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Abstract In this article the scheduling problem of dynamic
hybrid flow shop with uncertain processing time is inves-
tigated and an ant colony algorithm based rescheduling
approach is proposed. In order to reduce the rescheduling
frequency the concept of due date deviation is introduced,
according to which a rolling horizon driven strategy is
specially designed. Considering the importance of computa-
tional efficiency in the dynamic environment, the traditional
ant colony optimization is improved. On the one hand, a
strategy of available routes compression to restrict ants’
movement is proposed so that the ants’ searching cycle for
new solutions could be shorten. On the other hand, illu-
minating function in state transfer possibility is improved
to facilitate the exploration of low pheromone trail. Per-
formance of rolling horizon procedure and rescheduling
algorithm are evaluated respectively through simulations, the
results show the best parameters of rolling horizon procedure
and demonstrate the feasibility and efficiency of reschedul-
ing algorithm. An example from the practical production
is addressed to verify the effectiveness of the proposed
approach.

Keywords Hybrid flowshop · Uncertain processing time ·
Ant colony algorithm · Rolling rescheduling strategy

Introduction

This article investigates a hybrid flowshop (HFS) schedul-
ing problem, also called a flexible flow line or a flowshop
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with multiple machines on some or all production stages.
The machines of each stage are unrelated and in parallel,
which means that a job can be processed on any one of those
machines and the processing time at each stage is different.
The flow of jobs through the HFS is unidirectional. Each job
is processed by one machine in each stage and it must go
through all stages (Linn and Zhang 1999).

The scheduling problem for HFS has received extensive
study in literatures. The first research paper about hybrid
flexible flow shop appeared in the 1970’s. Salvador (1973)
published one of the pioneer papers on HFS by modelling
the production system in the synthetic fibres industry as
a no-wait HFS. Garey and Johnson (1979) demonstrated
that the HFS problem with makespan objective is NP-
complete. Kis and Pesch (2005) reviewed exact methods
for the k-stage HFS problem with identical machines to
minimize makespan. Wang et al. (2011) studied a hybrid
flow shop with multiprocessor tasks, in which a set of
independent jobs with distinct processor requirements and
processing times must be processed in a k-stage flow shop
to minimize the makespan. Zhang et al. 2014 studied a
novel three-stage hybrid flow shop problem, in which the
first and third stages contain many batching machines and
non-batching machines, and the second stage contains non-
batching machines. Babu et al. (2014) studied an integrated
problem of port operations in the coal import instance of
stockyard. The unloading, storing and transferring of coal in
different stages are taken into consideration. A two heuristic-
based greedy construct algorithms is proposed to solve the
problem. Yang (2015) considered a two-stage hybrid flow
shop scheduling with dedicated machines at stage 1 with
the objective of minimizing the total completion time. There
exist two machines at stage 1 and one machine at stage 2.
Each job must be processed on one of the two dedicated
machines at stage 1 depending on the job type; subse-
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quently, the job is processed on the single machine at stage
2.

In most research of HFS scheduling, predetermined
processing time of various operations is necessary for effec-
tive results. However in real-life production with dynamic
environment, due to differences between machines, skill lev-
els of workers and so on, it is difficult to designate each
processing time a fixed value. Therefore due to such an uncer-
tainty, the scheduling schememay lead to a large deviation in
the actual implementation, and in some case even cannot be
executed. Actually, the deviation of processing time of oper-
ations is a widespread phenomenon in the workshop and has
become the most common dynamic event with uncertainty.

Xu and Gu (2005) use the method of fuzzy theory to han-
dle the uncertainty of system parameters in a no-wait flow
shop. But the method does not reflect real-time changes in
the characteristics of the plant. Zhao et al. (2008) construct a
framework of collaborative production scheduling, in which
the fuzzy approach is proposed to judge the probability of
production time distribution. They use the proposed method
to get feasible solutions for outsourcing production and stud-
ied the robustness of the results.

Mehta et al. classify dynamic scheduling into three cat-
egories: completely reactive scheduling, predictive–reactive
scheduling and robust pro-active scheduling. In completely
reactive scheduling no schedule is generated in advance and
decisions are made in real-time. Priority dispatching rules
are frequently used. Predictive–reactive scheduling is the
most common dynamic scheduling approach used in man-
ufacturing systems. It is a scheduling/rescheduling process
inwhich schedules are revised in response to dynamic events.
Robust pro-active scheduling approaches focus on building
predictive scheduleswhich satisfy performance requirements
predictably in a dynamic environment. The main difficult of
this approach is the determination of the predictability mea-
sures. Therefore, Predictive–reactive scheduling has been
widely studied for dynamic scheduling problem. Wu (2007)
deal with the dynamic jobshop scheduling problem from the
perspective of strategic, but the rolling optimization for bet-
ter scheduling needs to be further expanded. Liu et al. 2012
propose a concept of critical process set under the frame of
rolling scheduling strategy, and take use of hybrid genetic
algorithm to determine the critical process set as well as its
corresponding optimal scheduling solution.

