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Abstract Conventional inventory models mostly cope with
a known demand and adequate supply, but are not realistic
for many industries. In this research, the fuzzy inference sys-
tem (FIS) model, FIS with artificial neural network (ANN)
model and FIS with adaptive neuro-fuzzy inference sys-
tem (ANFIS) model in which both supply and demand are
uncertain were applied for the inventory system. For FIS
model, the generated fuzzy rules were applied to draw out
the fuzzy order quantity continuously. The order quantitywas
adjusted according to the FISmodel with the evaluation algo-
rithm for the inventory model. The output of FIS model was
also used as data for FIS+ANN and FIS+ANFIS models.
The FIS+ANFIS model was studied with three member-
ship functions; trapezoidal and triangular (Trap), Gaussian
and bell shape. Inventory costs of the proposed models were
comparedwith the stochastic economic order quantity (EOQ)
models based on previous data of a case study factory. The
results showed that the FIS+ANFIS_Gauss model gave the
best performance of total inventory cost saving by more than
75% compared to stochastic EOQ model.
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Introduction

An inventory system controls the level of inventory by decid-
ing howmuch to order (the level of replenishment) and when
to order (reorder point). The purpose of an inventory system
is to make decisions concerning the level of inventory that
will effect in a desirable balance between holding inventories
and the cost related with them (Meredith and Shafer 2011).
The inventory level is difficult to deal with because of the
number of factors concerned and uncertain events such as
unpredictability of demand and supply. A appropriate policy
and control system for each type of product is necessary.

Inventory lot-sizing problems are production planning
problems with the purpose of deciding the periods when
production should happen and the quantities to be made for
meeting demand while reducing production and inventory
costs. Since the original lot-sizing model presented by Harris
in 1913 (Andriolo et al. 2014), most models focus mainly on
deterministic static lot-sizing models. Further work (Som-
mer 1981; Samanta and Al-Araimi 2001) has developed
fuzzy lot sizing models, followed by adaptive neuro-fuzzy
inference system (ANFIS) (Samanta and Al-Araimi 2003) to
fuzzy inventory lot-sizingmodels.Recently, several literature
reviews of lot-sizing models have been presented (Andriolo
et al. 2014; Aloulou et al. 2014; Glock et al. 2014).

Inventory lot-sizing models can be divided into three
groups which are deterministic models, stochastic models
and fuzzy models as illustrated in Fig. 1. Table 1 shows the
contributions of the inventory lot-sizing models.

Deterministic lot-sizing models

All input data of deterministic lot-sizing models are sup-
posed to be available. These models can be classified into
two groups, static and dynamic models. For deterministic
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Fig. 1 Classification of inventory lot-sizing models. EOQ Economic order quantity, EPQ Economic production quantity, ANN Artificial neural
network, ANFIS Adaptive neuro-fuzzy inference system, Methods proposed in this research

static lot-sizing models, the original model was known as
Economic Order Quantity (EOQ) or square root formula,
with the objective to minimize the sum of inventory holding
and ordering costs. The EOQ formula was modified (Taft
1918) by adding ratio between demand rate and production
capacity and called Economic Production Quantity (EPQ).
Since then many extended researches about EOQ and EPQ
have been reported.

For deterministic dynamic lot-sizing models, the goal is
to minimise the sum of inventory holding and set up costs,
but it permits the demand for products to change over time.

Because the deterministic models assume known parame-
ters, most of the existing literature tries to present an optimal
solution of the problem while others present some heuristic
approaches in order to achieve desirable results for pragmatic
conditions. However, in the real world, there are some uncer-
tain parameters that need to be considered.

Stochastic lot-sizing models

Some input data of stochastic lot-sizing models are defined
as probability density functions. These models can be clas-
sified into two groups, static and dynamic models. Many
stochastic static lot-sizing models are based on EOQ model
but have different stochastic information such as lead time,
demand, supplier capacity, cost, price etc. Heuristics method
(Seneyigit and Erol 2010) for stochastic lot-sizing and EPQ
models for deteriorating inventory (Chung et al. 2011; Wee
and Widyadana 2012) have been proposed.

Dynamic stochastic lot-sizing models were presented to
solve the problem of uncertain demand (Kamal and Sculfort
2007) and normally can be solved by the optimizationmodels
such as the Wagner-Whitin (WW) algorithm and the heuris-
tic models such as Silver-Meal (SM) method, part period

balancing (PPB), lot for lot (L4L) etc. According to funda-
mental of probability theory, stochastic inventory models are
efficient when the input information of models is known pre-
cisely and is obtainable (Chen2011). In a realworld situation,
supply data may not exist when required because of random
capacity of suppliers, uncertain events or seasonal factors.
Meanwhile, some of the uncertainties within the inventory
system cannot be taken into account properly by using con-
cepts of probability theory (Tanthatemee and Phruksaphanrat
2012).

