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Abstract Uncertainty and non-deterministic nature of the
real world makes planning and scheduling in cross-docks a
very complicated task for decision makers. These constant
changes that happen all the time, often, lead to an increase in
costs and/or a decrease in efficiency. Most of the uncertainty
in cross-docks is caused by un-known truck arrival times. In
this study we address the problem of scheduling incoming
and outgoing trucks at a cross-dock facility, when vehicle
arrival times are unknown, through a cost-stable schedul-
ing strategy. Two meta-heuristics, MODE and NSGA-II, are
used for solving the designed sample problems and are com-
pared with a random search based genetic algorithm existing
in the literature. Finally, performance of each algorithm is
measured and analyzed using four metrics: quality, spacing,
diversification and mean ideal distance. The results indicate
that the proposed model MODE algorithm performs better
in comparison with the other two methods.
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Introduction

In recent years, supply chain network design has become
significantly important due to the rising competition among
global markets. Organizations must improve customer ser-
vice quality while reducing costs and increasing profits
(Altiparmak et al. 2009). Any supply chain network consists
of three main stages: procurement, production and distribu-
tion; each involves many facilities. Distribution centers play
a crucial role in distribution stage. Cross-dock facilities that
are recently taken into consideration in many industries are
in fact, consolidation points in a distribution network. Cross
docking is a warehousemanagement concept in which, items
that are delivered to awarehouse by inbound trucks are imme-
diately sorted out, reorganized based on customer demands,
routed and loaded into outbound trucks for delivery to cus-
tomers without the items being actually held in inventory at
the warehouse. If any item is held in storage, it is usually for
a brief period of time that is generally <24h (Yu and Egbelu
2008) (Fig. 1).

While cross-docking reduces costs and creates new oppor-
tunities by omitting storing process, many organizations are
still not using this strategy. There are many decision mak-
ings required in a cross-dock facility regarding the time
window a market wants to plan for operational levels up
to strategic levels (Van Belle et al. 2012). In this study
we simultaneously address two operational problems; truck
scheduling and truck allocation to cross-dock doors. Since
truck arrival times are non-deterministic, for each truck, a
time window is considered based on cross-dock operator’s
experience. Using the gathered information, allocation of
trucks to doors and order of trucks in queues are deter-
mined. As mentioned earlier, uncertain arrival times cause
less efficiency and more costs in a cross-dock facility; there-
fore, our proposed model is aimed to schedule and allocate
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Fig. 1 Items flow in a
cross-dock

Receiving Sorting Shipping

Inbound doors Outbound doors

Inbound trucks Outbound trucks
Su

pp
lie

rs

C
us

to
m

er
s

trucks in such way that daily costs of cross-docking be sta-
bilized.

Related work

Cross-docking is a relatively new logistic strategy; so there
is still not a coherent literature about it. In fact, up until 2006
there has not been a single paper published on truck schedul-
ing in cross-dock facilities. In comparison with traditional
point to point distribution, cross-docking requiresmore trans-
portation; this results in a slower distribution process. While
keeping the temporary storage low in a cross-dock facility,
to guarantee on-time delivery, a highly coordinated system
among inbound and outbound trucks is necessary. Recently,
some scheduling methods have been proposed for solv-
ing truck scheduling problems (Boysen and Fliedner 2010).
Chen and Lee (2009) addressed the problem of incoming
and outgoing truck sequence scheduling. Due to the limited
space of Cross-dock facilities in their paper, it is assumed
that at each moment, only one outgoing truck is available,
which starts loading after preparation of all the shipments
is done. Under the above circumstances, unloading, sort-
ing and loading are pretty much effective on cross-dock’s
performance in a supply chain network. Chen and Song
(2009) also proposed amethod for bi-level hybrid cross-dock
scheduling problem which is a general case of the prob-
lem presented in their previous paper. The former problem
they addressed had two stages, and in each stage, there was
a single machine while the latter problem consists of two
stages that at least one of them has more than one parallel
machine.

Boysen (2010) discussed a special case of cross-dock
truck scheduling problem in food industry. The constant need
for cooling the products in this industry makes it impossi-
ble to have a temporary storage in the terminal; therefore,
all the shipments are immediately loaded on refrigerated
trucks. Boysen et al. (2012) also addressed the problem of

truck scheduling when outgoing truck schedules are prede-
termined, arrival times are assigned to incoming trucks and
inbound trucks are assigned to doors. Their presented model
objective was to minimize the lost benefit which was defined
as the shipment’s value. To solve the problem, a heuris-
tic method called decomposition procedure and simulated
annealingwere implemented. Liao et al. (2013) addressed the
problem of simultaneously allocating and sequence schedul-
ing of incoming trucks while outgoing truck schedules are
considered constant. Six different meta-heuristics (simulated
annealing, tabu search, ant colony optimization, differential
evolution and twodifferent hybrid differential evolution algo-
rithms) are used to solve the problem. Kuo (2013) proposed a
method for optimizing trucks allocations to cross-dock doors
as well as trucks sequence, in order to minimize total opera-
tion time. The obtained solutions are improved using variable
neighborhood search. Four different simulated annealing
algorithms are presented for evaluating and comparing the
results.

Wang et al. (2014) developed a model that determines
the strategy of renting and owning trucks in integration with
internal truck scheduling and storage allocation problems
in container terminals. To solve this complicated problem,
they proposed a 2-level heuristic approach, in which the inte-
gration problem is decomposed into two levels. The results
of using model show that even if the using cost of owned
yard trucks is much lower than the cost of rented yard
tucks, terminal companies should not purchase too many
trucks when the purchasing price is too high. Wang et al.
(2015) also integrated Yard truck scheduling and storage
allocation problems awhole andminimize theweighted sum-
mation of total delay and total yard trucks travel time. To
solve the problem, a genetic algorithm (GA) were imple-
mented.

Golias et al. (2010) considered cross-dock scheduling
problem with two objectives; minimizing total operational
costs and outgoing trucks costs. A heuristic algorithm is used
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for solving the problem. Boloori Arabani et al. (2011) also
addressed the problem of cross-dock scheduling with two
objectives. The first is to minimize the maximum comple-
tion time and the second is to minimize the total delay cost
of outgoing trucks. Three different multi-objective optimiza-
tion algorithms that are based on sub-population (SPGA-II,
SPPSO-II, SPDE-II) are used for solving the presented
problem. Konur and Golias (2013) presented a cost-stable,
bi-level, bi-objective scheduling strategy to minimize the
average total service cost. Genetic algorithms and simula-
tions are used to solve the problem. To simplify the existing
models in the literature many unrealistic assumptions have
been made. In most of the previous works there are only
one inbound and one outbound door. Cross-docks tem-
porary stores are assumed to have infinite capacity while
there are space limitations in real world. Although loading
and unloading time is different for each truck (depend-
ing on type and amount of items existing in one truck,
manpower and the provided facilities on each door) these
times are considered the same in most of the existing
researches.