Although the problem of uncertainty in shop schedul-
ing has attracted some researchers in recent years, most of
them rely on probability theory or fuzzy method to evaluate
the robustness of the originally generated schedules, which
therefore lack of the real-time response to the occurrence
of uncertain events. In terms of the research on dynamic
scheduling, most of them focus on the analysis and process-
ing for some single, dominant events such as random arrival
of urgent orders or machine breakdowns, while the investiga-

tion of recessive uncertain processing time is comparatively
limited.

In order to fill up with the research gap, this paper inves-
tigates the dynamic HFS scheduling problem with uncertain
processing time. An effective rescheduling strategy based on
the rolling horizon procedure is developed according to the
causes of uncertainty. An improved ant colony optimization
is proposed to establish the systematic and complete schedul-
ing solution.

The remainder of this paper is organized as follows. We
begin in Section “Problem description” by describing the
HFS scheduling problem with uncertain processing time. In
Section “Rolling rescheduling strategy”, we introduce the
rolling scheduling strategy. In Section “Improved ant colony
algorithm” an improved ant algorithm is addressed. In Sec-
tion “Numerical results”, we give numerical results. The
conclusion is drawn in Section “Conclusions”.

Problem description

This research for HFS scheduling has been motivated by
a real-life problem faced by a semiconductor manufacturer
which is specialized in printed circuit board (PCB) assembly.
In the PCB assembly shop, all jobs containing lots of PCBs
will be processed through 4 shops (stages), which is shown
in Fig. 1. The four stages include: surface mount assembly
(one side or two sides), inserting, wave soldering and test-
ing/packing. In each stage, a job can be processed by several
unrelated machines. In such a typical HFS scheduling prob-
lem, it not only needs to sequence all the PCB jobs, but also
to take the assignment problem of the parallel machines for
each job.

Suppose there are m machines and n jobs in a hybrid flow
shop. Each job consists of items within the same category.
In each stage the job can be processed by several machines
which are differentiated by the processing time of operations.
The set up time for changing batches on amachine is required
and it is related to the sequence of the two batches.

Assumptions are listed as follows:

(1) All jobs are available and can be processed at time zero;
(2) Since all jobs are processed in a flow shop, any job cannot

enter the next operation before the previous operation is
completed;

(3) Processing time is associated with the machine and has
a pre-estimated value, which deviates from the actual
value;

(4) Set up time for changing batches is related to the sequence
of the two batches, which contains the set up time of
machines and delivery time of jobs;

(5) One machine can process only one job at a time and
one job can be processed by only one machine at any
time;
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Fig. 1 Layout of PCB assembly shop

(6) Operations of jobs belonging to different batches do not
have constraints between each other;

(7) Once the job is processed, it cannot be interrupted until
the whole batch is completed.

The processing time is affected by the material type, batch
size, manufacturing processes, machine status (new or old)
and workers’ efficiency. In the actual production process it
is difficult to determine a fixed value. According to queu-
ing theory, the normally used distribution model includes the
negative exponential distribution, shift negative exponential
distribution and Erlang distribution (Bose 2002). However,
in the negative exponential distribution the occurrence of
small probability events appears a relatively high probability,
which implies that such a model is not suitable in the actual
production. Thus in this paper, the Erlang distribution model
is adopted to simulate the real processing time in the manu-
facturing system. The basic probability density function is:

f (t) = (kλ)k
[

e−kλ

(k − 1)!
]
tk−1 (1)

In which t obeys the k-order Erlang distribution, E[t] =
1/λ, var[t] = 1/(kλ2). If the product is designed to go
through k operations, and the processing time of each oper-
ation is independent, then the processing time obeys the
k-order Erlang distribution, its density function is:

A(t) = e−kλt
k−1∑
n=0

(kλt)n

n! , k > 0 (2)