Fuzzy lot-sizing models

Fuzzy set theory has been applied to unpredictable inven-
tory problems in non-stochastic judgment. These models can
be divided into three groups, mathematical, fuzzy logic and
ANFIS models.

For fuzzy mathematical lot-sizing models, many models
of fuzzy EOQ models have been proposed. Many researches
applied fuzzy sets to demand, deterioration rate, defective
rate, lead time, etc, but many of these methods are complex
and arduous to accomplish.

Fuzzy logic lot-sizing models have been presented
(Samanta and Al-Araimi 2001) for fuzzy demand. A fuzzy
simulation of a single item inventory system with vari-
able demand to determine the EOQ with uncertain lead
time (Yimer and Demirli 2004) was developed. Other fuzzy
logic models considered inventory control of fuzzy demand
and stock (Rothstein and Rakityanskaya 2006; Chede et al.
2012) and also demand and lead time uncertainties by
fuzzy logic (Kamal and Sculfort 2007). A fuzzy continu-
ous inventory control system for a single item with both
uncertain demand and supply has been presented (Tanthate-
mee and Phruksaphanrat 2012) and later determination of
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the design range and the effect of trend demand (Aengchuan
and Phruksaphanrat 2013). This model saved inventory costs
greatly when compared with the conventional stochastic
EOQ model, Silver Meal model and Wagner Whitin Model.

For ANFIS lot-sizing models, adaptive neuro-fuzzy infer-
ence system and fuzzy logic control have been proposed for
fuzzy demand and inventory level (Samanta and Al-Araimi
2003). The ANFIS approach to adaptive inventory control
has been applied to single input – single output (Lenart
et al. 2012). The set of input values were determined by the
expected values of the demand.

Fuzzy mathematical models are complicated and difficult
for decision makers to implement in real life situations but
fuzzy logic tools are not complicated to implement and mod-
ify. However, fuzzy tools should achieve the same as or better
than other soft approaches (Azedegan et al. 2011). These
characteristics have made fuzzy logic and tools associated
with its use quite popular in tackling manufacturing related
challenges. Inventory problem is a crucial problem in man-
ufacturing system, which can cause a lot of wastes. Most
models are complicated and difficult for the practical use.
Many researches focus on a fuzzy mathematical for inven-
tory lot-sizing problem, but there is limited published work
regarding applications of the neuro-fuzzy approach to inven-
tory based on FIS+ANN and FIS+ANFIS. Furthermore,
consideration of both fuzzy demand and supply by ANN and
ANFIS has not been taken into account. So, this research pro-
poses the integrated methodologies of FIS+ANNmodel and
FIS+ANFIS model for choosing of criteria and developing
the model of the practical problem with the fuzzy inputs for
both demand and supply to the inventory lot-sizing problem.

Inventory system

The relevant elements associated with howmuch to order are
normally concerned with inventory costs and inventory lot-
sizing models. The inventory cost consists of holding cost,
ordering cost and shortage cost. All inventory models try to
reduce the total inventory costs.

Inventory cost

In making any decision with respect to inventories, the fol-
lowing costs must be considered.

Ordering cost is the fixed costs usually related to the pro-
duction of a lot inside or the placing of an order outside with
a vendor.

Holding (or carrying) cost includes the costs for ware-
house, transporting, insurances, pilferage, fragility, obsoles-
cence.

Shortage cost. This is usually the sum of the lost profit. It
occurs when customer demand cannot be met due to inade-
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quate inventory. There is a trade-off between holding stock
to fulfill demand and the costs effecting from stock out.

The case study model considers the total inventory costs
as the summation of ordering cost, holding cost and shortage
cost.

TC = mCo + ChQh + CsQs (1)

where TC is the total inventory cost. m is the number of
ordering per period. Co is ordering cost per time. Ch is the
holding cost per unit per period. Cs is the shortage cost per
unit per period. Qh is the holding quantity per period and Qs

is the shortage quantity per period.

Static inventory lot-sizing

In a fixed-order-quantity system when inventory approaches
a particular level, referred as the reorder point, a fixed
quantity is ordered. The EOQ model is extended to the sto-
chastic EOQmodel to figure out the problemof unpredictable
demand, and is appliedwhen the uncertainties are considered
as random that can coped with probability theory. Supposing
that the demand is expressed by a normal distribution, deter-
mination of howmuch to order can be calculated (Kamal and
Sculfort 2007) by the following equation.

Q∗ = EOQ =
√
2CoHd(Ch + Cs)

ChCs
, (2)

where d is the average weekly demand. H is the total length
of the planning horizon (number of weeks).

If demand is uncertain, safety stock must be added into
the reorder point and the reorder point and the safety stock
can be calculated.

