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Abstract Cross-docking is a relatively new logistics strat-
egy that has a great potential to eliminate storage cost and
speed up the product flows. This paper considers the vehi-
cle routing and packing problem with cross-docking and
presents a mixed integer linear mathematical model. In
the model, a set of trucks are used to transport products
from suppliers to customers through cross-docking cen-
ters. Each supplier and customer node can be visited only
once and directly shipping is not allowed from suppliers
to customers. Moreover, truck capacities are identified with
physical dimensional limits on the contrary of weight or
amount of load. The objective of the study is to determine
the vehicle routes that minimize the total distance. Due to
the complexity of the mathematical model, a hybrid meta-
heuristic algorithm (HMA), which integrates tabu search
(TS) algorithm within simulated annealing (SA) algorithm,
is proposed to solve the problem. Proposed HMA is tested
on a well-known benchmark problem data set and compared
with the SA and TS solutions. Results show that proposed
HMA can produce effective solutions and outperforms the
SA and TS especially for the large-sized problems.

Keywords Hybrid meta-heuristic algorithm · Cross-
docking · Vehicle routing · 2-Dimensional vehicle loading

Introduction

The efficiency of transportation is one of the most important
factors for supply chain management. For this reason, many
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companies develop various strategies to boost customer satis-
faction and bring down the total costs. Cross-docking which
almost eliminates the storage costs and speeds up the prod-
uct flows is one of these strategies. It can be described as
the process of moving products from suppliers to customers
through cross-docking centers without storing products for
a long time in these centers (Ladier and Alpan 2014). At
each center, incoming trucks loaded from different suppli-
ers arrives to incoming doors and unloaded to incoming area
quickly. These products are sorted and consolidated accord-
ing to their destinations and then reloaded to outgoing trucks
for distribution (Zarandi et al. 2014). This strategy provides
different advantages compared with traditional distribution
centers: the consolidation of shipments, a shorter delivery
lead time, the reduction of costs, improved customer service,
fewer overstocks, etc. (Van Belle et al. 2012). As a result of
these advantages, cross-docking has become an interesting
logistics strategy that can give companies important compet-
itive benefits.

Until now, considerable researches on cross-docking have
been studied in the literature and they categorized in many
ways. Van Belle et al. (2012) present a comprehensive liter-
ature review about cross-docking and classified them based
on the problem type: location of cross-docks, cross-docking
layout design, cross-docking networks, vehicle routing, dock
door assignment, truck scheduling, storage and other issues.
Some of these problems are more concerned about long term
decisions (strategic or tactical), while others deal with short-
term decisions (operational).

The vehicle routing problem for cross-docking (VRPCD)
involves the fulfilment of a set of customer orders which are
picked up at various supplier locations and delivered to their
destinations by afleet of vehicle after consolidation at a cross-
docking center. The objective is to find the best pickup and
delivery routes to minimize total transportation cost. As in
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the extensive variants of the vehicle routing problem, the time
windows constraint is widely considered in the literature so
that all locations must be visited within their time windows
and all pickup and delivery operations must be completed
before the end of the planning horizon. Lee et al. (2006)
consider the vehicle routing problem for cross-docking. The
aim of their study is to find an optimal routing schedule
for pickup and delivery operations that minimizes the total
transportation cost and fixed costs of the vehicles. The split
deliveries are not allowed in their study and it is assumed that
all incoming trucks should arrive at the cross-dock simulta-
neously to prevent waiting for outgoing trucks. An integer
mathematical model is presented for the problem and a tabu
search (TS) algorithm is proposed as a solution approach.
The same problem is taken into account by Liao et al. (2010).
The authors propose a new TS algorithm which can achieve
better results than the existing TS algorithm in short compu-
tational times. Wen et al. (2009) study the VRPCD, which
differs from the existing studies by considering time win-
dows. The authors formulate the proposed problem by using
mixed integer model. A TS algorithm is used to solve the
problem and tested on large scale realistic data set. Their
results show that proposed algorithm finds close results to
optimum solutions in less than fiveminutes. Tarantilis (2013)
improves the TS proposed by Wen et al. (2009) with adap-
tive multi-restart strategy, in which the algorithm restarts the
search fromanew solution once a region has been extensively
explored. Computational results demonstrate the efficiency
of the algorithm with new improved upper bounds. Another
study on VRPCD with time windows constraints is carried
out by Vahdani et al. (2012). The authors introduce a hybrid
algorithmwhich incorporates the elements of particle swarm
optimization (PSO), simulated annealing (SA) and variable
neighborhood search (VNS). The proposed algorithm is com-
pared with TS presented by Lee et al. (2006) and results
show that the hybrid algorithm capable to find better solution.
Morais et al. (2014) develop a iterated local search heuristic
for the VRPCD that includes a constructive heuristics and six
local search procedures. This approach is tested on different
data sets and compared with the TS proposed by Wen et al.
(2009). Computational studies show that iterated local search
method finds better solution than the best known solutions
for many problems and outperforms the TS. Dondo et al.
(2011) study the multi-echelon vehicle routing problem for
cross-docking. In their paper, a hybrid strategy combining
direct shipping, warehousing and cross-docking is allowed.
Amonolithic optimization framework based on amixed inte-
ger linear mathematical model is presented for the problem.
Dondo and Cerdá (2013, 2014) improve this approach by
sweep-based heuristic which is incorporated into the model
in order to derive more efficient formulation. Computational
results show that sweep heuristic embeddedmodel finds near
optimal solution to large scale problems. Hasani-Goodarzi