Rolling rescheduling strategy

At the beginning moment of the rolling optimization, it is
required to schedule all the tasks to get a pre-scheduling

sequence.With the advance of the actual production process,
due to changes in the workshop environment, deviations
between the actual scheduling program and pre-scheduling
scheme occur. Thus the rescheduling is required. That means
the completed job will be removed from scrolling window,
and select some from operation set to be processed instead.
The above processes will be repeated till all jobs are done.
Figure 2 shows the rolling strategy map. The processing time
deviation information is detected during the processing in
the workshop. The detected information is judged by the
driven mechanism based on delivery deviation tolerance for
whether reschedule or not. If rescheduling is started, its win-
dow is selected based on the use of rescheduling process
window mechanism. Appropriate algorithm is designed for
batch scheduling within the window. The following fig-
ure describes two key elements of rescheduling: the rolling
rescheduling mechanism and job window mechanism.

Rescheduling mechanism based on delivery deviation
tolerance

Currently there are 3 kinds of rolling horizon reschedul-
ing mechanism: event-driven rescheduling, cycle-driven
rescheduling and mixed driving rescheduling based on cycle
and event. The event-driven mechanism gets more applica-
tions since it’s capable of respond to the events in real-time
production. But if each batch is adjusted according to
actual implementation, it will inevitably lead to frequent
adjustments of job sequence. A buffer mechanism must be
established to avoid the response to the disturbance events
with little effect. This buffering mechanism requires not only
filtration of small amplitude disturbance event, but also con-
sidering the disturbance caused by a large number of small
changes.
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Fig. 2 The rolling strategy

The deviation of process time will lead to the devia-
tion between actual due date (makespan) and prescheduled
due date, and with the accumulation of processing time, the
degree of due date deviation changes. The due date of dif-
ferent schedules varies, and the same deviation of due date
has different influence on different schedules. Therefore,
the concept of delivery deviation is proposed, and is given
by:

δ = |Max(Ci ) − Max(C ′
i )|

Max(Ci )
(3)

in which Max(Ci ) and Max(C ′
i ) denote the rescheduling

makespan and the makespan when delivery deviation occurs
respectively. Before rescheduling, you need to determine
the delivery deviation tolerance δmax. The delivery devi-
ation δ is compared to δmax during the scheduling. The
rescheduling is triggered once δ exceeds δmax. If δmaxis
too large, then the occurrence times of rescheduling will
be too small or even zero, and it cannot respond effec-
tively to the production environment changes; if δmax is
too small, then it will cause frequent rescheduling, result-
ing in a great impact on the orderly production. Besides

each Tolerance deviation is specific for a given problem.
From the experimental point of view, this article studies
the results of the rescheduling under different deviation tol-
erances and determines the optimal value of the deviation
tolerance.

Rescheduling window mechanism based on processes

For the rolling horizon strategy based dynamic schedul-
ing, it is required to determine the appropriate window size
initially. Since scrolling window has measurable charac-
teristics, generally workpiece or time scales is used as a
measure. The current re-scheduling window mechanisms
are: workpiece-based windows, time-based windows and
process-based windows.

In this research, themechanismof process-basedwindows
is adopted due to the advantages of adjusting with high pre-
cision and being able to adapt to changes of the processing
load. As shown in Fig. 3, (O(l) denotes the l-th predic-
tive window, and contains S(l) jobs; CS(l) is the set of jobs
already completed; ES(l) is the set of waiting jobs.), a certain
amount of workpieces from operation set to be processed in
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Fig. 3 Rolling window based
on operation
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O(l)

rescheduling window. Window size has a great impact on
the result of rescheduling. If the window is too small, the
amount of computation is reduced, but the global informa-
tion considered is less, which will result in lower overall
performance; conversely, if the window is too large, it is
difficult to obtain the optimal schedule due to the hard com-
putation, and only suboptimal solution is obtainedwhichmay
reduce the performance of the final global solution. Thus
this paper determines the optimal window size by analyzing
the results of numerical experiments with different window
sizes.