R = dL + SS, (3)

SS = zσd
√
L, (4)

where R is the unit of reorder point. SS is safety stock. L is
lead time. σd is the standard deviation of weekly demand. z
is the number of standard deviations according to the service
level probability.

Fuzzy inference system (FIS)

Fuzzy inference system is a system that is applied to gov-
ern the connection between the input and output variables
of a system as shown in Fig. 2. There are three distinct
types of fuzzy inference systems: Mamdani-type, Sugeno-
type and Tsukamoto-type (Castillo and Melin 2008). The
main difference betweenMamdani and Sugeno resides in the
consequence of fuzzy rules.Mamdani-type uses fuzzy sets as

rule consequence whereas Sugeno-type uses linear functions
as rule consequence. For Tsukamoto-type, the consequent of
each fuzzy rule uses a monotonical membership function. In
this research Mamdani-type is used.

In a fuzzy inference system, the crisp inputs are converted
into fuzzy inputs by using fuzzification interface. After fuzzi-
fication the rule bases are developed. The rule bases and
the database are mutually referred to as the knowledge base.
Defuzzification is applied to transform the fuzzy value to the
real life value which is the output. FIS is implemented in var-
ious applications for both management and manufacturing
(Kovac et al. 2013; Nasrollahzadeh and Basiri 2014; Guner
and Yumuk 2014; Camastra et al. 2015; Kocyigit 2015).

In this research, fuzzy logic toolbox of MATLAB was
applied to the Fuzzy Inventory System (FIS) model to com-
pute order quantity in any time period. The flow chart of all
parameters of the inventory system model is illustrated in
Fig. 3. The two fuzzy input variables are demand (Di ) and
supply (Si ). The output variable is order quantity (Qi ), and is
described by linguistic variables. Then the output is entered
to the evaluation algorithm as shown in Fig. 4.

From Fig. 4, the inventory levels, which are the beginning
inventory (Ibi ) and the end inventory (Iei ) can be determined
by output variable (Qi ) and reorder point (R). Then the
inventory costs, which are ordering cost (Coi ), holding cost
(Chi ) and shortage cost (Csi ) can be calculated by ordering
quantity (Qoi ), holding quantity (Qhi ) and shortage quantity
(Qsi ), respectively. The total cost per period is determined by
the summation of the inventory costs. This fuzzy logic model
then generates for the next period and follows this flow chart
for each period (i = 1, 2, 3, . . . , n). Then the total inventory
cost of themodel is the summation of the total inventory costs
of all periods.

Artificial neural networks (ANN)

Artificial neural networks consist of a number of interlinked
cells as neurons with weights running coincidently to ini-
tiate artificial intelligence. ANN composes of three layers:
input, hidden and output layers. The input and output lay-
ers consist of a set of neurons expressing input and output
variables. The hidden layer passes the data it receives from
the input layer, and transmits a response to the output layer.
There is no speculative limit on the number of hidden layers
but generally there is just one or two (Sumathi and Paneersel-
vam 2010). The output layer receives all responses from the
hidden layer and generates an output vector. Each layer has
a fixed number of processing elements (neurons) which are
linked with adjustable weights. These weights are adjusted
during the training process until the error is decreased greatly
and is acceptable for a specific task. ANN is trained by an
appropriate algorithm for a particular problem.Even though a
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Fig. 2 A scheme of inference
fuzzy inventory system
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number of training algorithms are convenient, the most well-
known is feed-forward back propagation algorithm (Kiran
and Rajput 2011). The output of each neuron is computed
by multiplying its inputs by a weight vector, summing the
results, and adding an activation function to the sum.

y = F

(
l∑

k=1

wk xk + bk

)
(5)

where, F is the activation function, l is the number of neurons
in the consecutive layer, wk is the weight of the respective
connection, and bk is the bias for the neuron. F is ordinarily
linear, step, threshold, logarithmic sigmoid (logsig) or hyper-
bolic tangent sigmoid (tansig) function (Razani et al. 2013).
ANN is implemented in various applications such as forecast-
ing of a ground-coupled heat pump performance (Esen et al.
2008a, b), modelling of a solar air heater (Esen et al. 2009),
autoregressive control chart pattern recognition (Yang and
Zhou 2013), and other applications (Kuo C. et al. 2014; Kuo
R. et al. 2014; Tsai and Luo 2014; Jha et al. 2014; Kocyigit
2015; Wang et al. 2015).

Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS unlike FIS, automatically creates sufficient rules con-
cerning input and output data, and uses benefit of the learning

capability of neural networks. It is currently one of the effec-
tive tools used for pattern recognition, system identification
and can generate precise models of systems. This approach
does not need expert opinion for modelling and training a
system.