and Tavakkoli-Moghaddam (2012) consider the VRPCD for
multi-product with split delivery and pickups. The authors
also take into account the traveling times of the vehicles
in order to complete all picking up operations in a speci-
fied time horizon. The problem is formulated as a mixed
integer mathematical model which is tested on small-sized
instances. Similarly, Hu et al. (2013) introduce a mathe-
matical model that combines two sub models to optimize
the overall travelling time, distance and waiting time at the
cross-docking center. Vahdani and Sadigh (2014) investigate
the multi-product VRPCD under uncertainty and present a
hybrid solution methodologies by combining fuzzy proba-
bilistic programming and stochastic programming. Another
study that considers the split delivery condition is carried out
byMoghadam et al. (2014). In order to solve the problem SA
and a hybrid algorithm combining ant colony optimization
(ACO) and SA are proposed. According to the computational
studies on different data sets, hybrid algorithm exhibits better
performance than SA. A different variant of the VRPCD is
studied by Agustina et al. (2014). Their research focuses on
the integration of the VRPCD with cross-docking schedul-
ing problem which include product consolidation decisions
at the cross-docking center. The authors propose a mixed
integer linear program for the problem which obtains the
solutions for the medium sized problems in a reasonable
time.

Although the vehicle routing problem provides practical
decisions on operational processes for distribution systems,
logistics managers usually have to deal with routing and
packing problems simultaneously because of the placement
of freight, which cannot be stacked on each other, gener-
ally affects the route plans in real life applications (Wei
et al. 2015). Therefore, there exist several works in lit-
erature, which consider the vehicle routing problem with
2-dimensional truck loading constraints and introduce dif-
ferent solution methodology in order to solve large scale
problems, such as: Gendreau et al. (2006, 2008), Zachari-
adis et al. (2009), Leung et al. (2011) and Wei et al. (2011)
propose TS based heuristic methods, Leung et al. (2013) pro-
pose a SA based heuristic method, Fuellerer et al. (2009)
propose an ACO method, Khebbache-Hadji et al. (2013)
propose memetic algorithm and recently Wei et al. (2015)
propose a VNS algorithm. Motivated by the importance
of the 2-dimensional packing operations on routing plans,
this study considers the VRPCD with 2-dimensional truck
loading constraints, which is called the vehicle routing prob-
lem for cross-docking with 2-dimensional truck loading
(VRPCD-2D). The VRPCD-2D differs from the existing
studies on VRPCD in that truck capacities are identified with
the physical dimensional limits on the contrary of weight or
amount of load which provides more practical and realis-
tic plan for pickup and delivery operations. To the best of
our knowledge, no work has been taken into account the
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2-dimensional truck loading constraints for VRPCD though
it is a practical problem in real-world transportation and
logistics industries.

In this study, the VRPCD-2D is formulated as a mixed
integermathematicalmodel and ahybridmeta-heuristic algo-
rithm (HMA), which integrates TS within SA, is proposed
in order to solve the problem. The hybridization of meta-
heuristic algorithms are proposed by many researchers in
order to solve various complex problems. Nearchou (2004)
presents a HMA to solve flow-shop scheduling problem.
Likewise, Dong andWang (2012), Jolai et al. (2012), Azadeh
et al. (2013) and Ramezani et al. (2015) consider the schedul-
ing problems and solves their problems by using a HMA.
Hamta et al. (2014) develop a hybrid framework of the VNS
with TS to solve scheduling and line balancing problem.
Poorzahedy andRouhani (2007) compare the performance of
different type hybrid algorithms for network design problem.
Leno et al. (2015) propose an elitist strategy based hybrid
genetic algorithm that uses SA as local search mechanism.
Although, there exist numerous hybrid algorithm in litera-
ture, the hybrid structure of the SA and TS is one of the
most popular HMA used to solve several problems: e.g. used
by Osman and Christofides (1994) for capacitated cluster-
ing problems, by Lin and Ying (2009) for non-permutation
flowshop scheduling problems, by Lin et al. (2012) for vehi-
cle routing problem with time windows, by Katsigiannis
et al. (2012) for optimal sizing of autonomous power systems
with renewables, by Arıkan and Erol (2012) for part selec-
tion andmachine loading problems in flexiblemanufacturing
systems, by Kaviani et al. (2014) for quadratic assignment
problem, etc. In this study, the proposed HMA of SA and
TS is promoted with an efficient local search method and
2-dimensional packing heuristics in order to obtain efficient
solutions. The performance of the HMA is tested on various

benchmark instances derived from vehicle routing problem
test problems and the results are compared with the solutions
of the SA and TS. A remainder of this paper is organized as
following sections: “Problem definition and model formu-
lation”, “Proposed algorithm”, “Computational results” and
“Conclusions”.

Problem definition and model formulation

In this paper, VRPCD-2D is defined as the problem of
transporting products from suppliers to customer locations
through cross-docking center in order to satisfy a set of
customer demand. The considered problem is described in
Fig. 1, where the products from the suppliers are picked up
by incoming trucks, consolidated at the cross-docking center,
and immediately delivered to customers by outgoing trucks.
The incoming trucks start their tour from cross-docking cen-
ter, serve to the suppliers in a specified time windows and
return to the cross-docking center. After all incoming trucks
complete their routes products are loaded to outgoing trucks
and delivered to their destinations. As in the incoming opera-
tions, customer nodes are served in a specified timewindows.
Each product of suppliers is loaded into the incoming and
outgoing trucks by regarding the 2-dimensional truck load-
ing constraints. The demand of a customer is defined by a
set of rectangular items with given width and length. All
the products belonging to one customer/supplier must be
assigned to the same pickup/delivery route. The objective
of this study is to find the best route plan for incoming
and outgoing trucks in order to minimize total transporta-
tion cost. VRPCD-2D is considered with the following
assumptions:

Fig. 1 The concept of the
vehicle routing problem for
cross-docking center
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• Each vehicle starts and terminates its route at the cross-
docking center.

