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Abstract Extracting reliable features from vibration sig-
nals is a key problem in machinery fault recognition. This
study proposes a novel sparsewavelet reconstruction residual
(SWRR) feature for rolling element bearing diagnosis based
on wavelet packet transform (WPT) and sparse representa-
tion theory. WPT has obtained huge success in machine fault
diagnosis,which demonstrates its potential for extracting dis-
criminative features. Sparse representation is an increasingly
popular algorithm in signal processing and can find concise,
high-level representations of signals that well matches the
structure of analyzed data by using a learned dictionary. If
sparse coding is conducted with a discriminative dictionary
for different type signals, the pattern laying in each class will
drive the generation of a unique residual. Inspired by this,
sparse representation is introduced to help the feature extrac-
tion from WPT-based results in a novel manner: (1) learn
a dictionary for each fault-related WPT subband; (2) solve
the coefficients of each subband for different classes using
the learned dictionaries and (3) calculate the reconstruction
residual to form the SWRR feature. The effectiveness and
advantages of the SWRR feature are confirmed by the prac-
tical fault pattern recognition of two bearing cases.
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Introduction

Condition monitoring and fault diagnosis for modern mec-
hanical equipment are increasingly important to prevent
severe economic losses and casualties (Wells et al. 2013;
Mortada et al. 2014;Yu et al. 2014). Rolling element bearings
as major components in rotating machinery cover a broad
range ofmechanical equipments fromheavymachinery (e.g.,
aircraft engines, train and wind turbines) to light machinery
(e.g., cooling fans and lathe machines). Therefore, bearing
fault diagnosis has elicited considerable attention and is still
a hot topic today. Many fault diagnostic approaches have
been published in literature (Zarei and Poshtan 2007; Li et al.
2008, 2012). In the current study, diagnosis is executed by
following the roadmap of data acquisition, feature extraction
and intelligent classification. The acquired raw signals can-
not be directly employed in diagnostic decision because of
its high dimensionality and noise interference. Thus, feature
extraction from raw signals is necessary.

Previous studies (Baillie and Mathew 1996; Zhao et al.
2005;Wang et al. 2011) showed that features can be extracted
in the time, frequency and time–frequency domains. Features
of the time or frequency domains only focus on specific
signal content that cannot comprehensively consider fault-
related information because defect-induced impulses are
non-stationary with time–varying frequencies. Contrarily,
time–frequency features can present a synthetic considera-
tion for mechanical fault detection by characterizing varying
frequency information at different times. Commonly used
time–frequency analysis methods include short-time Fourier
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transform (Klein et al. 2001), Wigner–Ville distribution
(Baydar and Ball 2001), wavelet transform (Wang et al.
2011; Dong et al. 2013), and empirical mode decomposi-
tion (Yang et al. 2014). Among these techniques, wavelet
transform is outstanding in bearing fault diagnosis because
its multi-resolution merit is suitable for analyzing signals
with transient impulses (Yan et al. 2014).

As one of the most widely used wavelet transform meth-
ods, wavelet packet transform (WPT) is well-known for its
orthogonal, complete, and local properties (Coifman and
Wickerhauser 1992). Features extracted from the wavelet
coefficients of WPT are popular for characterizing machine
faults. For example, Zarei and Poshtan (2007) utilized sub-
frequency band energy as fault index to detect bearing faults,
Bokoski and Juricic (2012) extracted Renyi entropy val-
ues to detect faults in rotational drives, Li et al. (2008)
employed Kurtosis values of WPT coefficients for dam-
age detection and classification. Such features are simple
and calculated in a certain manner to reflect specific signal
characteristics such as the impulses or energy distribution.
These researches have demonstrated the effectiveness of
WPT for mechanical fault diagnosis, and the choice of
optimal discriminative features is the key to achieve good
classification.