Improved ant colony algorithm

The randomness and uncertainty of the dynamic scheduling
problemmake it more complicated than the static scheduling
problem. Ant colony algorithm, due to its simple principle,
good versatility and less constraints by the restrictions, is
a promising alternative for the dynamic scheduling. Since
the processing time fluctuates greatly, frequent rescheduling
should be carried out and it is required that the scheduling
algorithm has to be of high computational efficiency. How-
ever the traditional ant colony algorithm has disadvantages of
long searching time and local convergence. In order to solve
these problems, some researchers conducted in-depth studies
on the ant colony algorithm and proposed many improving
strategies. Xiao and Li (2003) compressed ants searching
path by setting ants’ optional path sets, thus greatly increas-
ing the computational efficiency of ants. However, the size
of optional path sets requires a lot of experiments, and fixed
ants optional path sets will limit the range of movement of
ants, causing it to be difficult to maintain population diver-
sity and easy to fall into local minimum value. For the above
drawbacks, Huang et al. (2009) proposed a self-adaptive ants
path compression mechanism based on group evolutionary
rates, designed optional path sets jumping strategy based on
ants polymorphism and improved the heuristic factors of ants
state transition. This improved algorithm has been used to
solve JSP problem and achieved better results. However its
definition on evolutionary rates and ants polymorphism is
too simple, and its improvement on heuristic factors does
not have the versatility, which still leaves much room for
improvement. This paper designed ant path compression
strategybydrawing the concept of ants’ optional path sets and
stimulated the ants to try the less selected path by improving

the ants state transition rules. Thus the algorithmic efficiency
and solution quality is better.

Ant path compression strategy

Themovement range of ants could be limited by compressing
the ant path, thus to improve the searching efficiency. How-
ever, fixed ants optional path setsmakes the searching process
of ants in the whole range of movement to be always con-
sistent, which decreases the population diversity and causes
difficulty in finding new solutions, and makes the algorithm
easily fall into a local optimum. Meanwhile, the size of ants’
optional path sets has a great influence on convergence rate
of the algorithm. When the size is too small the algorithm is
easy to fall into a local optimum; while the size is too large, it
is difficult to achieve the purpose of lowering the dimension
and saving the computing time (Gholami et al. 2009). The tra-
ditional ant colony algorithm requires trial and error to deter-
mine the appropriate ant optional path sets size. This paper
proposed the concept of node-weighted divergence, designed
the path compression strategy based on node-weighted diver-
gence, making the ant optional path sets size be enable to
adjust dynamically according to searching conditions.

In the searchingprocess of ants,whenall the ants in thedis-
tribution of the scattered paths, the pheromone of each path
distributes uniformly, which may slow down the searching
velocity of ants and prolong the searching cycle. Therefore
it is better to focus the ants on some optimal paths. To the
contrary, when the distribution of all the ants is centralized,
it is prone to cause stagnation and make the algorithm to fall
into local optimum. In order to measure the degree of a node
distribution of ants in different paths, this paper introduces
the concept of node divergence. If there are r nodes to choose
after the node i, and the number of ants passed by node i is
Mi in the last iteration, and the number of ants on r paths are
respectivelym1,m2, . . .,mr, then the divergence of node i is:

Ei = 1 − 1

Mi

√
r
∑r

i=1 (Mi/r − mi )2

r − 1
(4)

Define the ratio between the number of ants passed by node i
and the total number of ants as the node i attract rate, namely
Ai = Mi/Numant . A higher node i attract rate implies a
larger number of ants passing node i, more dispersed distrib-
ution of ants and more easily falling into local optimum. On
the contrary, a lower of the node i attract ratemeansmore uni-
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form distribution of ants and slower searching velocity. Thus,
to a certain extent, the attract rate can reduce the effect of the
divergence. Through putting it as a measure of ants’ node
divergence’s weights, the node weighted divergence formula
is:

Gi = Ai Ei = Mi −
√

r
∑r

i=1 (Mi /r−mi )
2

r−1

Numant
(5)

Based on the ant node weighted divergence, the ant optional
path sets size in this node is:

Winki = Min
{[

(1 − Gi )Winkallowed

]
+ 1,Winkallowed

}
(6)

While [ ] indicates rounding towards nearest integer, and
Winkallowed indicates all possible number of nodes of ant
k at node i. From the formula, it is clear that ants distrib-
ute more uniformly when the ant node has a higher weighted
divergence. Thenwe can improve search efficiency by reduc-
ing the ant optional path sets. While when the ant node has a
lower weighted divergence, ants distribute more centralized,
and it is needed to find a new solution space by enlarging the
ant optional path sets.