• Split deliveries are not allowed and each supplier and
customer node must be visited by only one vehicle.

• Directly shipping from suppliers to customers is not
allowed.

• Vehicles can serve more than one supplier or customer
node and each route starts and ends at the cross-docking
center.

• Each vehicle can be used for pickup or delivery opera-
tions.

• The pickup and delivery operations must be carried out
in supplier’s and customer’s time window interval. Also,
the whole processmust be completed within the planning
horizon.

• Vehicles are considered homogeneous and capacities are
identified with physical dimensional limits on the con-
trary of weight or amount of load.

• Products are considered as rectangular shapes with dif-
ferent sizes.

• Products can be loaded into the incoming or outgoing
trucks with unrestricted order.

As mentioned in the literature review, the VRPCD is consid-
ered by several studies with different assumptions. However,
the VRPCD with 2-dimensional truck loading plans have
not been taken into account by any research. Therefore, the
mathematical model of the VRPCD-2D is newly formed on
the basis of assumptions described above by adapting the
2-dimensional pallet packing constraints proposed by Chen
et al. (1991). The proposed mathematical model is formu-
lated as follows.

Parameters and notations

S Set of suppliers.
D Set of destinations.
N Set of all locations: {0} ∪ S ∪ D, where 0 denotes the

cross-docking center.
PR Set of products.
K Set of vehicles.
ci j Transportation cost from node i to node j ; ∀i, j ∈ N .
ti j Travelling time from node i to node j; ∀i, j ∈ N .
ei Time window lower bound for node i; ∀i ∈ N .
li Time window upper bound for node i; ∀i ∈ N .
si Service processing time for node i; ∀i ∈ N .
W Width of the trucks.
L Length of the trucks.

demm Supplier label of product m; ∀m ∈ PR.
dem′

m Destination label of product m; ∀m ∈ PR.
qm Width of product m; ∀m ∈ PR.
pm Length of product m; ∀m ∈ PR.
M Big number.

Decision variables

zi jk 1 if vehicle k travels from node i to node
j , and 0 otherwise; ∀i, j ∈ N ,∀k ∈ K .

wi Service start time at node i; ∀i ∈ N .
w_c Distribution starting time for cross-docking

center which denotes the end of the picking
up procedures.

xm x coordinate of product m in an incoming
truck; ∀m ∈ PR.

x ′
m x coordinate of product m in an outgoing

truck; ∀m ∈ PR.
ym y coordinate of product m in an incoming

truck; ∀m ∈ PR.
y′
m y coordinate of product m in an outgoing

truck; ∀m ∈ PR.
αmn, βmn,

γmn, δmn

1 if product m is on the left, right, bot-
tom and top side of product n in a same
incoming truck, respectively, and 0 other-
wise; ∀m, n ∈ PR.

α′
mn, β

′
mn,

γ ′
mn, δ

′
mn

1 if product m is on the left, right, bottom
and top side of product n in a same out-
going truck, respectively, and 0 otherwise;
∀m, n ∈ PR.

Using the parameters, notations and decision variables
described above, the VRPCD-2D is formulated as:

Min z =
∑

i∈N

∑

j∈N

∑

k∈K
cijzi jk (1)

Subject to
∑

j∈N\D
i �= j

∑

k∈K
zi jk = 1 ∀i ∈ S (2)

∑

i∈N\D
i �= j

∑

k∈K
zi jk = 1 ∀ j ∈ S (3)

∑

j∈N\S
i �= j

∑

k∈K
zi jk = 1 ∀i ∈ D (4)

∑

i∈N\S
i �= j

∑

k∈K
zi jk = 1 ∀ j ∈ D (5)

∑

j∈N\{0}
z0 jk = 1 ∀k ∈ K (6)

∑

i∈N\{0}
zi0k = 1 ∀k ∈ K (7)

∑

i∈N
i �= j

zi jk =
∑

i∈N
i �= j

z j ik ∀ j ∈ N\{0}, ∀k ∈ K (8)
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wi + si + tij ≤ w j + M

(
1 −

∑

k∈K
zi jk

)

∀i ∈ N\D, ∀ j ∈ S, i �= j (9)

wi + si + ti0 ≤ w_c + M (1 − zi0k)

∀i ∈ S, ∀k ∈ K (10)

w_c + s0 + t0 j ≤ w j + M(1 − z0 jk)

∀ j ∈ D, ∀k ∈ K (11)

wi + si + tij ≤ w j + M

(
1 −

∑

k∈K
zi jk

)

∀i, j ∈ D, i �= j (12)

wi + si + ti0 ≤ l0 + M

(
1 −

∑

k∈K
zi0k

)
∀i ∈ D (13)

ei ≤ wi ≤ li ∀i ∈ N\{0} (14)

xm + qm ≤ xn + M(1 − αmn)

∀m, n ∈ PR, m < n (15)

xn + qn ≤ xm + M(1 − βmn)

∀m, n ∈ PR, m < n (16)

ym + pm ≤ yn + M(1 − γmn)

∀m, n ∈ PR, m < n (17)

yn + pn ≤ ym + M(1 − δmn)

∀m, n ∈ PR, m < n (18)

αmn + βmn + γmn + δmn + 1 ≥
∑

j∈N\D

(
zdemm jk + zdemn jk

)