Although various applications of the ANFIS have been
applied (Azizi et al. 2013; Guneri et al. 2011; Melin et al.
2012), there are few researches applying inventory control
in production systems. Jang first initiated the ANFIS method
by embedding the fuzzy inference system into the structure
of adaptive networks (Jang 1993). An ANFIS provides the
mapping relationship between the input and output data by
utilizing hybrid learningmethod to find out the optimal distri-
bution of membership functions (Ying and Pan 2008). In the
ANFIS architecture, ANN learning algorithms are applied to
define the parameters of fuzzy inference system. A typical
architecture of ANFIS is shown in Fig. 5 for modeling of
function f (x, y). The round nodes describe nodes that are
fixed,whereas the rectangular nodes are nodes that have para-
meters to be learnt or called adaptive nodes. For simplicity,
consider a FIS with two inputs (x, y) and one output ( f ). In
addition, the rule base of FIS includes two fuzzy if-then rules
of Takagi-Sugeno type. The two rules can be represented as:

Rule 1: if x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule 2: if x is A2 and y is B2, then f2 = p2x+q2y+r2
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Fig. 4 The evaluation
algorithm of the inventory
system model. Ib0 The
beginning inventory at the end
period of last year, Ie0 The
ending inventory at the end
period of last year, R0 Reorder
point of last year, R Reorder
point of this year, Ibi The
beginning inventory at period i
of this year, Iei The ending
inventory at period i of this year,
Di Demand at period i of this
year, Si Supply at period i of
this year, Qi Order quantity at
period i of this year, Qsi
Shortage quantity at period i of
this year, Qoi Ordering quantity
at period i of this year, Qhi
Holding quantity at period i of
this year, Csi Shortage cost at
period i of this year Co Ordering
cost of this year, Chi Holding
cost at period i of this year

Inventory Cost
Ordering cost, Holding cost, Shortage cost   

(Qoi*Co), (Qhi*Chi), (Qsi*Csi)

Total Cost
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Fig. 5 ANFIS architecture with
two rules
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where Ai,Bi (i=1, 2) are fuzzy sets in the precursor, and
pi , qi , ri (i = 1, 2) are the design parameters that are decided
during the training process.

Layer 1: Input nodes. Every node i in this layer is rectan-
gular node with a node function as Eq. (6):

O1
i = μAi (x), i = 1, 2 O1

i = μBi (y), i = 1, 2 (6)

where x, y are the crisp inputs of node i , and Ai , Bi are the
linguistic labels identified by membership functions, μAi (x)
and μBi (y), respectively.

Layer 2: Rule nodes. Every node in this layer expresses the
firing strength of a rule by multiplying the entering signals
and sending the product out as Eq. (7):

O2
i = ωi = μAi (x) × μBi (y), i = 1, 2. (7)

Layer 3: Average nodes. The i-th node in this layer computed
the average proportion of the i-th rule’s firing strength.

O3
i = �i = ωi

ω1 + ω2
, i = 1, 2 (8)

where �i is taken as the normalized firing strength.
Layer 4:Consequent nodes. Thenode function in this layer

is expressed by Eq. (9):

O4
i = �i fi = �i (pi x + qi y + ri ), i = 1, 2 (9)

where �i is the output of layer 3, and {pi ; qi ; ri } is the
parameter set. Parameters in this layer are specified to the
consequent part of the Segeno fuzzy model.

Layer 5: Output nodes. The single node in this layer
calculates the overall output as the total of all entering sig-
nals. Consequently, the defuzzification process converts each
rule’s fuzzy results into a crisp output in this layer.

O5
i =

2∑
i=1

�i fi = �1 f1 + �2 f2
�1 + �2

, i = 1, 2 (10)

It is noticed from theANFIS structure thatwhen the values
of the premise parameters are fixed, the overall output can be
represented as:

f = (�1x)p1 + (�1y)q1 + (�1)r1

+ (�2x)p2 + (�2y)q2 + (�2)r2 (11)

ANFIS combines the gradient descent method and the
least square methods to train parameters. Functional sig-
nals go onward until layer 4. Then, the resulting parameters
are controlled by the least squares method to minimize the
error. Furthermore, the assumption parameters are improved
by the gradient descent in the backward pass. ANFIS is
implemented in various applications such as modelling a
ground-coupled heat pump system (Esen et al. 2008c, d, e),

predicting the performance of a refrigeration system (Hosoz
et al. 2011), applying for an industrial robot manipulator
(Chaudhary et al. 2014), and other applications (Fragiadakis
et al. 2014; Yang and Entchev 2014; Gokulachandran and
Mohandas 2015; Phootrakornchai and Jiriwibhakorn 2015).

Performance parameters

The performance of the models can be corroborated with the
following functions: the coefficient of determination (R2),
the root mean squared error (RMSE) and the mean absolute
error (MAE) as described in Eqs. (12), (13) and (14).