Ant state transition rules

Stagnation is a major flaw of ant colony algorithm. With the
evolution of ants, pheromone of paths with better solutions
would continue to increase, and the probability of this path
being selected during subsequent searches will grow. While
paths may be lead to global optimal solution, it may be grad-
ually forgotten due to little ants passing by and ultimately
make the algorithm fall into a local optimum. Against the
above shortcomings, the ant node state transition rules pro-
posed in this paper stimulates the ants to try the less visited
paths, in order to enlarge the global searching capability of
the ants. The improved state transition rules are:

pki j =
(
τ ki j

)α

.
(
ηki j

)β

.xi j

∑
j∈allowedk

(
τ ki j

)α

.
(
ηki j

)β

.xi j

(7)

Among xi j = Numant·N
Numant·N+δ·mi j ·ηi j /max(ηi j )

, Numant repre-

sents of the number of ants,N represents the current iteration
number, mi j represents the total number of ants going
through the path (i, j). When the iteration tends to locally
optimal, although pheromones is continuously increasing
on local optimal path, this effect is on the state transition
probabilities is suppressed due to that the number of ants
on their path, e.g. mi j for the path (i,j) is also increased,

which will lead to reduction of the value of xi j . This pro-
posed rule can improve the algorithm’s global searching
ability. Because mi j ≤ Numant · N , ηi j/max(ηi j ) ≤ 1,
then 1 ≥ xi j ≥ xmin = 1/(1 + λ). Parameter λ can adjust
the intensity of x, i.e. the smaller λ is, the larger xmin is, and
the smaller the weighted-value of the number of ants passed
through the path in ant state transition rules is.

τ ki, j indicates the pheromone level between batches (i, j);

ηki, j = 1/(SetJ (i),J ( j) + FT (L J ( j),p−1, j ) + PT (L J ( j),
p, j)) indicates the heuristic information between batches (i,
j), which considers the processing sequence dependent setup
time, the former process completion time, and the current
process processing time. J(i) and J(j) respectively indi-
cates the workpiece types of batch i and j; FT (L J ( j),p−1, j )

and PT (L J ( j),p, j ) respectively indicates the former process
completion time and the current process processing time. α
and β control the relative importance of τ ki, j and ηki, j in state
transition probabilities.

Algorithm steps

The specific steps of improved ant colony algorithm are as
follows (Fig. 4):

STEP1: Initialize the algorithm parameters. Set the
ant colony algorithm parameters α, β, ρ, maximum
pheromone level τmax, minimum pheromone level τmin,
maximum number of iterations It , ant number Nu , and
jump probability Ps . Pheromone levels in all paths are
initialized as τmax.
STEP2: generate an ant a, and randomly select a batch i
among the waiting jobs set as the first node to be visited,
then assign the batch i to the earliest available machine.
Initialize ant node counter S = 1, and iteration number
counter N = 1.
STEP3:Determine the batch setWinsallowed = {1, 2, . . .,
P} − tabua(S) that ant a can visit at next step, in which
tabua(S) is the batch set ant a has visited at S-th step, and
P is the total batch numbers in the waiting jobs set. Cal-
culate the divergence of this node and determine optional
path set Winsallowed in this node of ant a.
STEP4: Select the next node to be visited according to
ant state transition rules, and set the earliest available
machine to perform this node’s processing jobs, refresh
ant node counter S = S + 1.
STEP5: Determine whether the ants have visited all
nodes, namely whether S = P is satisfied, if yes, then go
to STEP6, otherwise, go to STEP3.
STEP6: Refresh iteration number counter N = N + 1.
Determine whether the iterations are complete. If N =
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Fig. 4 Flow chart of improved
ant colony optimization
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Nt is satisfied, then finish this algorithm; otherwise, go
to STEP7.
STEP7: Update pheromone level. Firstly, calculate the
evaporation value of pheromone, τi, j (N + 1) = ρ.τi, j
(N ). Secondly, increase pheromone level of paths in
the solution which obtains the shortest completion time,
τ
a(min)
i, j = τ

a(min)
i, j + 	τ besti, j , in which a(min) is the best

solution,Cbest
max is the length of a(min),	τ bestn,i = 1/Cbest

max .
In order to avoid the algorithm trapping into a non-global
optimal solution too early, this paper introduces the
MMAS (max-min ant system) mechanism to limit each
ant pheromone level in [τmin, τmax ]. Specially, the max-
imum pheromone level τmax and minimum pheromone
level τmin are dynamically changing whenever a new best
solution sgb is found, and they are given by formulas (8)
and (9), in which pbest is set to 0.5 in this paper and n is
the total number of job batches to be scheduled. Then go
to STEP2.