∀k ∈ K , ∀m, n ∈ PR, m < n (19)

xm + qm ≤ W ∀m ∈ PR (20)

ym + pm ≤ L ∀m ∈ PR (21)

x ′
m + qm ≤ x ′

n + M
(
1 − α′

mn

)

∀m, n ∈ PR, m < n (22)

x ′
n + qn ≤ x ′

m + M
(
1 − β ′

mn

)

∀m, n ∈ PR, m < n (23)

y′
m + pm ≤ y′

n + M
(
1 − γ ′

mn

)

∀m, n ∈ PR, m < n (24)

y′
n + pn ≤ y′

m + M
(
1 − δ′

mn

)

∀m, n ∈ PR, m < n (25)

α′
mn + β ′

mn + γ ′
mn + δ′

mn + 1 ≥
∑

j∈N\S

(
zdem′

m jk + zdem′
n jk

)

∀k ∈ K , ∀m, n ∈ PR, m < n (26)

x ′
m + qm ≤ W ∀m ∈ PR (27)

y′
m + pm ≤ L ∀m ∈ PR (28)

The objective function (1) minimizes the total transportation
costs of the incoming and outgoing trucks. Constraints (2)

and (3) ensures that each supplier node can be serviced by
only one vehicle and similarly constraints (4) and (5) pro-
vide this condition for customer nodes. Constraints (6) and
(7) ensure that all routes leave from the cross-docking cen-
ter and return to the cross-docking center at the end of the
service. Constraint (8) guarantees that a vehicle leaves from
the same node it has entered. Constraints (9)–(13) provide
the feasibility of the schedule in accordance with the time
considerations. Constraint (14) guarantees that each supplier
and customer node is serviced within the time window. Con-
straints (15)–(18) and (22)–(25) assure that products do not
overlap each other and these constraints are considered only
if a pair of products is in the same incoming or outgoing truck.
This is taken care of in constraint (19) for incoming trucks and
constraint (26) for outgoing trucks. Constraints (20), (21),
(27) and (28) provide that a product loaded in an incoming
or outgoing truck, cannot exceed the truck’s physical dimen-
sions.

Proposed algorithm

This section introduces main components of the proposed
HMA for VRPCD-2D, which are two well-known meta-
heuristics, SA and TS, and also introduces the packing
heuristics used for the 2-dimensional loading procedures.

Simulated annealing algorithm

SA is a stochasticmethod for solving combinatorial problems
proposed by Kirkpatrick et al. (1983). The SA methodology
draws its inspiration from annealing process in metallurgy.
It works by emulating the physical process so that a solid is
heated to a high temperature and step by step cooled to low
it to crystallize.

SA uses a stochastic approach to guide the search. In
addition to accepting better solutions, SA allows the search
to proceed to a neighboring state even if the move causes
the value of the objective function to become worse. SA
processes the local search in the following way. If a move to
neighbor X′ in neighborhood ensures improvement in objec-
tive value, or leaves it unchanged, then the move is always
accepted. More precisely, the solution X′ is accepted as the
new solution if � ≤ 0, where � = (f(X′) − f(X)) and f(X)

is the value of objective function. Moves, which increase the
objective function means that� > 0, are accepted according
to a probability function e(−�/T) > θ , where T is the para-
meter of temperature, and θ is a random number between
[0, 1]. The value of T varies from a relatively large number
to a small value close to zero, which is often controlled by lin-
ear equations for reducing temperature linearly. The stopping
criterion of the SA is based on the probability that a move
from a local minimum to a neighbor with the lowest score is
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1: = Initial temperature
2: = Cooling parameter
3:
4: Generate 
5:
6: Do
7: Generate from by using a Local Search Method
8: If Then
9:

10: Else
11:

12:
If Then

13:
14: End If
15: End If
16:
17: If Then
18:
19: End If
20: Loop Until (Stopping Criteria)

Fig. 2 Pseudo code of the SA algorithm

accepted. If that probability is low compared to the selection
probability the algorithm is stopped in that approach (Otten
and Van Ginneken 1988). However, there have been various
stopping criteria, which are developed on the basis of consid-
ered problem. The pseudo code of the SA algorithm is shown
in Fig. 2.

Tabu search algorithm

TS was introduced by Fred Glover in 1986 as an iterative
meta-heuristic algorithm that guides a local search procedure
to explore the solution space beyond local optimality (Glover
1989, 1990). TS algorithm is different from the SA algorithm
in that the tabu search includes a memory mechanism that
prevents the search from cycling back to previously visited
solutions. The memory mechanism which is called as tabu
listmaintains the search history by keeping either some of the
moves or just their attributes, and prevents the reversing these
moves for a given number of iterations. Data structure of the
tabu list is necessary to ensure the proper management of the
tabu restriction (Landrieu et al. 2001). On the other hand, this
restriction can be ignored if the attemptedmove leads to find a
new best solution for the algorithm. This procedure is defined
as aspiration criterion, which allows for exception from tabu
list, if any move leads to promising solution (Armentano and
Yamashita 2000; Geyik and Cedimoglu 2004). The pseudo
code of the TS algorithm is shown in Fig. 3.

Hybrid meta-heuristic algorithm

The proposed HMA for the VRPCD-2D is based on the inte-
gration of TS within the SA. The HMA takes the advantages

1: Empty Tabu List
2:
3: Generate 
4:
5: Do
6: Do
7: Find Best Neighbor According to a Local Search Method
8: If Then
9: End Loop

10: End If
11: Loop Until ( is not tabu)
12: Add Move to Tabu List
13:
14: If Then
15:
16: End If
17: Loop Until (Stopping Criteria)

Fig. 3 Pseudo code of the TS algorithm

of the SA and TS including the stochastic feature to escape
local optima and tabu list to avoid cycling. The detail of the
HMA is presented in the following subsections.