Recently, sparse representation theory is proposed and has
received several notable achievements in the field of machin-
ery fault diagnosis (Liu et al. 2002; Feng and Chu 2007). Its
basic principle is to represent a signal by a linear combi-
nation of a few transform basis (atoms) from a dictionary.
The process can be conducted by the following two steps:
dictionary design and sparse coefficient solving. The dictio-
nary can be achieved by predefined transform basis, such as
sinusoidal functions, wavelets, curvelets, or compound over-
complete dictionaries (Lewicki and Sejnowski 2000). It can
also be learned from data by algorithms such as the method
of optimal directions (MOD) (Engan et al. 1999), k-singular
value decomposition (K-SVD) (Aharon et al. 2006) and shift-

invariant sparse coding (Plumbley et al. 2006; Blumensath
andDavies 2007). Once the dictionary is determined, the cor-
responding sparse coefficients can be calculated by any of
the following methods, including greedy pursuit algorithms
(Bahmani et al. 2013), l p norm regularization algorithms
(Marjanovic and Solo 2012) and iterative shrinkage algo-
rithms (Beygi et al. 2012).

According to sparse representation theory, dictionary
learning aims to organize the characteristic patterns in the
learning signals by atoms, which have great adaptability
to the class they are learned from. However, for different
classes, the atoms naturally cannot be activated to approx-
imate input signals as well as the training class because
of differences in data structure, thereby inducing different
reconstruction residuals. Inspired by this idea, sparse repre-
sentation is introduced for feature extraction on the basis of
the residual data generated from WPT subbands, which is
the sparse wavelet reconstruction residual (SWRR) feature.
A scheme is drawn up to implement the feature extraction
in Fig. 1, and brief description of the procedure is summa-
rized as follows: (1) decompose the signal byWPT and select
the fault-related subbands; (2) learn a dictionary Ai for each
fault-related subband by training samples; (3) represent each
fault-related subband in a sparse way based on the learned
dictionary and (4) calculate the reconstruction residual of
each fault-related subband and arrange them in a vector,
which is the final SWRR feature. During this process, the
dictionary is learned atom-by-atom by K-SVD, thus making
it efficient to well match the data structure (Aharon et al.
2006). Sparse coefficient solving is implemented by orthog-
onal matching pursuit (OMP), which is an efficient greedy
pursuit algorithm (Mallat 1989).

The remainder of this study is organized as follows.
“WPT” section describes the theoretical background on
WPT. “Sparse representation theory” section presents the
basic theory of sparse representation, where both dictionary
learning and coefficient solving algorithms are discussed.

Fig. 1 Procedure of SWRR feature extraction method
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Fig. 2 Illustration of WPT

“Fault feature extraction based on WPT and sparse repre-
sentation” section introduces the SWRR feature extraction
method and its application in fault diagnosis. “Engineer-
ing validation” section illustrates the advantages of SWRR
features by two experiments on rolling element bearings.
Conclusions are drawn in “Conclusion” section.

WPT

WPT is an excellent signal decomposition toolwidely used in
signal processing. Practically, WPT can be implemented by
means of a pair of low-pass and high-pass filters, denoted as
h(k) and g(k), respectively. Thesefilters are constructed from
the selectedwavelet functionψ(t) and its corresponding scal-
ing function φ(t) (Mallat 1989), as described in Eq. (1),

φ(t) = √
2

∑

k

h(k)φ(2t − k)

ψ(t) = √
2

∑

k

g(k)φ(2t − k) (1)

where
∑

k h(k) = √
2 and

∑
k g(k) = 0. Using the wavelet

filters, the signal is decomposed into a set of wavelet packet
nodes with the form of a binary tree (Coifman and Wicker-
hauser 1992), as expressed in Eq. (2),

d j+1,2n =
∑

m

h(m − 2k)d j,n

d j+1,2n+1 =
∑

m

g(m − 2k)d j,n (2)

where j indicates the decomposition level, n represents the
node in level j , and m is the number of wavelet coefficients.
As illustrated in Fig. 2, a 3-level WPT generates a total of
eight subbands, and each subband covers one eighth of the
frequency information successively.