R2 = 1 −

n∑
i=1

(Ai − Pi )2

∑n
i=1

(
Ai − Ai

)2 (12)

RMSE =

√√√√√
n∑

i=1
(Ai − Pi )2

n
(13)

MAE =

n∑
i=1

|Ai − Pi |
n

, (14)

where Pi is the predicted values. Ai is the observed values.
Ai is the average of observed set. n is the number of datasets.

R2 represents howmuch the variability in dependent vari-
ables can be interpreted by independent variables, which
have value between zero and one. A value for R2 approach
to one indicates a good fit of predicting model and a value
approach to zero indicates a poor fit. MAE would expose if
the results undergo from a bias between the actual and pre-
dicting datasets. RMSE is a measure applied to compute the
deviation between values predicted by amodel and the values
observed.RMSE andMAE are non-negative numbers with no
upper bound and can be zero only for an ideal model.

Industrial application

The problem of inventory control has been investigated
by using a case study of a furniture company in Thailand.
The company is a made-to-order manufacturer that produces
three main products which are door frames, stairs and ply-
wood doors. Supply and demand of their products are both
uncertain. The materials are imported from neighbouring
countries and consist of timber woods, shorea obtusa woods,
rubber woods and hopea woods. The main materials are tim-
ber woods. Availability of these materials is uncertain due to
the amount of timber woods based on climate, rainfall and
proveniences of supply. Demand varies randomly but both
demand and supply can be described by a normal distribution.
Presently, a high stock level is maintained to secure against

123



J Intell Manuf (2018) 29:905–923 913

-
2,000 
4,000 
6,000 
8,000 

10,000 
12,000 
14,000 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

U
ni

ts

Demand Supply

Week

Fig. 6 Fluctuation of demand and supply in 52 weeks. Note: Demand: mean = 2452 units, SD = 776 units, Supply: mean = 6487 units, SD = 3921
units

1500 2000 2500 3000 3500

0

0.2

0.4

0.6

0.8

1

Demand

D
eg

re
e 

of
 m

em
be

rs
hi

p

Low Medium High

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

Supply

D
eg

re
e 

of
 m

em
be

rs
hi

p

Low Medium High

dd σ− dd σ+d maxDminD max25.0 S max5.0 S max75.0 S0 maxS

(a) (b)

Fig. 7 Input membership functions. a Demand. b supply

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

Order Quantity

D
eg

re
e 

of
 m

em
be

rs
hi

p

Low Medium High

R+maxS5.0RS. −max50 max50 S.0 maxS

Fig. 8 Output membership functions, order quantity (μQi )

Table 2 The relationship of membership functions for each fuzzy rule

Rule x1 x2 y1

1 Low Low Medium

2 Low Medium Low

3 Low High Medium

4 Medium Low Low

5 Medium Medium Medium

6 Medium High High

7 High Low Medium

8 High Medium High

9 High High High

insufficiency. The company guarantees to serve clients with
over 95% of service level efficiency. However, shortages still
occur and the total inventory cost is high. These are seri-
ous problems for the company. So, FIS model, FIS+ANN
model and FIS+ANFIS model were proposed to reduce the
total inventory cost and inventory levels, and the results were
compared with the conventional stochastic EOQ model. Fif-
teen data sets from the distribution of historical data of year
1999 to 2014 were investigated. The data sets of the year
before 2010 were adjusted due to their tendency demand and
for more realistic of the input data sets. From Fig. 6, it can be
visualized that the supply of material fluctuated exceedingly
compared with demand and caused a shortage in some peri-
ods.Ordering cost, holding cost and shortage cost per unit per
period of the case study factory were $100, $0.05 and $59,
respectively.

FIS for the lot-sizing problem

Fuzzy inputs

Fuzzy inputs are demand and supply. For systems with
consequential dynamic variation in a short period of time,
triangular or trapezoidal membership functions should be
used (Bai and Wang 2006). Fuzzy demand and fuzzy sup-
ply, represented by membership functions, μDi and μSi ,
respectively, were determined based on inspection and
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Fig. 9 The average total cost of 15 data sets of the proposed FIS model

Fig. 10 The flow chart of
FIS+ANN model

Fig. 11 The flow chart of
FIS+ANFIS model

verifying of historical data. Both of them are supposed
to be described by three linguistic values; low, medium,
high.

The universe of discourse of demand input space was cre-
ated within the range [Dmin,Dmax], where Dmin andDmax are
the minimum and maximum demand that had been ordered
respectively.Demandmembership functions rely on the para-
meters (Dmin, d−σd , d, d̄+σd ,Dmax) as presented in Fig. 7a.
The parameters were created depending on the attributes of a
normal distribution of unpredictable demand of the factory.
Supply was created on actual data within the range [0, Smax],
where Smax is themaximum supply from the recent suppliers.