τmax = 1

1 − ρ

1

f (sgb)
(8)

τmin = τmax(1 − n
√
pbest )

(n/2 − 1) n
√
pbest

(9)

Numerical results

Parameters analysis

Determining the tolerance of delivery time deviation and the
size of horizon window before the rolling horizon scheduling
has a great influence on the scheduling result. However they
are difficult to analyze theoretically because of the closely
connection with the actual problem. This article analyzes the
influences of delivery time deviation tolerance and horizon
window size delivery on the scheduling results. The example

Table 1 The example of the optimization on the tolerance of delivery
time deviation and the size of horizon window

Parameter Value range

Type of production 4

Number of processes 4

Number of the parallel machine for every process u[2,4]

Processing time u[20,30]

Set-up time(same products) u[1,3]

Set-up time(different products) u[5,7.5]

The quantity of workpieces in each batch 8

of the optimization on the tolerance of delivery time deviation
and the size of horizon window shows in Table 1.

The static scheduling result of the above example is shown
in Fig. 5. Products are divided into 128 processing batches,
the makespan of the schedule is 407. In the figure, number
represents product category and batches. For example “3, 2,”
means the second batch of the third type of products. Black
areas means set-up time.

In order to determine the most appropriate tolerance
of delivery time deviation, 4-order Erlang distribution is
adopted to simulate the actual processing time distribution.
10 times calculation under different deviation tolerance are
taken to solve the above example. The makespan, rolling
times and the average computation time are showed in
Table 2. From the table, when the delivery time deviation
tolerance is greater than 0.25, since the deviation tolerance is
large, no rescheduling is triggered and the result is obviously
not ideal.

When the delivery time deviation tolerance is too small,
the rolling time increases, leading to frequent reschedul-
ing. And since each rescheduling only considers the local
information of processing window, frequent rescheduling
has a poor performance on global optimization and com-
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Fig. 5 The gantt diagram of
static scheduling
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Table 2 The results of the
delivery time deviation
tolerance experiments

The tolerance of delivery time deviation Makespan (min) Rescheduling times Computation time (ms)

0.025 472.6 20 26432.3

0.05 443.2 11 10674.8

0.075 423.7 6 6416.5

0.1 406.8 4 3763.2

0.125 411.5 3 2836.5

0.15 417.6 3 2753.6

0.2 424.3 2 1521.4

0.25 432.6 1 882.3

0.3 436.5 1 862.1

0.35 439.5 0 532.4

0.4 439.5 0 538.5

0.45 439.5 0 531.2

0.5 439.5 0 528.6

Fig. 6 The results of the
delivery time deviation
tolerance analysis

putation efficiency. Figure 6 shows the relationship between
the delivery time deviation tolerance, scheduling results and
computing time. It can be seen that when the error tolerance
is 0.1, the rolling time is less, the solution is optimal and the
computation time’s increasing is not obvious.

In order to determine the most appropriate size of horizon
window, 4-order Erlang distribution is adopted to simulate
the actual processing time. 10 times calculation under dif-
ferent size of horizon window are taken to solve the above
example, in which the delivery time deviation tolerance is
0.1. The makespan, rolling times and the average compu-

tation time are showed in Table 3. From the table, when
the size of horizon window is too small, also the rolling
number increases, leading to frequent rescheduling. In the
meantime, too many batches lead to less rescheduling times
and longer computation time. Therefore it cannot obviously
reduce the total computing time. Figure 7 shows the relation-
ship between the size of horizon window, scheduling results
and computation time. It can be seen that when the size of
horizonwindow is between 64 and 90, the rolling time is less,
the solution is optimal and the computation time’s increasing
is not obvious.
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Table 3 The results of the size of horizon window experiments

The size of horizon window Makespan (min) Rescheduling times Computation time (ms)

13 541.2 13 56314.2

26 486.5 8 35163.5

39 463.2 4 27327.4

51 432.1 4 25368.4

64 412.4 3 14695.8

77 402.1 2 9532.4

90 408.3 2 9321.4

102 428.6 2 9346.5

115 436.5 1 6672.4

128 452.6 1 6532.8

Fig. 7 The results of the size of
horizon window analysis

Fig. 8 Schedule gantt chart
without researching
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Compared schedule gantt chart without rescheduling (as
shown in Fig. 8) with rescheduling gantt chart (as shown
in Fig. 9), and set the delivery time deviation tolerance 0.1,
size of horizon window 77. It can be seen from the diagram

that the reschedule can obviously shorten the makespan, and
make full use of spare equipment, improve the utilization rate
of equipment.
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Table 4 Benchmarks for dynamic scheduling algorithm

Product name Number of jobs Number of
processes

Number of the
parallel machines
for every process

Processing time Set-up time (same
products)

Set-up time (dif-
ferent products)