More importantly, considering all the information at hand
deterministic, most of the times, deterministic models are
used for cross-dock scheduling in the literature. Cross-dock
Scheduling is often carried out assuming deterministic truck
arrival times, availability of all trucks at the beginning and
known truck arrival sequences. There are so many unpre-
dicted elements such as truck failures, traffic, climatic factors
etc., which might affect truck delivery systems. As a mat-
ter of fact, the dynamic and un-certain nature of the real
world makes planning and scheduling in cross-dock facili-
ties a challenging job which requires more flexible models
indeed.

The model presented in thisstudy takes the un-determinis-
tic truck arrival times into account and solves truck schedul-
ing problem at a cross-dock while stabilizing total cost of
store and maximizing efficiency. We assume more than one
door for the store and the problems of allocating trucks
to doors and determining their sequence on each door are
solved simultaneously. Only a few papers on cross-dock
scheduling addressed bi-objective, bi-level problems. Our
proposed model is the same model used in Konur and Golias
(2013). Their paper only concentrated on incoming trucks,
while in this study by expanding the existing model, outgo-
ing trucks are considered in the model as well. The rest of
this paper is organized as follows. In section “Mathematical
model”, bi-objective bi-level truck scheduling problem and
the correspondingmodel are described thoroughly. In section
“Bi-level formulation”, meta-heuristic approaches that are
used for solving the proposedmodel are discussed and finally
result analysis, conclusion and future works are presented in
sections “Computational results” and “Conclusion”, respec-
tively.

Mathematical model

The purpose of this research is to present a model for truck
scheduling at a cross-dock facility using bi-objective, bi-level
modeling approach. To do so, some assumptions are made.
In the model presented in this paper there are more than
one inbound and outbound doors, each door is exclusively
allocated to incoming or outgoing trucks, preemption is not
allowed, arrival times are unknown and non-deterministic
and each event happens in a time window, process times are
different from one another, there is no due date, using tem-
porary storage is not allowed, number of trucks allocated to
each door is not limited, indoor transportation time is con-
stant, each truck exits the cross-dock when it is full, and
finally each incoming product is allocated to a certain out-
going truck. In our presented model we use the following
sets:

I1: Set of inbound doors
I2: Set of outbound doors
J1: Set of incoming trucks
J2: Set of outgoing trucks

and also the following parameters:

A j (Arrival time of truck j), j ∈ J1, J2
pi j (Total time required for loading or unloading truck j at

door i), i ∈ I1, I2, j ∈ J1, J2
Vj (Total time required to sort truck j’s unloaded shipment),

j ∈ J1
d j (Penalty cost per unit time for making truck j wait), j ∈

J1, J2
wi j (Process cost of truck j on door i), i ∈ I1, I2, j ∈ J1, J2

zaj

⎧
⎨

⎩

1 If a product from incoming truck a be
transferred to outgoing truck j

0 Otherwise
, a ∈ J1, j ∈ J2

Finally the following variables are used in the model. The
main variables consist of:

xi j

{
1 If truck j is assigned to door i
0 Otherwise

, i ∈ I1, I2, j ∈ J1, J2

yab

⎧
⎨

⎩

1 If truck a is the immidiate predecessor
of truck b

0 Otherwise
, a, b ∈ J1, J2

The auxiliary variables are:
t j (process start time of truck j), j ∈ J1, J2

f j

⎧
⎨

⎩

1 If process of truck j on its assigned door
happens at first

0 Otherwise
, j ∈ J1, J2

l j

⎧
⎨

⎩

1 If process of truck j on its assigned door
happens at last

0 Otherwise
, j ∈ J1, J2
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Let X1 be a m1 × n1 matrix of xi j ’s (i ∈ I1, j ∈ J1) for
incoming trucks and inbound doors and X2 be a m2 × n2
matrix of xi j ’s (i ∈ I2, j ∈ J2) for outgoing trucks and
outbound doors. Let Y1 be a m1 × m1of yab’s ( a, b ∈ J1)
and Y2 be a m2 × m2 of yab’s (a, b ∈ J2). A schedule is
then defined by pairs of (X1,Y1) and (X2,Y2). Let A1 be a
1×m1 vector of A j ’s ( j ∈ J1) and A2 be a 1×m2 vector of
Aj’s( j ∈ J2). At first we assume that truck arrival times are
predetermined. For a given A1 and A2, a schedule (X1,Y1),
(X2,Y2), has a total service cost which includes of truck
process cost and truck waiting time cost.

Let wi j = Ci × pi j in which Ci is process cost per unit of
time on door i.Also T1 is a 1×m1 vector of t j ’s ( j ∈ J1) and
T2 is a 1×m2 of tj’s ( j ∈ J1). d j (t j − Aj) is waiting time cost
of truck j . Each truck depending on its distinct properties and
also the Just in time requirements has different cost per unit
of time. If truck arrival times are deterministic, cross-dock
operator must schedule trucks in a way that minimizes total
service cost or TCS(X , Y , T , A) in which X = (X1, X2), Y
= (Y1,Y2), T = (T1, T2) and A = (A1, A2).

T SC(X,Y, T, A) =
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j

+
∑

j∈J1,J2

d j (t j − A j ) (1)

In Eq. (1) if Ci = 1 and di = 1 then TCS(X , Y , T ,
A) shows total service time. Assuming deterministic truck
arrival times, Deterministic Scheduling Problem (DSP) is
formulated as follows:

(DSP) min
(X,Y,T )

T SC (X,Y, T, A) =
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j

+
∑

j∈J1,J2

d j
(
t j − A j

)

s.t.

∑

i∈I1
xi j = 1 ∀ j ∈ J1 (2)

∑

i∈I2
xi j = 1 ∀ j ∈ J2 (3)

fb +
∑

a∈J1 �=b

yab = 1 ∀b ∈ J1 (4)

fb +
∑

a∈J2 �=b

yab = 1 ∀b ∈ J2 (5)

la +
∑

b∈J1 �=a

yab = 1 ∀a ∈ J1 (6)

la +
∑

b∈J2 �=a

yab = 1 ∀a ∈ J2 (7)

fa + fb ≤ 3 − xia − xib ∀i ∈ I1, a, b ∈ J1, a �= b (8)

la + lb ≤ 3 − xia − xib ∀i ∈ I1, a, b ∈ J1, a �= b (9)

fa + fb ≤ 3 − xia − xib ∀i ∈ I2, a, b ∈ J2, a �= b (10)

la + lb ≤ 3 − xia − xib ∀i ∈ I2, a, b ∈ J2, a �= b (11)

yab−1 ≤ xia−xib ≤ 1 − yab ∀i ∈ I1, a, b ∈ J1, a �= b

(12)

yab−1 ≤ xia−xib ≤ 1 − yab ∀i ∈ I2, a, b ∈ J2, a �= b

(13)

t j ≥ A j ∀ j ∈ J1 (14)

t j ≥
∑

a∈J1 �= j

ta yaj +
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj ∀ j ∈ J1 (15)

t j ≥ A j ∀ j ∈ J2 (16)

t j ≥
∑

a∈J2 �= j

ta yaj +
∑

i∈I2

∑

a∈J2 �= j

piaxia yaj ∀ j ∈ J2 (17)

t j ≥
⎛

⎝ta +
∑

i∈I1
piaxia + Va

⎞

⎠ zaj + A j
(
1 − zaj

)