Membership functions are presented in Fig. 7b. The parame-
ters (0, 0.25Smax, 0.5Smax, 0.75Smax,Smax)were applied for
supply linguistic values.

Fuzzy outputs

The fuzzy output, order quantity, is constructed and repre-
sented by membership functions, μQi . Fuzzy order quantity
is supposed to have three linguistic values; low, medium and
high, represented by (0, 0.5Smax-R, 0.5Smax, 0.5Smax+R,
Smax) as presented in Fig. 8, with universe of discourse inter-
val [0, Smax].
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Step 1: Determine MFs of inputs and outputs.
Step 2: Split data into three parts as training, testing and checking.

Step 3: Load training, testing and checking data.
Step 4: Select grid partition method.
Step 5: Determine type of MFs, number of MFs, and type of output MFs.
Step 6: Choose MFs optimization method.
Step 7: Set number of epochs. 
Step 8: Start train and get the training error.

Step  9 : Test the trained model with testing and checking data.
Step 10: View result and adjusted the generated rules or MFs.
Step 11: Apply to fuzzy inventory system model and calculate total costs.
Step 12: Calculate predicted accuracy.

Phase 1: ANFIS Input selections

Phase 2: Building and solving ANFIS Model

Phase 3: Evaluating and analysing results of ANFIS model

Fig. 12 Algorithms based on ANFIS for inventory system

Fuzzy rules

The fuzzy rule is described by a sequence of IF-THEN,
directing to algorithms representing what activity or out-
put should be selected in terms of the presently observed
information, which involves both input and feedback if a
closed-loop control system is used. The guidance to create
or construct a set of fuzzy rules is originated on a human
being’s knowledge or experience, which depends on each
veridical application. A fuzzy IF-THEN rule relates to a con-
dition represented using linguistic variables and fuzzy sets to
an output or a conclusion. This IF-THEN rule is extensively
applied by the fuzzy inference system to calculate the degree
towhich the input datamatches the stipulation of a rule. Since
the outputs, order quantity and reorder point are fuzzy sets,
a Mamdani- type inference system is chosen here for esti-
mating and aggregating the fuzzy rules. The IF-THEN rule
can be mathematically represented, as proposed by Mandani
andAssilian (1975), byCartesian product of the fuzzy inputs,
x1×x2. The relationship between demand x1, supply x2 (IFs)
and order quantity y1 (THEN) are represented by 9 rules as
shown in Table 2.

By using the max-min compositional operation, the fuzzy
reasoning of these rules produces fuzzy outputs. Fuzzy order
quantity (μQi (y1)) can be represented as

μQi (y1) = (μ1
Di

(x1)∧μ1
Si
(x2)∨...(μn

Di
(x1)∧μn

Si (x2)), (15)

where ∧ is the minimum operation and ∨ is the maximum
operation. Di, Si and Qi are fuzzy subsets identified by the
analogous membership functions, i.e., μDi , μSi , μQi .

Actually, the fuzzy output is also a linguistic variable,
and this linguistic variable needs to be transformed to the
crisp variable through the defuzzification process. For this
case study, the central of gravity method is chosen to convert
the fuzzy inference output into non-fuzzy values of order
quantity, y∗

1 . Define rule number as n. The crisp values of
order quantity are calculated as

y∗
1 =

9∑
n=1

y1(μn
Qi

(y1))

9∑
n=1

μn
Qi

(y1)

, for i = 1, 2, . . . , n (16)

Designing of input parameters

The proposed FIS model focuses on demand variation by
modifying the input membership function parameters with
the designed universe of discourse of demand input space
within the interval [Dmin,Dmax]. The demand member-
ship function parameters are selected between (Dmin, d̄ −
0.1σd , d, d + 0.1σd ,Dmax) to (Dmin, d̄ − 1.7σd , d, d̄ +
1.7σd ,Dmax). The first, the third and the fifth parameters
are fixed because they are lower bound, midpoint and upper
bound of the demand data. The second and the fourth para-
meters of the multiplier parameters of demand standard
deviation (σd) are adjusted from 0.1 to 1.7. Fig. 9, compares
the calculated average total costs of 15 data sets. The lowest
average total cost is at (Dmin, d−0.2σd , d, d+0.2σd ,Dmax)

or in abbreviated format denoted as (d+0.2σd). Therefore in
this case study, the recommended range of the membership
function parameters for applying the FIS model should be
between the range of (Dmin, d − 0.2σd , d, d + 0.2σd ,Dmax)

and (Dmin, d − 0.4σd , d, d + 0.4σd ,Dmax).

