods. This second sensor has a coverage that
often overlaps with the Kinect used in these models, but has
different false detections. In total, the two sensors performed
approximately 17 h of skeletal tracking. However, ground
truth task coding is only available for the second half of the
data.

This case study has shown that unsupervised methods can
be employed instead of a supervised method with a drop in
accuracy, but with significantly less effort required to label
the data. As previously stated, the unsupervised methods we
test in this case study are technically semisupervised, due
to the use of a supervised initialization set, but can be eas-
ily implemented without any type of supervision. All of the
unsupervised methods outperform the supervised HMM in
estimating the number of individual tasks. In terms of aver-
age time per task, the unsupervised methods outperform the
supervised method three out of five times. The supervised
HMM is the worst HMM for predicting number of transi-
tions, but does outperform the non-HMMmodels. When the
accuracy of each half-hour test set is examined, the unsu-
pervised methods tend to outperform the supervised HMM
in the morning. We believe that this is due to training the
model on data collected from Worker 2, but testing on data
fromWorker 1. The accuracy of the test sets in the afternoon
favor the supervised HMM over the unsupervised methods.
The supervised HMM is biased toward the worker the model

1 http://people.virginia.edu/~djr7m/incom2015/.

was trained on, while the unsupervised methods are more
transferable to different workers. In application, transferable
models would be preferable so that a different training data
setwould not need to be collected for eachworker in a facility.
Another explanation is the change in work flow as the day
progresses. In the early morning, load can be skipped due
to no products on the line. Unsupervised methods are more
adaptable to changes in the work process, and adaptability is
also a desirable trait in application.

The FSHMM jointly estimates model parameters and
selects features, which means that this set of relevant fea-
tures will not necessarily be transferable to other models or
applications. An algorithm that performs feature selection
offers the advantage of selecting a relevant set customized to
the application. While this set of features performs well in
this manufacturing cell, a different set of features could be
selected in another cell.

By reducing the number of features, noise is removed from
the model; this renders the predictions more stable, which is
illustrated by the number of individual tasks. Models using
the full feature set (all but FSHMM and VB HMM) have
a higher number of individual tasks. This indicates that the
model is switching between task predictionsmore frequently.
In application, the reduced number of features reduces cal-
culation time, which is necessary when performing online
predictions. The models performing feature selection also
produce the two lowest RMSEs for average time per task
and number of transitions (the K-means algorithm pro-
duces the same RMSE as VB HMM for average time per
task).

The features removed by FSHMM and VB HMM tend
to be the derived features. The FSHMM only includes two
derived features in the reduced model, Dist and Left Hand
Size, while the VB HMM only includes Right Elbow Over
Shoulder. In application, these features would not need to
be generated once the system has been trained, and would
reduce calculation time for online predictions. Excluding the
supervised HMM, the models performing feature selection
tend to outperform the models using the full feature set in
both accuracy and average time per task. This is due to the
feature selection process removal the of noisy features that
confuse task prediction.

Another intriguing trend can be seen in the features
selected by FSHMM. Eight of the selected features are from
the left side of the body, while only two are specifically
from the right side of the body (leaving six non-sided fea-
tures). This is interesting because theKinect has a tendency to
assume that the person is facing the sensor. Therefore, when
there are partial occlusions or self-occlusions, or the user is
facing away from the sensor, the most stable joint data will
still be labeled as “left”. This ability to consistently select
the more stable and informative joints is strong, albeit qual-
itative, evidence that FSHMM is performing as designed.
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While this case study shows great promise for applying
tracking technology to the manufacturing environment, and
includes many hundreds of independent repetitions of the
work tasks, it would be best to collect data from additional
workers andwork environments.Having data fromadditional
conditions would help improve the generalizability of the
models and, more importantly, identify new types of work
that can be detected by this combination of sensor andmodel.

Even for the existing data, it may prove fruitful to push
the models further and attempt to detect more subtle and
short (elapsed time) tasks, which would yield richer data and
improve overall model robustness. Also, the models could be
refactored to provide continuous, or online, calculations so
that model outputs could be output continuously rather than
in batches.

Conclusion

The Microsoft Kinect is a low-cost, commonly available
sensor that was used without modifications. Furthermore,
unlike other studies using this sensor, we collected live
data from an operational manufacturing cell without any
guided or scripted work. Data collection and ground truth
show the sensor to be robust for indoor conditions, even
with industrial machinery, highly variable workers, and their
non-work-related movements. HMMs in general, and the
FSHMM in particular, are shown to be imperfect but effec-
tive unsupervised learning methods. This case study focused
on a real-world data collection with all of the inherent
variability and challenges, yet our methods still produced
analytics that will likely be useful to process engineers.
The estimation models point-by-point accuracy approaches
70%, with FSHMM reaching 65.8%. Ultimately, we have
demonstrated the feasibility of applying commodity sensors
and generalized models to a real-world setting and obtain-
ing analytical results which can be used directly by plant
managers.
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