∀a ∈ J1, j ∈ J2 (18)

Equations (2) and (3) define the constraints ensuring sin-
gle inbound and outbound door assignment for each truck.
Equations (4) and (5) define the constraints guaranteeing that
each truck either is processed as the first truck or has a suc-
cessor. Equations (6) and (7) ensure that each truck either
is processed as the last truck or has a predecessor. Equa-
tions (8)–(11) define the constraints restricting each door to
have at most one first and at most one last truck. Equa-
tions (12) and (13) define the constraints restricting that a
truck can only be processed immediately before or after
another truck only if both trucks be on the same door. Equa-
tions (14)–(17) determines truck arrival times and Eqs. (14)
and (16) ensure that process start time of each truck be after
its arrival time. Finally, Eq. (18) defines the constraint indi-
cating that outgoing trucks loading process can’t start before
completion of incoming trucks unloading process.

As mentioned earlier to solve DSP, A should be given.
Since truck arrival times are subject to high variability, in
this paper, a given time window is considered for arrival
times of each truck at a cross-dock facility. But still the exact
times of truck arrivals are not known in advance. That is,
A j ∈ [Al

j A
u
j ] where Al

j denotes the lower bound of truck
j’s arrival window and Au

j denotes the upper bound of truck
j’s arrival window. We assume that the cross-dock opera-
tor knows each truck’s arrival time window. Under unknown
truck arrival times, the truck waiting costs associated with
a given schedule are subject to uncertainty as well, whereas
the total process times are fixed for the given schedule. The
uncertainty in truckwaiting times determines the range of the
possible total service costs for a given schedule, i.e., the dif-
ference between the possible maximum and minimum total
service costs. A low range schedule may imply high total
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service costs. Therefore, in what follows, we formulate the
cross-dock operator’s problem to find a schedule which min-
imizes the average total service costs and the range of the
total service costs as a bi-objective optimization problem:

R (X,Y, T ) =
⎛

⎝
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j

+max
A

∑

j∈J1,J2

d j
(
t j − A j

)

⎞

⎠

−
⎛

⎝
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j+min
A

∑

j∈J1,J2

d j
(
t j − A j

)

⎞

⎠

= max
A

∑

j∈J1,J2

d j
(
t j − A j

) − min
A

∑

j∈J1,J2

d j
(
t j − A j

)

(19)

The first component of (19) is themaximum total service cost
and the second component represents the minimum total ser-
vice cost. If the objective function only minimizes the range
of the total service costs, we might end up with a schedule
which has high average service costs. Therefore, our second
objective function tries to minimize the average total service
cost defined as:

AT SC (X,Y, T ) =
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j

+ 1

2

⎛

⎝max
A

∑

j∈J1,J2

d j
(
t j −A j

)+min
A

∑

j∈J1,J2

d j
(
t j −A j

)

⎞

⎠

(20)

The first and second components of Eq. (20) are the total
process costs and the arithmetic average of the possible max-
imum and minimum total waiting costs, respectively. The
cross-dock bi-objective scheduling problemwhich is referred
to as Stable Scheduling Problem (SSP) can be formulated as
follows:

(SSP) min
(X,Y,T )

AT SC (X,Y, T )

=
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j

+ 1

2
(max

A

∑

j∈J1,J2

d j
(
t j − A j

)

+min
A

∑

j∈J1,J2

d j
(
t j − A j

)
)

min
(X,Y,T )

R (X,Y, T ) = max
A

∑

j∈J1,J2

d j
(
t j − A j

)

−min
A

∑

j∈J1,J2

d j
(
t j − A j

)

s.t. Eqs.(2 − 18)

The first objective of SSPminimizes the average total service
costs while the second objective minimizes the range of the
total service costs. Constraints defined in Eqs. (2)–(18) have
previously been explained.

Bi-level formulation

Objective functions of SSP, i.e., ATSC(X , Y , T ) and R(X ,
Y , T ), each has two optimization problems within them-
selves that have to be solved independently in another level.
Therefore SSPmust be reformulated as a bi-objective bi-level
optimization problem. To do so, the following definitions are
required: Amax (X , Y ) and Amin(X , Y ) represent truck arrival
times while given a schedule (X , Y ), total waiting cost has
its maximum and minimum amount respectively. To deter-
mine Amax (X,Y ) and Amin(X , Y ) we have to solve another
optimization problem called Ranged Bound Problem (RBP)
in the second level:

(RBP)max
A

/min
A

∑

j∈J1,J2

d j (t j − A j ) (21)

s.t.

Al
j ≤ A j ≤ Au

j ∀ j ∈ J1, J2 (22)
∑

a∈J1 �= j

ta yaj +
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj − A j ≤ M
(
1 − z j

)

∀ j ∈ J1 (23)

A j −
∑

a∈J1 �= j

ta yaj −
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj ≤ M
(
z j

)

∀ j ∈ J1 (24)
∑

a∈J1 �= j

ta yaj +
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj

+Mz j ≥ t j ∀ j ∈ J1 (25)

A j + M
(
1 − z j

) ≥ t j ∀ j ∈ J1 (26)

t j ≥
∑

a∈J1 �= j

ta yaj +
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj ∀ j ∈ J1 (27)

t j ≥ A j ∀ j ∈ J1 (28)
∑

a∈J2 �= j

ta yaj +
∑

i∈I2

∑

a∈J2 �= j

piaxia yaj − A j ≤ M
(
1 − zz j

)

∀ j ∈ J2 (29)

A j −
∑

a∈J2 �= j

ta yaj −
∑

i∈I2

∑

a∈J2 �= j

piaxia yaj ≤ M
(
zz j

)

∀ j ∈ J2 (30)
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A j + M
(
2 − zz j − xx j

) ≥ t j ∀ j ∈ J2 (31)

t j ≥
∑

a∈J2 �= j

ta yaj +
∑

i∈I2

∑

a∈J2 �= j

piaxia yaj ∀ j ∈ J2 (32)

t j ≥ A j ∀ j ∈ J2 (33)
⎛

⎝ta +
∑

i∈I1
piaxia + Va

⎞

⎠ zaj + A j
(
1 − zaj

) − A j

≤ M
(
1 − xx j

) ∀a ∈ J1, j ∈ J2 (34)