6 × 2 6 2 U[1,5] U[50,70] U[3,5] U[12,24]

30 × 2 30 2 U[1,5] U[50,70] U[3,5] U[12,24]

100 × 2 100 2 U[1,5] U[50,70] U[3,5] U[12,24]

6 × 4 6 4 U[1,5] U[50,70] U[3,5] U[12,24]

30 × 4 30 4 U[1,5] U[50,70] U[3,5] U[12,24]

100 × 4 100 4 U[1,5] U[50,70] U[3,5] U[12,24]

6 × 8 6 8 U[1,5] U[50,70] U[3,5] U[12,24]

30 × 8 30 8 U[1,5] U[50,70] U[3,5] U[12,24]

100 × 8 100 8 U[1,5] U[50,70] U[3,5] U[12,24]

Table 5 Results of different
algorithms

Experiments number Makespan (min) Computing time (ms)

IACO IACS SDWACO IACO IACS SDWACO

6 × 2L 247 247 248 182.3 202.4 187.6

30 × 2L 1130 1135 1137 632.5 868.9 651.5

100 × 2L 3769 3779 3776 9245.6 10102.3 9326.3

6 × 4L 589 591 593 463.8 472.1 451.3

30 × 4L 2302 2312 2317 4320.5 4625.7 4448.2

100 × 4L 7746 7759 7751 48632.3 50136.5 49186.1

6 × 8L 836 843 845 973.2 1003.2 951.3

30 × 8L 2709 2728 2726 16382.4 17568.5 16466.1

100 × 8L 7964 7981 7971 203126.7 221415.3 208929.6

Table 6 The processing times
of PCB in each production lines

Different kinds of PCBA S1 S2 S3 M1 M2 A1 A2 T1 T2

3ET0435TEK 0.923 0.923 0.882 0.6 1.5 0.6 0.4 0.6 0.4

3ET0374TEK 1.428 0.923 1.2 0.4 0.3 0.6 0.3 0.6 0.55

3ET0141CET 1 1.428 1 0.4 0.24 0.6 0.3 0.55 0.5

3ET0630CET 1 1 1 0.06 0.24 0.75 0.6 0.55 0.5

3ET0100CET 1 1 0.6 0.06 1.5 0.75 0.75 0.4 0.55

3ET0349CET 1 1 0.6 0.4 0.3 0.75 0.75 0.6 0.6

3ET0741CET 1 4.615 0.293 0.6 0.3 0.75 0.6 0.4 0.4

3ET0630CET 1 1 0.6 0.06 0.3 0.6 0.75 0.55 0.4

3ET0321AF 4.615 1 1.2 0.3 0.24 0.6 0.75 0.6 0.6

3ET0322AF 4.615 1 0.293 0.4 0.3 0.6 0.75 0.6 0.55

Performance evaluation

In order to verify the effectiveness of the improved ant colony
algorithm, this paper takes advantage ofGHOLAMI’s bench-
mark (2009) and generates nine benchmarks (as shown in
Table 4).

This paper takes use of the Erlang distribution model
to simulate the actual processing time, and respectively
uses three methods to solve those benchmarks, including

improved ant colony algorithm (IACO), improved ant colony
system (IACS) proposed by Liu et al. 2012, adaptive ant
colony algorithmbased on different sizewindow (SDWACO)
proposed by Gong and Ruan (2004). Due to the randomness
of ant colony algorithm, all those experiments are respec-
tively calculated 10 times to get the best value and the average
value. Parameters of IACO are as follows: α = 1, β = 2,
ρ = 0.3, Ps = 0.5, δ = 0.5, Numant = 20, I ter = 200,
τmax = 10, τmin = 0.5. The results are shown in Table 5.
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From the comparison of IACO and IACS, it can be seen
that due to the adoption of ant path compression strategy,
IACO is obviously superior than IACS in computing time, i.e.
the computing efficiency of IACO is significantly improved.
At the same time, the improved ant state transition rules help
to improve the global convergence performance of the algo-
rithm, so IACO is better than IACS in computing results.
From the comparison of IACO and SDWACO, it can be seen
that these two algorithms have little difference in computing
time. While solving large scale problems, ICAO can reduce
search window’s size gradually during the search process,
and performs better in adaptability of the problem and can
effectively control the size of search window compared with
SDWACO. Thus IACO has higher search efficiency than
SDWACO. From the results, it also shows that IACO per-
forms better than SDWACO in global searching capability
and can acquire superior results. From the comparison of
IACS and SDWACO, it can be seen that there is little differ-
ence in the quality of results between them. However, when
solving large scale problems, SDWACO can compress the
search space effectively. On the contrary, it is difficult for
IACS to converge to optimal solution in high-dimensional
space, and therefore SDWACO is slightly superior to IACS
in terms of effectiveness. From the aspect of computational
efficiency, the use of rescheduling window mechanism can
effectively compress the ant search path of SDWACO. Thus
it has better searching efficiency. Overall, IACO performs
better in both the effectiveness of the results and computa-
tional efficiency in line with the requirements of dynamic
scheduling.