Sparse representation theory

Sparse representation of signal

Sparse theory allows us to represent a signal as the linear
combination of atoms in a dictionary. Consider signal y with

p points, which can be viewed as a vector inRp. A redundant
dictionary A = {a1, a2, . . . , an} consists of n atoms a j ∈
R

p, that span the entire space with n > p. Signal y can be
represented as the superposition of basis functions:

y = Ax =
n∑

j=1

a j x j (3)

where x = [x1, x2, . . . , xn]T are the coefficients for basis
functions. Among all possible coefficient sets, the sparsest
can be achieved by optimizing Eq. (4),

arg min
x

‖x‖0, s.t. y = Ax (4)

where ‖ · ‖0 denotes the l0 norm, which is defined as the
number of nonzero elements (Donoho and Huo 2001). As
seen from Eq. (4), to find the optimal sparse representation
of a signal, two problems need to be solved: (1) the designing
of dictionary A and (2) the coefficients solving of Eq. (4).
These two problems will be discussed in the following two
subsections.

Coefficients solving

Exact determination of the sparse representation of a signal
using a generic dictionary is proved to be NP-hard (Davis
et al. 1997), thus, approximate solutions are usually sought.
Any standard technique (Chen et al. 1998) can be used but
a greedy pursuit algorithm such as OMP (Mallat 1989; Polo
et al. 2009) is often employed due to its efficiency (Tropp
2004). Details about the OMP algorithm are stated as follows
Polo et al. (2009):

Step 1: Initialize the residual r0 = y and initialize the set
of selected variables X (c0) = ∅. Set the iteration
counter i = 1.

Step 2: Find the variable Xti by optimizing

max
t

|XT
t ri−1| (5)

and add the variable Xti to the set of selected vari-
ables. Update ci = ci−1 ∪ ti .

Step 3: Let Pi = X (ci )(X (ci )T X (ci ))−1X (ci )T denote the
projection onto the linear space spanned by the ele-
ments of X (ci ). Update ri = (I − Pi )y

Step 4: If the stopping condition is achieved, stop the algo-
rithm. Otherwise, set i = i + 1 and return to Step
2.

Two commonly used stoping rules are expressed as Eqs. (6)
and (7),
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‖rk‖2 < ε0 (6)

‖x‖0 < k0 (7)

where ε0 and k0 are set according to noise level. ‖ · ‖2 means
the l2 norm defined as

‖x‖22 =
√∑

i

x2i (8)

In this study, we will use the stopping rule in Eq. (7) because
residuals are more intuitive to evaluate the performance of
the sparse representation.

Dictionary learning

Learning a dictionary directly from data rather than using
a predetermined dictionary (such as sinusoidal functions or
wavelet) usually leads to better representation and hence can
provide improved results in practice (Rubinstein et al. 2010).
Designing dictionaries based on training is a much recent
approach to find a proper dictionary which is strongly moti-
vated by recent advances in the sparse representation theory
(Engan et al. 1999; Aharon et al. 2006; Rubinstein et al.
2010).

In dictionary learning, given a set of samples Y =
[y1, y2, . . . , yM ], the objective is to find a dictionary A that
provides the best representation for each sample in this set.
Mathematically, it can be described by Eq. (9),

min
A,X

‖Y − AX‖2F = min
A,{xi }Mi=1

m∑

i=1

‖yi − Axi‖22
subject to ‖xi‖0 ≤ k0, 1 ≤ i ≤ M. (9)

where X = [x1, x2, . . . , xM ] is the sparse coefficient. ‖ · ‖2F
represents the Frobenius norm defined in Eq. (10).

‖X‖2F =
√∑

i j

X2
i j (10)

Commonly used algorithms to find such dictionary are the
MOD (Engan et al. 1999) and K-SVD (Aharon et al. 2006)
algorithms. BothMODandK-SVDare iterativemethods and
they alternate between sparse-coding and dictionary update
steps. MOD updates all the atoms simultaneously by solving
a quadratic problem and usually suffers from the high com-
plexity of the matrix inversion. Contrarily, K-SVD updates
the dictionary atom-by-atom, thereby achieving more effi-
cient solution. Therefore, K-SVD is adopted in the current
study and details about this method are presented as follows
Bruckstein et al. (2009).

Step 1: Set the iteration counter k = 0, the column index
j0 = 1 and initialize A(0) ∈ R

n×m either by using
random entries or using m randomly chosen exam-
ples.

Step 2: Increment k by 1 and use OMP to approximate the
solution of Eq. (11) to obtain sparse representation
xi for 1 ≤ i ≤ M , which forms matrix X(k).

x̂i = argmin
x

‖yi − A(k−1)x‖22, subject to‖x‖0 ≤ k0

(11)

Step 3: Define the group of examples that use the atom a j0
as Eq. (12).