A j −
⎛

⎝ta +
∑

i∈I1
piaxia + Va

⎞

⎠ zaj − A j
(
1 − zaj

)

≤ M
(
xx j

) ∀a ∈ J1, j ∈ J2 (35)

t j −
∑

a∈J2 �= j

ta yaj −
∑

i∈I2

∑

a∈J2 �= j

piaxia yaj

≤ M
(
1 − xx j + zz j

) ∀ j ∈ J2 (36)

t j ≥
⎛

⎝ta +
∑

i∈I1
piaxia + Va

⎞

⎠ zaj + A j
(
1 − zaj

)

∀a ∈ J1, j ∈ J2 (37)

If the objective of RBP is maximization, then the optimal
solution gives us Amax (X,Y ) and the objective function
value at Amax (X,Y ) is the maximum truck waiting cost,
which can be used to determine the upper bound of the range
of the total service costs associated with schedule (X , Y ).
On the other hand if the objective of RBP is minimization,
the optimal solution gives us Amin(X , Y ) and the objective
function value at Amin(X , Y ) is the minimum truck waiting
cost, which can be used to determine range of the total service
costs lower bound, associated with schedule (X , Y ). Equa-
tion (22) defines the constraint guaranteeing that the truck
arrival time for each truck is within its given arrival time
window. Equations (23)–(37) are used to define the loading
or unloading process start times for each truck. Since RBP
is optimized over A, the process start times of incoming and
outgoing trucks should obey the followings:

For incoming trucks, there are two possible scenarios. If
the assigned inbound door to a truck is idle when the truck
arrives, the truck’s process start time is equal to its arrival
time. One the other hand, if the assigned inbound door to the
truck is busywhen the truck arrives, truck’s process start time
should be equal to the process finish time of its immediate
predecessor. In the first case it means, truck j arrives after
the process of its immediate predecessor, truck k, is finished
such that A j ≥ f tk . f tk denotes finish time of truck k and is
obtained by Eq. (38).

f tk =
∑

a∈J1 �= j

ta yaj −
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj (38)

In this case, t j = A j . In particular, when A j ≥ f tk , Eq. (23)
enforces z j = 1 and Eqs. (24) and (25) are valid. Also,
Eq. (27) is valid by definition. When z j = 1, it then follows
from Eqs. (26) and (28) that t j = A j .

In the second case, when A j ≤ f tk , we should have
t j = f tk . When A j ≤ f tk , Eq. (24) enforces z j = 0 and
Eqs. (23) and (26) are valid. Furthermore, Eq. (28) is valid
by definition. When z j = 0, it then follows from Eqs. (25)
and (27) that t j = f tk , therefore, Eqs. (23)–(28) ensure that
Eq. (39) holds.

t j = max

⎧
⎨

⎩
A j ,

∑

a∈J1 �= j

ta yaj −
∑

i∈I1

∑

a∈J1 �= j

piaxia yaj

⎫
⎬

⎭
(39)

For outgoing trucks, four scenarios are possible. If the
assigned outbound door to a truck is idle when the truck
arrives and all the truck’s shipment is ready for loading, the
truck’s process start time is equal to its arrival time. In fact in
this case truck j arrives after, sorting of its shipment is done
i.e. Ct j ≤ A j , in which Ct j according to Eq. (40) is:

Ct j =
⎛

⎝ta +
∑

i∈I1
piaxia + Va

⎞

⎠ zaj + A j
(
1 − zaj

)
(40)

If the shipment is ready for loading when outgoing truck j
arrives, xx j = 1 according to Eq. (34). Equation (35) holds
as well and therefore t j = A j . When A j ≥ f tk , Eq. (29)
forces zz j = 1 and Eq. (30) is valid by definition. xx j = 1
and zz j = 1 force Eq. (37) to be valid. It then follows from
Eqs. (31) and (33) that t j = A j .

If all the truck’s shipment is ready for loading but the out-
bound door to the truck is busywhen the truck arrives, truck’s
process start time is equal to the process finish time of its
immediate predecessor i.e. t j = f tk . In this case, Ct j ≤ A j

and in Eq. (34), xx j = 1. Equation (35) is valid by definition.
Also A j ≤ f tk which indicates that zz j = 0 in Eqs. (30) and
(29) is also valid. xx j = 1 and zz j = 0 force Eq. (31) to be
valid. It then follows from Eqs. (32) and (36) that t j = f tk .

If the assigned outbound door to the truck is idle when the
truck arrives but truck’s shipment is not ready for loading,
truck’s process start time is equal to the time required for its
shipment to get sorted, stored and staged i.e. t j = Ct j . In
this case, Ct j ≥ A j and in Eq. (35), xx j = 0. Equation (34)
is valid by definition. Also A j ≥ f tk which indicates that
zz j = 1 in Eqs. (29) and (30) is also valid. xx j = 0 and
zz j = 1 force Eqs.(31) and (36) to be valid and therefore,
t j = Ct j .

If the assigned outbound door to the truck is busywhen the
truck arrives and the truck’s shipment is not ready for loading,
the truck’s process start time, t j , is equal to max{Ct j , f tk}.
When Ct j ≥ A j , xx j = 0 according to Eqs. (35) and (34) is
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valid by definition. Also when A j ≤ f tk, zz j = 0 according
to Eqs. (30) and (29) is also valid. xx j = 0 and zz j = 0
force Eqs.(31) and (36) to be valid and considering other
constraints we have, t j ≥ Ct j and t j ≥ f tk which means t j
= max{Ct j , f tk}.

In the second level, minimizing or maximizing the total
waiting costs, is attained by only changing A j values. We
use Tmax and Tmin to denote the m-vectors of t j values
for truck arrivals defined by Amax (X , Y ) and Amin(X , Y ),
respectively. Next, we represent SSP as a bi-objective, bi-
level optimization problem using the definitions of Amax (X ,
Y ), Amin(X , Y ), Tmax and Tmin . In particular, SSP is equal
to:

(SSP-2)

min
(X,Y,T )

AT SC (X,Y, T ) =
∑

i∈I1,I2

∑

j∈J1,J2

wi j xi j

+ 1

2

⎛

⎝
∑

j∈J1,J2

d j

(
tmax
j − Amax

j

)

+
∑

j∈J1,J2

d j

(
tmin
j − Amin

j

)
⎞

⎠

min
(X,Y,T )

R (X,Y, T ) =
∑

j∈J1,J2

d j

(
tmax
j − Amax

j

)

−
∑

j∈J1,J2

d j

(
tmin
j − Amin

j

)

s.t.