Presentation and initial solution

An integer string of length (N+K ), which provides an incen-
tive to return to the original route information after decoding,
is used to present a solution for the algorithm (Tan et al. 2001).
An example for presentation of three routes is as follows,
where the zeros represent the bounds of the routes:

String Code 0 → 7 → 3 → 8 → 10 → 1 → 0 → 2 →
9 → 0 → 5 → 4 → 6 → 0

Route No. 1 0 → 7 → 3 → 8 → 10 → 1 → 0
Route No. 2 0 → 2 → 9 → 0
Route No. 3 0 → 5 → 4 → 6 → 0

In order to obtain a feasible initial solution for the VRPCD-
2D, an insertion based procedure, which primarily takes into
account the free vehicle loading area, is applied for theHMA.
At first |K | empty routes are generated and non-occupied
surface area of the vehicles Fk(k ∈ K ) is set to the W × L .
Locations are sorted by the value of Ai (∀i ∈ S ∪ D), where
Ai is the total area of products which have to pick up or
drop off at location i . Then, each location i from the sorted
sequence is inserted into the routes one by one by checking
the 2-dimensional loading and time windows constraints. In
this case, the location type is another factor to choose appro-
priate vehicle, such that a supplier location can be inserted
into the route if the route is empty or the route contains
another supplier location. Likewise, a customer location can
be inserted into the route if the route is empty or the route
contains another customer location. As a result of feasibil-
ity checking process, the initial solution procedure progress
with respect to following three conditions:
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• If the location i can be inserted feasibly into the only one
route, then it is assigned to appropriate route.

• If location i can be inserted feasibly into the more than
one route, then it is assigned to route that minimize Fk −
Ai .

• If the location i cannot be inserted feasibly into the
any route, then the sequence of locations is updated
by exchanging two randomly selected locations and the
construction procedure restarts with the new location
sequence.

This above process is performed until all the locations that
can be feasibly inserted into any route.

Neighborhood generation

In order to explore the search space, HMA employs the
λ-interchange local search, which was first introduced by
Osman and Christofides (1994). This methods is based on
the λ number, where the λ is the maximum number of loca-
tions that can be interchanged between routes, and includes
both shift and exchange procedures. The locations that are
interchanged can be selected randomly or systematically. For
example, consider λ = 2, which means that up to two loca-
tions may be interchanged between routes with the following
operators: (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1)
and (2, 2).

In this study, λ-interchange method is adapted with TS
algorithm by using the tabu list property, in which the mem-
ory remembers the tabu moves for a certain number of
iterations and does not allow using of anymove until it leaves
the tabu list. In addition to this prohibition, λ-interchange
method ignores the any move that leads to infeasible solu-
tion for a route, which avoids the redundant computations
for the HMA. As a consequence, any move of a location j
can be inserted between location i and location i +1 into the
route k if the following conditions are met respectively;

• If the route is empty or both of the location i and location
j are supplier or customer locations.

• ei + si + tij ≤ l j .
• e j + s j + t j (i+1) ≤ l(i+1).
• If the total area of products at location i is less than the

non-occupied surface area of the vehicle k.
• If the all products of location i can be loaded into the
vehicle k successfully.

The sequence of the checking list is arranged according to
the computational complexity of the examination and amove
is rejected when it failures for a condition. At the end of the
checking feasibility, the fitness function value of a new route
is determined by using the distance between the locations.

For the computational studies, the proposedλ-interchange
method is applied forλ = 1 andλ = 2 and best improvement
strategy is implemented in selecting a new neighbor.

Packing heuristic

In order to determine whether all the products required
by the locations can be feasibly loaded into the vehicles,
five packing heuristics Heurh(h = 1, . . . , 5) developed by
Zachariadis et al. (2009) are used in HMA. Each of the
heuristics, which have different position selection criteria,
loads a product into the vehicle from the feasible position
list (pos_list) as follows:

Heur1 Bottom Left Fill (W-axis) selects the position from the
pos_list, which has the minimumW-axis coordinate,
breaking ties by minimum L-axis coordinate.

Heur2 Bottom Left Fill (L-axis) selects the position from the
pos_list, which has the minimum L-axis coordinate,
breaking ties by minimum W-axis coordinate.

Heur3 Max Touching Perimeter Heuristic selects the posi-
tion from the pos_list, which has the maximum
touching perimeter value, which is evaluated as the
sum of common edges of the inserted product with
the edges of the already inserted products, and the
edges of the loading surface of the vehicle.

Heur4 Max Touching Perimeter No Walls Heuristic selects
the position from the pos_list, which has the max-
imum touching perimeter value, which is evaluated
as the sum of common edges of the inserted prod-
uct with the edges of the already inserted products.
Distinctly from theMax Touching Perimeter Heuris-
tic, the common edges of the inserted product with
the loading surface are not taken into account for this
heuristic.

Heur5 Min Area Heuristic selects the position from the
pos_list, which has the minimum rectangle surface
corresponding to position.