Case study

The PCB assembly shop in our collaborating company has
four processing shops (SMT chip processing zone, plug-
processing zone, welding processing zone, and test zone) and
9 production lines. The productions lines are 3(S1,S2,S3),
2(M1,M2), 2(A1,A2) and 2(T1,T2). There are 10 kinds of
PCB to be produced, and the number of each PCB is 1000.
Every PCBhas to be processed in those 4 zones. The process-
ing time of PCB in each production line is shown in Table 6,
the set-up time of different PCB are shown in Table 7.

The gantt chart of static scheduling results can be seen in
Fig. 10, in which the makespan is 3615.7 and all PCB prod-
ucts are divided into 300 batches. Furthermore, compare the
SDWACO dynamic scheduling algorithmwith IACO in real-
life application. The gantt chart of SDWACO can be seen in
Fig. 11, in which the makespan is 3528.3 and the average
production line utilization rate is 86.2%. The gantt chart of
IACOcan be seen in Fig. 12, inwhich themakespan is 3496.5
and the average production line utilization rate is 90.3%. It
can be seen that IACO performs better than static scheduling
algorithm. While compared with other dynamic scheduling Ta
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Fig. 10 Static scheduling gantt
chart

Fig. 11 SDWACO dynamic
scheduling gantt chart

Fig. 12 IACO dynamic
scheduling gantt chart

algorithms, it can also effectively solve the uncertain process-
ing time problem in actual production process and obtain
good scheduling result.

During the former production of this PCBmanufacturing,
it always schedules according to previous experience firstly.
Then as the production parameters (processing time,machine
state, orders, and so on) changes, especially the advance and
delay of processing time occurs frequently, all of those cause
the entire PCB production to become extremely confusing. It
leads the static scheduling result obtained previously to be no

longer effective, or even infeasible. This issue has become
one of the bottlenecks restricting the enterprise to further
improve its production efficiency. The dynamic scheduling
method proposed in this paper plays an important role in
helping the enterprise to effectively achieve precise control
of PCB production process. What’s more, in order to guaran-
tee the effectiveness of this dynamic scheduling algorithm,
the accurate and real-time information of the workshop’s
production status is a prerequisite. How to strike a balance
between throughput increase and operation costs reduction
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in the workshop becomes a crucial question for this PCB
manufacturing enterprise.

Conclusions

Aiming to overcome the HFS scheduling problem with
uncertain processing time, this paper proposes an improved
ant colony algorithm based on rolling rescheduling strategy.
Putting forward the concept of delivery time deviation and
designing the rolling horizon strategy based on the tolerance
of delivery time deviation, this paper improves the traditional
event-driven rolling mechanism to reduce the frequency of
dynamic events and avoid frequent rescheduling. A new
process based rescheduling window measuring mechanism
is designed in order to realize the buffer of dynamic event.
To guarantee the computational efficiency of the rolling
rescheduling algorithm, based on the rolling horizon proce-
dure, an improved ant colony optimization is proposed. The
algorithm can improve searching efficiency by designing an
ant path compression strategy and enhancing the global con-
vergence ability by introducing an ant state transition rule to
stimulate ants to try the path being less searched. Through
simulation experiments, this paper analyzes parameters of
the rolling scheduling strategy and verified the effectiveness
of the dynamic scheduling algorithm by comparison exper-
iments. The results show that IACO performs better both in
computational time and solution quality. Finally, this paper
conducts the practical enterprise’s application, and the results
show that the method proposed in this paper has played a cer-
tain guiding role in actual production.

Although the research has dealt with several academically
challenging issues, further work is still needed in order to
be used on a daily basis. The first extension is that mul-
tiple objectives especially related with the due date, such
as total tardiness, need to be considered. Another extension
is that appropriate facilities must be developed to obtain
real-time availability shopfloor information for reschedul-
ing, together with the development and implementation of
the HFS scheduling system.
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