Eqs.(2 − 19),
(
Amax, Tmax) = argmax

⎧
⎨

⎩

∑

j∈J1,J2

d j
(
t j −A j

)
s.t.Eqs.(23 − 38)

⎫
⎬

⎭

(
Amin, Tmin

)
= argmin

⎧
⎨

⎩

∑

j∈J1,J2

d j
(
t j −A j

)
s.t.Eqs.(23 − 38)

⎫
⎬

⎭

Solution methodology/solving the mathematical
model

Linear bi-level, single-objective optimization problems (wh-
en both the upper and lower levels are linear problems) are
discussed to beNP-hard (Hansen et al. 1992), hence the prob-
lem of solving a bi-objective, bi-level optimization problem
which is discussed in this paper can be categorized as an NP-
hard problem as well (Konur and Golias 2013). Since none
of the existing mathematical modeling softwares are capa-

ble of solving a bi-objective bi-level problem, each level
of such problems are solved separately using a commer-
cial solver such as CPLEX (considering the fact that each
level of the main problem is a mixed integer linear prob-
lem itself). Complexity of these problems, the fact that they
are operational decision making problems and require to be
solved on a daily basis in the real world (which shows the
necessity of short computational time) leaves us no choice
but to use metaheuristic algorithms. There are many evo-
lutionary algorithms in the literature that are designed for
finding non-dominated solutions of multi-objective decision
problems such as NSGA-II (non-dominated sorting genetic
algorithm). Given a proper criterion for comparing the prob-
lem’s objectives, other algorithms designed for solving single
objective decision problems such as MODE (which is also
used in this paper) can also be used to solve bi-objective and
multi-objective problems as well.

Our presentedmodel is an extension toKonur andGolias’s
so in order to validate and evaluate the performance of the
implemented solving methods in this paper, our model is
also solved by the GASH algorithm presented in Konur and
Golias’s paper in 2013 and the final results are compared.
The main difference of GASH with NSGA-II and MODE is
that the latter two algorithms improve the solutions in the first
level and then the improved solutions are sent to the second
level. Konur andGolias (2013) expressed two propositions in
case of scheduling merely inbound trucks. These two propo-
sitions are extended in this paper to handle the simultaneous
scheduling of inbound and outbound trucks which can be the
basis for solving RBP by metaheuristic algorithms.

Proposition 1 Without loss of generality, suppose that the
trucks to be served at a given inbound door i are 1, 2,. . ., k
such that truck 1 is to be served before truck 2, truck 2 is to
be served before truck 3, and so on. Then RBP at door i is
minimized by setting

A j = min
{
Au

j
,max

{
f t j−1, A

l
j

}}
∀ j ∈ J1 (41)

When f t0 = 0. And for the outbound trucks we also have

A j = min
{
Au

j
,max

{
Ct j , f t j−1, A

l
j

}}
∀ j ∈ J2. (42)

When f t0 = 0. In (42) Ct j indicates the preparation time of
the unloaded items from incoming trucks that are about to be
loaded on outgoing truck j and is calculated as follows:

Ct j = max
{
( f ta + Va) zaj

} ∀a ∈ J1, j ∈ J2 (43)

In (43), f ta is the completion time of unloading truckawhich
is attained by (44)

f ta = ta +
∑

i∈I1
piaxia ∀a ∈ J1 (44)
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Proposition 2 Without loss of generality, suppose that the
trucks to be served at a given inbound door i are 1, 2, . .
., k such that truck 1 is to be served before truck 2, truck 2
is to be served before truck 3, and so on. Then there exists
an optimal solution to RBP at door i (i ∈ I1, I2) with the
objective of maximization such that

A j ∈
{
Au

j
, Al

j

}
j ∈ J1, J2 ∀ j ∈ {1, 2, , 3, ..., k} (45)

In both evolutionary algorithms NSGA-II and MODE, the
above propositions are used to solve the second level of the
problem. In the following sections these two algorithms and
their solving strategies are thoroughly explained.

Non-dominated sorting genetic algorithm (NSGA-II)

NSGA is one of the first evolutionary algorithms developed
for solving multi-objective decision problems. NSGA-II is
the second version of this algorithm that has the advantages
of less computational complexity and better search through
the search space by calculating the crowding distance. To
solve the presented model, the steps of this algorithm are
taken according to the existing works in the literature with
the exception of using another single objective GA for opti-
mizing the first level.

Single objective genetic algorithm for the first level
improvement

In each chromosome of the GA, according to trucks arrival
time and by implementing a single objective GA the quality
of the first created solution is improved to attain a better
schedule with fewer costs. This schedule consists of the
appropriate allocation of trucks to doors and their suitable
order of service. The fitness value in this level is in fact value
of the DSP objective function which is calculated for each of
the created chromosomes independently and at last informa-
tion gathered by the initial population in the first level is sent
to the second level for calculating ATSC and R. Mutation
operator in this GA is the same as the one described in the
following sections.

Solution representation

The created chromosomes in this algorithm have two sep-
arate rows. In the first row, numbers 1, . . ., n1 (numbers of
inbound doors) are randomly created m1 (number of incom-
ing trucks) times and in the second row numbers 1, . . .,m1

are randomly arranged hence numbers of allocated trucks to
each door is determined. Trucks’ order of service on each
door is based on FCFS (first come first serve) rule. Chromo-

some’s representation is shown in Fig. 2. For outbound doors
and trucks the same procedure is followed.

Mutation and cross-over operators

Due to the problem’s nature and the chromosome structure
that is used, the cross-over operator is not implemented;
repair procedure of the infeasible solutions created by cross-
over would be difficult and time consuming. Swap mutation
is one of the operators used for mutation. On each door,
a random truck is chosen and exchanged with the random
truck chosen from the next door. The selected truck from the
last door is also exchanged with the one chosen from the
first door. Figure 2 shows a chromosome in which 3 doors
(inbound/outbound) and 9 trucks(incoming/outgoing) exists
and trucks 3, 5 and 7 are allocated to door 1while their order
of service is as mentioned earlier based on FCFS rule. In
each chromosome the order of service is shown from left to
right on each door. In Fig. 2 for example trucks 5, 6 and 9 are
selected on each door respectively and exchanged by swap
mutation.

The relocation operator is also used for creating new chro-
mosomes by choosing two doors randomly and relocating the
trucks on each door with each other as shown in Fig. 3.

Termination criterion

Three different criteria are used for termination including:
number of iterations, time limit and similarity of Pareto solu-
tions in 100 consecutive iterations.

Bi-objective bi-level differential evolution algorithm

In cross docking, differential evolution (DE) algorithm has
been first implemented by Boloori Arabani et al. (2011) for
truck scheduling and determining trucks order of service in
a cross-dock and their reports showed that DE algorithm has
a better performance in comparison with GA, PSO, ACO
and TS. Liao et al. (2013) also used DE as well as two other
improved DE algorithms for truck scheduling and allocat-
ing problem. The results of their research indicated that DE
produces better solutions compared to other solvingmethods
used in their paper.