Asmentioned in the problemdefinitionpart, it is assumed that
the products can be loaded into the vehicles in unrestricted
order. Thus, the sequence of the locations in a route does not
affect the loading feasibility. When the packing procedure
is carried out for a route, first the products belongs to the
locations are sorted by the area in decreasing order. Then the
five packing heuristics are called in sequence. If a feasible
loading plan is found by a heuristic method, the packing
procedure stops and returns the result as success. On the
other hand, if the current heuristic fails to find a feasible
solution, then the next heuristic is called. At the end of the
fifth heuristic if a feasible solution cannot be found then the
packing procedure returns the result as failure.
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1: Function loading_check(k)
2: If Memory_Structure Contains the Route Then
3: If Route Information is Then
4: Return
5: Else If Route Information is Then
6: Return
7: End If
8: Else
9: For to 5

10: If Then
11: Add Route Information into the Memory_Structure as 
12: Return
13: Else If and Then
14: Add Route Information into the Memory_Structure as 
15: Return
16: End If
17: Next
18: End If

Fig. 4 Pseudo code of the loading check procedure

Because of the packing procedure is very time consum-
ing, a memory structure is used to speed up the loading
check computations, which avoids duplicate examinations.
This structure is employed to store the loading feasibility
information of a route, and when a route is examined, this
information canbe easily obtained if the route has beengener-
ated previously. Otherwise, the packing procedure is applied
for the route and the new information is recorded to mem-
ory in a string form. The string form of the route includes
the locations excepting the cross-docking center and loading
information which are split with the use of comma:e.g. the
route 0–1–2–3–4–5–6–7–8–9–10–0 and its loading informa-
tion is success is coded as “1, 2, 3, 4, 5, 6, 7, 8, 9, 10, success”.
To reduce the searching process time for retrieving the stored
information of a route, this memory structure is designed in
the form of a three dimensional array. Each dimension of the
array indicates a key factor of a route: the first location of the
route, the number of locations in the route and the occupied
area of the vehicle in integer form. Instead of a single array,
the proposed key factors prevent the unnecessary searches.
Figure 4 shows the pseudo-code of the memory-structure-
adapted loading check procedure.

Stopping criteria

The maximum iteration number is used as primary termina-
tion criteria for the proposed algorithm and the temperature is
reduced progressively by the cooling parameter at each itera-
tion. Additionally, the algorithm stops if there is no improve-
ment in the objective function during the specified number
of iterations. Based on the described statements above, the
pseudo code of the proposed HMA is shown in Fig. 5.

Computational results

The proposed HMA developed in the Visual Basic program-
ming language, and numerical experiments are performed

1: = Initial temperature
2: = Cooling parameter
3: Empty Tabu List
4:
5: Generate Initial Solution  
6:
7: Do
8: Randomly Specify the Value of the λ
9: Generate All Potential Neighbors by Using λ-Interchange 

Method
10: Find Best Neighbor and Specify as 
11: Add Move to Tabu List and Update the List via FIFO Rule
12: If Then
13:
14: Else
15:
16:

If Then
17:
18: End If
19: End If
20:
21: If Then
22:
23: End If
24: Loop Until (Stopping Criteria)

Fig. 5 Pseudo code of the HMA

on 2.20-GHz Intel Core i7 processor with 8-GB memory. To
evaluate the performance of the HMA, a well-known bench-
mark problem data set, which was developed by Solomon
(1987) to test the vehicle routing problemwith timewindows,
is used and adapted to VRPCD-2D. Solomon’s benchmark
problems consist of totally 100 randomly located demand
nodes and a depot node. Also, smaller problems are regarded
by just considering the first 25 and 50 nodes. For theVRPCD-
2D, the locations of the instances are divided into two groups:
supplier locations and customer locations, in which the time
windows of the customer locations are adjusted to further
time period while the time windows of supplier locations
remained as the same. Moreover, because of the customers
should request the products from more than one supplier
location and adapt the instances to the packing problem, the
demand amount of the customers are regenerated randomly
with 2-dimensional physical data. The problems formed for
the VRPCD-2D are describedwith the supplier and customer
locations: e.g. the problem “R101_2D_5_20” considers the
first 25 demand node of the R101 problem of the Solomon’s
data set where the first 5 demand nodes are represented as
supplier locations while the other 20 demand nodes are cus-
tomer locations.

The computational studies consist of two parts. First,
HMA, SA and TS are performed on 24 different small-sized
instances and the results of the algorithms are compared with
the CPLEX. Then, each algorithm is practiced on more com-
plex problems include 25, 50 and 100 locations, respectively.
In this part, the performance of the HMA is demonstrated by
comparing the results with SA and TS solutions. Table 1 rep-
resents the principle data of the problems used to generate
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Table 1 Characteristics of the generated problems

Experimental
part

Number of
locations

Number of
supplier
locations

Number of
customer
locations

Demand rangea Size of the products Size of the vehicles

W L W L

Part I [14, 40] [4, 12] [7, 30] [0, 2] [1, 2] [2, 4] 5 28

Part II 25 [5, 12] [13, 20] [0, 1] [1, 3] [3, 8] 20 40

Part II 50 [10, 25] [25, 40] [0, 1] [1, 3] [3, 8] 20 40

Part II 100 [15, 25] [75, 85] [0, 1] [1, 3] [3, 8] 20 40

a Maximum number of demand value of a customer location requests from a supplier location

instances with their intervals and Table 2 reports the some
details of the problems used in the second part of the compu-
tational studies which identify the problem size. Table 2 also
presents the best integer solution of the first 12 problemswith
their optimality gaps obtained by CPLEX 12.5 with 5 h time
limitation. For the other problems which include 50 or 100
locations, the CPLEX could not reach any integer solution
in specified time horizon. For each part of the computational
studies for heuristic algorithms, the maximum iteration num-
ber is set to the 1000 iterations and each run is terminated
if the algorithm does not provide a new best solution during
the 100 iteration. Moreover, the algorithms are executed 10
times for each instance and the results are identified with best
and average result of the runs.