Ω j0 = {i |1 ≤ i ≤ M, X(k)[ j0, i] �= 0} (12)

Step 4: Compute the residual matrix using Eq. (13), where
x j are the j th rows in the matrix X(k).

E j0 = Y −
∑

j �= j0

a jxTj (13)

Step 5: Restrict E j0 by choosing only the columns corre-
sponding to Ω j0 , and obtain ER

j0
.

Step 6: Apply SVD decomposition ER
j0

= UΔVT . Update
the dictionary atom a j0 = u1 (u1 is the first column

in U) and the representations by x j0
R = Δ[1, 1] · v1

(v1 is the first column in V).
Step 7: Repeat Step3 toStep6 for j0 = 1, 2, . . . ,m to update

the columns of the dictionary and obtain A(k).
Step 8: If ‖Y − A(k)X(k)‖2F is smaller than a preselected

threshold or the iteration count reach the predefined
value, stop the algorithm. Otherwise, apply another
iteration from Step 2 to Step 7.

Fault feature extraction based on WPT and sparse
representation

WPT is able to identify defect-induced transient components
embedded within the bearing vibration data (Gao and Yan
2006), and features extracted from wavelet coefficients of
WPT have also been widely used for characterizing machine
faults (Zarei and Poshtan 2007; Bokoski and Juricic 2012).
These features are simple and always lead to fast algorithms,
but fall short in well matching the structures in the analyzed
data (Lewicki and Sejnowski 2000). Sparse representation as
an information-oriented signal processing technique benefit-
ting from dictionary learning can capture the data structure
of the learning signals and hide it in atoms. The approxi-
mation of the input signal depends on the activation of the
atoms. Considering WPT is effective to reflect the unique
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Fig. 3 Illustration of the energy distribution of a WPT spectrum

fault-induced patten for each fault type, if we approximate
different classes by a specific dictionary, the final recon-
struction residuals will be distinguishable due to its different
intrinsic data structure. Driven by this idea, a feature extrac-
tion method for fault diagnosis is proposed in this section,
which is composed of three main parts, namely, WPT band
selection, dictionary learning and SWRR feature extrac-
tion.

WPT frequency band selection

As described in “WPT” section, WPT decomposes a sig-
nal into several subbands and each subband covers parts
of the frequency information successively. Generally, fault
impulses will be concentrated in some specific frequency
bands that display local energy concentration as well as
fault features. Frequency bands outside the region carry
insignificant information that will decrease computational
efficiency. Therefore, we are only concerned with those
informative subbands for feature learning. The fault-related
frequency band can be selected by the distribution of average
energy for each subband. Suppose a signal has m sub-
bands {w(1), w(2), . . . , w(m)}, the average energy of the i th
subband with l(i) points can be calculated as shown in
Eq. (14).

AE(i) = Ei

Etotal
=

(∑l(i)
j=1 w(i)( j)2

)
/ l(i)

∑m
i=1

((∑l(i)
j=1 w(i)( j)2

)
/ l(i)

) (14)

Considering the case shown in Fig. 3, energy in subbands
7–10 is much larger than the others, which means these sub-
bands contain the major vibration information of the signal.
Therefore, these frequency bands should be selected for fur-
ther analysis. In practice, the WPT band should cover the

frequency information of all fault types, thus, the final result
is determined by the union of the frequency bands represent-
ing different faults.

Feature extraction

Benefiting from dictionary learning, sparse coding will find
concise, high-level representations of input signals (Aharon
et al. 2006). Generally, each fault class has its correspond-
ing sparse representation. A dictionary that well matches
the structure of data can lead to better sparse representa-
tion with high sparsity and small residual. If we reconstruct
the signal by using a specific dictionary with certain sparsity,
the residual will be different for different fault signals. This
result stems from the data structure of the analyzed signals
expressing dissimilarity in different degrees, thus activating
the atoms of dictionary to different extents. Given dictionary
A, a sparse representation of signal y can be achieved by solv-
ing Eq. (4). By denoting the reconstruction signal ŷ = Ax,
the residuals are defined as Eq. (15).

r =
√∑n

i=1(y(i) − ŷ(i))2

n
(15)