In this study, we use non-dominated sorting and crowd-
ing distance (like NSGA-II) criteria to solve a bi-objective
problem using DE algorithm. In DE algorithm cross-over
and mutation operators are defined for problems with con-
tinuous nature, however, the problem discussed in this paper
as well as the suggested model require discrete vectors for
showing the solution. Hence another method is implemented
for vectors representation in which the vectors are created in
a continuous manner and after achieving new solutions by
implementing cross-over and mutation, vectors are changed
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Fig. 2 Swap mutation
332222111Door332222111Door

Truck 268541793Truck 298641753

Fig. 3 Relocation mutation
332322111Door332222111Door

Truck 854126793Truck 298641753

Fig. 4 Encoding with
continuous numbers

0.3998 0.3333 0.19445 0.5121 0.65697 0.7774 0.6667 0.06868 0.3608

0.1196 0.5191 0.3795 0.3073 0.8704 0.5826 0.2904 0.8492 0.7532 

into a discrete state. The main structure of this algorithm is
explained thoroughly through the following sections.

Solution representation

Each solution is a vector of two rowswith thefirst row indicat-
ing the number of doors and the second one representing the
number of trucks that are encoded with continuous numbers
as shown in Fig. 4 . These two rows represent the allocation
of trucks to doors and also their order of service on each door
and the vectors are created for both inbound and outbound
trucks and doors.

Initialization

To create each member of the population, based on the num-
ber of doors and inbound and outbound trucks, two vectors
are generated. For example in Fig. 4 to generate the first
vector, considering the number of incoming trucks, random
numbers in [0 1] are generated in two rows.All the initial pop-
ulation members are created the same way. To improve the
quality of the members in the first level, as described earlier
in NSGA-II, a single objective GA is used and to calculate
the objective function value in the first level, all vectors must

be decoded. As an example as shown in Fig. 5 to decode
the first row of the vector created for 9 trucks and 3 inbound
doors each element of the first row is multiplied by n1 = 3
(the number of doors) and rounded up.

According to Fig. 6 decoding of the second row starts
with sorting the array in an ascending order, then the position
number of each element of the second row is considered as
the truck number.

After decoding of the vectors, the number of allocated
trucks to each door is determined, the order of service of each
truck on each door is based on FCFS and finally a schedule
is attained as shown in Fig. 7.

Mutation operator

To implement themutation operator three distinguished solu-
tion vectors {Xr1, Xr2,Xr3} are chosen randomly from the
population at hand in such way that i �= r3 �= r2 �= r1. The
chosen vectors are combined using the following equation:

332222111211223312

435621789589623471

Fig. 7 The schedule attained by the decoded vector

Fig. 5 Decoding of the vector’s
first row

0.3998 0.3333 0.19445 0.5121 0.65697 0.7774 0.6667 0.06868 0.3608 

2 1 3 3 2 2 1 1 2 

( )1 1
G
jround x n↑ ×

Fig. 6 Decoding of the vector’s
second row

0.1196 0.5191 0.3795 0.3073 0.8704 0.5826 0.2904 0.8492 0.7532 

0.1196 0.2904 0.3073 0.3795 0.5191 0.5826 0.7532 0.8492 0.8704 

1 7 4 3 2 6 9 8 5

Index

Sort(x2)
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VG
i = XG

r1 +F ×
(

XG
r2 − XG

r3

)
; i = 1, ..., N P,

r1, r2, r3 ∈ {1, ..., N P} (46)

The DE’s mutation operator ads a fraction of difference of
two solution vectors to the third one; F is the mutation factor
in [0, 1] range which controls DE’s vector participation when
creating new population.

Cross-over operator

After a mutated vector is created, cross-over is performed
based on the following:

UG
i, j =

{
VG
i, j if rand j ≤ CR; j = k

XG
i, j otherwise

In which k ∈ {1, ..., D} is the random factor and is cre-
ated for each i . This factor makes sure that a member of
the experimental vector be transferred to the offspring pop-
ulation. CR ∈[0, 1] is the constant cross-over parameter and
rand j is a uniform random number which is compared with
cross-over operator in order to determine the offspring vec-
tor’s elements. If rand j be equal or smaller than cross-over
rate the element of the experimental vector is transformed
to the next generation, otherwise, the corresponding position
in offspring vector is chosen from the current population.
UG
i, j ,V

G
i, j , and XG

i, j are the j th member of the i th offspring

vector, the j th member of the i th experimental vector, and the
j th member of the i th goal vector in Gth generation respec-
tively (Storn and Price 1997).

Repair procedure

After performing mutation and cross-over on a vector, there
is always the possibility of creating some smaller than 0 or
larger than 1 numbers in the first row, in the repair procedure,
these numbers are replaced by random numbers in [0 1].

Sorting and selection

The same as NSGA-II, in this algorithm, population mem-
bers are sorted based on two criteria, population distance and
non-dominated sorting. Members with the highest ranks are
chosen as the new population. It is worth noting that in this
paper, each newly generatedmember is comparedwith all the
population in order to be selected and not only its parents.

Termination

Termination criteria are the same as NSGA_II algorithm and
all the non-dominated members that are a part of Pareto fron-
tier are selected as final answers.

Computational results

In this section the experiments calculations and results are
explained.

Design of experiments (DOE)

The main purpose of DOE is answering to the following
question: is there a significant difference between solutions
quality obtained by the three different solving procedures,
(47) is the hypothesis test and the Significant level of error
is less than or equal to 5%.

H0 : α1 = α2 = α3

H1 : Otherwise
(47)

The sample problems are created based on two factors, num-
ber of trucks and number of doors and each sample problem
is solved by all the three algorithms (GASH, NSGA-II and
MODE) hence factorial design is considered as the best
choice to compare the results due to the fact that there exists
more than a single factor and one of them is more important
than the other one, and is used as the completely random
basic design. Equation(48) shows the designed model used
for statistical experiments

Yi jk = μ + Ti j + εi jk i = 1, 2, 3 j = 1, ..., 20

k = 1, ..., 3

Ti j = J j + Hi + (H ∗ J )i j (48)

where Yi jk is the response variable (here, this response vari-
able is the quality metric (QM), one of the metrics used for
comparing the solution qualities obtained by different algo-
rithmswhich is discussed in section “Comparisonmetrics”).,
μ is the average of society, J j is the effect of problem size,
Hi is the effect of algorithm and finally εi jk is the random
error. The presented model is valid when all the observations
follow normal distribution and based on Fig. 8 which is the
normal probability plot drawn by SAS software, it can be
concluded that observations distribution (when Significant
level of error is equal to 1%) is nearly normal; so analy-
sis of variance (ANOVA) methods can be used for precisely
examining the results.

DOE is also performed in SAS when Significant level
of error = 5% and Table 1 shows the results obtained by
ANOVA.