For the first part of the computational studies, Table 3
shows the characteristics of the problems and the result of
CPLEX solutions with best bound solution, best integer solu-
tion, number of vehicles, optimality gap of the solution and
CPU time of the computations. On the other hand, the results
of the HMA, SA and TS are presented in Table 4 with best
solutions and average solution. Also, the table presents the
gap between the result of heuristicmethods and results of best
integer CPLEX solution by using the following formulation;

%GapC = CPLEX Solution − Heuristic Solution

CPLEX Solution
× 100%

It can be seen from theTable 3 that, an optimal solution can be
found for nine problems within the specified time limitation.
For the other problems,CPLEXcouldfind the resultswith the
optimality gap range 0.03 and 24.20%.When the best results
of the heuristic methods are compared with the best integer
solution of CPLEX, HMA finds 1.25 % and SA finds 1.24 %
better solution on average. However, the average %GapC of
the TS for best results is less than zero. Similarly, the average
solutions of the HMA and SA are better than the best integer
solution of the CPLEX while the average %GapC of the TS
is less than zero for most of the instances.

For the second part of the computational studies,
Tables 5, 6 and 7, which are classified according to the num-
ber of locations, show the details of the results obtained by
HMA, SA and TS. Each table compares the HMA solutions

with SA and TS solutions with respect to best and average
solution by using the following formulation;

%GapHeuristic Method

= Heuristic Method Solution − HMA Solution

Heuristic Method Solution
× 100%

where the positive variables pointed out with bold characters
indicate that better solution is obtained by the HMA.

The results for 25 locations, which are reported in Table 5,
show that proposed HMA could obtain the result with lower
total distance for several problems with respect to best and
average solutions. When the gaps are compared on the basis
of best results, HMAprovides 0.45 and 2.42%better solution
according to the SA and TS, respectively. Similarly, when the
average solutions are considered the average gaps between
the HMA and SA is 1.16 %, and between the HMA and TS
is 3.17. In terms of the computational times, TS could reach
the solutions in shorter times in general with respect to the
HMA and SA.

For the 50 locations, the results are presented in Table 6.
Regarding to the best solutions, HMA could obtain the best
result for eight problems. For this case, there is only one
problem that TS could obtain better result than the HMA.
Considering the average results, HMA exhibits superior per-
formance and finds better results for all problems except
one problem. Additionally, when the results are compared
according to the gaps of the best results, the average gap
between the HMA and SA is 0.33 % and the average gap
between the HMA and TS is 0.44 %. Moreover, the gaps
rises up when the average solutions are considered, where
the average gap between the HMA and SA is 1.00 % and the
average gap between the HMA and TS is 1.45 %.

Finally, for the large sized problems, which consist of 100
locations, the results are shown in Table 7. The gaps between
HMA and other two heuristics are significantly different,
where the average gap between HMA and SA is 2.45 % and
the average gap between HMA and TS is 3.24 %, insomuch
that this value exceeds 5.00 % for some of the instances.
Additionally, HMA could obtain best result for nine prob-
lems and obtain better average solution for all problems. On
the other hand, SA exhibits better performance for 3 prob-
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Table 2 Details of the problems

Number of
locations

Problem description Number of
suppliers

Number of
customers

Number of
products

CPLEX solution

Best integer
solution

Optimality
gap (%)

25 C104_2D_6_19 6 19 61 222.0 35.27

C107_2D_11_14 11 14 74 220.5 14.02

C201_2D_11_14 11 14 90 303.3 8.44

C208_2D_11_14 11 14 72 328.2 36.08

R104_2D_5_20 5 20 52 538.7 14.05

R112_2D_9_16 9 16 63 507.6 20.67

R203_2D_12_13 12 13 97 559.8 16.40

R205_2D_7_18 7 18 58 506.0 0.00

RC103_2D_6_19 6 19 54 411.8 53.79

RC105_2D_8_17 8 17 63 411.3 14.41

RC207_2D_9_16 9 16 75 418.3 51.59

RC208_2D_11_14 11 14 74 421.0 58.81

50 C107_2D_10_40 10 40 260 – –

C103_2D_14_36 14 36 206 – –

C204_2D_17_33 17 33 295 – –

C206_2D_15_35 15 35 267 – –

R106_2D_18_32 18 32 282 – –

R110_2D_14_36 14 36 271 – –

R205_2D_20_30 20 30 293 – –

R211_2D_15_35 15 35 277 – –

RC102_2D_10_40 10 40 218 – –

RC108_2D_22_28 22 28 304 – –

RC201_2D_19_31 19 31 296 – –

RC205_2D_13_37 13 37 251 – –

100 C103_2D_25_75 25 75 734 – –

C106_2D_18_82 18 82 591 – –

C202_2D_24_76 24 76 740 – –

C203_2D_17_83 17 83 597 – –

R102_2D_16_84 16 84 538 – –

R105_2D_15_85 15 85 513 – –

R201_2D_20_80 20 80 633 – –

R210_2D_16_84 16 84 539 – –

RC102_2D_23_77 23 77 714 – –

RC107_2D_16_84 16 84 532 – –

RC201_2D_21_79 21 79 701 – –

RC205_2D_19_81 19 81 583 – –

lems according to the best solution. On the basis of CPU
times, each algorithm represents similar performance.