The dictionary should be designed properly to realize clas-
sification. For bearing fault diagnosis, all fault signals can
be considered the superposition of the fault-related part and
healthy part in some degree. The data structure for healthy
signals with few impulses is more discriminative among
others. Therefore, learning a dictionary from the healthy sig-
nal for further diagnosis is reasonable. In the current study,
considering the merits of WPT in bearing diagnosis, the dic-
tionarywill be trained by the selectedWPT coefficients of the
healthy signal. The general frame for SWRR feature extrac-
tion is illustrated in Fig. 1. Suppose p fault-related frequency
bands are selected for each sample by “WPT frequency band
selection” section, the detailed process can be summarized
as follows:

Step 1: PerformingK-SVDoneachof the selectedWPTsub-
bands from healthy samples to obtain corresponding
p dictionaries Ai (i = 1, 2, . . . , p).

Step 2: Use Ai to calculate the sparse representation of each
sample. The coefficients are solved by OMP.

Step 3: Calculate the reconstruction residuals ri (i = 1, 2,
. . . , p) to obtain the SWRR feature vector [r1, r2,
. . . , rp].

The practicability and advantages of SWRR features will
be confirmed by the experiments described in “Engineering
validation” section.
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Engineering validation

Bearing case I

Data instruction

The SWRR feature is first evaluated by the test data of
rolling element bearings from the CaseWestern Reserve Lab
(CWRU). This data set has been analyzed by a number of
other researchers (Lei et al. 2008; He 2013) and considered
as a benchmark. The experimental apparatus is presented
in Fig. 4. It consists of the following main parts: a 2 hp
motor on the left, a torque transducer and a dynamometer
in the middle and a load motor on the right. The testing
groove ball bearing supports the motor shaft at the drive
end. Vibration data are collected by accelerometers attached
to the housing with magnetic bases. Sampling frequency
is set at 12kHz. Single point faults are introduced to the
test bearings using electro-discharge machining with fault
diameters of 0.007, 0.014, 0.021 and 0.028 in. In this study,
bearings with 0.007 fault diameter were used to evaluate
the proposed method. Four different bearing states, namely,
healthy, rolling-element defect, inner-race defect and outer-
race defect were simulated in the test under four different
loads (0, 1, 2 and 3hp). The motor speeds varied under dif-
ferent loads. Typical waveforms of the samples from the four
cases are illustrated in Fig. 5.

In this case, 50 samples, each containing 1024 points, are
first collected from the healthy signal under one load con-
dition. These 200 samples are used for dictionary learning,
which are denoted as S0. Thereafter, 50 samples, each con-
taining 1024 points, are collected for one fault type under
one load condition (samples from healthy signal are differ-
ent from those used for dictionary learning), thus, totally
800 (50 × 4loads × 4classes) samples are collected, with 200
samples in each health condition. 100 samples are randomly
selected from each state to construct the training dataset
and the remaining 100 samples are used for testing, thereby

Fig. 4 Experimental setup for acquiring vibration signals of bearing
case I
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Fig. 5 Typical waveforms of signals in bearing case I

achieving a 400-sample training set (S1) and a 400-sample
testing set (S2). The ratio of training and testing sample num-
ber is 1:1 to effectively evaluate the classification model as
well as highlight the advantage of the proposed feature (He
2013).

WPT subband selection for bearing case I

In this case, a 4-level WPT is performed on the signal.
Results for defective signals are shown in Fig. 6a, c, which
display the WPT spectrums as well as the corresponding
energy distributions. The healthy signal is demonstrated in
Fig. 6d. The energy-concentrated subbands are 7–10 for sig-
nals with defects in the rolling element, 7–11 for signals
with defects in the inner and outer raceways. According
to the theory in “WPT frequency band selection” sec-
tion, subbands 7–11 are selected for distinguishing different
fault types, which cover most of the interested vibration
information.