According toTable 1, sincepvalue≤0.0001, in significant
level of error of 5%, H0 is rejected i.e., there is a significant
difference between the algorithms solutions. To choose the
algorithm with the best results Tukey test is used and the
results of this test are shown in Table 2.
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Fig. 8 Normal probability plot for QM in statistical experiments

Table 1 Analysis of variance on algorithms results

Source DF Type III SS Mean square F Value Pr > F

Size 19 0.00000000 0.00000000 0.00 1.0000

Algorithm 2 5.42855601 2.71427801 53.50 <.0001

Size*algorithm 38 6.73637734 0.17727309 3.49 <.0001

Table 2 Results of Tukey test

t Grouping Mean N algorithm

Means with the same letter are not significantly different

MODE 0.57187 60 1

NSGA-II 0.26469 60 2

GASH 0.16344 60 3

Generating sample problems

We consider a cross-dock facility which operates in three
8h (480 min) shifts. Other model parameters are determined
based on Konur and Golias (2013) paper. The arrival time
window for each truck is generated as follows: first, a ran-

dom value in [0, 480] is generated, which is used as the

mid-time window, i.e.,
Alj+Au

j
2 . Then, a random time window

length is generated for each truck considering the problem
characteristics, i.e., Au

j − Al
j ∼ U [0, 30](truck arrivals must

fall into [0 480] i.e., Al
j ≥ 0 , Au

j ≤ 480). For each problem
we let p ∼ U[30, 60] in min (time required for loading or
unloading of incoming or outgoing trucks), w = 2pmoney
units per minute (handling cost per minute is 2 money units
for each door) d j ∼ U[1, 2] money units per minute. We
focus on 20 distinct problems shown in Table 3 that for each,
three instances were created and solved.

Parameter tuning

Parameter tuning is an essential subject when it comes to
using metaheuristic algorithms which can be effective on
the performance of these algorithms as well. We tuned the
parameters of all metaheuristic algorithms that we used, by
consecutively solving the model with each algorithm and
choosing the best parameters by trial and error. Quality of the
solutions and computation time were the two most important
factors while selecting the parameters. It was noticed that
increasing some parameters such as initial population more
than a certain value only increases the computation time and
does not affect the quality of the final solutions. The tuned
parameters are shown in Table 4.

Table 5 shows the results of solving the created problems
in Table 3 by the three different algorithms. In the two algo-
rithms used in this paper (NSGA-II andMODE) the solutions
of first level of the problem are improved by a GA and sent
to the next level hence the quality of the final solutions are
better in comparison to the solutions of GASH. As shown in
Table 5 the solutions obtained by MODE algorithm are bet-
ter than the other two with respect to time and the objective
value.

Table 3 Properties of the solved sample problems

Problem no. Number of doors Number of trucks Problem no. Number of doors Number of trucks

Inbound Outbound Incoming Outgoing Inbound Outbound Incoming Outgoing

1 2 2 5 5 11 10 10 50 50

2 2 2 10 10 12 10 10 80 80

3 2 2 15 15 13 10 10 100 100

4 2 2 20 20 14 12 12 50 50

5 3 3 10 10 15 12 12 80 80

6 3 3 15 15 16 15 15 100 100

7 3 3 20 20 17 15 15 150 150

8 3 3 30 30 18 15 15 200 200

9 5 5 20 20 19 20 20 150 150

10 5 5 30 30 20 20 20 200 200
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Table 4 Tuned parameters of
all the metaheuristic algorithms

Tuned parameters Parameters Metaheuristic algorithms

GA Population size 30

Iterations 50

MODE Population size 50

Iterations 2000

Fmax 0.8

Fmin 0.2

Cross-over rate 0.2

NSGA-II Population size 50

GASH Iterations 2000

Table 5 The results

Problem no. NSGA-II MODE GASH

ATSC R CPU time (min) ATSC R CPU time (min) ATSC R CPU time (min)

1 736.5 101.0 7.2 759.0 64.0 3.1 730.5 113.0 8.3

2 2112.3 32.5 10.3 2166.8 0.5 5.9 2249.5 1.0 11.0

3 3448.3 267.5 16.9 4115.0 218.0 11.5 3731.5 277.0 17.0

4 7950.4 189.3 19.6 7286.0 469.5 12.9 7523.5 444.5 18.6

5 1608.5 0.0 12.4 1583.0 111.0 8.0 1487.3 117.5 8.0

6 2829.3 267.5 18.6 3310.3 60.5 18.2 4348.5 0.0 8.8

7 4528.8 291.0 16.3 4713.8 187.0 17.1 5422.5 281.0 18.9

8 11872.3 82.5 37.8 10819.8 1016.5 29.1 12160.0 144.0 51.4

9 3452.8 124.5 29.5 3581.8 3.5 19.4 3334.3 83.5 11.3

10 7167.8 547.0 27.8 6923.8 559.7 26.7 9121.3 50.7 17.4

11 10276.7 640.7 31.9 10343.5 741.0 55.4 13343.3 281.3 27.4

12 24169.0 2416.0 45.6 26721.5 2850.0 93.0 36204.0 1018.0 55.0

13 43287.5 3306.0 139.9 45397.5 2779.0 126.1 48686.0 2549.0 99.1

14 10010.7 406.0 36.1 9655.5 335.7 39.2 9910.0 617.3 22.8

15 21159.4 2105.3 58.5 23548.5 2024.5 84.2 28230.4 1708.3 43.9

16 25308.3 3707.5 94.0 27057.8 3177.5 64.5 31211.0 4283.0 75.6

17 56733.5 6367.0 118.1 59563.5 6637.0 90.5 66125.5 6657.0 139.8

18 63256.0 3821.0 158.0 67249.5 4161 115.1 69122.1 4255.0 200.0

19 83211.2 5012.1 200.0 74050.0 4726 138.4 86657.3 5266.0 190.0

20 91345.1 5534.3 200.0 87855 8528 144.7 93812.0 6874.0 200.0

Comparison metrics

To compare the selected algorithms the following compari-
son metrics are used,

Quality metrics (QM)

This metrics considers all Pareto solutions obtained by each
algorithm and performs non-dominated sorting process on all
the solutions. The quality of each algorithm is proportional
to the Pareto solutions of that specific algorithm that in the
range of the new Pareto frontier. The more value for this
metrics, the more is the quality of the selected algorithm.