In addition to comparisons of the algorithms with respect
to best and average solution, a statistical analysis for solu-
tions are conducted by applying paired-t test at significance
level α = 0.05 to reveal whether there exists significant dif-
ferences between HMA and other two heuristics in terms of
the solution quality. Therefore, the null hypothesis is formed

as H0 : μHMA −μCHA = 0 and two sided alternative hypoth-
esis as H1 : μHMA − μCHA �= 0, where the symbols μHMA

and μCMA represent the population mean for HMA and
the other compared meta-heuristic algorithm, respectively.
Table 8 presents the result of the paired-t test for the algo-
rithms which are separated according to the location number
of the problems. It can be seen from table that proposed
HMA is significantly different from the TS for each problem
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Table 3 CPLEX solution for the small-sized instances

Problem Number of
suppliers

Number of
customers

Number of
products

Best bound Best integer
solution

Number of
vehicles

Optimality
gap (%)

CPU
time (s)

R101_2D_5_20 5 20 66 726.8 727.0 11 0.03 18,000

R101_2D_8_15 8 15 36 668.2 668.2 11 0.00 350

R101_2D_10_30 10 30 87 1035.8 1035.8 14 0.00 417

R102_2D_5_12 5 12 38 459.6 470.7 6 2.36 18,000

R102_2D_6_14 6 14 29 531.4 531.4 8 0.00 157

R102_2D_8_18 8 18 41 635.6 650.3 8 2.26 18,000

R103_2D_5_9 5 9 19 373.5 373.5 4 0.00 336

R103_2D_7_13 7 13 61 423.3 510.4 6 17.06 18,000

R103_2D_9_8 9 8 24 411.4 411.4 5 0.00 1503

R104_2D_5_13 5 13 23 367.3 409.0 4 10.20 18,000

R104_2D_6_12 6 12 24 354.8 408.1 4 11.30 18,000

R104_2D_8_10 8 10 51 364.4 432.8 6 15.80 18,000

R105_2D_7_15 7 15 32 571.4 571.4 8 0.00 220

R105_2D_9_26 9 26 68 797.9 797.9 10 0.00 1405

R105_2D_12_20 12 20 69 730.5 730.5 8 0.00 4284

R106_2D_6_17 6 17 32 477.2 517.1 6 9.57 18,000

R106_2D_7_12 7 12 54 458.6 501.0 7 8.46 18,000

R106_2D_6_27 6 27 46 607.4 671.2 7 9.50 18,000

R107_2D_5_10 5 10 61 380.5 428.2 5 11.20 18,000

R107_2D_4_18 4 18 45 362.7 482.4 5 24.20 18,000

R107_2D_8_11 8 11 58 393.5 465.7 5 15.50 18,000

R108_2D_5_17 5 17 29 348.7 421.9 4 17.40 18,000

R108_2D_9_12 9 12 32 364.3 408.0 4 10.70 18,000

R108_2D_11_7 11 7 26 346.0 346.0 3 0.00 2433

Average 7.12 15.25 43.79 507.95 540.41 6.63 6.90 11,712.71

set and also it can be concluded that HMA is significantly
different from the SA except one case which is formed for
the problems consist of 25 locations.

Conclusions

In this paper, the vehicle routing problem with the 2-
dimensional truck loading constraints is studied for the
cross-docking center in order tominimize total transportation
cost. The problem is formulated as a mixed integer mathe-
matical model and due to the complexity of the problem, a
HMA is proposed as a solution approach for the problem.
The HMA combine the SA and TS algorithm, which are the
two well-known powerful meta-heuristic algorithms to solve
combinatorial problems. The HMA takes the advantages of
SA and TS including the stochastics feature to escape from
local optima and tabu list to avoid cycling. Moreover, five
packing heuristic methods are integrated with the algorithm
to check 2-dimensional loading feasibility. The proposed
algorithm is tested with several instances which are obtained

from Solomon’s benchmark data sets and compared with the
SA and TS methods. First, the algorithms are performed for
small sized instances and compared based on the best integer
solution of CPLEX. Then, the performance of the algorithms
are analyzed on more complex problems. In addition to the
comparisons of the algorithms with respect to best and aver-
age solution, a statistical analysis for solutions are conducted
by applying paired-t test whether there exists significant dif-
ferences between HMA and other two heuristics in terms of
the solution quality. The computational results show that the
proposed HMA exhibits superior performance and outper-
forms the SA and TS method with respect to the solution
quality. On the other hand, the average computational times
of the algorithms are significantly different. As a conse-
quence, this study contributes to the literature by considering
the 2-dimensional vehicle loading operations for VRPCD.
Distinctly from the existing studies on VRPCD, the truck
capacities are identified with the physical dimensional limits
on the contrary of weight or amount of load in VRPCD-2D,
which provides more practical and realistic plan for pickup
and delivery operations. Also an efficient solution method-
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Table 8 Results of the paired-t test

Number of locations HMA–SA HMA–TS

Mean of the
difference

Standard deviation of
the difference

p value Mean of
the difference

Standard deviation of
the difference

p value

25 −5.1 9.7146 0.0692 −14.0 19.1428 0.0230

50 −8.7 7.3907 0.0025 −12.5 7.4692 0.0001

100 −34.5 29.2113 0.0024 −47.5 27.1320 0.0001

ology is introduced to solve VPRCD-2D, which is expressly
better than the SA and TS. For the future work on this study,
the HMA can be improved by considering more than one
cross-docking center, which allows splitting the customer
request in network. Also, the HMA can be built up to solve
VRPCD with 3-dimensional loading plans or VRPCD-2D
with heterogeneous fleet. Another research can be done by
extending the VRPCD-2D with truck-door assignment plans
in cross-docking center, which directly affects the distribu-
tion starting time of the vehicles.
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