Dictionary learning for bearing case I

The dictionary is learned from the selected WPT subbands
of S0 by solving Eq. (9). In this case, five subbands (sub-
bands 7–11) are selected, indicating five dictionaries should
be trained, respectively. For a certain subband, considering
a signal has a length of 1024, each subband of the 4-level
WPT should has a length of 1024/24 = 64, thus achieving a
64× 200 training set Yi (each column in Yi indicates a sub-
band of a sample). Ai measuring n × m generally satisfies
m > n, n is set to be 64 andm is set to 120 accordingly. Spar-
sity level T could be set as T ≤ n/10, and is set at 12 in this
case. K-SVD can be stopped by monitoring the reconstruc-
tion residue or the iteration number as presented in Step 8 of
the algorithm (“Dictionary learning” section). In this study,
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Fig. 6 WPT spectrums and the corresponding energy distribution of different health conditions in bearing case I: a rolling-elements defect; b
inner-raceway defect; c outer-raceway defect and d healthy

we choose to control the iteration number because it is sim-
ple and intuitive. The iteration number is set at 80, which is
enough for convergence, and the reconstruction residuals for
the 5 subbands based on the corresponding dictionaries are
presented in Fig. 7. The reconstruction residuals converge to
a small value for all the 5 subbands, thus indicating that the
learned dictionaries can successfully capture the characteris-
tics of the training set.Atoms in this dictionary aremost likely
to be actived to approximate the learned class of data. In our
research, we use the dictionary learned from healthy signal
because of its discriminability of different health conditions.
The fault-induced impulses of different classes activate the
atoms in the dictionary in different degrees, thus leading to
the difference of reconstruction residuals for each subband,
which can be regarded as a reflection of fault information.

SWRR feature extraction for bearing case I

As discussed in “Feature extraction” section, SWRR fea-
ture can be calculated based on the learned dictionaries and
WPT. Training set S1 is first analyzed. The SWRRs for the
selected WPT subbands of each sample are shown in Fig. 8.
The SWRR features for healthy signals are distributed near
zero, which can be viewed as a standard value. For defective
signals, the SWRR features are clustered at a certain value
that deviated from the standard value to different extents.
This deviation is caused by the differences between healthy
and defective signals, and the differences among defective
signals are due to the different fault-induced data structure.
The SWRR feature for the outer-race defect show relatively
poor clustering performance, but the between-class distances
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Fig. 7 Reconstruction residuals
during the K-SVD process for
bearing case I
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Fig. 8 SWRR features for
different subbands in bearing
case I
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Fig. 9 WPE features for
different subbands in bearing
case I
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are far enough to separate this class from the others. The
combination of all SWRR features expresses the accumu-
lated pattern dissimilarity in each fault-related subband, and
the fault pattern recognition performance will be further dis-
cussed in “Classification evaluation” section.

To highlight the advantages of SWRR feature, two com-
monly used WPT-based features, namely, wavelet packet

energy (WPE) (Ocak et al. 2007; Zarei and Poshtan 2007)
and Kurtosis (Li et al. 2008), are calculated for compari-
son. These two features for the selected subbands are shown
in Figs. 9 and 10. Both WPE and Kurtosis features exhibit
overlaps in many subbands and show rather worse clustering
performance than the SWRR feature. These two features are
not as clear and regular as SWRR because they only focus on
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Fig. 10 Kurtosis features for
different subbands in bearing
case I
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a specific characteristic, such as energy or impulse, whereas
SWRR can comprehensively analyze the WPT results and
capture the major structure of the data. A more precise eval-
uation of SWRR features can be found in the classification
result in “Classification evaluation” section.

Classification evaluation

To investigate the effectiveness of SWRR features for fault
diagnosis, the nearest neighbor classifier as one of the
simplest and the most intuitive classifiers is employed (Ghar-
avian et al. 2013). Nearest neighbor classifier is based on the
intuitive concept that data instances of the same class should
be closer in the feature space. It is conducted by calculating
the distance of a new sample to all samples in the training
data, and class is determined by the sample nearest to the
new one.