FIS with ANN for the lot-sizing problem

In this research, the two layer feed-forward with a back prop-
agation learning algorithmwas used for the inventory model.
The flow chart of FIS+ANNmodel is shown in Fig. 10. The
input data consisted of 52 demand and supply quantities.
The output data from FIS model was used as the target data
to define the ANN output. To determine with ANN, 42 data

Table 3 The K-fold cross
validation results of each model

FIS+ANN FIS+ANFIS_Trap FIS+ANFIS_Gauss FIS+ANFIS_Bell

R2 0.975 0.978 0.946 0.914

RMSE 377 339 502 670

Best performance results are highlighted in bold
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Table 4 The comparison of
statistical values of 15 data sets
for each model

Q Data set FIS+ANN FIS+ANFIS Trap FIS+ANFIS_Gauss FIS+ANFIS Bell

R2 D1 0.855 0.981 0.944 0.957

D2 0.768 0.993 0.992 0.918

D3 0.939 0.997 0.942 0.800

D4 0.950 0.999 0.921 0.944

D5 0.563 0.937 0.952 0.929

D6 0.819 0.969 0.968 0.963

D7 0.898 0.976 0.964 0.962

D8 0.766 0.966 0.945 0.949

D9 0.988 0.976 0.847 0.778

D10 0.925 0.958 0.930 0.854

D11 0.887 0.995 0.995 0.955

D12 0.852 0.994 0.975 0.837

D13 0.933 0.992 0.987 0.876

D14 0.925 0.974 0.976 0.887

D15 0.848 0.966 0.936 0.923

Avg. 0.861 0.978 0.952 0.902

RMSE D1 852 306 531 464

D2 1284 222 232 758

D3 582 137 570 1,087

D4 579 94 728 609

D5 1497 562 492 599

D6 1022 419 425 461

D7 639 308 375 389

D8 1101 418 534 519

D9 260 363 977 1,115

D10 655 485 628 908

D11 749 151 151 470

D12 935 182 371 1,015

D13 552 189 249 753

D14 541 316 306 662

D15 884 419 572 630

Avg. 809 305 476 696

MAE D1 625 146 332 308

D2 978 60 155 567

D3 396 52 417 730

D4 390 61 592 412

D5 1,015 308 321 443

D6 994 235 232 281

D7 379 76 146 259

D8 780 236 418 369

D9 183 92 345 894

D10 471 280 490 670

D11 518 72 101 332

D12 755 108 191 530

D13 397 111 191 586

D14 408 144 161 441

D15 619 214 450 498

Avg. 594 146 303 488

Best performance results are highlighted in bold
Avg. is average
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Fig. 13 Training and checking curves of data set 1. a
FIS+ANFIS_Trap model. b FIS+ANFIS_Gauss model. c
FIS+ANFIS_Bell model

were selected for training, 5 data for validation and 5 data for
testing. The number of hidden neurons was defined as 5. The
model was trained by using Levenberg-Marguardt with back
propagation algorithm. Then the output from ANN model
was entered into the evaluation algorithm to compute the
total inventory cost of each time period. The total inventory
cost of the model is the summation of inventory costs for all
periods.

FIS with ANFIS for the lot-sizing problem

The flow chart of FIS+ANFIS model is shown in Fig. 11.
The output from FIS model was applied as the training and
testing data of ANFIS model. There are two inputs for each
of the 3MFs. Then the 9 rules were applied to normalize data
and get the constant output for each data period. The result of
ANFIS was entered to the evaluation algorithm to compute
the total inventory cost for each time period, then summed
to give the inventory cost of the model.

An algorithm of the model based on ANFIS for the inven-
tory system is tabulated in Fig. 12 showing 3 phases. Similar
to ANN, to determine with ANFIS, 42 data were selected
for training, 5 data for checking or validation and 5 data
for testing. Both demand and supply inputs consisted of
threemembership functions (MFs). TheANFISmodels were
developed by using the various shapes of input MFs, trape-
zoidal and triangular (Trap), Gaussian (Gauss), and bell
shape (Bell). To determine ANFIS outputs, a constant order
quantity (Q) was selected. In MFs optimization, a hybrid of
the least-squares method and the back propagation gradient
descentmethodwas employed to imitate a given training data
set.