Spacing metrics (SM)

This metrics demonstrate the uniformity of pareto solutions
in solution space:

SM =

n∑

i=1

∣
∣d̄ − di

∣
∣

(n − 1) d̄
(49)

In Eq. (49) di is the Euclidean distance of two neighboring
pareto solutions in solution space, d̄ is the average of all di
s and n indicates the number of non-dominates solutions.
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Table 6 Comparison metrics

Problem no. Quality metric (QM) Spacing metric (SM) Diversity metric (DM) Mean ideal distance (MID)

NSGA-II MODE GASH NSGA-II MODE GASH NSGA-II MODE GASH NSGA-II MODE GASH

1 0.1525 0.8475 0 0.7987 0.7816 0.9044 1.3017 1.3017 1.3707 0.7429 0.7376 0.8141

2 1 0 0 0.6169 0.0258 1.4329 1.0272 0.7701 0.5918 0.4658 0.6296 0.7032

3 0.1111 0.7778 0.1111 0.5716 0.7636 0.5382 0.924 1.4142 1.1612 0.5228 0.5546 0.603

4 0.5455 0.3636 0.0909 0.3859 0.5647 0.617 1.1739 1.0304 1.2682 0.5481 0.4853 0.6675

5 0 1 0 0.6902 0.5007 0.9494 1.1965 0.927 0.8399 0.6344 0.5104 0.8884

6 0.6667 0.2222 0.1111 0.5306 1.0439 0.5575 1.048 1.3372 1.1544 0.5276 0.68 0.5909

7 0 1 0 0.1794 1.2115 0.3698 0.8816 1.2028 0.9477 0.6489 0.3114 0.5

8 0 1 0 0.4937 0.7323 0.6348 1.3202 1.3114 1.0802 0.7516 0.6799 0.7331

9 0 1 0 1.0082 0.6627 1.1026 0.6308 1.0034 0.7477 0.6889 0.3436 0.8069

10 0 1 0 0.2574 0.7696 0.7098 1.0396 1.2611 1.112 0.5842 0.4503 0.6991

11 0.2941 0.7059 0 0.3576 0.7558 0.5409 0.5082 1.4142 0.5561 0.5203 0.5526 0.5349

12 0.294 0.7059 0 0.6864 0.7765 0.5408 0.6857 1.4142 0.6263 0.682 0.6096 0.7136

13 0.4286 0.5357 0.0357 0.6548 0.8059 0.537 0.6655 1.3505 0.6951 0.6549 0.6263 0.6273

14 0.5 0.1 0.4 0.5419 0.6832 0.702 0.5043 1.3487 0.7195 0.3255 0.6115 0.4973

15 0 1 0 0.6403 0.4565 0.5026 0.6736 0.5355 0.8349 0.7719 0.2856 0.8426

16 0 1 0 0.5441 0.7442 0.6677 0.3241 1.2426 0.4062 0.7218 0.5265 1.0224

17 0.3 0 0.7 0.7043 0.9832 0.5358 0.3977 1.2373 1.1167 0.7497 0.5819 0.5611

18 0.5 0.1667 0.3333 0.2779 0.7349 0.6791 0.5135 1.2665 1.2624 0.5758 0.7252 0.6762

19 0.2143 0.0714 0.7143 0.6713 0.6764 0.4984 0.9776 1.136 1.0622 0.6412 0.8012 0.5557

20 0.3077 0.4615 0.2308 0.1509 0.699 0.6552 0.496 1.1656 0.5404 0.7999 0.9428 0.8482

Lower amounts of SM shows more uniform non-dominates
solutions and therefore a better algorithm.

Diversification metrics (DM)

Clearly this metrics indicates the diversity of an algorithm
pareto solutions and is calculated as follows:

D =
√
√
√
√

n∑

i=1

max(
∥
∥xit − yit

∥
∥) (50)

in Eq. (50),
∥
∥xit − yit

∥
∥ is the Euclidean distance between xit

and the non-dominated solution yit (Tavakkoli-Moghaddam
et al. 2010)

Mean ideal distance metrics (MID)

This metrics is equal to the distance of pareto solutions of an
algorithm to the ideal solution and is calculated as follows:

MI D =

n∑

i=1

√
(

f1i− f best1
f max
1,total− f min

1,total

)2

+
(

f2i− f best2
f max
2,total− f min

2,total

)2

n
(51)

In Eq. (51), n is the number of pareto solutions while f max
i,total

and f min
i,totalare the maximum and the minimum value of

the objective function among all the algorithms objective
functions values. The results of calculating the comparison
metrics for each sample problem and using each algorithm
are shown in Table 6.

As we can see in Table 6, the solutions obtained by
MODE algorithm has better qualities in comparison with
the solutions attained by the other two methods (NSGA-II
and GASH). According to SM metrics all three algorithms
have low uniformity between their pareto solutions and high
DM which shows the algorithms produce diverse solutions
and can search the solution space properly. MID results also
show a good performance by these three methods. In Fig. 9,
the pareto solutions acquired by each of the three algorithms
are shown schematically and better performance of MODE
algorithms is completely notable according to Fig. 9. It also
worth noting that in some of the difficult problems NSGA-II
and GASH are also capable of producing solutions near the
pareto frontier.

Comparison between algorithms based on their CPU
time

As described in sections “Termination criterion” and “Ter-
mination”, in this paper, we considered three different
termination criteria for the algorithms; including: number
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of iterations, time limit and similarity of Pareto solutions
in 100 consecutive iterations. Since MODE algorithm finds
the non-dominated Pareto solutions in less iteration and also
according to the third termination criterion (similarity of
Pareto solutions in 100 consecutive iterations), CPU time to
reach the final solutions in this algorithm is less than NSGA-
II and GASH.

MODE differs from NSGA-II in the mutation and recom-
bination phases.UnlikeNSGA-II,where perturbation occurs

at random, MODE uses weighted differences between solu-
tion vectors to perturb the population. MODE implements
the step sizes of DE to adaptively adjust the solutions’ fit-
ness, while NSGA-II uses random mutation operators. It is
clear that the reason for NSGA-II’s poor performance on
truck problems is the uncorrelated variable perturbation dur-
ing mutation phase.

Fig. 9 Pareto solutions of the
three algorithms for sample
problems number 3, 4, 8, 10, 11,
12, 13, 14, 15 and 16
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Fig. 9 continued
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Conclusion

In thisstudy for the first time a mathematical model is pre-
sented that simultaneously address the problemof scheduling
incoming and outgoing trucks in a cross-dock facility while
truck arrival times are non-deterministic. The main objec-
tive of the bi-level model that is presented here is stabilizing
the imposed costs as well as minimizing the total cost in
cross-dock facility. Two metaheuristic algorithms, NSGA-II

and MODE are used to solve the designed sample problems
and the obtained results of these two methods are compared
with a random search based GA algorithm existing in the lit-
erature.Different properties of each algorithms is examined
through four metrics of quality, spacing, diversification and
uniformity and pareto solutions of each algorithm are cal-
culated and plotted. In this study only the basic concept of
NSGA-II and MODE is used and parameter settings, Cross-
Over and Mutation are suggested in accordance with this
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problem. Therefore DOE’s results shows that there is a sig-
nificant difference between the solutions attained by each
algorithm and MODE performs significantly better than the
other two algorithms in terms of solution quality. Finally,
considering the internal process of a cross-dock facility, a
probability distribution for truck arrival times and simulat-
ing the model and post distribution in a cross-dock are all the
subjects of the future work.
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