As described in “Data instruction” section, samples are
randomly selected to construct the training and testing
dataset, which contains 400 samples, respectively. Cai et al.
(2007) and Zheng et al. (2011) conducted the random selec-
tion for 20 times to evaluate algorithms for face recognition.
In the current study, we randomly split the samples for 50
times to obtain a more convincing evaluation as did in Li
et al. (2011). The best and mean classification accuracies of
each type of feature based on the nearest neighbor classifier
during the 50 runs are summarized in Table 1. It can be seen
from Table 1 that the SWRR feature performs better than
the other two features obviously. The best recognition rates

Table 1 Classification accuracy for different features of bearing case I

Item SWRR WPE Kurtosis

Mean (%) 99.47 98.17 95.65

Best (%) 100 99.50 98.25

of the nearest neighbor classifier achieved 100 percent by
using SWRR features as the input vector. The mean classi-
fication rates were also steadily higher with 99.47%, while
the mean performances of WPE and Kurtosis are 98.17 and
95.65%, respectively. The experiment results show that the
proposedSWRRfeature can reliably recognize different fault
types of bearings. Moreover, SWRR feature exhibits great
advantages in recognition accuracy over WPE and Kurtosis
features, which makes it much more appealing for bearing
fault diagnosis.

Bearing case II

Data instruction

To further confirm the reliability of theSWRRfeature in bear-
ing fault diagnosis, another experiment on rolling element
bearings was conducted. Figure 11 illustrates the experimen-
tal setup.

Defect groovewas separately set across the outer raceway,
inner raceway and rolling element as presented inFig. 12.The
vibration signals including four working conditions (healthy,
rolling-element defect, inner-raceway defect, outer-raceway
defect) were acquired by accelerometers mounted on the
outer case of the testing bearings with the sampling fre-
quency of 10kHz under four different rotation speeds (900,
1200, 1350, 1450 rpm). Typical waveforms of the four health
conditions are illustrated in Fig. 13, A 200-sample dictionary
learning set S0, a 400-sample training set S1 and a400-sample
testing set S2, each containing 1024 points, are constructed
using the same method as bearing case I.

WPT subband selection for bearing case II

In this case, a three-level WPT is applied to the ana-
lyzed signal. The WPT spectrums and the corresponding
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Fig. 11 Experimental setup for
acquiring vibration signals of
bearing case II

Fig. 12 Defectives in bearing case II: a rolling-element defect; b inner-raceway defect and c outer-raceway defect
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Fig. 13 Typical waveforms of signals in bearing case II

energy distributions of defective bearing signals as well
as the healthy signals are shown in Fig. 14. The energy-
concentrated subbands are 3 to 5 for signals with defect in

rolling element, 3 to 8 for signals with defect in inner and
outer raceways. Therefore, subbands 3 to 8 are selected by
the union of the three conditions for distinguishing different
fault types.

Dictionary learning for bearing case II

Adictionary is learned from selectedWPT subbands of S0 by
solving Eq. (9). In this case, six dictionaries that correspond
to six selected subbands should be learned, respectively.
Each subband of the 3-level WPT should has a length of
1024/23 = 128, thus achieving a 128 × 200 training set Yi .
The size ofAi is set at 128×160 and the sparsity level T is set
at 15. During the 80 iterations of K-SVD, the reconstruction
residuals for the six subbands based on the corresponding
dictionaries are presented in Fig. 15. The reconstruction
residuals consistently converge to a small value for all the
6 subbands, thus indicating the effectiveness of the learned
dictionaries.
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Fig. 14 WPT spectrums and the corresponding energy distribution of different fault types in bearing case II: a rolling-elements defect; b inner-
raceway defect; c outer-raceway defect and d healthy

Fig. 15 Reconstruction
residuals during the K-SVD
process for bearing case II
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Fig. 16 SWRR features for
different subbands in bearing
case II
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Fig. 17 WPE features for
different subbands in bearing
case II
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SWRR feature extraction for bearing case II

The SWRR features of training samples S1 is presented in
Fig. 16. The figure indicates that the clustering performance
is good. Features in the same class are concentrated in a
specific value that can separate them for the other classes,
which shows the effectiveness of SWRR.

As a comparison, WPE and Kurtosis features for the
selected subbands are shown in Figs. 17 and 18. However,
these two features vary in a relative large range for samples in
the same class, and show indistinct boundaries among differ-
ent fault types, thus causing difficulty to precise fault pattern
recognition. Accordingly, we can preliminarily infer that the
SWRR features with more regular distributions will perform
better thanWPE andKurtosis features. This result again con-
firms that SWRR features can precisely capture the major
structure of the data.