K-fold cross validation method

K-fold validation is an assuredmethod, presented to test gen-
eralization capability of ANN methods (Good 1999). This
method was used for further estimation of the efficiency of
the generated FIS+ANNmodel and FIS+ANFISmodels. In
this research, the total 15 data sets were separated into 5 even
groups, and then the modelling training were implemented 5
times taking one group out at each time to check the model
generality. By this method, the candidate model is examined
by the all data. The average accuracy of the models was rep-
resented by R2 and RMSE as showed in Table 3. The R2

of all models have achieved greater than 0.9, which verify
goodness of the model performance.
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Table 6 The average total inventory cost of all data sets and cost saving of all models compared to stochastic EOQ model

Inventory cost Holding cost Ordering cost Shortage cost Total cost

($) Saving (%) ($) Saving (%) ($) Saving (%) ($) Saving (%)

Stochastic EOQ 16,666 – 2080 – 62772 – 81518 –

FIS 14,152 15.1 2540 −221 5263 91.6 21,954 73.1

FIS+ANN 14,445 13.3 2467 −18.6 22,625 64.0 39,537 51.5

FIS+ANFIS_Trap 14,180 14.9 2580 −24.0 6962 88.9 23,722 70.9

FIS+ANFIS_Gauss 14,279 14.3 2,587 −24.4 2871 95.4 19,737 75.8

FIS+ANFIS_Bell 14,574 12.6 2540 −22.1 2989 95.2 20,103 75.3

Best performance results are highlighted in bold

Results and discussion

The inventory models of both fuzzy demand and supply have
been modelled analytically as well as with ANN and ANFIS
approaches. The results derived from the developed models
show that the FIS+ANFIS models outperformed FIS+ANN
model. The comparison of statistical values of 15 data sets
for eachmodel is shown in Table 4. This comparison is based
on FIS model that had been verified for its effectiveness with
the conventional models; stochastic EOQmodel, SilverMeal
model and Wagner Whitin model.

The result of prediction performance showed that FIS+
ANFIS_Trap model is outstanding, followed by FIS+
AIS_Gauss model, FIS+ANFIS_Bell model and FIS+ANN
model, respectively. For FIS+ANFIS models, the results of
running times (epochs) showed that the lowest running time
was FIS+ANFIS_Bell model, followed by FIS+ANFIS_
Gauss model and FIS+ANFIS_Trap model, respectively.
The training andchecking curves of all proposedFIS+ANFIS
models of data set 1 are shown in Fig. 13.

For implementation based on prediction performance,
FIS+ANFIS_Trap model and FIS+ANFIS_Gauss model
were suitable to use. However, based on running times,
FIS+ANFIS_Bellmodel andFIS+ANFIS_Trapmodelwere
appropriate for the decision maker.

The results of each proposed model after entering the pre-
dicted values to the evaluation algorithm and calculating the
total inventory costs is shown in Table 5. The ordering costs
increased whereas the larger holding costs decreased for all
models when compared with stochastic EOQ model.

The average total inventory cost of all data sets and cost
saving of all models compared to stochastic EOQ model is
shown inTable 6.Allmodels performedwellwith total inven-
tory cost saving. The FIS+ANFIS_Gauss model achieved
the largest cost saving by more than 75% compared to sto-
chastic EOQ model, followed by FIS+ANFIS_Bell model,
FISmodel, FIS+ANFIS_Trapmodel and FIS+ANNmodel,
respectively. Although FIS+ANFIS_Trap model outper-
formed stochastic EOQpredictionwhen applied as the inven-
tory model it represented the lowest cost saving, because

some predicted values were affected by shortages which
caused the shortage cost to be more than 30% of total cost.

Conclusion

Fuzzy Inventory System (FIS) model, FIS+ANNmodel and
FIS+ANFIS models were proposed for solving a dynamic
inventory lot-sizing problem with unpredictable conditions.
Demand and supply were inputs and order quantity was out-
put of the system. For FIS model, linguistic values were
applied for both fuzzy inputs and outputs. Fuzzy rules were
devised depending on the historical knowledge of a case
study factory. Fifteen data sets originating from the distri-
bution of the demand and supply of the case study factory
were applied to evaluate the membership functions of the
FIS model at different ranges of parameters. The appropriate
ranges for the inputs of the FIS model were justified.

The output from FIS model was entered to the evaluation
algorithm and calculated the total inventory cost. Then the
output of FIS model was used as the input of the developed
models, FIS+ANN model and FIS+ANFIS models. The
FIS+ANFIS models were divided to 3 membership func-
tions; trapezoidal and triangular, Gaussian and bell shape
called the FIS+ANFIS_Trap model, FIS+ANFIS_Gauss
model and FIS+ANFIS_Bell model, respectively.

The results from FIS+ANFIS models gave better values
for prediction in terms of R2, RMSE and MAE. The pre-
dicted values showed good fit, but when output data was
entered to the evaluation algorithm of inventory model, the
best total inventory cost saving compared to stochastic EOQ
model was achieved by the FIS+ANFIS_Gauss model. The
research emphasized that application of FIS with ANFIS
was beneficial for the inventory system and that FIS+ANFIS
with Gaussian membership function achieved the best per-
formance.

In further extended studies, the output of themodel should
be consideredwith fuzzy reorder point or fuzzy lead time, and
the ANFIS model studied with linear output. The evaluation
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algorithm should also be adjusted according to the realistic
situation in the future study.
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