Classification evaluation

The nearest neighbor classifier is still employed in this case
to investigate the effectiveness of SWRR features for fault

diagnosis. Similar to bearing case I, we conducted random
sample selection for 50 times to obtain a convincing eval-
uation. The best and mean classification accuracies of each
type of feature based on the nearest neighbor classifier over
the 50 runs are summarized in Table 2. Comparing the three
features, the SWRR feature is still more effective than WPE
and Kurtosis. The best recognition rates of SWRR reaches
the highest 100%. The mean classification rates were also
steadily higher with 99.27%,which ismuch better thanWPE
and Kurtosis features with 97.95 and 94.90%, respectively.
The experiment results again exhibits the effectiveness and
advantages of SWRR features for bearing fault classification.

Discussions

The main contribution of this study is the proposal of a
new SWRR feature based on WPT and sparse represen-
tation theory. WPT is used to detect transient impulses of
the signal, whereas sparse representation theory is employed
to learn a dictionary from healthy signals and reflect fault
types by reconstruction residuals (SWRR). This idea is
mainly inspired by dictionary learning. Research has proven
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Fig. 18 Kurtosis features for
different subbands in bearing
case II
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Table 2 Classification accuracy for different features of bearing case
II

Item SWRR WPE Kurtosis

Mean (%) 99.27 97.95 94.90

Best (%) 100 99.25 96.75

that exactly solving the unique dictionary is impractical
but a stable dictionary is feasible (Aharon et al. 2006).
Hence, learning a dictionary with a small enough objec-
tive function value can make atoms in dictionary with
strong representativeness. The atom‘s role is weakenedwhen
the data structure of input signal is different, which leads
to different reconstruction residuals. Therefore, combining
learning residuals from WPT subbands as the feature is
reasonable. Experiments have comprehensively shown the
effectiveness and benefits of SWRR features in fault type
classification.

In this study, the dictionaries are learned from healthy
signals and the number of dictionaries is determined by the
fault-related WPT subbands alone regardless of the situation
number.Generally, fault-related informationwill concentrate
in a small range in the time–frequency space. Therefore, the
number of dictionaries won‘t be larger than 8 in most of
the cases, thus proving the practicality of SWRR. Besides,
a larger sample dimension p indicates more atoms in dic-
tionary A (atom number n > p as shown in Eq. (3)),
which calls for more samples for training. WPT subband
has a much smaller dimension than the original data as
shown in “Engineering validation” section, which reduces
the dictionary dimension as well as the need for sample
number.

Our experiments were performed by using desktop com-
puter with a dual-core AMDAthlon 7750 2.70GHzCPU and
6GB memory. For the dictionary learning process of each
subband, time was less than 4s for running 80 iterations for
bearing case I (200 samples, each with 64 data points) and

less than 8s for bearing case II (200 samples, each with 128
data points). The following SWRR feature extraction part
took about 0.2 s for both cases. Therefore, with a learned
dictionary, the feature extraction part is fast that can fit the
conventional offline and online diagnosis.

In this study, only the intuitive nearest neighbor classi-
fier is applied for classification to highlight the benefits of
SWRR features. In practical diagnosis, more advanced intel-
ligent classifiers, such as neural network (Zhang et al. 2013;
Wang andCui 2013;Bilski 2014) and support vectormachine
(Cui andWang 2011) can be used for better classification per-
formance, particularly for complex fault diagnosis.

Conclusion

This study proposes a SWRR feature extraction scheme for
rolling element bearing diagnosis based on WPT and sparse
representation theory. In this scheme, WPT can explore
fault-induced impulses embedded in the signals, and fault
characteristics can be reflected by sparse representation the-
ory in a novel way. Compared with traditional WPE and
Kurtosis features that only focus on a specific aspect of
the signal, SWRR has significant advantage by comprehen-
sively exploring data structure. In the diagnosis experiments
with two rolling bearing cases, SWRR feature is evaluated
to have clear and regular feature distribution, outperforming
WPE and Kurtosis features. Furthermore, the practical appli-
cation of SWRR in distinguishing different bearing faults
by the nearest neighbor classifier further confirms its merits
with the highest recognition rate. All evidence indicates that
the SWRR feature has valuable practicality and significant
advantages in rolling bearing fault diagnosis.
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